tools/firewire: nosy-dump: use linux/firewire-constants.h
[firewire-audio.git] / fs / nfs / write.c
blob3aea3ca98ab788c5dae67c0769ff723eb9b94217
1 /*
2 * linux/fs/nfs/write.c
4 * Write file data over NFS.
6 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7 */
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
16 #include <linux/migrate.h>
18 #include <linux/sunrpc/clnt.h>
19 #include <linux/nfs_fs.h>
20 #include <linux/nfs_mount.h>
21 #include <linux/nfs_page.h>
22 #include <linux/backing-dev.h>
24 #include <asm/uaccess.h>
26 #include "delegation.h"
27 #include "internal.h"
28 #include "iostat.h"
29 #include "nfs4_fs.h"
30 #include "fscache.h"
32 #define NFSDBG_FACILITY NFSDBG_PAGECACHE
34 #define MIN_POOL_WRITE (32)
35 #define MIN_POOL_COMMIT (4)
38 * Local function declarations
40 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc,
41 struct inode *inode, int ioflags);
42 static void nfs_redirty_request(struct nfs_page *req);
43 static const struct rpc_call_ops nfs_write_partial_ops;
44 static const struct rpc_call_ops nfs_write_full_ops;
45 static const struct rpc_call_ops nfs_commit_ops;
47 static struct kmem_cache *nfs_wdata_cachep;
48 static mempool_t *nfs_wdata_mempool;
49 static mempool_t *nfs_commit_mempool;
51 struct nfs_write_data *nfs_commitdata_alloc(void)
53 struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
55 if (p) {
56 memset(p, 0, sizeof(*p));
57 INIT_LIST_HEAD(&p->pages);
58 p->res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE;
60 return p;
63 void nfs_commit_free(struct nfs_write_data *p)
65 if (p && (p->pagevec != &p->page_array[0]))
66 kfree(p->pagevec);
67 mempool_free(p, nfs_commit_mempool);
70 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount)
72 struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
74 if (p) {
75 memset(p, 0, sizeof(*p));
76 INIT_LIST_HEAD(&p->pages);
77 p->npages = pagecount;
78 p->res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE;
79 if (pagecount <= ARRAY_SIZE(p->page_array))
80 p->pagevec = p->page_array;
81 else {
82 p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
83 if (!p->pagevec) {
84 mempool_free(p, nfs_wdata_mempool);
85 p = NULL;
89 return p;
92 void nfs_writedata_free(struct nfs_write_data *p)
94 if (p && (p->pagevec != &p->page_array[0]))
95 kfree(p->pagevec);
96 mempool_free(p, nfs_wdata_mempool);
99 static void nfs_writedata_release(struct nfs_write_data *wdata)
101 put_nfs_open_context(wdata->args.context);
102 nfs_writedata_free(wdata);
105 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
107 ctx->error = error;
108 smp_wmb();
109 set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
112 static struct nfs_page *nfs_page_find_request_locked(struct page *page)
114 struct nfs_page *req = NULL;
116 if (PagePrivate(page)) {
117 req = (struct nfs_page *)page_private(page);
118 if (req != NULL)
119 kref_get(&req->wb_kref);
121 return req;
124 static struct nfs_page *nfs_page_find_request(struct page *page)
126 struct inode *inode = page->mapping->host;
127 struct nfs_page *req = NULL;
129 spin_lock(&inode->i_lock);
130 req = nfs_page_find_request_locked(page);
131 spin_unlock(&inode->i_lock);
132 return req;
135 /* Adjust the file length if we're writing beyond the end */
136 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
138 struct inode *inode = page->mapping->host;
139 loff_t end, i_size;
140 pgoff_t end_index;
142 spin_lock(&inode->i_lock);
143 i_size = i_size_read(inode);
144 end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
145 if (i_size > 0 && page->index < end_index)
146 goto out;
147 end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
148 if (i_size >= end)
149 goto out;
150 i_size_write(inode, end);
151 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
152 out:
153 spin_unlock(&inode->i_lock);
156 /* A writeback failed: mark the page as bad, and invalidate the page cache */
157 static void nfs_set_pageerror(struct page *page)
159 SetPageError(page);
160 nfs_zap_mapping(page->mapping->host, page->mapping);
163 /* We can set the PG_uptodate flag if we see that a write request
164 * covers the full page.
166 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
168 if (PageUptodate(page))
169 return;
170 if (base != 0)
171 return;
172 if (count != nfs_page_length(page))
173 return;
174 SetPageUptodate(page);
177 static int wb_priority(struct writeback_control *wbc)
179 if (wbc->for_reclaim)
180 return FLUSH_HIGHPRI | FLUSH_STABLE;
181 if (wbc->for_kupdate || wbc->for_background)
182 return FLUSH_LOWPRI;
183 return 0;
187 * NFS congestion control
190 int nfs_congestion_kb;
192 #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10))
193 #define NFS_CONGESTION_OFF_THRESH \
194 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
196 static int nfs_set_page_writeback(struct page *page)
198 int ret = test_set_page_writeback(page);
200 if (!ret) {
201 struct inode *inode = page->mapping->host;
202 struct nfs_server *nfss = NFS_SERVER(inode);
204 page_cache_get(page);
205 if (atomic_long_inc_return(&nfss->writeback) >
206 NFS_CONGESTION_ON_THRESH) {
207 set_bdi_congested(&nfss->backing_dev_info,
208 BLK_RW_ASYNC);
211 return ret;
214 static void nfs_end_page_writeback(struct page *page)
216 struct inode *inode = page->mapping->host;
217 struct nfs_server *nfss = NFS_SERVER(inode);
219 end_page_writeback(page);
220 page_cache_release(page);
221 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
222 clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC);
225 static struct nfs_page *nfs_find_and_lock_request(struct page *page)
227 struct inode *inode = page->mapping->host;
228 struct nfs_page *req;
229 int ret;
231 spin_lock(&inode->i_lock);
232 for (;;) {
233 req = nfs_page_find_request_locked(page);
234 if (req == NULL)
235 break;
236 if (nfs_set_page_tag_locked(req))
237 break;
238 /* Note: If we hold the page lock, as is the case in nfs_writepage,
239 * then the call to nfs_set_page_tag_locked() will always
240 * succeed provided that someone hasn't already marked the
241 * request as dirty (in which case we don't care).
