ALSA: isight: fix hang when unplugging a running device
[firewire-audio.git] / net / sunrpc / sched.c
blob59e599498e37ffcd25a0c298de1030b78a13d516
1 /*
2 * linux/net/sunrpc/sched.c
4 * Scheduling for synchronous and asynchronous RPC requests.
6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
8 * TCP NFS related read + write fixes
9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
12 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
22 #include <linux/sunrpc/clnt.h>
24 #include "sunrpc.h"
26 #ifdef RPC_DEBUG
27 #define RPCDBG_FACILITY RPCDBG_SCHED
28 #endif
31 * RPC slabs and memory pools
33 #define RPC_BUFFER_MAXSIZE (2048)
34 #define RPC_BUFFER_POOLSIZE (8)
35 #define RPC_TASK_POOLSIZE (8)
36 static struct kmem_cache *rpc_task_slabp __read_mostly;
37 static struct kmem_cache *rpc_buffer_slabp __read_mostly;
38 static mempool_t *rpc_task_mempool __read_mostly;
39 static mempool_t *rpc_buffer_mempool __read_mostly;
41 static void rpc_async_schedule(struct work_struct *);
42 static void rpc_release_task(struct rpc_task *task);
43 static void __rpc_queue_timer_fn(unsigned long ptr);
46 * RPC tasks sit here while waiting for conditions to improve.
48 static struct rpc_wait_queue delay_queue;
51 * rpciod-related stuff
53 struct workqueue_struct *rpciod_workqueue;
56 * Disable the timer for a given RPC task. Should be called with
57 * queue->lock and bh_disabled in order to avoid races within
58 * rpc_run_timer().
60 static void
61 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
63 if (task->tk_timeout == 0)
64 return;
65 dprintk("RPC: %5u disabling timer\n", task->tk_pid);
66 task->tk_timeout = 0;
67 list_del(&task->u.tk_wait.timer_list);
68 if (list_empty(&queue->timer_list.list))
69 del_timer(&queue->timer_list.timer);
72 static void
73 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
75 queue->timer_list.expires = expires;
76 mod_timer(&queue->timer_list.timer, expires);
80 * Set up a timer for the current task.
82 static void
83 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
85 if (!task->tk_timeout)
86 return;
88 dprintk("RPC: %5u setting alarm for %lu ms\n",
89 task->tk_pid, task->tk_timeout * 1000 / HZ);
91 task->u.tk_wait.expires = jiffies + task->tk_timeout;
92 if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
93 rpc_set_queue_timer(queue, task->u.tk_wait.expires);
94 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
98 * Add new request to a priority queue.
100 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
102 struct list_head *q;
103 struct rpc_task *t;
105 INIT_LIST_HEAD(&task->u.tk_wait.links);
106 q = &queue->tasks[task->tk_priority];
107 if (unlikely(task->tk_priority > queue->maxpriority))
108 q = &queue->tasks[queue->maxpriority];
109 list_for_each_entry(t, q, u.tk_wait.list) {
110 if (t->tk_owner == task->tk_owner) {
111 list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
112 return;
115 list_add_tail(&task->u.tk_wait.list, q);
119 * Add new request to wait queue.
121 * Swapper tasks always get inserted at the head of the queue.
122 * This should avoid many nasty memory deadlocks and hopefully
123 * improve overall performance.
124 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
126 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
128 BUG_ON (RPC_IS_QUEUED(task));
130 if (RPC_IS_PRIORITY(queue))
131 __rpc_add_wait_queue_priority(queue, task);
132 else if (RPC_IS_SWAPPER(task))
133 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
134 else
135 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
136 task->tk_waitqueue = queue;
137 queue->qlen++;
138 rpc_set_queued(task);
140 dprintk("RPC: %5u added to queue %p \"%s\"\n",
141 task->tk_pid, queue, rpc_qname(queue));
145 * Remove request from a priority queue.
147 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
149 struct rpc_task *t;
151 if (!list_empty(&task->u.tk_wait.links)) {
152 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
153 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
154 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
159 * Remove request from queue.
160 * Note: must be called with spin lock held.
