drm: add 32/64 support for MGA/R128/i915
[firewire-audio.git] / drivers / net / ppp_generic.c
blobab726ab43798811bd28d76c293f4fc3564dff75a
1 /*
2 * Generic PPP layer for Linux.
4 * Copyright 1999-2002 Paul Mackerras.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 * The generic PPP layer handles the PPP network interfaces, the
12 * /dev/ppp device, packet and VJ compression, and multilink.
13 * It talks to PPP `channels' via the interface defined in
14 * include/linux/ppp_channel.h. Channels provide the basic means for
15 * sending and receiving PPP frames on some kind of communications
16 * channel.
18 * Part of the code in this driver was inspired by the old async-only
19 * PPP driver, written by Michael Callahan and Al Longyear, and
20 * subsequently hacked by Paul Mackerras.
22 * ==FILEVERSION 20041108==
25 #include <linux/config.h>
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/kmod.h>
29 #include <linux/init.h>
30 #include <linux/list.h>
31 #include <linux/devfs_fs_kernel.h>
32 #include <linux/netdevice.h>
33 #include <linux/poll.h>
34 #include <linux/ppp_defs.h>
35 #include <linux/filter.h>
36 #include <linux/if_ppp.h>
37 #include <linux/ppp_channel.h>
38 #include <linux/ppp-comp.h>
39 #include <linux/skbuff.h>
40 #include <linux/rtnetlink.h>
41 #include <linux/if_arp.h>
42 #include <linux/ip.h>
43 #include <linux/tcp.h>
44 #include <linux/spinlock.h>
45 #include <linux/smp_lock.h>
46 #include <linux/rwsem.h>
47 #include <linux/stddef.h>
48 #include <linux/device.h>
49 #include <net/slhc_vj.h>
50 #include <asm/atomic.h>
52 #define PPP_VERSION "2.4.2"
55 * Network protocols we support.
57 #define NP_IP 0 /* Internet Protocol V4 */
58 #define NP_IPV6 1 /* Internet Protocol V6 */
59 #define NP_IPX 2 /* IPX protocol */
60 #define NP_AT 3 /* Appletalk protocol */
61 #define NP_MPLS_UC 4 /* MPLS unicast */
62 #define NP_MPLS_MC 5 /* MPLS multicast */
63 #define NUM_NP 6 /* Number of NPs. */
65 #define MPHDRLEN 6 /* multilink protocol header length */
66 #define MPHDRLEN_SSN 4 /* ditto with short sequence numbers */
67 #define MIN_FRAG_SIZE 64
70 * An instance of /dev/ppp can be associated with either a ppp
71 * interface unit or a ppp channel. In both cases, file->private_data
72 * points to one of these.
74 struct ppp_file {
75 enum {
76 INTERFACE=1, CHANNEL
77 } kind;
78 struct sk_buff_head xq; /* pppd transmit queue */
79 struct sk_buff_head rq; /* receive queue for pppd */
80 wait_queue_head_t rwait; /* for poll on reading /dev/ppp */
81 atomic_t refcnt; /* # refs (incl /dev/ppp attached) */
82 int hdrlen; /* space to leave for headers */
83 int index; /* interface unit / channel number */
84 int dead; /* unit/channel has been shut down */
87 #define PF_TO_X(pf, X) ((X *)((char *)(pf) - offsetof(X, file)))
89 #define PF_TO_PPP(pf) PF_TO_X(pf, struct ppp)
90 #define PF_TO_CHANNEL(pf) PF_TO_X(pf, struct channel)
92 #define ROUNDUP(n, x) (((n) + (x) - 1) / (x))
95 * Data structure describing one ppp unit.
96 * A ppp unit corresponds to a ppp network interface device
97 * and represents a multilink bundle.
98 * It can have 0 or more ppp channels connected to it.
100 struct ppp {
101 struct ppp_file file; /* stuff for read/write/poll 0 */
102 struct file *owner; /* file that owns this unit 48 */
103 struct list_head channels; /* list of attached channels 4c */
104 int n_channels; /* how many channels are attached 54 */
105 spinlock_t rlock; /* lock for receive side 58 */
106 spinlock_t wlock; /* lock for transmit side 5c */
107 int mru; /* max receive unit 60 */
108 unsigned int flags; /* control bits 64 */
109 unsigned int xstate; /* transmit state bits 68 */
110 unsigned int rstate; /* receive state bits 6c */
111 int debug; /* debug flags 70 */
112 struct slcompress *vj; /* state for VJ header compression */
113 enum NPmode npmode[NUM_NP]; /* what to do with each net proto 78 */
114 struct sk_buff *xmit_pending; /* a packet ready to go out 88 */
115 struct compressor *xcomp; /* transmit packet compressor 8c */
116 void *xc_state; /* its internal state 90 */
117 struct compressor *rcomp; /* receive decompressor 94 */
118 void *rc_state; /* its internal state 98 */
119 unsigned long last_xmit; /* jiffies when last pkt sent 9c */
120 unsigned long last_recv; /* jiffies when last pkt rcvd a0 */
121 struct net_device *dev; /* network interface device a4 */
122 #ifdef CONFIG_PPP_MULTILINK
123 int nxchan; /* next channel to send something on */
124 u32 nxseq; /* next sequence number to send */
125 int mrru; /* MP: max reconst. receive unit */
126 u32 nextseq; /* MP: seq no of next packet */
127 u32 minseq; /* MP: min of most recent seqnos */
128 struct sk_buff_head mrq; /* MP: receive reconstruction queue */
129 #endif /* CONFIG_PPP_MULTILINK */
130 struct net_device_stats stats; /* statistics */
131 #ifdef CONFIG_PPP_FILTER
132 struct sock_filter *pass_filter; /* filter for packets to pass */
133 struct sock_filter *active_filter;/* filter for pkts to reset idle */
134 unsigned pass_len, active_len;
135 #endif /* CONFIG_PPP_FILTER */
139 * Bits in flags: SC_NO_TCP_CCID, SC_CCP_OPEN, SC_CCP_UP, SC_LOOP_TRAFFIC,
140 * SC_MULTILINK, SC_MP_SHORTSEQ, SC_MP_XSHORTSEQ, SC_COMP_TCP, SC_REJ_COMP_TCP.
141 * Bits in rstate: SC_DECOMP_RUN, SC_DC_ERROR, SC_DC_FERROR.
142 * Bits in xstate: SC_COMP_RUN
144 #define SC_FLAG_BITS (SC_NO_TCP_CCID|SC_CCP_OPEN|SC_CCP_UP|SC_LOOP_TRAFFIC \
145 |SC_MULTILINK|SC_MP_SHORTSEQ|SC_MP_XSHORTSEQ \
146 |SC_COMP_TCP|SC_REJ_COMP_TCP)
149 * Private data structure for each channel.
150 * This includes the data structure used for multilink.
152 struct channel {
153 struct ppp_file file; /* stuff for read/write/poll */
154 struct list_head list; /* link in all/new_channels list */
155 struct ppp_channel *chan; /* public channel data structure */
156 struct rw_semaphore chan_sem; /* protects `chan' during chan ioctl */
157 spinlock_t downl; /* protects `chan', file.xq dequeue */
158 struct ppp *ppp; /* ppp unit we're connected to */
159 struct list_head clist; /* link in list of channels per unit */
160 rwlock_t upl; /* protects `ppp' */
161 #ifdef CONFIG_PPP_MULTILINK
162 u8 avail; /* flag used in multilink stuff */
163 u8 had_frag; /* >= 1 fragments have been sent */
164 u32 lastseq; /* MP: last sequence # received */
165 #endif /* CONFIG_PPP_MULTILINK */
169 * SMP locking issues:
170 * Both the ppp.rlock and ppp.wlock locks protect the ppp.channels
171 * list and the ppp.n_channels field, you need to take both locks
172 * before you modify them.
173 * The lock ordering is: channel.upl -> ppp.wlock -> ppp.rlock ->
174 * channel.downl.
178 * A cardmap represents a mapping from unsigned integers to pointers,
179 * and provides a fast "find lowest unused number" operation.
180 * It uses a broad (32-way) tree with a bitmap at each level.
181 * It is designed to be space-efficient for small numbers of entries
182 * and time-efficient for large numbers of entries.
184 #define CARDMAP_ORDER 5
185 #define CARDMAP_WIDTH (1U << CARDMAP_ORDER)
186 #define CARDMAP_MASK (CARDMAP_WIDTH - 1)
188 struct cardmap {
189 int shift;
190 unsigned long inuse;
191 struct cardmap *parent;
192 void *ptr[CARDMAP_WIDTH];
194 static void *cardmap_get(struct cardmap *map, unsigned int nr);
195 static void cardmap_set(struct cardmap **map, unsigned int nr, void *ptr);
196 static unsigned int cardmap_find_first_free(struct cardmap *map);
197 static void cardmap_destroy(struct cardmap **map);
200 * all_ppp_sem protects the all_ppp_units mapping.
201 * It also ensures that finding a ppp unit in the all_ppp_units map
202 * and updating its file.refcnt field is atomic.
204 static DECLARE_MUTEX(all_ppp_sem);
205 static struct cardmap *all_ppp_units;
206 static atomic_t ppp_unit_count = ATOMIC_INIT(0);
209 * all_channels_lock protects all_channels and last_channel_index,
210 * and the atomicity of find a channel and updating its file.refcnt
211 * field.
213 static DEFINE_SPINLOCK(all_channels_lock);
214 static LIST_HEAD(all_channels);
215 static LIST_HEAD(new_channels);
216 static int last_channel_index;
217 static atomic_t channel_count = ATOMIC_INIT(0);
219 /* Get the PPP protocol number from a skb */
220 #define PPP_PROTO(skb) (((skb)->data[0] << 8) + (skb)->data[1])
222 /* We limit the length of ppp->file.rq to this (arbitrary) value */
223 #define PPP_MAX_RQLEN 32
226 * Maximum number of multilink fragments queued up.
227 * This has to be large enough to cope with the maximum latency of
228 * the slowest channel relative to the others. Strictly it should
229 * depend on the number of channels and their characteristics.