243 spin_unlock(&inode->i_lock);
244 ret = nfs_wait_on_request(req);
245 nfs_release_request(req);
246 if (ret != 0)
247 return ERR_PTR(ret);
248 spin_lock(&inode->i_lock);
250 spin_unlock(&inode->i_lock);
251 return req;
255 * Find an associated nfs write request, and prepare to flush it out
256 * May return an error if the user signalled nfs_wait_on_request().
258 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
259 struct page *page)
261 struct nfs_page *req;
262 int ret = 0;
264 req = nfs_find_and_lock_request(page);
265 if (!req)
266 goto out;
267 ret = PTR_ERR(req);
268 if (IS_ERR(req))
269 goto out;
271 ret = nfs_set_page_writeback(page);
272 BUG_ON(ret != 0);
273 BUG_ON(test_bit(PG_CLEAN, &req->wb_flags));
275 if (!nfs_pageio_add_request(pgio, req)) {
276 nfs_redirty_request(req);
277 ret = pgio->pg_error;
279 out:
280 return ret;
283 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
285 struct inode *inode = page->mapping->host;
287 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
288 nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
290 nfs_pageio_cond_complete(pgio, page->index);
291 return nfs_page_async_flush(pgio, page);
295 * Write an mmapped page to the server.
297 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
299 struct nfs_pageio_descriptor pgio;
300 int err;
302 nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc));
303 err = nfs_do_writepage(page, wbc, &pgio);
304 nfs_pageio_complete(&pgio);
305 if (err < 0)
306 return err;
307 if (pgio.pg_error < 0)
308 return pgio.pg_error;
309 return 0;
312 int nfs_writepage(struct page *page, struct writeback_control *wbc)
314 int ret;
316 ret = nfs_writepage_locked(page, wbc);
317 unlock_page(page);
318 return ret;
321 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
323 int ret;
325 ret = nfs_do_writepage(page, wbc, data);
326 unlock_page(page);
327 return ret;
330 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
332 struct inode *inode = mapping->host;
333 unsigned long *bitlock = &NFS_I(inode)->flags;
334 struct nfs_pageio_descriptor pgio;
335 int err;
337 /* Stop dirtying of new pages while we sync */
338 err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING,
339 nfs_wait_bit_killable, TASK_KILLABLE);
340 if (err)
341 goto out_err;
343 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
345 nfs_pageio_init_write(&pgio, inode, wb_priority(wbc));
346 err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
347 nfs_pageio_complete(&pgio);
349 clear_bit_unlock(NFS_INO_FLUSHING, bitlock);
350 smp_mb__after_clear_bit();
351 wake_up_bit(bitlock, NFS_INO_FLUSHING);
353 if (err < 0)
354 goto out_err;
355 err = pgio.pg_error;
356 if (err < 0)
357 goto out_err;
358 return 0;
359 out_err:
360 return err;
364 * Insert a write request into an inode
366 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
368 struct nfs_inode *nfsi = NFS_I(inode);
369 int error;
371 error = radix_tree_preload(GFP_NOFS);
372 if (error != 0)
373 goto out;
375 /* Lock the request! */
376 nfs_lock_request_dontget(req);
378 spin_lock(&inode->i_lock);
379 error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
380 BUG_ON(error);
381 if (!nfsi->npages) {
382 igrab(inode);
383 if (nfs_have_delegation(inode, FMODE_WRITE))
384 nfsi->change_attr++;
386 SetPagePrivate(req->wb_page);
387 set_page_private(req->wb_page, (unsigned long)req);
388 nfsi->npages++;
389 kref_get(&req->wb_kref);
390 radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index,
391 NFS_PAGE_TAG_LOCKED);
392 spin_unlock(&inode->i_lock);
393 radix_tree_preload_end();
394 out:
395 return error;
399 * Remove a write request from an inode
401 static void nfs_inode_remove_request(struct nfs_page *req)
403 struct inode *inode = req->wb_context->path.dentry->d_inode;
404 struct nfs_inode *nfsi = NFS_I(inode);
406 BUG_ON (!NFS_WBACK_BUSY(req));
408 spin_lock(&inode->i_lock);
409 set_page_private(req->wb_page, 0);
410 ClearPagePrivate(req->wb_page);
411 radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
412 nfsi->npages--;
413 if (!nfsi->npages) {
414 spin_unlock(&inode->i_lock);
415 iput(inode);
416 } else
417 spin_unlock(&inode->i_lock);
418 nfs_clear_request(req);
419 nfs_release_request(req);
422 static void
423 nfs_mark_request_dirty(struct nfs_page *req)
425 __set_page_dirty_nobuffers(req->wb_page);
426 __mark_inode_dirty(req->wb_page->mapping->host, I_DIRTY_DATASYNC);
429 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
431 * Add a request to the inode's commit list.