162 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
164 __rpc_disable_timer(queue, task);
165 if (RPC_IS_PRIORITY(queue))
166 __rpc_remove_wait_queue_priority(task);
167 list_del(&task->u.tk_wait.list);
168 queue->qlen--;
169 dprintk("RPC: %5u removed from queue %p \"%s\"\n",
170 task->tk_pid, queue, rpc_qname(queue));
173 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
175 queue->priority = priority;
176 queue->count = 1 << (priority * 2);
179 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
181 queue->owner = pid;
182 queue->nr = RPC_BATCH_COUNT;
185 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
187 rpc_set_waitqueue_priority(queue, queue->maxpriority);
188 rpc_set_waitqueue_owner(queue, 0);
191 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
193 int i;
195 spin_lock_init(&queue->lock);
196 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
197 INIT_LIST_HEAD(&queue->tasks[i]);
198 queue->maxpriority = nr_queues - 1;
199 rpc_reset_waitqueue_priority(queue);
200 queue->qlen = 0;
201 setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
202 INIT_LIST_HEAD(&queue->timer_list.list);
203 #ifdef RPC_DEBUG
204 queue->name = qname;
205 #endif
208 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
210 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
212 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
214 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
216 __rpc_init_priority_wait_queue(queue, qname, 1);
218 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
220 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
222 del_timer_sync(&queue->timer_list.timer);
224 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
226 static int rpc_wait_bit_killable(void *word)
228 if (fatal_signal_pending(current))
229 return -ERESTARTSYS;
230 schedule();
231 return 0;
234 #ifdef RPC_DEBUG
235 static void rpc_task_set_debuginfo(struct rpc_task *task)
237 static atomic_t rpc_pid;
239 task->tk_pid = atomic_inc_return(&rpc_pid);
241 #else
242 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
245 #endif
247 static void rpc_set_active(struct rpc_task *task)
249 rpc_task_set_debuginfo(task);
250 set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
254 * Mark an RPC call as having completed by clearing the 'active' bit
255 * and then waking up all tasks that were sleeping.
257 static int rpc_complete_task(struct rpc_task *task)
259 void *m = &task->tk_runstate;
260 wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
261 struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
262 unsigned long flags;
263 int ret;
265 spin_lock_irqsave(&wq->lock, flags);
266 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
267 ret = atomic_dec_and_test(&task->tk_count);
268 if (waitqueue_active(wq))
269 __wake_up_locked_key(wq, TASK_NORMAL, &k);
270 spin_unlock_irqrestore(&wq->lock, flags);
271 return ret;
275 * Allow callers to wait for completion of an RPC call
277 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
278 * to enforce taking of the wq->lock and hence avoid races with
279 * rpc_complete_task().
281 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
283 if (action == NULL)
284 action = rpc_wait_bit_killable;
285 return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
286 action, TASK_KILLABLE);
288 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
291 * Make an RPC task runnable.
293 * Note: If the task is ASYNC, this must be called with
294 * the spinlock held to protect the wait queue operation.
296 static void rpc_make_runnable(struct rpc_task *task)
298 rpc_clear_queued(task);
299 if (rpc_test_and_set_running(task))
300 return;
301 if (RPC_IS_ASYNC(task)) {
302 int status;
304 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
305 status = queue_work(rpciod_workqueue, &task->u.tk_work);
306 if (status < 0) {
307 printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
308 task->tk_status = status;
309 return;
311 } else
312 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
316 * Prepare for sleeping on a wait queue.
317 * By always appending tasks to the list we ensure FIFO behavior.
318 * NB: An RPC task will only receive interrupt-driven events as long
319 * as it's on a wait queue.
321 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
322 rpc_action action)
324 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
325 task->tk_pid, rpc_qname(q), jiffies);
327 __rpc_add_wait_queue(q, task);
329 BUG_ON(task->tk_callback != NULL);
330 task->tk_callback = action;
331 __rpc_add_timer(q, task);
334 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
335 rpc_action action)
337 /* We shouldn't ever put an inactive task to sleep */
338 BUG_ON(!RPC_IS_ACTIVATED(task));
341 * Protect the queue operations.
343 spin_lock_bh(&q->lock);
344 __rpc_sleep_on(q, task, action);
345 spin_unlock_bh(&q->lock);
347 EXPORT_SYMBOL_GPL(rpc_sleep_on);
350 * __rpc_do_wake_up_task - wake up a single rpc_task
351 * @queue: wait queue
352 * @task: task to be woken up
354 * Caller must hold queue->lock, and have cleared the task queued flag.