231 #define PPP_MP_MAX_QLEN 128
233 /* Multilink header bits. */
234 #define B 0x80 /* this fragment begins a packet */
235 #define E 0x40 /* this fragment ends a packet */
237 /* Compare multilink sequence numbers (assumed to be 32 bits wide) */
238 #define seq_before(a, b) ((s32)((a) - (b)) < 0)
239 #define seq_after(a, b) ((s32)((a) - (b)) > 0)
241 /* Prototypes. */
242 static int ppp_unattached_ioctl(struct ppp_file *pf, struct file *file,
243 unsigned int cmd, unsigned long arg);
244 static void ppp_xmit_process(struct ppp *ppp);
245 static void ppp_send_frame(struct ppp *ppp, struct sk_buff *skb);
246 static void ppp_push(struct ppp *ppp);
247 static void ppp_channel_push(struct channel *pch);
248 static void ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb,
249 struct channel *pch);
250 static void ppp_receive_error(struct ppp *ppp);
251 static void ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb);
252 static struct sk_buff *ppp_decompress_frame(struct ppp *ppp,
253 struct sk_buff *skb);
254 #ifdef CONFIG_PPP_MULTILINK
255 static void ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb,
256 struct channel *pch);
257 static void ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb);
258 static struct sk_buff *ppp_mp_reconstruct(struct ppp *ppp);
259 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb);
260 #endif /* CONFIG_PPP_MULTILINK */
261 static int ppp_set_compress(struct ppp *ppp, unsigned long arg);
262 static void ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound);
263 static void ppp_ccp_closed(struct ppp *ppp);
264 static struct compressor *find_compressor(int type);
265 static void ppp_get_stats(struct ppp *ppp, struct ppp_stats *st);
266 static struct ppp *ppp_create_interface(int unit, int *retp);
267 static void init_ppp_file(struct ppp_file *pf, int kind);
268 static void ppp_shutdown_interface(struct ppp *ppp);
269 static void ppp_destroy_interface(struct ppp *ppp);
270 static struct ppp *ppp_find_unit(int unit);
271 static struct channel *ppp_find_channel(int unit);
272 static int ppp_connect_channel(struct channel *pch, int unit);
273 static int ppp_disconnect_channel(struct channel *pch);
274 static void ppp_destroy_channel(struct channel *pch);
276 static struct class *ppp_class;
278 /* Translates a PPP protocol number to a NP index (NP == network protocol) */
279 static inline int proto_to_npindex(int proto)
281 switch (proto) {
282 case PPP_IP:
283 return NP_IP;
284 case PPP_IPV6:
285 return NP_IPV6;
286 case PPP_IPX:
287 return NP_IPX;
288 case PPP_AT:
289 return NP_AT;
290 case PPP_MPLS_UC:
291 return NP_MPLS_UC;
292 case PPP_MPLS_MC:
293 return NP_MPLS_MC;
295 return -EINVAL;
298 /* Translates an NP index into a PPP protocol number */
299 static const int npindex_to_proto[NUM_NP] = {
300 PPP_IP,
301 PPP_IPV6,
302 PPP_IPX,
303 PPP_AT,
304 PPP_MPLS_UC,
305 PPP_MPLS_MC,
308 /* Translates an ethertype into an NP index */
309 static inline int ethertype_to_npindex(int ethertype)
311 switch (ethertype) {
312 case ETH_P_IP:
313 return NP_IP;
314 case ETH_P_IPV6:
315 return NP_IPV6;
316 case ETH_P_IPX:
317 return NP_IPX;
318 case ETH_P_PPPTALK:
319 case ETH_P_ATALK:
320 return NP_AT;
321 case ETH_P_MPLS_UC:
322 return NP_MPLS_UC;
323 case ETH_P_MPLS_MC:
324 return NP_MPLS_MC;
326 return -1;
329 /* Translates an NP index into an ethertype */
330 static const int npindex_to_ethertype[NUM_NP] = {
331 ETH_P_IP,
332 ETH_P_IPV6,
333 ETH_P_IPX,
334 ETH_P_PPPTALK,
335 ETH_P_MPLS_UC,
336 ETH_P_MPLS_MC,
340 * Locking shorthand.
342 #define ppp_xmit_lock(ppp) spin_lock_bh(&(ppp)->wlock)
343 #define ppp_xmit_unlock(ppp) spin_unlock_bh(&(ppp)->wlock)
344 #define ppp_recv_lock(ppp) spin_lock_bh(&(ppp)->rlock)
345 #define ppp_recv_unlock(ppp) spin_unlock_bh(&(ppp)->rlock)
346 #define ppp_lock(ppp) do { ppp_xmit_lock(ppp); \
347 ppp_recv_lock(ppp); } while (0)
348 #define ppp_unlock(ppp) do { ppp_recv_unlock(ppp); \
349 ppp_xmit_unlock(ppp); } while (0)
352 * /dev/ppp device routines.
353 * The /dev/ppp device is used by pppd to control the ppp unit.
354 * It supports the read, write, ioctl and poll functions.
355 * Open instances of /dev/ppp can be in one of three states:
356 * unattached, attached to a ppp unit, or attached to a ppp channel.
358 static int ppp_open(struct inode *inode, struct file *file)
361 * This could (should?) be enforced by the permissions on /dev/ppp.
363 if (!capable(CAP_NET_ADMIN))
364 return -EPERM;
365 return 0;
368 static int ppp_release(struct inode *inode, struct file *file)
370 struct ppp_file *pf = file->private_data;
371 struct ppp *ppp;
373 if (pf != 0) {
374 file->private_data = NULL;
375 if (pf->kind == INTERFACE) {
376 ppp = PF_TO_PPP(pf);
377 if (file == ppp->owner)
378 ppp_shutdown_interface(ppp);
380 if (atomic_dec_and_test(&pf->refcnt)) {
381 switch (pf->kind) {
382 case INTERFACE:
383 ppp_destroy_interface(PF_TO_PPP(pf));
384 break;
385 case CHANNEL:
386 ppp_destroy_channel(PF_TO_CHANNEL(pf));
387 break;
391 return 0;
394 static ssize_t ppp_read(struct file *file, char __user *buf,
395 size_t count, loff_t *ppos)
397 struct ppp_file *pf = file->private_data;
398 DECLARE_WAITQUEUE(wait, current);
399 ssize_t ret;
400 struct sk_buff *skb = NULL;
402 ret = count;
404 if (pf == 0)
405 return -ENXIO;
406 add_wait_queue(&pf->rwait, &wait);
407 for (;;) {
408 set_current_state(TASK_INTERRUPTIBLE);
409 skb = skb_dequeue(&pf->rq);
410 if (skb)
411 break;
412 ret = 0;
413 if (pf->dead)
414 break;
415 if (pf->kind == INTERFACE) {
417 * Return 0 (EOF) on an interface that has no
418 * channels connected, unless it is looping
419 * network traffic (demand mode).
421 struct ppp *ppp = PF_TO_PPP(pf);
422 if (ppp->n_channels == 0
423 && (ppp->flags & SC_LOOP_TRAFFIC) == 0)
424 break;
426 ret = -EAGAIN;
427 if (file->f_flags & O_NONBLOCK)
428 break;
429 ret = -ERESTARTSYS;
430 if (signal_pending(current))
431 break;
432 schedule();
434 set_current_state(TASK_RUNNING);
435 remove_wait_queue(&pf->rwait, &wait);
437 if (skb == 0)
438 goto out;
440 ret = -EOVERFLOW;
441 if (skb->len > count)
442 goto outf;
443 ret = -EFAULT;
444 if (copy_to_user(buf, skb->data, skb->len))
445 goto outf;
446 ret = skb->len;
448 outf:
449 kfree_skb(skb);
450 out:
451 return ret;
454 static ssize_t ppp_write(struct file *file, const char __user *buf,
455 size_t count, loff_t *ppos)
457 struct ppp_file *pf = file->private_data;
458 struct sk_buff *skb;
459 ssize_t ret;
461 if (pf == 0)
462 return -ENXIO;
463 ret = -ENOMEM;
464 skb = alloc_skb(count + pf->hdrlen, GFP_KERNEL);
465 if (skb == 0)
466 goto out;
467 skb_reserve(skb, pf->hdrlen);
468 ret = -EFAULT;
469 if (copy_from_user(skb_put(skb, count), buf, count)) {
470 kfree_skb(skb);
471 goto out;
474 skb_queue_tail(&pf->xq, skb);
476 switch (pf->kind) {
477 case INTERFACE:
478 ppp_xmit_process(PF_TO_PPP(pf));
479 break;
480 case CHANNEL:
481 ppp_channel_push(PF_TO_CHANNEL(pf));
482 break;
485 ret = count;
487 out:
488 return ret;
491 /* No kernel lock - fine */
492 static unsigned int ppp_poll(struct file *file, poll_table *wait)
494 struct ppp_file *pf = file->private_data;
495 unsigned int mask;
497 if (pf == 0)
498 return 0;
499 poll_wait(file, &pf->rwait, wait);
500 mask = POLLOUT | POLLWRNORM;
501 if (skb_peek(&pf->rq) != 0)
502 mask |= POLLIN | POLLRDNORM;
503 if (pf->dead)
504 mask |= POLLHUP;
505 else if (pf->kind == INTERFACE) {
506 /* see comment in ppp_read */
507 struct ppp *ppp = PF_TO_PPP(pf);
508 if (ppp->n_channels == 0
509 && (ppp->flags & SC_LOOP_TRAFFIC) == 0)
510 mask |= POLLIN | POLLRDNORM;
513 return mask;
516 #ifdef CONFIG_PPP_FILTER
517 static int get_filter(void __user *arg, struct sock_filter **p)
519 struct sock_fprog uprog;
520 struct sock_filter *code = NULL;
521 int len, err;
523 if (copy_from_user(&uprog, arg, sizeof(uprog)))
524 return -EFAULT;
526 if (uprog.len > BPF_MAXINSNS)
527 return -EINVAL;
529 if (!uprog.len) {
530 *p = NULL;
531 return 0;
534 len = uprog.len * sizeof(struct sock_filter);
535 code = kmalloc(len, GFP_KERNEL);
536 if (code == NULL)
537 return -ENOMEM;
539 if (copy_from_user(code, uprog.filter, len)) {
540 kfree(code);
541 return -EFAULT;
544 err = sk_chk_filter(code, uprog.len);
545 if (err) {
546 kfree(code);
547 return err;
550 *p = code;
551 return uprog.len;
553 #endif /* CONFIG_PPP_FILTER */
555 static int ppp_ioctl(struct inode *inode, struct file *file,
556 unsigned int cmd, unsigned long arg)
558 struct ppp_file *pf = file->private_data;
559 struct ppp *ppp;
560 int err = -EFAULT, val, val2, i;
561 struct ppp_idle idle;
562 struct npioctl npi;
563 int unit, cflags;
564 struct slcompress *vj;
565 void __user *argp = (void __user *)arg;
566 int __user *p = argp;
568 if (pf == 0)
569 return ppp_unattached_ioctl(pf, file, cmd, arg);
571 if (cmd == PPPIOCDETACH) {
573 * We have to be careful here... if the file descriptor
574 * has been dup'd, we could have another process in the
575 * middle of a poll using the same file *, so we had
576 * better not free the interface data structures -
577 * instead we fail the ioctl. Even in this case, we
578 * shut down the interface if we are the owner of it.
579 * Actually, we should get rid of PPPIOCDETACH, userland
580 * (i.e. pppd) could achieve the same effect by closing
581 * this fd and reopening /dev/ppp.