433 static void
434 nfs_mark_request_commit(struct nfs_page *req)
436 struct inode *inode = req->wb_context->path.dentry->d_inode;
437 struct nfs_inode *nfsi = NFS_I(inode);
439 spin_lock(&inode->i_lock);
440 set_bit(PG_CLEAN, &(req)->wb_flags);
441 radix_tree_tag_set(&nfsi->nfs_page_tree,
442 req->wb_index,
443 NFS_PAGE_TAG_COMMIT);
444 nfsi->ncommit++;
445 spin_unlock(&inode->i_lock);
446 inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
447 inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE);
448 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
451 static int
452 nfs_clear_request_commit(struct nfs_page *req)
454 struct page *page = req->wb_page;
456 if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) {
457 dec_zone_page_state(page, NR_UNSTABLE_NFS);
458 dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE);
459 return 1;
461 return 0;
464 static inline
465 int nfs_write_need_commit(struct nfs_write_data *data)
467 return data->verf.committed != NFS_FILE_SYNC;
470 static inline
471 int nfs_reschedule_unstable_write(struct nfs_page *req)
473 if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) {
474 nfs_mark_request_commit(req);
475 return 1;
477 if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) {
478 nfs_mark_request_dirty(req);
479 return 1;
481 return 0;
483 #else
484 static inline void
485 nfs_mark_request_commit(struct nfs_page *req)
489 static inline int
490 nfs_clear_request_commit(struct nfs_page *req)
492 return 0;
495 static inline
496 int nfs_write_need_commit(struct nfs_write_data *data)
498 return 0;
501 static inline
502 int nfs_reschedule_unstable_write(struct nfs_page *req)
504 return 0;
506 #endif
508 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
509 static int
510 nfs_need_commit(struct nfs_inode *nfsi)
512 return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT);
516 * nfs_scan_commit - Scan an inode for commit requests
517 * @inode: NFS inode to scan
518 * @dst: destination list
519 * @idx_start: lower bound of page->index to scan.
520 * @npages: idx_start + npages sets the upper bound to scan.
522 * Moves requests from the inode's 'commit' request list.
523 * The requests are *not* checked to ensure that they form a contiguous set.
525 static int
526 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
528 struct nfs_inode *nfsi = NFS_I(inode);
529 int ret;
531 if (!nfs_need_commit(nfsi))
532 return 0;
534 ret = nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT);
535 if (ret > 0)
536 nfsi->ncommit -= ret;
537 if (nfs_need_commit(NFS_I(inode)))
538 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
539 return ret;
541 #else
542 static inline int nfs_need_commit(struct nfs_inode *nfsi)
544 return 0;
547 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
549 return 0;
551 #endif
554 * Search for an existing write request, and attempt to update
555 * it to reflect a new dirty region on a given page.
557 * If the attempt fails, then the existing request is flushed out
558 * to disk.
560 static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
561 struct page *page,
562 unsigned int offset,
563 unsigned int bytes)
565 struct nfs_page *req;
566 unsigned int rqend;
567 unsigned int end;
568 int error;
570 if (!PagePrivate(page))
571 return NULL;
573 end = offset + bytes;
574 spin_lock(&inode->i_lock);
576 for (;;) {
577 req = nfs_page_find_request_locked(page);
578 if (req == NULL)
579 goto out_unlock;
581 rqend = req->wb_offset + req->wb_bytes;
583 * Tell the caller to flush out the request if
584 * the offsets are non-contiguous.
585 * Note: nfs_flush_incompatible() will already
586 * have flushed out requests having wrong owners.
588 if (offset > rqend
589 || end < req->wb_offset)
590 goto out_flushme;
592 if (nfs_set_page_tag_locked(req))
593 break;
595 /* The request is locked, so wait and then retry */
596 spin_unlock(&inode->i_lock);
597 error = nfs_wait_on_request(req);
598 nfs_release_request(req);
599 if (error != 0)
600 goto out_err;
601 spin_lock(&inode->i_lock);
604 if (nfs_clear_request_commit(req) &&
605 radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree,
606 req->wb_index, NFS_PAGE_TAG_COMMIT) != NULL)
607 NFS_I(inode)->ncommit--;
609 /* Okay, the request matches. Update the region */
610 if (offset < req->wb_offset) {
611 req->wb_offset = offset;
612 req->wb_pgbase = offset;
614 if (end > rqend)
615 req->wb_bytes = end - req->wb_offset;
616 else
617 req->wb_bytes = rqend - req->wb_offset;
618 out_unlock:
619 spin_unlock(&inode->i_lock);
620 return req;
621 out_flushme:
622 spin_unlock(&inode->i_lock);
623 nfs_release_request(req);
624 error = nfs_wb_page(inode, page);
625 out_err:
626 return ERR_PTR(error);
630 * Try to update an existing write request, or create one if there is none.
632 * Note: Should always be called with the Page Lock held to prevent races
633 * if we have to add a new request. Also assumes that the caller has
634 * already called nfs_flush_incompatible() if necessary.
636 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
637 struct page *page, unsigned int offset, unsigned int bytes)
639 struct inode *inode = page->mapping->host;
640 struct nfs_page *req;
641 int error;
643 req = nfs_try_to_update_request(inode, page, offset, bytes);
644 if (req != NULL)
645 goto out;
646 req = nfs_create_request(ctx, inode, page, offset, bytes);
647 if (IS_ERR(req))
648 goto out;
649 error = nfs_inode_add_request(inode, req);
650 if (error != 0) {
651 nfs_release_request(req);
652 req = ERR_PTR(error);
654 out:
655 return req;
658 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
659 unsigned int offset, unsigned int count)
661 struct nfs_page *req;
663 req = nfs_setup_write_request(ctx, page, offset, count);
664 if (IS_ERR(req))
665 return PTR_ERR(req);
666 nfs_mark_request_dirty(req);
667 /* Update file length */
668 nfs_grow_file(page, offset, count);
669 nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
670 nfs_mark_request_dirty(req);
671 nfs_clear_page_tag_locked(req);
672 return 0;
675 int nfs_flush_incompatible(struct file *file, struct page *page)
677 struct nfs_open_context *ctx = nfs_file_open_context(file);
678 struct nfs_page *req;
679 int do_flush, status;
681 * Look for a request corresponding to this page. If there
682 * is one, and it belongs to another file, we flush it out
683 * before we try to copy anything into the page. Do this
684 * due to the lack of an ACCESS-type call in NFSv2.