356 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
358 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
359 task->tk_pid, jiffies);
361 /* Has the task been executed yet? If not, we cannot wake it up! */
362 if (!RPC_IS_ACTIVATED(task)) {
363 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
364 return;
367 __rpc_remove_wait_queue(queue, task);
369 rpc_make_runnable(task);
371 dprintk("RPC: __rpc_wake_up_task done\n");
375 * Wake up a queued task while the queue lock is being held
377 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
379 if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue)
380 __rpc_do_wake_up_task(queue, task);
384 * Tests whether rpc queue is empty
386 int rpc_queue_empty(struct rpc_wait_queue *queue)
388 int res;
390 spin_lock_bh(&queue->lock);
391 res = queue->qlen;
392 spin_unlock_bh(&queue->lock);
393 return res == 0;
395 EXPORT_SYMBOL_GPL(rpc_queue_empty);
398 * Wake up a task on a specific queue
400 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
402 spin_lock_bh(&queue->lock);
403 rpc_wake_up_task_queue_locked(queue, task);
404 spin_unlock_bh(&queue->lock);
406 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
409 * Wake up the next task on a priority queue.
411 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
413 struct list_head *q;
414 struct rpc_task *task;
417 * Service a batch of tasks from a single owner.
419 q = &queue->tasks[queue->priority];
420 if (!list_empty(q)) {
421 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
422 if (queue->owner == task->tk_owner) {
423 if (--queue->nr)
424 goto out;
425 list_move_tail(&task->u.tk_wait.list, q);
428 * Check if we need to switch queues.
430 if (--queue->count)
431 goto new_owner;
435 * Service the next queue.
437 do {
438 if (q == &queue->tasks[0])
439 q = &queue->tasks[queue->maxpriority];
440 else
441 q = q - 1;
442 if (!list_empty(q)) {
443 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
444 goto new_queue;
446 } while (q != &queue->tasks[queue->priority]);
448 rpc_reset_waitqueue_priority(queue);
449 return NULL;
451 new_queue:
452 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
453 new_owner:
454 rpc_set_waitqueue_owner(queue, task->tk_owner);
455 out:
456 rpc_wake_up_task_queue_locked(queue, task);
457 return task;
461 * Wake up the next task on the wait queue.
463 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
465 struct rpc_task *task = NULL;
467 dprintk("RPC: wake_up_next(%p \"%s\")\n",
468 queue, rpc_qname(queue));
469 spin_lock_bh(&queue->lock);
470 if (RPC_IS_PRIORITY(queue))
471 task = __rpc_wake_up_next_priority(queue);
472 else {
473 task_for_first(task, &queue->tasks[0])
474 rpc_wake_up_task_queue_locked(queue, task);
476 spin_unlock_bh(&queue->lock);
478 return task;
480 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
483 * rpc_wake_up - wake up all rpc_tasks
484 * @queue: rpc_wait_queue on which the tasks are sleeping
486 * Grabs queue->lock
488 void rpc_wake_up(struct rpc_wait_queue *queue)
490 struct rpc_task *task, *next;
491 struct list_head *head;
493 spin_lock_bh(&queue->lock);
494 head = &queue->tasks[queue->maxpriority];
495 for (;;) {
496 list_for_each_entry_safe(task, next, head, u.tk_wait.list)
497 rpc_wake_up_task_queue_locked(queue, task);
498 if (head == &queue->tasks[0])
499 break;
500 head--;
502 spin_unlock_bh(&queue->lock);
504 EXPORT_SYMBOL_GPL(rpc_wake_up);
507 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
508 * @queue: rpc_wait_queue on which the tasks are sleeping
509 * @status: status value to set
511 * Grabs queue->lock
513 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
515 struct rpc_task *task, *next;
516 struct list_head *head;
518 spin_lock_bh(&queue->lock);
519 head = &queue->tasks[queue->maxpriority];
520 for (;;) {
521 list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
522 task->tk_status = status;
523 rpc_wake_up_task_queue_locked(queue, task);
525 if (head == &queue->tasks[0])
526 break;
527 head--;
529 spin_unlock_bh(&queue->lock);
531 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
533 static void __rpc_queue_timer_fn(unsigned long ptr)
535 struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
536 struct rpc_task *task, *n;
537 unsigned long expires, now, timeo;