583 err = -EINVAL;
584 if (pf->kind == INTERFACE) {
585 ppp = PF_TO_PPP(pf);
586 if (file == ppp->owner)
587 ppp_shutdown_interface(ppp);
589 if (atomic_read(&file->f_count) <= 2) {
590 ppp_release(inode, file);
591 err = 0;
592 } else
593 printk(KERN_DEBUG "PPPIOCDETACH file->f_count=%d\n",
594 atomic_read(&file->f_count));
595 return err;
598 if (pf->kind == CHANNEL) {
599 struct channel *pch = PF_TO_CHANNEL(pf);
600 struct ppp_channel *chan;
602 switch (cmd) {
603 case PPPIOCCONNECT:
604 if (get_user(unit, p))
605 break;
606 err = ppp_connect_channel(pch, unit);
607 break;
609 case PPPIOCDISCONN:
610 err = ppp_disconnect_channel(pch);
611 break;
613 default:
614 down_read(&pch->chan_sem);
615 chan = pch->chan;
616 err = -ENOTTY;
617 if (chan && chan->ops->ioctl)
618 err = chan->ops->ioctl(chan, cmd, arg);
619 up_read(&pch->chan_sem);
621 return err;
624 if (pf->kind != INTERFACE) {
625 /* can't happen */
626 printk(KERN_ERR "PPP: not interface or channel??\n");
627 return -EINVAL;
630 ppp = PF_TO_PPP(pf);
631 switch (cmd) {
632 case PPPIOCSMRU:
633 if (get_user(val, p))
634 break;
635 ppp->mru = val;
636 err = 0;
637 break;
639 case PPPIOCSFLAGS:
640 if (get_user(val, p))
641 break;
642 ppp_lock(ppp);
643 cflags = ppp->flags & ~val;
644 ppp->flags = val & SC_FLAG_BITS;
645 ppp_unlock(ppp);
646 if (cflags & SC_CCP_OPEN)
647 ppp_ccp_closed(ppp);
648 err = 0;
649 break;
651 case PPPIOCGFLAGS:
652 val = ppp->flags | ppp->xstate | ppp->rstate;
653 if (put_user(val, p))
654 break;
655 err = 0;
656 break;
658 case PPPIOCSCOMPRESS:
659 err = ppp_set_compress(ppp, arg);
660 break;
662 case PPPIOCGUNIT:
663 if (put_user(ppp->file.index, p))
664 break;
665 err = 0;
666 break;
668 case PPPIOCSDEBUG:
669 if (get_user(val, p))
670 break;
671 ppp->debug = val;
672 err = 0;
673 break;
675 case PPPIOCGDEBUG:
676 if (put_user(ppp->debug, p))
677 break;
678 err = 0;
679 break;
681 case PPPIOCGIDLE:
682 idle.xmit_idle = (jiffies - ppp->last_xmit) / HZ;
683 idle.recv_idle = (jiffies - ppp->last_recv) / HZ;
684 if (copy_to_user(argp, &idle, sizeof(idle)))
685 break;
686 err = 0;
687 break;
689 case PPPIOCSMAXCID:
690 if (get_user(val, p))
691 break;
692 val2 = 15;
693 if ((val >> 16) != 0) {
694 val2 = val >> 16;
695 val &= 0xffff;
697 vj = slhc_init(val2+1, val+1);
698 if (vj == 0) {
699 printk(KERN_ERR "PPP: no memory (VJ compressor)\n");
700 err = -ENOMEM;
701 break;
703 ppp_lock(ppp);
704 if (ppp->vj != 0)
705 slhc_free(ppp->vj);
706 ppp->vj = vj;
707 ppp_unlock(ppp);
708 err = 0;
709 break;
711 case PPPIOCGNPMODE:
712 case PPPIOCSNPMODE:
713 if (copy_from_user(&npi, argp, sizeof(npi)))
714 break;
715 err = proto_to_npindex(npi.protocol);
716 if (err < 0)
717 break;
718 i = err;
719 if (cmd == PPPIOCGNPMODE) {
720 err = -EFAULT;
721 npi.mode = ppp->npmode[i];
722 if (copy_to_user(argp, &npi, sizeof(npi)))
723 break;
724 } else {
725 ppp->npmode[i] = npi.mode;
726 /* we may be able to transmit more packets now (??) */
727 netif_wake_queue(ppp->dev);
729 err = 0;
730 break;
732 #ifdef CONFIG_PPP_FILTER
733 case PPPIOCSPASS:
735 struct sock_filter *code;
736 err = get_filter(argp, &code);
737 if (err >= 0) {
738 ppp_lock(ppp);
739 kfree(ppp->pass_filter);
740 ppp->pass_filter = code;
741 ppp->pass_len = err;
742 ppp_unlock(ppp);
743 err = 0;
745 break;
747 case PPPIOCSACTIVE:
749 struct sock_filter *code;
750 err = get_filter(argp, &code);
751 if (err >= 0) {
752 ppp_lock(ppp);
753 kfree(ppp->active_filter);
754 ppp->active_filter = code;
755 ppp->active_len = err;
756 ppp_unlock(ppp);
757 err = 0;
759 break;
761 #endif /* CONFIG_PPP_FILTER */
763 #ifdef CONFIG_PPP_MULTILINK
764 case PPPIOCSMRRU:
765 if (get_user(val, p))
766 break;
767 ppp_recv_lock(ppp);
768 ppp->mrru = val;
769 ppp_recv_unlock(ppp);
770 err = 0;
771 break;
772 #endif /* CONFIG_PPP_MULTILINK */
774 default:
775 err = -ENOTTY;
778 return err;
781 static int ppp_unattached_ioctl(struct ppp_file *pf, struct file *file,
782 unsigned int cmd, unsigned long arg)
784 int unit, err = -EFAULT;
785 struct ppp *ppp;
786 struct channel *chan;
787 int __user *p = (int __user *)arg;
789 switch (cmd) {
790 case PPPIOCNEWUNIT:
791 /* Create a new ppp unit */
792 if (get_user(unit, p))
793 break;
794 ppp = ppp_create_interface(unit, &err);
795 if (ppp == 0)
796 break;
797 file->private_data = &ppp->file;
798 ppp->owner = file;
799 err = -EFAULT;
800 if (put_user(ppp->file.index, p))
801 break;
802 err = 0;
803 break;
805 case PPPIOCATTACH:
806 /* Attach to an existing ppp unit */
807 if (get_user(unit, p))
808 break;
809 down(&all_ppp_sem);
810 err = -ENXIO;
811 ppp = ppp_find_unit(unit);
812 if (ppp != 0) {
813 atomic_inc(&ppp->file.refcnt);
814 file->private_data = &ppp->file;
815 err = 0;
817 up(&all_ppp_sem);
818 break;
820 case PPPIOCATTCHAN:
821 if (get_user(unit, p))
822 break;
823 spin_lock_bh(&all_channels_lock);
824 err = -ENXIO;
825 chan = ppp_find_channel(unit);
826 if (chan != 0) {
827 atomic_inc(&chan->file.refcnt);
828 file->private_data = &chan->file;
829 err = 0;
831 spin_unlock_bh(&all_channels_lock);
832 break;
834 default:
835 err = -ENOTTY;
837 return err;
840 static struct file_operations ppp_device_fops = {
841 .owner = THIS_MODULE,
842 .read = ppp_read,
843 .write = ppp_write,
844 .poll = ppp_poll,
845 .ioctl = ppp_ioctl,
846 .open = ppp_open,
847 .release = ppp_release
850 #define PPP_MAJOR 108
852 /* Called at boot time if ppp is compiled into the kernel,
853 or at module load time (from init_module) if compiled as a module. */
854 static int __init ppp_init(void)
856 int err;
858 printk(KERN_INFO "PPP generic driver version " PPP_VERSION "\n");
859 err = register_chrdev(PPP_MAJOR, "ppp", &ppp_device_fops);
860 if (!err) {
861 ppp_class = class_create(THIS_MODULE, "ppp");
862 if (IS_ERR(ppp_class)) {
863 err = PTR_ERR(ppp_class);
864 goto out_chrdev;
866 class_device_create(ppp_class, MKDEV(PPP_MAJOR, 0), NULL, "ppp");
867 err = devfs_mk_cdev(MKDEV(PPP_MAJOR, 0),
868 S_IFCHR|S_IRUSR|S_IWUSR, "ppp");
869 if (err)
870 goto out_class;
873 out:
874 if (err)
875 printk(KERN_ERR "failed to register PPP device (%d)\n", err);
876 return err;
878 out_class:
879 class_device_destroy(ppp_class, MKDEV(PPP_MAJOR,0));
880 class_destroy(ppp_class);
881 out_chrdev:
882 unregister_chrdev(PPP_MAJOR, "ppp");
883 goto out;
887 * Network interface unit routines.
889 static int
890 ppp_start_xmit(struct sk_buff *skb, struct net_device *dev)
892 struct ppp *ppp = (struct ppp *) dev->priv;
893 int npi, proto;
894 unsigned char *pp;
896 npi = ethertype_to_npindex(ntohs(skb->protocol));
897 if (npi < 0)
898 goto outf;
900 /* Drop, accept or reject the packet */
901 switch (ppp->npmode[npi]) {
902 case NPMODE_PASS:
903 break;
904 case NPMODE_QUEUE:
905 /* it would be nice to have a way to tell the network
906 system to queue this one up for later. */
907 goto outf;
908 case NPMODE_DROP:
909 case NPMODE_ERROR:
910 goto outf;
913 /* Put the 2-byte PPP protocol number on the front,
914 making sure there is room for the address and control fields. */
915 if (skb_headroom(skb) < PPP_HDRLEN) {
916 struct sk_buff *ns;
918 ns = alloc_skb(skb->len + dev->hard_header_len, GFP_ATOMIC);
919 if (ns == 0)
920 goto outf;
921 skb_reserve(ns, dev->hard_header_len);
922 skb_copy_bits(skb, 0, skb_put(ns, skb->len), skb->len);
923 kfree_skb(skb);
924 skb = ns;
926 pp = skb_push(skb, 2);
927 proto = npindex_to_proto[npi];
928 pp[0] = proto >> 8;
929 pp[1] = proto;
931 netif_stop_queue(dev);
932 skb_queue_tail(&ppp->file.xq, skb);
933 ppp_xmit_process(ppp);
934 return 0;
936 outf:
937 kfree_skb(skb);
938 ++ppp->stats.tx_dropped;
939 return 0;
942 static struct net_device_stats *
943 ppp_net_stats(struct net_device *dev)
945 struct ppp *ppp = (struct ppp *) dev->priv;
947 return &ppp->stats;
950 static int
951 ppp_net_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
953 struct ppp *ppp = dev->priv;
954 int err = -EFAULT;
955 void __user *addr = (void __user *) ifr->ifr_ifru.ifru_data;
956 struct ppp_stats stats;
957 struct ppp_comp_stats cstats;
958 char *vers;
960 switch (cmd) {
961 case SIOCGPPPSTATS:
962 ppp_get_stats(ppp, &stats);
963 if (copy_to_user(addr, &stats, sizeof(stats)))
964 break;
965 err = 0;
966 break;
968 case SIOCGPPPCSTATS:
969 memset(&cstats, 0, sizeof(cstats));
970 if (ppp->xc_state != 0)
971 ppp->xcomp->comp_stat(ppp->xc_state, &cstats.c);
972 if (ppp->rc_state != 0)
973 ppp->rcomp->decomp_stat(ppp->rc_state, &cstats.d);
974 if (copy_to_user(addr, &cstats, sizeof(cstats)))
975 break;
976 err = 0;
977 break;
979 case SIOCGPPPVER:
980 vers = PPP_VERSION;
981 if (copy_to_user(addr, vers, strlen(vers) + 1))
982 break;
983 err = 0;
984 break;
986 default:
987 err = -EINVAL;
990 return err;
993 static void ppp_setup(struct net_device *dev)
995 dev->hard_header_len = PPP_HDRLEN;
996 dev->mtu = PPP_MTU;
997 dev->addr_len = 0;
998 dev->tx_queue_len = 3;
999 dev->type = ARPHRD_PPP;
1000 dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST;
1004 * Transmit-side routines.
1008 * Called to do any work queued up on the transmit side
1009 * that can now be done.
1011 static void
1012 ppp_xmit_process(struct ppp *ppp)
1014 struct sk_buff *skb;
1016 ppp_xmit_lock(ppp);
1017 if (ppp->dev != 0) {
1018 ppp_push(ppp);
1019 while (ppp->xmit_pending == 0
1020 && (skb = skb_dequeue(&ppp->file.xq)) != 0)
1021 ppp_send_frame(ppp, skb);
1022 /* If there's no work left to do, tell the core net
1023 code that we can accept some more. */
1024 if (ppp->xmit_pending == 0 && skb_peek(&ppp->file.xq) == 0)
1025 netif_wake_queue(ppp->dev);
1027 ppp_xmit_unlock(ppp);
1031 * Compress and send a frame.
1032 * The caller should have locked the xmit path,
1033 * and xmit_pending should be 0.