685 * Also do the same if we find a request from an existing
686 * dropped page.
688 do {
689 req = nfs_page_find_request(page);
690 if (req == NULL)
691 return 0;
692 do_flush = req->wb_page != page || req->wb_context != ctx;
693 nfs_release_request(req);
694 if (!do_flush)
695 return 0;
696 status = nfs_wb_page(page->mapping->host, page);
697 } while (status == 0);
698 return status;
702 * If the page cache is marked as unsafe or invalid, then we can't rely on
703 * the PageUptodate() flag. In this case, we will need to turn off
704 * write optimisations that depend on the page contents being correct.
706 static int nfs_write_pageuptodate(struct page *page, struct inode *inode)
708 return PageUptodate(page) &&
709 !(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA));
713 * Update and possibly write a cached page of an NFS file.
715 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
716 * things with a page scheduled for an RPC call (e.g. invalidate it).
718 int nfs_updatepage(struct file *file, struct page *page,
719 unsigned int offset, unsigned int count)
721 struct nfs_open_context *ctx = nfs_file_open_context(file);
722 struct inode *inode = page->mapping->host;
723 int status = 0;
725 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
727 dprintk("NFS: nfs_updatepage(%s/%s %d@%lld)\n",
728 file->f_path.dentry->d_parent->d_name.name,
729 file->f_path.dentry->d_name.name, count,
730 (long long)(page_offset(page) + offset));
732 /* If we're not using byte range locks, and we know the page
733 * is up to date, it may be more efficient to extend the write
734 * to cover the entire page in order to avoid fragmentation
735 * inefficiencies.
737 if (nfs_write_pageuptodate(page, inode) &&
738 inode->i_flock == NULL &&
739 !(file->f_flags & O_DSYNC)) {
740 count = max(count + offset, nfs_page_length(page));
741 offset = 0;
744 status = nfs_writepage_setup(ctx, page, offset, count);
745 if (status < 0)
746 nfs_set_pageerror(page);
748 dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n",
749 status, (long long)i_size_read(inode));
750 return status;
753 static void nfs_writepage_release(struct nfs_page *req)
755 struct page *page = req->wb_page;
757 if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req))
758 nfs_inode_remove_request(req);
759 nfs_clear_page_tag_locked(req);
760 nfs_end_page_writeback(page);
763 static int flush_task_priority(int how)
765 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
766 case FLUSH_HIGHPRI:
767 return RPC_PRIORITY_HIGH;
768 case FLUSH_LOWPRI:
769 return RPC_PRIORITY_LOW;
771 return RPC_PRIORITY_NORMAL;
775 * Set up the argument/result storage required for the RPC call.
777 static int nfs_write_rpcsetup(struct nfs_page *req,
778 struct nfs_write_data *data,
779 const struct rpc_call_ops *call_ops,
780 unsigned int count, unsigned int offset,
781 int how)
783 struct inode *inode = req->wb_context->path.dentry->d_inode;
784 int priority = flush_task_priority(how);
785 struct rpc_task *task;
786 struct rpc_message msg = {
787 .rpc_argp = &data->args,
788 .rpc_resp = &data->res,
789 .rpc_cred = req->wb_context->cred,
791 struct rpc_task_setup task_setup_data = {
792 .rpc_client = NFS_CLIENT(inode),
793 .task = &data->task,
794 .rpc_message = &msg,
795 .callback_ops = call_ops,
796 .callback_data = data,
797 .workqueue = nfsiod_workqueue,
798 .flags = RPC_TASK_ASYNC,
799 .priority = priority,
801 int ret = 0;
803 /* Set up the RPC argument and reply structs
804 * NB: take care not to mess about with data->commit et al. */
806 data->req = req;
807 data->inode = inode = req->wb_context->path.dentry->d_inode;
808 data->cred = msg.rpc_cred;
810 data->args.fh = NFS_FH(inode);
811 data->args.offset = req_offset(req) + offset;
812 data->args.pgbase = req->wb_pgbase + offset;
813 data->args.pages = data->pagevec;
814 data->args.count = count;
815 data->args.context = get_nfs_open_context(req->wb_context);
816 data->args.stable = NFS_UNSTABLE;
817 if (how & FLUSH_STABLE) {
818 data->args.stable = NFS_DATA_SYNC;
819 if (!nfs_need_commit(NFS_I(inode)))
820 data->args.stable = NFS_FILE_SYNC;
823 data->res.fattr = &data->fattr;
824 data->res.count = count;
825 data->res.verf = &data->verf;
826 nfs_fattr_init(&data->fattr);
828 /* Set up the initial task struct. */
829 NFS_PROTO(inode)->write_setup(data, &msg);
831 dprintk("NFS: %5u initiated write call "
832 "(req %s/%lld, %u bytes @ offset %llu)\n",
833 data->task.tk_pid,
834 inode->i_sb->s_id,
835 (long long)NFS_FILEID(inode),
836 count,
837 (unsigned long long)data->args.offset);
839 task = rpc_run_task(&task_setup_data);
840 if (IS_ERR(task)) {
841 ret = PTR_ERR(task);
842 goto out;
844 if (how & FLUSH_SYNC) {
845 ret = rpc_wait_for_completion_task(task);
846 if (ret == 0)
847 ret = task->tk_status;
849 rpc_put_task(task);
850 out:
851 return ret;
854 /* If a nfs_flush_* function fails, it should remove reqs from @head and
855 * call this on each, which will prepare them to be retried on next
856 * writeback using standard nfs.