539 spin_lock(&queue->lock);
540 expires = now = jiffies;
541 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
542 timeo = task->u.tk_wait.expires;
543 if (time_after_eq(now, timeo)) {
544 dprintk("RPC: %5u timeout\n", task->tk_pid);
545 task->tk_status = -ETIMEDOUT;
546 rpc_wake_up_task_queue_locked(queue, task);
547 continue;
549 if (expires == now || time_after(expires, timeo))
550 expires = timeo;
552 if (!list_empty(&queue->timer_list.list))
553 rpc_set_queue_timer(queue, expires);
554 spin_unlock(&queue->lock);
557 static void __rpc_atrun(struct rpc_task *task)
559 task->tk_status = 0;
563 * Run a task at a later time
565 void rpc_delay(struct rpc_task *task, unsigned long delay)
567 task->tk_timeout = delay;
568 rpc_sleep_on(&delay_queue, task, __rpc_atrun);
570 EXPORT_SYMBOL_GPL(rpc_delay);
573 * Helper to call task->tk_ops->rpc_call_prepare
575 void rpc_prepare_task(struct rpc_task *task)
577 task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
581 * Helper that calls task->tk_ops->rpc_call_done if it exists
583 void rpc_exit_task(struct rpc_task *task)
585 task->tk_action = NULL;
586 if (task->tk_ops->rpc_call_done != NULL) {
587 task->tk_ops->rpc_call_done(task, task->tk_calldata);
588 if (task->tk_action != NULL) {
589 WARN_ON(RPC_ASSASSINATED(task));
590 /* Always release the RPC slot and buffer memory */
591 xprt_release(task);
596 void rpc_exit(struct rpc_task *task, int status)
598 task->tk_status = status;
599 task->tk_action = rpc_exit_task;
600 if (RPC_IS_QUEUED(task))
601 rpc_wake_up_queued_task(task->tk_waitqueue, task);
603 EXPORT_SYMBOL_GPL(rpc_exit);
605 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
607 if (ops->rpc_release != NULL)
608 ops->rpc_release(calldata);
612 * This is the RPC `scheduler' (or rather, the finite state machine).
614 static void __rpc_execute(struct rpc_task *task)
616 struct rpc_wait_queue *queue;
617 int task_is_async = RPC_IS_ASYNC(task);
618 int status = 0;
620 dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
621 task->tk_pid, task->tk_flags);
623 BUG_ON(RPC_IS_QUEUED(task));
625 for (;;) {
628 * Execute any pending callback.
630 if (task->tk_callback) {
631 void (*save_callback)(struct rpc_task *);
634 * We set tk_callback to NULL before calling it,
635 * in case it sets the tk_callback field itself:
637 save_callback = task->tk_callback;
638 task->tk_callback = NULL;
639 save_callback(task);
643 * Perform the next FSM step.
644 * tk_action may be NULL when the task has been killed
645 * by someone else.
647 if (!RPC_IS_QUEUED(task)) {
648 if (task->tk_action == NULL)
649 break;
650 task->tk_action(task);
654 * Lockless check for whether task is sleeping or not.
656 if (!RPC_IS_QUEUED(task))
657 continue;
659 * The queue->lock protects against races with
660 * rpc_make_runnable().
662 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
663 * rpc_task, rpc_make_runnable() can assign it to a
664 * different workqueue. We therefore cannot assume that the
665 * rpc_task pointer may still be dereferenced.
667 queue = task->tk_waitqueue;
668 spin_lock_bh(&queue->lock);
669 if (!RPC_IS_QUEUED(task)) {
670 spin_unlock_bh(&queue->lock);
671 continue;
673 rpc_clear_running(task);
674 spin_unlock_bh(&queue->lock);
675 if (task_is_async)
676 return;
678 /* sync task: sleep here */
679 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
680 status = out_of_line_wait_on_bit(&task->tk_runstate,
681 RPC_TASK_QUEUED, rpc_wait_bit_killable,
682 TASK_KILLABLE);
683 if (status == -ERESTARTSYS) {
685 * When a sync task receives a signal, it exits with
686 * -ERESTARTSYS. In order to catch any callbacks that
687 * clean up after sleeping on some queue, we don't
688 * break the loop here, but go around once more.
690 dprintk("RPC: %5u got signal\n", task->tk_pid);
691 task->tk_flags |= RPC_TASK_KILLED;
692 rpc_exit(task, -ERESTARTSYS);
694 rpc_set_running(task);
695 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
698 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
699 task->tk_status);
700 /* Release all resources associated with the task */
701 rpc_release_task(task);
705 * User-visible entry point to the scheduler.
707 * This may be called recursively if e.g. an async NFS task updates
708 * the attributes and finds that dirty pages must be flushed.