1035 static void
1036 ppp_send_frame(struct ppp *ppp, struct sk_buff *skb)
1038 int proto = PPP_PROTO(skb);
1039 struct sk_buff *new_skb;
1040 int len;
1041 unsigned char *cp;
1043 if (proto < 0x8000) {
1044 #ifdef CONFIG_PPP_FILTER
1045 /* check if we should pass this packet */
1046 /* the filter instructions are constructed assuming
1047 a four-byte PPP header on each packet */
1048 *skb_push(skb, 2) = 1;
1049 if (ppp->pass_filter
1050 && sk_run_filter(skb, ppp->pass_filter,
1051 ppp->pass_len) == 0) {
1052 if (ppp->debug & 1)
1053 printk(KERN_DEBUG "PPP: outbound frame not passed\n");
1054 kfree_skb(skb);
1055 return;
1057 /* if this packet passes the active filter, record the time */
1058 if (!(ppp->active_filter
1059 && sk_run_filter(skb, ppp->active_filter,
1060 ppp->active_len) == 0))
1061 ppp->last_xmit = jiffies;
1062 skb_pull(skb, 2);
1063 #else
1064 /* for data packets, record the time */
1065 ppp->last_xmit = jiffies;
1066 #endif /* CONFIG_PPP_FILTER */
1069 ++ppp->stats.tx_packets;
1070 ppp->stats.tx_bytes += skb->len - 2;
1072 switch (proto) {
1073 case PPP_IP:
1074 if (ppp->vj == 0 || (ppp->flags & SC_COMP_TCP) == 0)
1075 break;
1076 /* try to do VJ TCP header compression */
1077 new_skb = alloc_skb(skb->len + ppp->dev->hard_header_len - 2,
1078 GFP_ATOMIC);
1079 if (new_skb == 0) {
1080 printk(KERN_ERR "PPP: no memory (VJ comp pkt)\n");
1081 goto drop;
1083 skb_reserve(new_skb, ppp->dev->hard_header_len - 2);
1084 cp = skb->data + 2;
1085 len = slhc_compress(ppp->vj, cp, skb->len - 2,
1086 new_skb->data + 2, &cp,
1087 !(ppp->flags & SC_NO_TCP_CCID));
1088 if (cp == skb->data + 2) {
1089 /* didn't compress */
1090 kfree_skb(new_skb);
1091 } else {
1092 if (cp[0] & SL_TYPE_COMPRESSED_TCP) {
1093 proto = PPP_VJC_COMP;
1094 cp[0] &= ~SL_TYPE_COMPRESSED_TCP;
1095 } else {
1096 proto = PPP_VJC_UNCOMP;
1097 cp[0] = skb->data[2];
1099 kfree_skb(skb);
1100 skb = new_skb;
1101 cp = skb_put(skb, len + 2);
1102 cp[0] = 0;
1103 cp[1] = proto;
1105 break;
1107 case PPP_CCP:
1108 /* peek at outbound CCP frames */
1109 ppp_ccp_peek(ppp, skb, 0);
1110 break;
1113 /* try to do packet compression */
1114 if ((ppp->xstate & SC_COMP_RUN) && ppp->xc_state != 0
1115 && proto != PPP_LCP && proto != PPP_CCP) {
1116 new_skb = alloc_skb(ppp->dev->mtu + ppp->dev->hard_header_len,
1117 GFP_ATOMIC);
1118 if (new_skb == 0) {
1119 printk(KERN_ERR "PPP: no memory (comp pkt)\n");
1120 goto drop;
1122 if (ppp->dev->hard_header_len > PPP_HDRLEN)
1123 skb_reserve(new_skb,
1124 ppp->dev->hard_header_len - PPP_HDRLEN);
1126 /* compressor still expects A/C bytes in hdr */
1127 len = ppp->xcomp->compress(ppp->xc_state, skb->data - 2,
1128 new_skb->data, skb->len + 2,
1129 ppp->dev->mtu + PPP_HDRLEN);
1130 if (len > 0 && (ppp->flags & SC_CCP_UP)) {
1131 kfree_skb(skb);
1132 skb = new_skb;
1133 skb_put(skb, len);
1134 skb_pull(skb, 2); /* pull off A/C bytes */
1135 } else {
1136 /* didn't compress, or CCP not up yet */
1137 kfree_skb(new_skb);
1142 * If we are waiting for traffic (demand dialling),
1143 * queue it up for pppd to receive.
1145 if (ppp->flags & SC_LOOP_TRAFFIC) {
1146 if (ppp->file.rq.qlen > PPP_MAX_RQLEN)
1147 goto drop;
1148 skb_queue_tail(&ppp->file.rq, skb);
1149 wake_up_interruptible(&ppp->file.rwait);
1150 return;
1153 ppp->xmit_pending = skb;
1154 ppp_push(ppp);
1155 return;
1157 drop:
1158 kfree_skb(skb);
1159 ++ppp->stats.tx_errors;
1163 * Try to send the frame in xmit_pending.
1164 * The caller should have the xmit path locked.
1166 static void
1167 ppp_push(struct ppp *ppp)
1169 struct list_head *list;
1170 struct channel *pch;
1171 struct sk_buff *skb = ppp->xmit_pending;
1173 if (skb == 0)
1174 return;
1176 list = &ppp->channels;
1177 if (list_empty(list)) {
1178 /* nowhere to send the packet, just drop it */
1179 ppp->xmit_pending = NULL;
1180 kfree_skb(skb);
1181 return;
1184 if ((ppp->flags & SC_MULTILINK) == 0) {
1185 /* not doing multilink: send it down the first channel */
1186 list = list->next;
1187 pch = list_entry(list, struct channel, clist);
1189 spin_lock_bh(&pch->downl);
1190 if (pch->chan) {
1191 if (pch->chan->ops->start_xmit(pch->chan, skb))
1192 ppp->xmit_pending = NULL;
1193 } else {
1194 /* channel got unregistered */
1195 kfree_skb(skb);
1196 ppp->xmit_pending = NULL;
1198 spin_unlock_bh(&pch->downl);
1199 return;
1202 #ifdef CONFIG_PPP_MULTILINK
1203 /* Multilink: fragment the packet over as many links
1204 as can take the packet at the moment. */
1205 if (!ppp_mp_explode(ppp, skb))
1206 return;
1207 #endif /* CONFIG_PPP_MULTILINK */
1209 ppp->xmit_pending = NULL;
1210 kfree_skb(skb);
1213 #ifdef CONFIG_PPP_MULTILINK
1215 * Divide a packet to be transmitted into fragments and
1216 * send them out the individual links.
1218 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb)
1220 int len, fragsize;
1221 int i, bits, hdrlen, mtu;
1222 int flen;
1223 int navail, nfree;
1224 int nbigger;
1225 unsigned char *p, *q;
1226 struct list_head *list;
1227 struct channel *pch;
1228 struct sk_buff *frag;
1229 struct ppp_channel *chan;
1231 nfree = 0; /* # channels which have no packet already queued */
1232 navail = 0; /* total # of usable channels (not deregistered) */
1233 hdrlen = (ppp->flags & SC_MP_XSHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
1234 i = 0;
1235 list = &ppp->channels;
1236 while ((list = list->next) != &ppp->channels) {
1237 pch = list_entry(list, struct channel, clist);
1238 navail += pch->avail = (pch->chan != NULL);
1239 if (pch->avail) {
1240 if (skb_queue_len(&pch->file.xq) == 0
1241 || !pch->had_frag) {
1242 pch->avail = 2;
1243 ++nfree;
1245 if (!pch->had_frag && i < ppp->nxchan)
1246 ppp->nxchan = i;
1248 ++i;
1252 * Don't start sending this packet unless at least half of
1253 * the channels are free. This gives much better TCP
1254 * performance if we have a lot of channels.
1256 if (nfree == 0 || nfree < navail / 2)
1257 return 0; /* can't take now, leave it in xmit_pending */
1259 /* Do protocol field compression (XXX this should be optional) */
1260 p = skb->data;
1261 len = skb->len;
1262 if (*p == 0) {
1263 ++p;
1264 --len;
1268 * Decide on fragment size.
1269 * We create a fragment for each free channel regardless of
1270 * how small they are (i.e. even 0 length) in order to minimize
1271 * the time that it will take to detect when a channel drops
1272 * a fragment.
1274 fragsize = len;
1275 if (nfree > 1)
1276 fragsize = ROUNDUP(fragsize, nfree);
1277 /* nbigger channels get fragsize bytes, the rest get fragsize-1,
1278 except if nbigger==0, then they all get fragsize. */
1279 nbigger = len % nfree;
1281 /* skip to the channel after the one we last used
1282 and start at that one */
1283 for (i = 0; i < ppp->nxchan; ++i) {
1284 list = list->next;
1285 if (list == &ppp->channels) {
1286 i = 0;
1287 break;
1291 /* create a fragment for each channel */
1292 bits = B;
1293 while (nfree > 0 || len > 0) {
1294 list = list->next;
1295 if (list == &ppp->channels) {
1296 i = 0;
1297 continue;
1299 pch = list_entry(list, struct channel, clist);
1300 ++i;
1301 if (!pch->avail)
1302 continue;
1305 * Skip this channel if it has a fragment pending already and
1306 * we haven't given a fragment to all of the free channels.
1308 if (pch->avail == 1) {
1309 if (nfree > 0)
1310 continue;
1311 } else {
1312 --nfree;
1313 pch->avail = 1;
1316 /* check the channel's mtu and whether it is still attached. */
1317 spin_lock_bh(&pch->downl);
1318 if (pch->chan == NULL) {
1319 /* can't use this channel, it's being deregistered */
1320 spin_unlock_bh(&pch->downl);
1321 pch->avail = 0;
1322 if (--navail == 0)
1323 break;
1324 continue;
1328 * Create a fragment for this channel of
1329 * min(max(mtu+2-hdrlen, 4), fragsize, len) bytes.
1330 * If mtu+2-hdrlen < 4, that is a ridiculously small
1331 * MTU, so we use mtu = 2 + hdrlen.
1333 if (fragsize > len)
1334 fragsize = len;
1335 flen = fragsize;
1336 mtu = pch->chan->mtu + 2 - hdrlen;
1337 if (mtu < 4)
1338 mtu = 4;
1339 if (flen > mtu)
1340 flen = mtu;
1341 if (flen == len && nfree == 0)
1342 bits |= E;
1343 frag = alloc_skb(flen + hdrlen + (flen == 0), GFP_ATOMIC);
1344 if (frag == 0)
1345 goto noskb;
1346 q = skb_put(frag, flen + hdrlen);
1348 /* make the MP header */
1349 q[0] = PPP_MP >> 8;
1350 q[1] = PPP_MP;
1351 if (ppp->flags & SC_MP_XSHORTSEQ) {
1352 q[2] = bits + ((ppp->nxseq >> 8) & 0xf);
1353 q[3] = ppp->nxseq;
1354 } else {
1355 q[2] = bits;
1356 q[3] = ppp->nxseq >> 16;
1357 q[4] = ppp->nxseq >> 8;
1358 q[5] = ppp->nxseq;
1362 * Copy the data in.
1363 * Unfortunately there is a bug in older versions of
1364 * the Linux PPP multilink reconstruction code where it
1365 * drops 0-length fragments. Therefore we make sure the
1366 * fragment has at least one byte of data. Any bytes
1367 * we add in this situation will end up as padding on the
1368 * end of the reconstructed packet.