858 static void nfs_redirty_request(struct nfs_page *req)
860 struct page *page = req->wb_page;
862 nfs_mark_request_dirty(req);
863 nfs_clear_page_tag_locked(req);
864 nfs_end_page_writeback(page);
868 * Generate multiple small requests to write out a single
869 * contiguous dirty area on one page.
871 static int nfs_flush_multi(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
873 struct nfs_page *req = nfs_list_entry(head->next);
874 struct page *page = req->wb_page;
875 struct nfs_write_data *data;
876 size_t wsize = NFS_SERVER(inode)->wsize, nbytes;
877 unsigned int offset;
878 int requests = 0;
879 int ret = 0;
880 LIST_HEAD(list);
882 nfs_list_remove_request(req);
884 nbytes = count;
885 do {
886 size_t len = min(nbytes, wsize);
888 data = nfs_writedata_alloc(1);
889 if (!data)
890 goto out_bad;
891 list_add(&data->pages, &list);
892 requests++;
893 nbytes -= len;
894 } while (nbytes != 0);
895 atomic_set(&req->wb_complete, requests);
897 ClearPageError(page);
898 offset = 0;
899 nbytes = count;
900 do {
901 int ret2;
903 data = list_entry(list.next, struct nfs_write_data, pages);
904 list_del_init(&data->pages);
906 data->pagevec[0] = page;
908 if (nbytes < wsize)
909 wsize = nbytes;
910 ret2 = nfs_write_rpcsetup(req, data, &nfs_write_partial_ops,
911 wsize, offset, how);
912 if (ret == 0)
913 ret = ret2;
914 offset += wsize;
915 nbytes -= wsize;
916 } while (nbytes != 0);
918 return ret;
920 out_bad:
921 while (!list_empty(&list)) {
922 data = list_entry(list.next, struct nfs_write_data, pages);
923 list_del(&data->pages);
924 nfs_writedata_release(data);
926 nfs_redirty_request(req);
927 return -ENOMEM;
931 * Create an RPC task for the given write request and kick it.
932 * The page must have been locked by the caller.
934 * It may happen that the page we're passed is not marked dirty.
935 * This is the case if nfs_updatepage detects a conflicting request
936 * that has been written but not committed.
938 static int nfs_flush_one(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
940 struct nfs_page *req;
941 struct page **pages;
942 struct nfs_write_data *data;
944 data = nfs_writedata_alloc(npages);
945 if (!data)
946 goto out_bad;
948 pages = data->pagevec;
949 while (!list_empty(head)) {
950 req = nfs_list_entry(head->next);
951 nfs_list_remove_request(req);
952 nfs_list_add_request(req, &data->pages);
953 ClearPageError(req->wb_page);
954 *pages++ = req->wb_page;
956 req = nfs_list_entry(data->pages.next);
958 /* Set up the argument struct */
959 return nfs_write_rpcsetup(req, data, &nfs_write_full_ops, count, 0, how);
960 out_bad:
961 while (!list_empty(head)) {
962 req = nfs_list_entry(head->next);
963 nfs_list_remove_request(req);
964 nfs_redirty_request(req);
966 return -ENOMEM;
969 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
970 struct inode *inode, int ioflags)
972 size_t wsize = NFS_SERVER(inode)->wsize;
974 if (wsize < PAGE_CACHE_SIZE)
975 nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags);
976 else
977 nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags);
981 * Handle a write reply that flushed part of a page.
983 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
985 struct nfs_write_data *data = calldata;
987 dprintk("NFS: %5u write(%s/%lld %d@%lld)",
988 task->tk_pid,
989 data->req->wb_context->path.dentry->d_inode->i_sb->s_id,
990 (long long)
991 NFS_FILEID(data->req->wb_context->path.dentry->d_inode),
992 data->req->wb_bytes, (long long)req_offset(data->req));
994 nfs_writeback_done(task, data);
997 static void nfs_writeback_release_partial(void *calldata)
999 struct nfs_write_data *data = calldata;
1000 struct nfs_page *req = data->req;
1001 struct page *page = req->wb_page;
1002 int status = data->task.tk_status;
1004 if (status < 0) {
1005 nfs_set_pageerror(page);
1006 nfs_context_set_write_error(req->wb_context, status);
1007 dprintk(", error = %d\n", status);
1008 goto out;
1011 if (nfs_write_need_commit(data)) {
1012 struct inode *inode = page->mapping->host;
1014 spin_lock(&inode->i_lock);
1015 if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) {
1016 /* Do nothing we need to resend the writes */
1017 } else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) {
1018 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1019 dprintk(" defer commit\n");
1020 } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
1021 set_bit(PG_NEED_RESCHED, &req->wb_flags);
1022 clear_bit(PG_NEED_COMMIT, &req->wb_flags);
1023 dprintk(" server reboot detected\n");
1025 spin_unlock(&inode->i_lock);
1026 } else
1027 dprintk(" OK\n");
1029 out:
1030 if (atomic_dec_and_test(&req->wb_complete))
1031 nfs_writepage_release(req);
1032 nfs_writedata_release(calldata);
1035 #if defined(CONFIG_NFS_V4_1)
1036 void nfs_write_prepare(struct rpc_task *task, void *calldata)
1038 struct nfs_write_data *data = calldata;
1039 struct nfs_client *clp = (NFS_SERVER(data->inode))->nfs_client;
1041 if (nfs4_setup_sequence(clp, &data->args.seq_args,
1042 &data->res.seq_res, 1, task))
1043 return;
1044 rpc_call_start(task);
1046 #endif /* CONFIG_NFS_V4_1 */
1048 static const struct rpc_call_ops nfs_write_partial_ops = {
1049 #if defined(CONFIG_NFS_V4_1)
1050 .rpc_call_prepare = nfs_write_prepare,
1051 #endif /* CONFIG_NFS_V4_1 */
1052 .rpc_call_done = nfs_writeback_done_partial,
1053 .rpc_release = nfs_writeback_release_partial,
1057 * Handle a write reply that flushes a whole page.