709 * NOTE: Upon exit of this function the task is guaranteed to be
710 * released. In particular note that tk_release() will have
711 * been called, so your task memory may have been freed.
713 void rpc_execute(struct rpc_task *task)
715 rpc_set_active(task);
716 rpc_make_runnable(task);
717 if (!RPC_IS_ASYNC(task))
718 __rpc_execute(task);
721 static void rpc_async_schedule(struct work_struct *work)
723 __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
727 * rpc_malloc - allocate an RPC buffer
728 * @task: RPC task that will use this buffer
729 * @size: requested byte size
731 * To prevent rpciod from hanging, this allocator never sleeps,
732 * returning NULL if the request cannot be serviced immediately.
733 * The caller can arrange to sleep in a way that is safe for rpciod.
735 * Most requests are 'small' (under 2KiB) and can be serviced from a
736 * mempool, ensuring that NFS reads and writes can always proceed,
737 * and that there is good locality of reference for these buffers.
739 * In order to avoid memory starvation triggering more writebacks of
740 * NFS requests, we avoid using GFP_KERNEL.
742 void *rpc_malloc(struct rpc_task *task, size_t size)
744 struct rpc_buffer *buf;
745 gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
747 size += sizeof(struct rpc_buffer);
748 if (size <= RPC_BUFFER_MAXSIZE)
749 buf = mempool_alloc(rpc_buffer_mempool, gfp);
750 else
751 buf = kmalloc(size, gfp);
753 if (!buf)
754 return NULL;
756 buf->len = size;
757 dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
758 task->tk_pid, size, buf);
759 return &buf->data;
761 EXPORT_SYMBOL_GPL(rpc_malloc);
764 * rpc_free - free buffer allocated via rpc_malloc
765 * @buffer: buffer to free
768 void rpc_free(void *buffer)
770 size_t size;
771 struct rpc_buffer *buf;
773 if (!buffer)
774 return;
776 buf = container_of(buffer, struct rpc_buffer, data);
777 size = buf->len;
779 dprintk("RPC: freeing buffer of size %zu at %p\n",
780 size, buf);
782 if (size <= RPC_BUFFER_MAXSIZE)
783 mempool_free(buf, rpc_buffer_mempool);
784 else
785 kfree(buf);
787 EXPORT_SYMBOL_GPL(rpc_free);
790 * Creation and deletion of RPC task structures
792 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
794 memset(task, 0, sizeof(*task));
795 atomic_set(&task->tk_count, 1);
796 task->tk_flags = task_setup_data->flags;
797 task->tk_ops = task_setup_data->callback_ops;
798 task->tk_calldata = task_setup_data->callback_data;
799 INIT_LIST_HEAD(&task->tk_task);
801 /* Initialize retry counters */
802 task->tk_garb_retry = 2;
803 task->tk_cred_retry = 2;
805 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
806 task->tk_owner = current->tgid;
808 /* Initialize workqueue for async tasks */
809 task->tk_workqueue = task_setup_data->workqueue;
811 if (task->tk_ops->rpc_call_prepare != NULL)
812 task->tk_action = rpc_prepare_task;
814 /* starting timestamp */
815 task->tk_start = ktime_get();
817 dprintk("RPC: new task initialized, procpid %u\n",
818 task_pid_nr(current));
821 static struct rpc_task *
822 rpc_alloc_task(void)
824 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
828 * Create a new task for the specified client.