1370 if (flen == 0)
1371 *skb_put(frag, 1) = 0;
1372 else
1373 memcpy(q + hdrlen, p, flen);
1375 /* try to send it down the channel */
1376 chan = pch->chan;
1377 if (skb_queue_len(&pch->file.xq)
1378 || !chan->ops->start_xmit(chan, frag))
1379 skb_queue_tail(&pch->file.xq, frag);
1380 pch->had_frag = 1;
1381 p += flen;
1382 len -= flen;
1383 ++ppp->nxseq;
1384 bits = 0;
1385 spin_unlock_bh(&pch->downl);
1387 if (--nbigger == 0 && fragsize > 0)
1388 --fragsize;
1390 ppp->nxchan = i;
1392 return 1;
1394 noskb:
1395 spin_unlock_bh(&pch->downl);
1396 if (ppp->debug & 1)
1397 printk(KERN_ERR "PPP: no memory (fragment)\n");
1398 ++ppp->stats.tx_errors;
1399 ++ppp->nxseq;
1400 return 1; /* abandon the frame */
1402 #endif /* CONFIG_PPP_MULTILINK */
1405 * Try to send data out on a channel.
1407 static void
1408 ppp_channel_push(struct channel *pch)
1410 struct sk_buff *skb;
1411 struct ppp *ppp;
1413 spin_lock_bh(&pch->downl);
1414 if (pch->chan != 0) {
1415 while (skb_queue_len(&pch->file.xq) > 0) {
1416 skb = skb_dequeue(&pch->file.xq);
1417 if (!pch->chan->ops->start_xmit(pch->chan, skb)) {
1418 /* put the packet back and try again later */
1419 skb_queue_head(&pch->file.xq, skb);
1420 break;
1423 } else {
1424 /* channel got deregistered */
1425 skb_queue_purge(&pch->file.xq);
1427 spin_unlock_bh(&pch->downl);
1428 /* see if there is anything from the attached unit to be sent */
1429 if (skb_queue_len(&pch->file.xq) == 0) {
1430 read_lock_bh(&pch->upl);
1431 ppp = pch->ppp;
1432 if (ppp != 0)
1433 ppp_xmit_process(ppp);
1434 read_unlock_bh(&pch->upl);
1439 * Receive-side routines.
1442 /* misuse a few fields of the skb for MP reconstruction */
1443 #define sequence priority
1444 #define BEbits cb[0]
1446 static inline void
1447 ppp_do_recv(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1449 ppp_recv_lock(ppp);
1450 /* ppp->dev == 0 means interface is closing down */
1451 if (ppp->dev != 0)
1452 ppp_receive_frame(ppp, skb, pch);
1453 else
1454 kfree_skb(skb);
1455 ppp_recv_unlock(ppp);
1458 void
1459 ppp_input(struct ppp_channel *chan, struct sk_buff *skb)
1461 struct channel *pch = chan->ppp;
1462 int proto;
1464 if (pch == 0 || skb->len == 0) {
1465 kfree_skb(skb);
1466 return;
1469 proto = PPP_PROTO(skb);
1470 read_lock_bh(&pch->upl);
1471 if (pch->ppp == 0 || proto >= 0xc000 || proto == PPP_CCPFRAG) {
1472 /* put it on the channel queue */
1473 skb_queue_tail(&pch->file.rq, skb);
1474 /* drop old frames if queue too long */
1475 while (pch->file.rq.qlen > PPP_MAX_RQLEN
1476 && (skb = skb_dequeue(&pch->file.rq)) != 0)
1477 kfree_skb(skb);
1478 wake_up_interruptible(&pch->file.rwait);
1479 } else {
1480 ppp_do_recv(pch->ppp, skb, pch);
1482 read_unlock_bh(&pch->upl);
1485 /* Put a 0-length skb in the receive queue as an error indication */
1486 void
1487 ppp_input_error(struct ppp_channel *chan, int code)
1489 struct channel *pch = chan->ppp;
1490 struct sk_buff *skb;
1492 if (pch == 0)
1493 return;
1495 read_lock_bh(&pch->upl);
1496 if (pch->ppp != 0) {
1497 skb = alloc_skb(0, GFP_ATOMIC);
1498 if (skb != 0) {
1499 skb->len = 0; /* probably unnecessary */
1500 skb->cb[0] = code;
1501 ppp_do_recv(pch->ppp, skb, pch);
1504 read_unlock_bh(&pch->upl);
1508 * We come in here to process a received frame.
1509 * The receive side of the ppp unit is locked.
1511 static void
1512 ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1514 if (skb->len >= 2) {
1515 #ifdef CONFIG_PPP_MULTILINK
1516 /* XXX do channel-level decompression here */
1517 if (PPP_PROTO(skb) == PPP_MP)
1518 ppp_receive_mp_frame(ppp, skb, pch);
1519 else
1520 #endif /* CONFIG_PPP_MULTILINK */
1521 ppp_receive_nonmp_frame(ppp, skb);
1522 return;
1525 if (skb->len > 0)
1526 /* note: a 0-length skb is used as an error indication */
1527 ++ppp->stats.rx_length_errors;
1529 kfree_skb(skb);
1530 ppp_receive_error(ppp);
1533 static void
1534 ppp_receive_error(struct ppp *ppp)
1536 ++ppp->stats.rx_errors;
1537 if (ppp->vj != 0)
1538 slhc_toss(ppp->vj);
1541 static void
1542 ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb)
1544 struct sk_buff *ns;
1545 int proto, len, npi;
1548 * Decompress the frame, if compressed.
1549 * Note that some decompressors need to see uncompressed frames
1550 * that come in as well as compressed frames.
1552 if (ppp->rc_state != 0 && (ppp->rstate & SC_DECOMP_RUN)
1553 && (ppp->rstate & (SC_DC_FERROR | SC_DC_ERROR)) == 0)
1554 skb = ppp_decompress_frame(ppp, skb);
1556 proto = PPP_PROTO(skb);
1557 switch (proto) {
1558 case PPP_VJC_COMP:
1559 /* decompress VJ compressed packets */
1560 if (ppp->vj == 0 || (ppp->flags & SC_REJ_COMP_TCP))
1561 goto err;
1563 if (skb_tailroom(skb) < 124) {
1564 /* copy to a new sk_buff with more tailroom */
1565 ns = dev_alloc_skb(skb->len + 128);
1566 if (ns == 0) {
1567 printk(KERN_ERR"PPP: no memory (VJ decomp)\n");
1568 goto err;
1570 skb_reserve(ns, 2);
1571 skb_copy_bits(skb, 0, skb_put(ns, skb->len), skb->len);
1572 kfree_skb(skb);
1573 skb = ns;
1575 else if (!pskb_may_pull(skb, skb->len))
1576 goto err;
1578 len = slhc_uncompress(ppp->vj, skb->data + 2, skb->len - 2);
1579 if (len <= 0) {
1580 printk(KERN_DEBUG "PPP: VJ decompression error\n");
1581 goto err;
1583 len += 2;
1584 if (len > skb->len)
1585 skb_put(skb, len - skb->len);
1586 else if (len < skb->len)
1587 skb_trim(skb, len);
1588 proto = PPP_IP;
1589 break;
1591 case PPP_VJC_UNCOMP:
1592 if (ppp->vj == 0 || (ppp->flags & SC_REJ_COMP_TCP))
1593 goto err;
1595 /* Until we fix the decompressor need to make sure
1596 * data portion is linear.
1598 if (!pskb_may_pull(skb, skb->len))
1599 goto err;
1601 if (slhc_remember(ppp->vj, skb->data + 2, skb->len - 2) <= 0) {
1602 printk(KERN_ERR "PPP: VJ uncompressed error\n");
1603 goto err;
1605 proto = PPP_IP;
1606 break;
1608 case PPP_CCP:
1609 ppp_ccp_peek(ppp, skb, 1);
1610 break;
1613 ++ppp->stats.rx_packets;
1614 ppp->stats.rx_bytes += skb->len - 2;
1616 npi = proto_to_npindex(proto);
1617 if (npi < 0) {
1618 /* control or unknown frame - pass it to pppd */
1619 skb_queue_tail(&ppp->file.rq, skb);
1620 /* limit queue length by dropping old frames */
1621 while (ppp->file.rq.qlen > PPP_MAX_RQLEN
1622 && (skb = skb_dequeue(&ppp->file.rq)) != 0)
1623 kfree_skb(skb);
1624 /* wake up any process polling or blocking on read */
1625 wake_up_interruptible(&ppp->file.rwait);
1627 } else {
1628 /* network protocol frame - give it to the kernel */
1630 #ifdef CONFIG_PPP_FILTER
1631 /* check if the packet passes the pass and active filters */
1632 /* the filter instructions are constructed assuming
1633 a four-byte PPP header on each packet */
1634 *skb_push(skb, 2) = 0;
1635 if (ppp->pass_filter
1636 && sk_run_filter(skb, ppp->pass_filter,
1637 ppp->pass_len) == 0) {
1638 if (ppp->debug & 1)
1639 printk(KERN_DEBUG "PPP: inbound frame not passed\n");
1640 kfree_skb(skb);
1641 return;
1643 if (!(ppp->active_filter
1644 && sk_run_filter(skb, ppp->active_filter,
1645 ppp->active_len) == 0))
1646 ppp->last_recv = jiffies;
1647 skb_pull(skb, 2);
1648 #else
1649 ppp->last_recv = jiffies;
1650 #endif /* CONFIG_PPP_FILTER */
1652 if ((ppp->dev->flags & IFF_UP) == 0
1653 || ppp->npmode[npi] != NPMODE_PASS) {
1654 kfree_skb(skb);
1655 } else {
1656 skb_pull(skb, 2); /* chop off protocol */
1657 skb->dev = ppp->dev;
1658 skb->protocol = htons(npindex_to_ethertype[npi]);
1659 skb->mac.raw = skb->data;
1660 skb->input_dev = ppp->dev;
1661 netif_rx(skb);
1662 ppp->dev->last_rx = jiffies;
1665 return;
1667 err:
1668 kfree_skb(skb);
1669 ppp_receive_error(ppp);
1672 static struct sk_buff *
1673 ppp_decompress_frame(struct ppp *ppp, struct sk_buff *skb)
1675 int proto = PPP_PROTO(skb);
1676 struct sk_buff *ns;
1677 int len;
1679 /* Until we fix all the decompressor's need to make sure
1680 * data portion is linear.
1682 if (!pskb_may_pull(skb, skb->len))
1683 goto err;
1685 if (proto == PPP_COMP) {
1686 ns = dev_alloc_skb(ppp->mru + PPP_HDRLEN);
1687 if (ns == 0) {
1688 printk(KERN_ERR "ppp_decompress_frame: no memory\n");
1689 goto err;
1691 /* the decompressor still expects the A/C bytes in the hdr */
1692 len = ppp->rcomp->decompress(ppp->rc_state, skb->data - 2,
1693 skb->len + 2, ns->data, ppp->mru + PPP_HDRLEN);
1694 if (len < 0) {
1695 /* Pass the compressed frame to pppd as an
1696 error indication. */
1697 if (len == DECOMP_FATALERROR)
1698 ppp->rstate |= SC_DC_FERROR;
1699 kfree_skb(ns);
1700 goto err;
1703 kfree_skb(skb);
1704 skb = ns;
1705 skb_put(skb, len);
1706 skb_pull(skb, 2); /* pull off the A/C bytes */
1708 } else {
1709 /* Uncompressed frame - pass to decompressor so it
1710 can update its dictionary if necessary. */
1711 if (ppp->rcomp->incomp)
1712 ppp->rcomp->incomp(ppp->rc_state, skb->data - 2,
1713 skb->len + 2);
1716 return skb;
1718 err:
1719 ppp->rstate |= SC_DC_ERROR;
1720 ppp_receive_error(ppp);
1721 return skb;
1724 #ifdef CONFIG_PPP_MULTILINK
1726 * Receive a multilink frame.
1727 * We put it on the reconstruction queue and then pull off
1728 * as many completed frames as we can.