1059 * FIXME: There is an inherent race with invalidate_inode_pages and
1060 * writebacks since the page->count is kept > 1 for as long
1061 * as the page has a write request pending.
1063 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
1065 struct nfs_write_data *data = calldata;
1067 nfs_writeback_done(task, data);
1070 static void nfs_writeback_release_full(void *calldata)
1072 struct nfs_write_data *data = calldata;
1073 int status = data->task.tk_status;
1075 /* Update attributes as result of writeback. */
1076 while (!list_empty(&data->pages)) {
1077 struct nfs_page *req = nfs_list_entry(data->pages.next);
1078 struct page *page = req->wb_page;
1080 nfs_list_remove_request(req);
1082 dprintk("NFS: %5u write (%s/%lld %d@%lld)",
1083 data->task.tk_pid,
1084 req->wb_context->path.dentry->d_inode->i_sb->s_id,
1085 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1086 req->wb_bytes,
1087 (long long)req_offset(req));
1089 if (status < 0) {
1090 nfs_set_pageerror(page);
1091 nfs_context_set_write_error(req->wb_context, status);
1092 dprintk(", error = %d\n", status);
1093 goto remove_request;
1096 if (nfs_write_need_commit(data)) {
1097 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1098 nfs_mark_request_commit(req);
1099 dprintk(" marked for commit\n");
1100 goto next;
1102 dprintk(" OK\n");
1103 remove_request:
1104 nfs_inode_remove_request(req);
1105 next:
1106 nfs_clear_page_tag_locked(req);
1107 nfs_end_page_writeback(page);
1109 nfs_writedata_release(calldata);
1112 static const struct rpc_call_ops nfs_write_full_ops = {
1113 #if defined(CONFIG_NFS_V4_1)
1114 .rpc_call_prepare = nfs_write_prepare,
1115 #endif /* CONFIG_NFS_V4_1 */
1116 .rpc_call_done = nfs_writeback_done_full,
1117 .rpc_release = nfs_writeback_release_full,
1122 * This function is called when the WRITE call is complete.
1124 int nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
1126 struct nfs_writeargs *argp = &data->args;
1127 struct nfs_writeres *resp = &data->res;
1128 struct nfs_server *server = NFS_SERVER(data->inode);
1129 int status;
1131 dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
1132 task->tk_pid, task->tk_status);
1135 * ->write_done will attempt to use post-op attributes to detect
1136 * conflicting writes by other clients. A strict interpretation
1137 * of close-to-open would allow us to continue caching even if
1138 * another writer had changed the file, but some applications
1139 * depend on tighter cache coherency when writing.
1141 status = NFS_PROTO(data->inode)->write_done(task, data);
1142 if (status != 0)
1143 return status;
1144 nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
1146 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1147 if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
1148 /* We tried a write call, but the server did not
1149 * commit data to stable storage even though we
1150 * requested it.
1151 * Note: There is a known bug in Tru64 < 5.0 in which
1152 * the server reports NFS_DATA_SYNC, but performs
1153 * NFS_FILE_SYNC. We therefore implement this checking
1154 * as a dprintk() in order to avoid filling syslog.
1156 static unsigned long complain;
1158 if (time_before(complain, jiffies)) {
1159 dprintk("NFS: faulty NFS server %s:"
1160 " (committed = %d) != (stable = %d)\n",
1161 server->nfs_client->cl_hostname,
1162 resp->verf->committed, argp->stable);
1163 complain = jiffies + 300 * HZ;
1166 #endif
1167 /* Is this a short write? */
1168 if (task->tk_status >= 0 && resp->count < argp->count) {
1169 static unsigned long complain;
1171 nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
1173 /* Has the server at least made some progress? */
1174 if (resp->count != 0) {
1175 /* Was this an NFSv2 write or an NFSv3 stable write? */
1176 if (resp->verf->committed != NFS_UNSTABLE) {
1177 /* Resend from where the server left off */
1178 argp->offset += resp->count;
1179 argp->pgbase += resp->count;
1180 argp->count -= resp->count;
1181 } else {
1182 /* Resend as a stable write in order to avoid
1183 * headaches in the case of a server crash.
1185 argp->stable = NFS_FILE_SYNC;
1187 nfs_restart_rpc(task, server->nfs_client);
1188 return -EAGAIN;
1190 if (time_before(complain, jiffies)) {
1191 printk(KERN_WARNING
1192 "NFS: Server wrote zero bytes, expected %u.\n",
1193 argp->count);
1194 complain = jiffies + 300 * HZ;
1196 /* Can't do anything about it except throw an error. */
1197 task->tk_status = -EIO;
1199 return 0;
1203 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1204 static int nfs_commit_set_lock(struct nfs_inode *nfsi, int may_wait)
1206 if (!test_and_set_bit(NFS_INO_COMMIT, &nfsi->flags))
1207 return 1;
1208 if (may_wait && !out_of_line_wait_on_bit_lock(&nfsi->flags,
1209 NFS_INO_COMMIT, nfs_wait_bit_killable,
1210 TASK_KILLABLE))
1211 return 1;
1212 return 0;
1215 static void nfs_commit_clear_lock(struct nfs_inode *nfsi)
1217 clear_bit(NFS_INO_COMMIT, &nfsi->flags);
1218 smp_mb__after_clear_bit();
1219 wake_up_bit(&nfsi->flags, NFS_INO_COMMIT);
1223 static void nfs_commitdata_release(void *data)
1225 struct nfs_write_data *wdata = data;
1227 put_nfs_open_context(wdata->args.context);
1228 nfs_commit_free(wdata);
1232 * Set up the argument/result storage required for the RPC call.