830 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
832 struct rpc_task *task = setup_data->task;
833 unsigned short flags = 0;
835 if (task == NULL) {
836 task = rpc_alloc_task();
837 if (task == NULL) {
838 rpc_release_calldata(setup_data->callback_ops,
839 setup_data->callback_data);
840 return ERR_PTR(-ENOMEM);
842 flags = RPC_TASK_DYNAMIC;
845 rpc_init_task(task, setup_data);
846 if (task->tk_status < 0) {
847 int err = task->tk_status;
848 rpc_put_task(task);
849 return ERR_PTR(err);
852 task->tk_flags |= flags;
853 dprintk("RPC: allocated task %p\n", task);
854 return task;
857 static void rpc_free_task(struct rpc_task *task)
859 const struct rpc_call_ops *tk_ops = task->tk_ops;
860 void *calldata = task->tk_calldata;
862 if (task->tk_flags & RPC_TASK_DYNAMIC) {
863 dprintk("RPC: %5u freeing task\n", task->tk_pid);
864 mempool_free(task, rpc_task_mempool);
866 rpc_release_calldata(tk_ops, calldata);
869 static void rpc_async_release(struct work_struct *work)
871 rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
874 static void rpc_release_resources_task(struct rpc_task *task)
876 if (task->tk_rqstp)
877 xprt_release(task);
878 if (task->tk_msg.rpc_cred)
879 put_rpccred(task->tk_msg.rpc_cred);
880 rpc_task_release_client(task);
883 static void rpc_final_put_task(struct rpc_task *task,
884 struct workqueue_struct *q)
886 if (q != NULL) {
887 INIT_WORK(&task->u.tk_work, rpc_async_release);
888 queue_work(q, &task->u.tk_work);
889 } else
890 rpc_free_task(task);
893 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
895 if (atomic_dec_and_test(&task->tk_count)) {
896 rpc_release_resources_task(task);
897 rpc_final_put_task(task, q);
901 void rpc_put_task(struct rpc_task *task)
903 rpc_do_put_task(task, NULL);
905 EXPORT_SYMBOL_GPL(rpc_put_task);
907 void rpc_put_task_async(struct rpc_task *task)
909 rpc_do_put_task(task, task->tk_workqueue);
911 EXPORT_SYMBOL_GPL(rpc_put_task_async);
913 static void rpc_release_task(struct rpc_task *task)
915 dprintk("RPC: %5u release task\n", task->tk_pid);
917 BUG_ON (RPC_IS_QUEUED(task));
919 rpc_release_resources_task(task);
922 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
923 * so it should be safe to use task->tk_count as a test for whether
924 * or not any other processes still hold references to our rpc_task.
926 if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
927 /* Wake up anyone who may be waiting for task completion */
928 if (!rpc_complete_task(task))
929 return;
930 } else {
931 if (!atomic_dec_and_test(&task->tk_count))
932 return;
934 rpc_final_put_task(task, task->tk_workqueue);
937 int rpciod_up(void)
939 return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
942 void rpciod_down(void)
944 module_put(THIS_MODULE);
948 * Start up the rpciod workqueue.
950 static int rpciod_start(void)
952 struct workqueue_struct *wq;
955 * Create the rpciod thread and wait for it to start.
957 dprintk("RPC: creating workqueue rpciod\n");
958 wq = alloc_workqueue("rpciod", WQ_RESCUER, 0);
959 rpciod_workqueue = wq;
960 return rpciod_workqueue != NULL;
963 static void rpciod_stop(void)
965 struct workqueue_struct *wq = NULL;
967 if (rpciod_workqueue == NULL)
968 return;
969 dprintk("RPC: destroying workqueue rpciod\n");
971 wq = rpciod_workqueue;
972 rpciod_workqueue = NULL;
973 destroy_workqueue(wq);
976 void
977 rpc_destroy_mempool(void)
979 rpciod_stop();
980 if (rpc_buffer_mempool)
981 mempool_destroy(rpc_buffer_mempool);
982 if (rpc_task_mempool)
983 mempool_destroy(rpc_task_mempool);
984 if (rpc_task_slabp)
985 kmem_cache_destroy(rpc_task_slabp);
986 if (rpc_buffer_slabp)
987 kmem_cache_destroy(rpc_buffer_slabp);
988 rpc_destroy_wait_queue(&delay_queue);
992 rpc_init_mempool(void)
995 * The following is not strictly a mempool initialisation,
996 * but there is no harm in doing it here
998 rpc_init_wait_queue(&delay_queue, "delayq");
999 if (!rpciod_start())
1000 goto err_nomem;
1002 rpc_task_slabp = kmem_cache_create("rpc_tasks",
1003 sizeof(struct rpc_task),
1004 0, SLAB_HWCACHE_ALIGN,
1005 NULL);
1006 if (!rpc_task_slabp)
1007 goto err_nomem;
1008 rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1009 RPC_BUFFER_MAXSIZE,
1010 0, SLAB_HWCACHE_ALIGN,
1011 NULL);
1012 if (!rpc_buffer_slabp)
1013 goto err_nomem;
1014 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1015 rpc_task_slabp);
1016 if (!rpc_task_mempool)
1017 goto err_nomem;
1018 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1019 rpc_buffer_slabp);
1020 if (!rpc_buffer_mempool)
1021 goto err_nomem;
1022 return 0;
1023 err_nomem:
1024 rpc_destroy_mempool();
1025 return -ENOMEM;