1730 static void
1731 ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1733 u32 mask, seq;
1734 struct list_head *l;
1735 int mphdrlen = (ppp->flags & SC_MP_SHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
1737 if (!pskb_may_pull(skb, mphdrlen) || ppp->mrru == 0)
1738 goto err; /* no good, throw it away */
1740 /* Decode sequence number and begin/end bits */
1741 if (ppp->flags & SC_MP_SHORTSEQ) {
1742 seq = ((skb->data[2] & 0x0f) << 8) | skb->data[3];
1743 mask = 0xfff;
1744 } else {
1745 seq = (skb->data[3] << 16) | (skb->data[4] << 8)| skb->data[5];
1746 mask = 0xffffff;
1748 skb->BEbits = skb->data[2];
1749 skb_pull(skb, mphdrlen); /* pull off PPP and MP headers */
1752 * Do protocol ID decompression on the first fragment of each packet.
1754 if ((skb->BEbits & B) && (skb->data[0] & 1))
1755 *skb_push(skb, 1) = 0;
1758 * Expand sequence number to 32 bits, making it as close
1759 * as possible to ppp->minseq.
1761 seq |= ppp->minseq & ~mask;
1762 if ((int)(ppp->minseq - seq) > (int)(mask >> 1))
1763 seq += mask + 1;
1764 else if ((int)(seq - ppp->minseq) > (int)(mask >> 1))
1765 seq -= mask + 1; /* should never happen */
1766 skb->sequence = seq;
1767 pch->lastseq = seq;
1770 * If this packet comes before the next one we were expecting,
1771 * drop it.
1773 if (seq_before(seq, ppp->nextseq)) {
1774 kfree_skb(skb);
1775 ++ppp->stats.rx_dropped;
1776 ppp_receive_error(ppp);
1777 return;
1781 * Reevaluate minseq, the minimum over all channels of the
1782 * last sequence number received on each channel. Because of
1783 * the increasing sequence number rule, we know that any fragment
1784 * before `minseq' which hasn't arrived is never going to arrive.
1785 * The list of channels can't change because we have the receive
1786 * side of the ppp unit locked.
1788 for (l = ppp->channels.next; l != &ppp->channels; l = l->next) {
1789 struct channel *ch = list_entry(l, struct channel, clist);
1790 if (seq_before(ch->lastseq, seq))
1791 seq = ch->lastseq;
1793 if (seq_before(ppp->minseq, seq))
1794 ppp->minseq = seq;
1796 /* Put the fragment on the reconstruction queue */
1797 ppp_mp_insert(ppp, skb);
1799 /* If the queue is getting long, don't wait any longer for packets
1800 before the start of the queue. */
1801 if (skb_queue_len(&ppp->mrq) >= PPP_MP_MAX_QLEN
1802 && seq_before(ppp->minseq, ppp->mrq.next->sequence))
1803 ppp->minseq = ppp->mrq.next->sequence;
1805 /* Pull completed packets off the queue and receive them. */
1806 while ((skb = ppp_mp_reconstruct(ppp)) != 0)
1807 ppp_receive_nonmp_frame(ppp, skb);
1809 return;
1811 err:
1812 kfree_skb(skb);
1813 ppp_receive_error(ppp);
1817 * Insert a fragment on the MP reconstruction queue.
1818 * The queue is ordered by increasing sequence number.
1820 static void
1821 ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb)
1823 struct sk_buff *p;
1824 struct sk_buff_head *list = &ppp->mrq;
1825 u32 seq = skb->sequence;
1827 /* N.B. we don't need to lock the list lock because we have the
1828 ppp unit receive-side lock. */
1829 for (p = list->next; p != (struct sk_buff *)list; p = p->next)
1830 if (seq_before(seq, p->sequence))
1831 break;
1832 __skb_insert(skb, p->prev, p, list);
1836 * Reconstruct a packet from the MP fragment queue.
1837 * We go through increasing sequence numbers until we find a
1838 * complete packet, or we get to the sequence number for a fragment
1839 * which hasn't arrived but might still do so.
1841 struct sk_buff *
1842 ppp_mp_reconstruct(struct ppp *ppp)
1844 u32 seq = ppp->nextseq;
1845 u32 minseq = ppp->minseq;
1846 struct sk_buff_head *list = &ppp->mrq;
1847 struct sk_buff *p, *next;
1848 struct sk_buff *head, *tail;
1849 struct sk_buff *skb = NULL;
1850 int lost = 0, len = 0;
1852 if (ppp->mrru == 0) /* do nothing until mrru is set */
1853 return NULL;
1854 head = list->next;
1855 tail = NULL;
1856 for (p = head; p != (struct sk_buff *) list; p = next) {
1857 next = p->next;
1858 if (seq_before(p->sequence, seq)) {
1859 /* this can't happen, anyway ignore the skb */
1860 printk(KERN_ERR "ppp_mp_reconstruct bad seq %u < %u\n",
1861 p->sequence, seq);
1862 head = next;
1863 continue;
1865 if (p->sequence != seq) {
1866 /* Fragment `seq' is missing. If it is after
1867 minseq, it might arrive later, so stop here. */
1868 if (seq_after(seq, minseq))
1869 break;
1870 /* Fragment `seq' is lost, keep going. */
1871 lost = 1;
1872 seq = seq_before(minseq, p->sequence)?
1873 minseq + 1: p->sequence;
1874 next = p;
1875 continue;
1879 * At this point we know that all the fragments from
1880 * ppp->nextseq to seq are either present or lost.
1881 * Also, there are no complete packets in the queue
1882 * that have no missing fragments and end before this
1883 * fragment.
1886 /* B bit set indicates this fragment starts a packet */
1887 if (p->BEbits & B) {
1888 head = p;
1889 lost = 0;
1890 len = 0;
1893 len += p->len;
1895 /* Got a complete packet yet? */
1896 if (lost == 0 && (p->BEbits & E) && (head->BEbits & B)) {
1897 if (len > ppp->mrru + 2) {
1898 ++ppp->stats.rx_length_errors;
1899 printk(KERN_DEBUG "PPP: reconstructed packet"
1900 " is too long (%d)\n", len);
1901 } else if (p == head) {
1902 /* fragment is complete packet - reuse skb */
1903 tail = p;
1904 skb = skb_get(p);
1905 break;
1906 } else if ((skb = dev_alloc_skb(len)) == NULL) {
1907 ++ppp->stats.rx_missed_errors;
1908 printk(KERN_DEBUG "PPP: no memory for "
1909 "reconstructed packet");
1910 } else {
1911 tail = p;
1912 break;
1914 ppp->nextseq = seq + 1;
1918 * If this is the ending fragment of a packet,
1919 * and we haven't found a complete valid packet yet,
1920 * we can discard up to and including this fragment.
1922 if (p->BEbits & E)
1923 head = next;
1925 ++seq;
1928 /* If we have a complete packet, copy it all into one skb. */
1929 if (tail != NULL) {
1930 /* If we have discarded any fragments,
1931 signal a receive error. */
1932 if (head->sequence != ppp->nextseq) {
1933 if (ppp->debug & 1)
1934 printk(KERN_DEBUG " missed pkts %u..%u\n",
1935 ppp->nextseq, head->sequence-1);
1936 ++ppp->stats.rx_dropped;
1937 ppp_receive_error(ppp);
1940 if (head != tail)
1941 /* copy to a single skb */
1942 for (p = head; p != tail->next; p = p->next)
1943 skb_copy_bits(p, 0, skb_put(skb, p->len), p->len);
1944 ppp->nextseq = tail->sequence + 1;
1945 head = tail->next;
1948 /* Discard all the skbuffs that we have copied the data out of
1949 or that we can't use. */
1950 while ((p = list->next) != head) {
1951 __skb_unlink(p, list);
1952 kfree_skb(p);
1955 return skb;
1957 #endif /* CONFIG_PPP_MULTILINK */
1960 * Channel interface.
1964 * Create a new, unattached ppp channel.
1967 ppp_register_channel(struct ppp_channel *chan)
1969 struct channel *pch;
1971 pch = kmalloc(sizeof(struct channel), GFP_KERNEL);
1972 if (pch == 0)
1973 return -ENOMEM;
1974 memset(pch, 0, sizeof(struct channel));
1975 pch->ppp = NULL;
1976 pch->chan = chan;
1977 chan->ppp = pch;
1978 init_ppp_file(&pch->file, CHANNEL);
1979 pch->file.hdrlen = chan->hdrlen;
1980 #ifdef CONFIG_PPP_MULTILINK
1981 pch->lastseq = -1;
1982 #endif /* CONFIG_PPP_MULTILINK */
1983 init_rwsem(&pch->chan_sem);
1984 spin_lock_init(&pch->downl);
1985 rwlock_init(&pch->upl);
1986 spin_lock_bh(&all_channels_lock);
1987 pch->file.index = ++last_channel_index;
1988 list_add(&pch->list, &new_channels);
1989 atomic_inc(&channel_count);
1990 spin_unlock_bh(&all_channels_lock);
1991 return 0;
1995 * Return the index of a channel.
1997 int ppp_channel_index(struct ppp_channel *chan)
1999 struct channel *pch = chan->ppp;
2001 if (pch != 0)
2002 return pch->file.index;
2003 return -1;
2007 * Return the PPP unit number to which a channel is connected.
2009 int ppp_unit_number(struct ppp_channel *chan)
2011 struct channel *pch = chan->ppp;
2012 int unit = -1;
2014 if (pch != 0) {
2015 read_lock_bh(&pch->upl);
2016 if (pch->ppp != 0)
2017 unit = pch->ppp->file.index;
2018 read_unlock_bh(&pch->upl);
2020 return unit;
2024 * Disconnect a channel from the generic layer.
2025 * This must be called in process context.
2027 void
2028 ppp_unregister_channel(struct ppp_channel *chan)
2030 struct channel *pch = chan->ppp;
2032 if (pch == 0)
2033 return; /* should never happen */
2034 chan->ppp = NULL;
2037 * This ensures that we have returned from any calls into the
2038 * the channel's start_xmit or ioctl routine before we proceed.
2040 down_write(&pch->chan_sem);
2041 spin_lock_bh(&pch->downl);
2042 pch->chan = NULL;
2043 spin_unlock_bh(&pch->downl);
2044 up_write(&pch->chan_sem);
2045 ppp_disconnect_channel(pch);
2046 spin_lock_bh(&all_channels_lock);
2047 list_del(&pch->list);
2048 spin_unlock_bh(&all_channels_lock);
2049 pch->file.dead = 1;
2050 wake_up_interruptible(&pch->file.rwait);
2051 if (atomic_dec_and_test(&pch->file.refcnt))
2052 ppp_destroy_channel(pch);
2056 * Callback from a channel when it can accept more to transmit.
2057 * This should be called at BH/softirq level, not interrupt level.
2059 void
2060 ppp_output_wakeup(struct ppp_channel *chan)
2062 struct channel *pch = chan->ppp;
2064 if (pch == 0)
2065 return;
2066 ppp_channel_push(pch);
2070 * Compression control.