1234 static int nfs_commit_rpcsetup(struct list_head *head,
1235 struct nfs_write_data *data,
1236 int how)
1238 struct nfs_page *first = nfs_list_entry(head->next);
1239 struct inode *inode = first->wb_context->path.dentry->d_inode;
1240 int priority = flush_task_priority(how);
1241 struct rpc_task *task;
1242 struct rpc_message msg = {
1243 .rpc_argp = &data->args,
1244 .rpc_resp = &data->res,
1245 .rpc_cred = first->wb_context->cred,
1247 struct rpc_task_setup task_setup_data = {
1248 .task = &data->task,
1249 .rpc_client = NFS_CLIENT(inode),
1250 .rpc_message = &msg,
1251 .callback_ops = &nfs_commit_ops,
1252 .callback_data = data,
1253 .workqueue = nfsiod_workqueue,
1254 .flags = RPC_TASK_ASYNC,
1255 .priority = priority,
1258 /* Set up the RPC argument and reply structs
1259 * NB: take care not to mess about with data->commit et al. */
1261 list_splice_init(head, &data->pages);
1263 data->inode = inode;
1264 data->cred = msg.rpc_cred;
1266 data->args.fh = NFS_FH(data->inode);
1267 /* Note: we always request a commit of the entire inode */
1268 data->args.offset = 0;
1269 data->args.count = 0;
1270 data->args.context = get_nfs_open_context(first->wb_context);
1271 data->res.count = 0;
1272 data->res.fattr = &data->fattr;
1273 data->res.verf = &data->verf;
1274 nfs_fattr_init(&data->fattr);
1276 /* Set up the initial task struct. */
1277 NFS_PROTO(inode)->commit_setup(data, &msg);
1279 dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
1281 task = rpc_run_task(&task_setup_data);
1282 if (IS_ERR(task))
1283 return PTR_ERR(task);
1284 rpc_put_task(task);
1285 return 0;
1289 * Commit dirty pages
1291 static int
1292 nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1294 struct nfs_write_data *data;
1295 struct nfs_page *req;
1297 data = nfs_commitdata_alloc();
1299 if (!data)
1300 goto out_bad;
1302 /* Set up the argument struct */
1303 return nfs_commit_rpcsetup(head, data, how);
1304 out_bad:
1305 while (!list_empty(head)) {
1306 req = nfs_list_entry(head->next);
1307 nfs_list_remove_request(req);
1308 nfs_mark_request_commit(req);
1309 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1310 dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
1311 BDI_RECLAIMABLE);
1312 nfs_clear_page_tag_locked(req);
1314 nfs_commit_clear_lock(NFS_I(inode));
1315 return -ENOMEM;
1319 * COMMIT call returned
1321 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1323 struct nfs_write_data *data = calldata;
1325 dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1326 task->tk_pid, task->tk_status);
1328 /* Call the NFS version-specific code */
1329 if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
1330 return;
1333 static void nfs_commit_release(void *calldata)
1335 struct nfs_write_data *data = calldata;
1336 struct nfs_page *req;
1337 int status = data->task.tk_status;
1339 while (!list_empty(&data->pages)) {
1340 req = nfs_list_entry(data->pages.next);
1341 nfs_list_remove_request(req);
1342 nfs_clear_request_commit(req);
1344 dprintk("NFS: commit (%s/%lld %d@%lld)",
1345 req->wb_context->path.dentry->d_inode->i_sb->s_id,
1346 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1347 req->wb_bytes,
1348 (long long)req_offset(req));
1349 if (status < 0) {
1350 nfs_context_set_write_error(req->wb_context, status);
1351 nfs_inode_remove_request(req);
1352 dprintk(", error = %d\n", status);
1353 goto next;
1356 /* Okay, COMMIT succeeded, apparently. Check the verifier
1357 * returned by the server against all stored verfs. */
1358 if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
1359 /* We have a match */
1360 nfs_inode_remove_request(req);
1361 dprintk(" OK\n");
1362 goto next;
1364 /* We have a mismatch. Write the page again */
1365 dprintk(" mismatch\n");
1366 nfs_mark_request_dirty(req);
1367 next:
1368 nfs_clear_page_tag_locked(req);
1370 nfs_commit_clear_lock(NFS_I(data->inode));
1371 nfs_commitdata_release(calldata);
1374 static const struct rpc_call_ops nfs_commit_ops = {
1375 #if defined(CONFIG_NFS_V4_1)
1376 .rpc_call_prepare = nfs_write_prepare,
1377 #endif /* CONFIG_NFS_V4_1 */
1378 .rpc_call_done = nfs_commit_done,
1379 .rpc_release = nfs_commit_release,
1382 static int nfs_commit_inode(struct inode *inode, int how)
1384 LIST_HEAD(head);
1385 int may_wait = how & FLUSH_SYNC;
1386 int res = 0;
1388 if (!nfs_commit_set_lock(NFS_I(inode), may_wait))
1389 goto out;
1390 spin_lock(&inode->i_lock);
1391 res = nfs_scan_commit(inode, &head, 0, 0);
1392 spin_unlock(&inode->i_lock);
1393 if (res) {
1394 int error = nfs_commit_list(inode, &head, how);
1395 if (error < 0)
1396 return error;
1397 if (may_wait)
1398 wait_on_bit(&NFS_I(inode)->flags, NFS_INO_COMMIT,
1399 nfs_wait_bit_killable,
1400 TASK_KILLABLE);
1401 } else
1402 nfs_commit_clear_lock(NFS_I(inode));
1403 out:
1404 return res;
1407 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1409 struct nfs_inode *nfsi = NFS_I(inode);
1410 int flags = FLUSH_SYNC;
1411 int ret = 0;
1413 /* Don't commit yet if this is a non-blocking flush and there are
1414 * lots of outstanding writes for this mapping.