2073 /* Process the PPPIOCSCOMPRESS ioctl. */
2074 static int
2075 ppp_set_compress(struct ppp *ppp, unsigned long arg)
2077 int err;
2078 struct compressor *cp, *ocomp;
2079 struct ppp_option_data data;
2080 void *state, *ostate;
2081 unsigned char ccp_option[CCP_MAX_OPTION_LENGTH];
2083 err = -EFAULT;
2084 if (copy_from_user(&data, (void __user *) arg, sizeof(data))
2085 || (data.length <= CCP_MAX_OPTION_LENGTH
2086 && copy_from_user(ccp_option, (void __user *) data.ptr, data.length)))
2087 goto out;
2088 err = -EINVAL;
2089 if (data.length > CCP_MAX_OPTION_LENGTH
2090 || ccp_option[1] < 2 || ccp_option[1] > data.length)
2091 goto out;
2093 cp = find_compressor(ccp_option[0]);
2094 #ifdef CONFIG_KMOD
2095 if (cp == 0) {
2096 request_module("ppp-compress-%d", ccp_option[0]);
2097 cp = find_compressor(ccp_option[0]);
2099 #endif /* CONFIG_KMOD */
2100 if (cp == 0)
2101 goto out;
2103 err = -ENOBUFS;
2104 if (data.transmit) {
2105 state = cp->comp_alloc(ccp_option, data.length);
2106 if (state != 0) {
2107 ppp_xmit_lock(ppp);
2108 ppp->xstate &= ~SC_COMP_RUN;
2109 ocomp = ppp->xcomp;
2110 ostate = ppp->xc_state;
2111 ppp->xcomp = cp;
2112 ppp->xc_state = state;
2113 ppp_xmit_unlock(ppp);
2114 if (ostate != 0) {
2115 ocomp->comp_free(ostate);
2116 module_put(ocomp->owner);
2118 err = 0;
2119 } else
2120 module_put(cp->owner);
2122 } else {
2123 state = cp->decomp_alloc(ccp_option, data.length);
2124 if (state != 0) {
2125 ppp_recv_lock(ppp);
2126 ppp->rstate &= ~SC_DECOMP_RUN;
2127 ocomp = ppp->rcomp;
2128 ostate = ppp->rc_state;
2129 ppp->rcomp = cp;
2130 ppp->rc_state = state;
2131 ppp_recv_unlock(ppp);
2132 if (ostate != 0) {
2133 ocomp->decomp_free(ostate);
2134 module_put(ocomp->owner);
2136 err = 0;
2137 } else
2138 module_put(cp->owner);
2141 out:
2142 return err;
2146 * Look at a CCP packet and update our state accordingly.
2147 * We assume the caller has the xmit or recv path locked.
2149 static void
2150 ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound)
2152 unsigned char *dp;
2153 int len;
2155 if (!pskb_may_pull(skb, CCP_HDRLEN + 2))
2156 return; /* no header */
2157 dp = skb->data + 2;
2159 switch (CCP_CODE(dp)) {
2160 case CCP_CONFREQ:
2162 /* A ConfReq starts negotiation of compression
2163 * in one direction of transmission,
2164 * and hence brings it down...but which way?
2166 * Remember:
2167 * A ConfReq indicates what the sender would like to receive
2169 if(inbound)
2170 /* He is proposing what I should send */
2171 ppp->xstate &= ~SC_COMP_RUN;
2172 else
2173 /* I am proposing to what he should send */
2174 ppp->rstate &= ~SC_DECOMP_RUN;
2176 break;
2178 case CCP_TERMREQ:
2179 case CCP_TERMACK:
2181 * CCP is going down, both directions of transmission
2183 ppp->rstate &= ~SC_DECOMP_RUN;
2184 ppp->xstate &= ~SC_COMP_RUN;
2185 break;
2187 case CCP_CONFACK:
2188 if ((ppp->flags & (SC_CCP_OPEN | SC_CCP_UP)) != SC_CCP_OPEN)
2189 break;
2190 len = CCP_LENGTH(dp);
2191 if (!pskb_may_pull(skb, len + 2))
2192 return; /* too short */
2193 dp += CCP_HDRLEN;
2194 len -= CCP_HDRLEN;
2195 if (len < CCP_OPT_MINLEN || len < CCP_OPT_LENGTH(dp))
2196 break;
2197 if (inbound) {
2198 /* we will start receiving compressed packets */
2199 if (ppp->rc_state == 0)
2200 break;
2201 if (ppp->rcomp->decomp_init(ppp->rc_state, dp, len,
2202 ppp->file.index, 0, ppp->mru, ppp->debug)) {
2203 ppp->rstate |= SC_DECOMP_RUN;
2204 ppp->rstate &= ~(SC_DC_ERROR | SC_DC_FERROR);
2206 } else {
2207 /* we will soon start sending compressed packets */
2208 if (ppp->xc_state == 0)
2209 break;
2210 if (ppp->xcomp->comp_init(ppp->xc_state, dp, len,
2211 ppp->file.index, 0, ppp->debug))
2212 ppp->xstate |= SC_COMP_RUN;
2214 break;
2216 case CCP_RESETACK:
2217 /* reset the [de]compressor */
2218 if ((ppp->flags & SC_CCP_UP) == 0)
2219 break;
2220 if (inbound) {
2221 if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN)) {
2222 ppp->rcomp->decomp_reset(ppp->rc_state);
2223 ppp->rstate &= ~SC_DC_ERROR;
2225 } else {
2226 if (ppp->xc_state && (ppp->xstate & SC_COMP_RUN))
2227 ppp->xcomp->comp_reset(ppp->xc_state);
2229 break;
2233 /* Free up compression resources. */
2234 static void
2235 ppp_ccp_closed(struct ppp *ppp)
2237 void *xstate, *rstate;
2238 struct compressor *xcomp, *rcomp;
2240 ppp_lock(ppp);
2241 ppp->flags &= ~(SC_CCP_OPEN | SC_CCP_UP);
2242 ppp->xstate = 0;
2243 xcomp = ppp->xcomp;
2244 xstate = ppp->xc_state;
2245 ppp->xc_state = NULL;
2246 ppp->rstate = 0;
2247 rcomp = ppp->rcomp;
2248 rstate = ppp->rc_state;
2249 ppp->rc_state = NULL;
2250 ppp_unlock(ppp);
2252 if (xstate) {
2253 xcomp->comp_free(xstate);
2254 module_put(xcomp->owner);
2256 if (rstate) {
2257 rcomp->decomp_free(rstate);
2258 module_put(rcomp->owner);
2262 /* List of compressors. */
2263 static LIST_HEAD(compressor_list);
2264 static DEFINE_SPINLOCK(compressor_list_lock);
2266 struct compressor_entry {
2267 struct list_head list;
2268 struct compressor *comp;
2271 static struct compressor_entry *
2272 find_comp_entry(int proto)
2274 struct compressor_entry *ce;
2275 struct list_head *list = &compressor_list;
2277 while ((list = list->next) != &compressor_list) {
2278 ce = list_entry(list, struct compressor_entry, list);
2279 if (ce->comp->compress_proto == proto)
2280 return ce;
2282 return NULL;
2285 /* Register a compressor */
2287 ppp_register_compressor(struct compressor *cp)
2289 struct compressor_entry *ce;
2290 int ret;
2291 spin_lock(&compressor_list_lock);
2292 ret = -EEXIST;
2293 if (find_comp_entry(cp->compress_proto) != 0)
2294 goto out;
2295 ret = -ENOMEM;
2296 ce = kmalloc(sizeof(struct compressor_entry), GFP_ATOMIC);
2297 if (ce == 0)
2298 goto out;
2299 ret = 0;
2300 ce->comp = cp;
2301 list_add(&ce->list, &compressor_list);
2302 out:
2303 spin_unlock(&compressor_list_lock);
2304 return ret;
2307 /* Unregister a compressor */
2308 void
2309 ppp_unregister_compressor(struct compressor *cp)
2311 struct compressor_entry *ce;
2313 spin_lock(&compressor_list_lock);
2314 ce = find_comp_entry(cp->compress_proto);
2315 if (ce != 0 && ce->comp == cp) {
2316 list_del(&ce->list);
2317 kfree(ce);
2319 spin_unlock(&compressor_list_lock);
2322 /* Find a compressor. */
2323 static struct compressor *
2324 find_compressor(int type)
2326 struct compressor_entry *ce;
2327 struct compressor *cp = NULL;
2329 spin_lock(&compressor_list_lock);
2330 ce = find_comp_entry(type);
2331 if (ce != 0) {
2332 cp = ce->comp;
2333 if (!try_module_get(cp->owner))
2334 cp = NULL;
2336 spin_unlock(&compressor_list_lock);
2337 return cp;
2341 * Miscelleneous stuff.
2344 static void
2345 ppp_get_stats(struct ppp *ppp, struct ppp_stats *st)
2347 struct slcompress *vj = ppp->vj;
2349 memset(st, 0, sizeof(*st));
2350 st->p.ppp_ipackets = ppp->stats.rx_packets;
2351 st->p.ppp_ierrors = ppp->stats.rx_errors;
2352 st->p.ppp_ibytes = ppp->stats.rx_bytes;
2353 st->p.ppp_opackets = ppp->stats.tx_packets;
2354 st->p.ppp_oerrors = ppp->stats.tx_errors;
2355 st->p.ppp_obytes = ppp->stats.tx_bytes;
2356 if (vj == 0)
2357 return;
2358 st->vj.vjs_packets = vj->sls_o_compressed + vj->sls_o_uncompressed;
2359 st->vj.vjs_compressed = vj->sls_o_compressed;
2360 st->vj.vjs_searches = vj->sls_o_searches;
2361 st->vj.vjs_misses = vj->sls_o_misses;
2362 st->vj.vjs_errorin = vj->sls_i_error;
2363 st->vj.vjs_tossed = vj->sls_i_tossed;
2364 st->vj.vjs_uncompressedin = vj->sls_i_uncompressed;
2365 st->vj.vjs_compressedin = vj->sls_i_compressed;
2369 * Stuff for handling the lists of ppp units and channels
2370 * and for initialization.
2374 * Create a new ppp interface unit. Fails if it can't allocate memory
2375 * or if there is already a unit with the requested number.
2376 * unit == -1 means allocate a new number.
2378 static struct ppp *
2379 ppp_create_interface(int unit, int *retp)
2381 struct ppp *ppp;
2382 struct net_device *dev = NULL;
2383 int ret = -ENOMEM;
2384 int i;
2386 ppp = kmalloc(sizeof(struct ppp), GFP_KERNEL);
2387 if (!ppp)
2388 goto out;
2389 dev = alloc_netdev(0, "", ppp_setup);
2390 if (!dev)
2391 goto out1;
2392 memset(ppp, 0, sizeof(struct ppp));
2394 ppp->mru = PPP_MRU;
2395 init_ppp_file(&ppp->file, INTERFACE);
2396 ppp->file.hdrlen = PPP_HDRLEN - 2; /* don't count proto bytes */
2397 for (i = 0; i < NUM_NP; ++i)
2398 ppp->npmode[i] = NPMODE_PASS;
2399 INIT_LIST_HEAD(&ppp->channels);
2400 spin_lock_init(&ppp->rlock);
2401 spin_lock_init(&ppp->wlock);
2402 #ifdef CONFIG_PPP_MULTILINK
2403 ppp->minseq = -1;
2404 skb_queue_head_init(&ppp->mrq);
2405 #endif /* CONFIG_PPP_MULTILINK */
2406 ppp->dev = dev;
2407 dev->priv = ppp;
2409 dev->hard_start_xmit = ppp_start_xmit;
2410 dev->get_stats = ppp_net_stats;
2411 dev->do_ioctl = ppp_net_ioctl;
2413 ret = -EEXIST;
2414 down(&all_ppp_sem);
2415 if (unit < 0)
2416 unit = cardmap_find_first_free(all_ppp_units);
2417 else if (cardmap_get(all_ppp_units, unit) != NULL)
2418 goto out2; /* unit already exists */
2420 /* Initialize the new ppp unit */
2421 ppp->file.index = unit;
2422 sprintf(dev->name, "ppp%d", unit);
2424 ret = register_netdev(dev);
2425 if (ret != 0) {
2426 printk(KERN_ERR "PPP: couldn't register device %s (%d)\n",
2427 dev->name, ret);
2428 goto out2;
2431 atomic_inc(&ppp_unit_count);
2432 cardmap_set(&all_ppp_units, unit, ppp);
2433 up(&all_ppp_sem);
2434 *retp = 0;
2435 return ppp;
2437 out2:
2438 up(&all_ppp_sem);
2439 free_netdev(dev);
2440 out1:
2441 kfree(ppp);
2442 out:
2443 *retp = ret;
2444 return NULL;
2448 * Initialize a ppp_file structure.