1416 if (wbc->sync_mode == WB_SYNC_NONE &&
1417 nfsi->ncommit <= (nfsi->npages >> 1))
1418 goto out_mark_dirty;
1420 if (wbc->nonblocking || wbc->for_background)
1421 flags = 0;
1422 ret = nfs_commit_inode(inode, flags);
1423 if (ret >= 0) {
1424 if (wbc->sync_mode == WB_SYNC_NONE) {
1425 if (ret < wbc->nr_to_write)
1426 wbc->nr_to_write -= ret;
1427 else
1428 wbc->nr_to_write = 0;
1430 return 0;
1432 out_mark_dirty:
1433 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1434 return ret;
1436 #else
1437 static int nfs_commit_inode(struct inode *inode, int how)
1439 return 0;
1442 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1444 return 0;
1446 #endif
1448 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1450 return nfs_commit_unstable_pages(inode, wbc);
1454 * flush the inode to disk.
1456 int nfs_wb_all(struct inode *inode)
1458 struct writeback_control wbc = {
1459 .sync_mode = WB_SYNC_ALL,
1460 .nr_to_write = LONG_MAX,
1461 .range_start = 0,
1462 .range_end = LLONG_MAX,
1465 return sync_inode(inode, &wbc);
1468 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
1470 struct nfs_page *req;
1471 int ret = 0;
1473 BUG_ON(!PageLocked(page));
1474 for (;;) {
1475 wait_on_page_writeback(page);
1476 req = nfs_page_find_request(page);
1477 if (req == NULL)
1478 break;
1479 if (nfs_lock_request_dontget(req)) {
1480 nfs_inode_remove_request(req);
1482 * In case nfs_inode_remove_request has marked the
1483 * page as being dirty
1485 cancel_dirty_page(page, PAGE_CACHE_SIZE);
1486 nfs_unlock_request(req);
1487 break;
1489 ret = nfs_wait_on_request(req);
1490 nfs_release_request(req);
1491 if (ret < 0)
1492 break;
1494 return ret;
1498 * Write back all requests on one page - we do this before reading it.
1500 int nfs_wb_page(struct inode *inode, struct page *page)
1502 loff_t range_start = page_offset(page);
1503 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1504 struct writeback_control wbc = {
1505 .sync_mode = WB_SYNC_ALL,
1506 .nr_to_write = 0,
1507 .range_start = range_start,
1508 .range_end = range_end,
1510 int ret;
1512 while(PagePrivate(page)) {
1513 wait_on_page_writeback(page);
1514 if (clear_page_dirty_for_io(page)) {
1515 ret = nfs_writepage_locked(page, &wbc);
1516 if (ret < 0)
1517 goto out_error;
1519 ret = sync_inode(inode, &wbc);
1520 if (ret < 0)
1521 goto out_error;
1523 return 0;
1524 out_error:
1525 return ret;
1528 #ifdef CONFIG_MIGRATION
1529 int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
1530 struct page *page)
1532 struct nfs_page *req;
1533 int ret;
1535 nfs_fscache_release_page(page, GFP_KERNEL);
1537 req = nfs_find_and_lock_request(page);
1538 ret = PTR_ERR(req);
1539 if (IS_ERR(req))
1540 goto out;
1542 ret = migrate_page(mapping, newpage, page);
1543 if (!req)
1544 goto out;
1545 if (ret)
1546 goto out_unlock;
1547 page_cache_get(newpage);
1548 spin_lock(&mapping->host->i_lock);
1549 req->wb_page = newpage;
1550 SetPagePrivate(newpage);
1551 set_page_private(newpage, (unsigned long)req);
1552 ClearPagePrivate(page);
1553 set_page_private(page, 0);
1554 spin_unlock(&mapping->host->i_lock);
1555 page_cache_release(page);
1556 out_unlock:
1557 nfs_clear_page_tag_locked(req);
1558 out:
1559 return ret;
1561 #endif
1563 int __init nfs_init_writepagecache(void)
1565 nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
1566 sizeof(struct nfs_write_data),
1567 0, SLAB_HWCACHE_ALIGN,
1568 NULL);
1569 if (nfs_wdata_cachep == NULL)
1570 return -ENOMEM;
1572 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
1573 nfs_wdata_cachep);
1574 if (nfs_wdata_mempool == NULL)
1575 return -ENOMEM;
1577 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
1578 nfs_wdata_cachep);
1579 if (nfs_commit_mempool == NULL)
1580 return -ENOMEM;
1583 * NFS congestion size, scale with available memory.
1585 * 64MB: 8192k
1586 * 128MB: 11585k
1587 * 256MB: 16384k
1588 * 512MB: 23170k
1589 * 1GB: 32768k
1590 * 2GB: 46340k
1591 * 4GB: 65536k
1592 * 8GB: 92681k
1593 * 16GB: 131072k
1595 * This allows larger machines to have larger/more transfers.
1596 * Limit the default to 256M
1598 nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
1599 if (nfs_congestion_kb > 256*1024)
1600 nfs_congestion_kb = 256*1024;
1602 return 0;
1605 void nfs_destroy_writepagecache(void)
1607 mempool_destroy(nfs_commit_mempool);
1608 mempool_destroy(nfs_wdata_mempool);
1609 kmem_cache_destroy(nfs_wdata_cachep);