2450 static void
2451 init_ppp_file(struct ppp_file *pf, int kind)
2453 pf->kind = kind;
2454 skb_queue_head_init(&pf->xq);
2455 skb_queue_head_init(&pf->rq);
2456 atomic_set(&pf->refcnt, 1);
2457 init_waitqueue_head(&pf->rwait);
2461 * Take down a ppp interface unit - called when the owning file
2462 * (the one that created the unit) is closed or detached.
2464 static void ppp_shutdown_interface(struct ppp *ppp)
2466 struct net_device *dev;
2468 down(&all_ppp_sem);
2469 ppp_lock(ppp);
2470 dev = ppp->dev;
2471 ppp->dev = NULL;
2472 ppp_unlock(ppp);
2473 /* This will call dev_close() for us. */
2474 if (dev) {
2475 unregister_netdev(dev);
2476 free_netdev(dev);
2478 cardmap_set(&all_ppp_units, ppp->file.index, NULL);
2479 ppp->file.dead = 1;
2480 ppp->owner = NULL;
2481 wake_up_interruptible(&ppp->file.rwait);
2482 up(&all_ppp_sem);
2486 * Free the memory used by a ppp unit. This is only called once
2487 * there are no channels connected to the unit and no file structs
2488 * that reference the unit.
2490 static void ppp_destroy_interface(struct ppp *ppp)
2492 atomic_dec(&ppp_unit_count);
2494 if (!ppp->file.dead || ppp->n_channels) {
2495 /* "can't happen" */
2496 printk(KERN_ERR "ppp: destroying ppp struct %p but dead=%d "
2497 "n_channels=%d !\n", ppp, ppp->file.dead,
2498 ppp->n_channels);
2499 return;
2502 ppp_ccp_closed(ppp);
2503 if (ppp->vj) {
2504 slhc_free(ppp->vj);
2505 ppp->vj = NULL;
2507 skb_queue_purge(&ppp->file.xq);
2508 skb_queue_purge(&ppp->file.rq);
2509 #ifdef CONFIG_PPP_MULTILINK
2510 skb_queue_purge(&ppp->mrq);
2511 #endif /* CONFIG_PPP_MULTILINK */
2512 #ifdef CONFIG_PPP_FILTER
2513 kfree(ppp->pass_filter);
2514 ppp->pass_filter = NULL;
2515 kfree(ppp->active_filter);
2516 ppp->active_filter = NULL;
2517 #endif /* CONFIG_PPP_FILTER */
2519 kfree(ppp);
2523 * Locate an existing ppp unit.
2524 * The caller should have locked the all_ppp_sem.
2526 static struct ppp *
2527 ppp_find_unit(int unit)
2529 return cardmap_get(all_ppp_units, unit);
2533 * Locate an existing ppp channel.
2534 * The caller should have locked the all_channels_lock.
2535 * First we look in the new_channels list, then in the
2536 * all_channels list. If found in the new_channels list,
2537 * we move it to the all_channels list. This is for speed
2538 * when we have a lot of channels in use.
2540 static struct channel *
2541 ppp_find_channel(int unit)
2543 struct channel *pch;
2544 struct list_head *list;
2546 list = &new_channels;
2547 while ((list = list->next) != &new_channels) {
2548 pch = list_entry(list, struct channel, list);
2549 if (pch->file.index == unit) {
2550 list_del(&pch->list);
2551 list_add(&pch->list, &all_channels);
2552 return pch;
2555 list = &all_channels;
2556 while ((list = list->next) != &all_channels) {
2557 pch = list_entry(list, struct channel, list);
2558 if (pch->file.index == unit)
2559 return pch;
2561 return NULL;
2565 * Connect a PPP channel to a PPP interface unit.
2567 static int
2568 ppp_connect_channel(struct channel *pch, int unit)
2570 struct ppp *ppp;
2571 int ret = -ENXIO;
2572 int hdrlen;
2574 down(&all_ppp_sem);
2575 ppp = ppp_find_unit(unit);
2576 if (ppp == 0)
2577 goto out;
2578 write_lock_bh(&pch->upl);
2579 ret = -EINVAL;
2580 if (pch->ppp != 0)
2581 goto outl;
2583 ppp_lock(ppp);
2584 if (pch->file.hdrlen > ppp->file.hdrlen)
2585 ppp->file.hdrlen = pch->file.hdrlen;
2586 hdrlen = pch->file.hdrlen + 2; /* for protocol bytes */
2587 if (ppp->dev && hdrlen > ppp->dev->hard_header_len)
2588 ppp->dev->hard_header_len = hdrlen;
2589 list_add_tail(&pch->clist, &ppp->channels);
2590 ++ppp->n_channels;
2591 pch->ppp = ppp;
2592 atomic_inc(&ppp->file.refcnt);
2593 ppp_unlock(ppp);
2594 ret = 0;
2596 outl:
2597 write_unlock_bh(&pch->upl);
2598 out:
2599 up(&all_ppp_sem);
2600 return ret;
2604 * Disconnect a channel from its ppp unit.
2606 static int
2607 ppp_disconnect_channel(struct channel *pch)
2609 struct ppp *ppp;
2610 int err = -EINVAL;
2612 write_lock_bh(&pch->upl);
2613 ppp = pch->ppp;
2614 pch->ppp = NULL;
2615 write_unlock_bh(&pch->upl);
2616 if (ppp != 0) {
2617 /* remove it from the ppp unit's list */
2618 ppp_lock(ppp);
2619 list_del(&pch->clist);
2620 if (--ppp->n_channels == 0)
2621 wake_up_interruptible(&ppp->file.rwait);
2622 ppp_unlock(ppp);
2623 if (atomic_dec_and_test(&ppp->file.refcnt))
2624 ppp_destroy_interface(ppp);
2625 err = 0;
2627 return err;
2631 * Free up the resources used by a ppp channel.
2633 static void ppp_destroy_channel(struct channel *pch)
2635 atomic_dec(&channel_count);
2637 if (!pch->file.dead) {
2638 /* "can't happen" */
2639 printk(KERN_ERR "ppp: destroying undead channel %p !\n",
2640 pch);
2641 return;
2643 skb_queue_purge(&pch->file.xq);
2644 skb_queue_purge(&pch->file.rq);
2645 kfree(pch);
2648 static void __exit ppp_cleanup(void)
2650 /* should never happen */
2651 if (atomic_read(&ppp_unit_count) || atomic_read(&channel_count))
2652 printk(KERN_ERR "PPP: removing module but units remain!\n");
2653 cardmap_destroy(&all_ppp_units);
2654 if (unregister_chrdev(PPP_MAJOR, "ppp") != 0)
2655 printk(KERN_ERR "PPP: failed to unregister PPP device\n");
2656 devfs_remove("ppp");
2657 class_device_destroy(ppp_class, MKDEV(PPP_MAJOR, 0));
2658 class_destroy(ppp_class);
2662 * Cardmap implementation.
2664 static void *cardmap_get(struct cardmap *map, unsigned int nr)
2666 struct cardmap *p;
2667 int i;
2669 for (p = map; p != NULL; ) {
2670 if ((i = nr >> p->shift) >= CARDMAP_WIDTH)
2671 return NULL;
2672 if (p->shift == 0)
2673 return p->ptr[i];
2674 nr &= ~(CARDMAP_MASK << p->shift);
2675 p = p->ptr[i];
2677 return NULL;
2680 static void cardmap_set(struct cardmap **pmap, unsigned int nr, void *ptr)
2682 struct cardmap *p;
2683 int i;
2685 p = *pmap;
2686 if (p == NULL || (nr >> p->shift) >= CARDMAP_WIDTH) {
2687 do {
2688 /* need a new top level */
2689 struct cardmap *np = kmalloc(sizeof(*np), GFP_KERNEL);
2690 memset(np, 0, sizeof(*np));
2691 np->ptr[0] = p;
2692 if (p != NULL) {
2693 np->shift = p->shift + CARDMAP_ORDER;
2694 p->parent = np;
2695 } else
2696 np->shift = 0;
2697 p = np;
2698 } while ((nr >> p->shift) >= CARDMAP_WIDTH);
2699 *pmap = p;
2701 while (p->shift > 0) {
2702 i = (nr >> p->shift) & CARDMAP_MASK;
2703 if (p->ptr[i] == NULL) {
2704 struct cardmap *np = kmalloc(sizeof(*np), GFP_KERNEL);
2705 memset(np, 0, sizeof(*np));
2706 np->shift = p->shift - CARDMAP_ORDER;
2707 np->parent = p;
2708 p->ptr[i] = np;
2710 if (ptr == NULL)
2711 clear_bit(i, &p->inuse);
2712 p = p->ptr[i];
2714 i = nr & CARDMAP_MASK;
2715 p->ptr[i] = ptr;
2716 if (ptr != NULL)
2717 set_bit(i, &p->inuse);
2718 else
2719 clear_bit(i, &p->inuse);
2722 static unsigned int cardmap_find_first_free(struct cardmap *map)
2724 struct cardmap *p;
2725 unsigned int nr = 0;
2726 int i;
2728 if ((p = map) == NULL)
2729 return 0;
2730 for (;;) {
2731 i = find_first_zero_bit(&p->inuse, CARDMAP_WIDTH);
2732 if (i >= CARDMAP_WIDTH) {
2733 if (p->parent == NULL)
2734 return CARDMAP_WIDTH << p->shift;
2735 p = p->parent;
2736 i = (nr >> p->shift) & CARDMAP_MASK;
2737 set_bit(i, &p->inuse);
2738 continue;
2740 nr = (nr & (~CARDMAP_MASK << p->shift)) | (i << p->shift);
2741 if (p->shift == 0 || p->ptr[i] == NULL)
2742 return nr;
2743 p = p->ptr[i];
2747 static void cardmap_destroy(struct cardmap **pmap)
2749 struct cardmap *p, *np;
2750 int i;
2752 for (p = *pmap; p != NULL; p = np) {
2753 if (p->shift != 0) {
2754 for (i = 0; i < CARDMAP_WIDTH; ++i)
2755 if (p->ptr[i] != NULL)
2756 break;
2757 if (i < CARDMAP_WIDTH) {
2758 np = p->ptr[i];
2759 p->ptr[i] = NULL;
2760 continue;
2763 np = p->parent;
2764 kfree(p);
2766 *pmap = NULL;
2769 /* Module/initialization stuff */
2771 module_init(ppp_init);
2772 module_exit(ppp_cleanup);
2774 EXPORT_SYMBOL(ppp_register_channel);
2775 EXPORT_SYMBOL(ppp_unregister_channel);
2776 EXPORT_SYMBOL(ppp_channel_index);
2777 EXPORT_SYMBOL(ppp_unit_number);
2778 EXPORT_SYMBOL(ppp_input);
2779 EXPORT_SYMBOL(ppp_input_error);
2780 EXPORT_SYMBOL(ppp_output_wakeup);
2781 EXPORT_SYMBOL(ppp_register_compressor);
2782 EXPORT_SYMBOL(ppp_unregister_compressor);
2783 MODULE_LICENSE("GPL");
2784 MODULE_ALIAS_CHARDEV_MAJOR(PPP_MAJOR);
2785 MODULE_ALIAS("/dev/ppp");