2 * drivers/spi/amba-pl022.c
4 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
6 * Copyright (C) 2008-2009 ST-Ericsson AB
7 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
9 * Author: Linus Walleij <linus.walleij@stericsson.com>
11 * Initial version inspired by:
12 * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
13 * Initial adoption to PL022 by:
14 * Sachin Verma <sachin.verma@st.com>
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License as published by
18 * the Free Software Foundation; either version 2 of the License, or
19 * (at your option) any later version.
21 * This program is distributed in the hope that it will be useful,
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 * GNU General Public License for more details.
29 * - add timeout on polled transfers
30 * - add generic DMA framework support
33 #include <linux/init.h>
34 #include <linux/module.h>
35 #include <linux/device.h>
36 #include <linux/ioport.h>
37 #include <linux/errno.h>
38 #include <linux/interrupt.h>
39 #include <linux/spi/spi.h>
40 #include <linux/workqueue.h>
41 #include <linux/delay.h>
42 #include <linux/clk.h>
43 #include <linux/err.h>
44 #include <linux/amba/bus.h>
45 #include <linux/amba/pl022.h>
49 * This macro is used to define some register default values.
50 * reg is masked with mask, the OR:ed with an (again masked)
51 * val shifted sb steps to the left.
53 #define SSP_WRITE_BITS(reg, val, mask, sb) \
54 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
57 * This macro is also used to define some default values.
58 * It will just shift val by sb steps to the left and mask
59 * the result with mask.
61 #define GEN_MASK_BITS(val, mask, sb) \
62 (((val)<<(sb)) & (mask))
65 #define DO_NOT_DRIVE_TX 1
67 #define DO_NOT_QUEUE_DMA 0
74 * Macros to access SSP Registers with their offsets
76 #define SSP_CR0(r) (r + 0x000)
77 #define SSP_CR1(r) (r + 0x004)
78 #define SSP_DR(r) (r + 0x008)
79 #define SSP_SR(r) (r + 0x00C)
80 #define SSP_CPSR(r) (r + 0x010)
81 #define SSP_IMSC(r) (r + 0x014)
82 #define SSP_RIS(r) (r + 0x018)
83 #define SSP_MIS(r) (r + 0x01C)
84 #define SSP_ICR(r) (r + 0x020)
85 #define SSP_DMACR(r) (r + 0x024)
86 #define SSP_ITCR(r) (r + 0x080)
87 #define SSP_ITIP(r) (r + 0x084)
88 #define SSP_ITOP(r) (r + 0x088)
89 #define SSP_TDR(r) (r + 0x08C)
91 #define SSP_PID0(r) (r + 0xFE0)
92 #define SSP_PID1(r) (r + 0xFE4)
93 #define SSP_PID2(r) (r + 0xFE8)
94 #define SSP_PID3(r) (r + 0xFEC)
96 #define SSP_CID0(r) (r + 0xFF0)
97 #define SSP_CID1(r) (r + 0xFF4)
98 #define SSP_CID2(r) (r + 0xFF8)
99 #define SSP_CID3(r) (r + 0xFFC)
102 * SSP Control Register 0 - SSP_CR0
104 #define SSP_CR0_MASK_DSS (0x1FUL << 0)
105 #define SSP_CR0_MASK_HALFDUP (0x1UL << 5)
106 #define SSP_CR0_MASK_SPO (0x1UL << 6)
107 #define SSP_CR0_MASK_SPH (0x1UL << 7)
108 #define SSP_CR0_MASK_SCR (0xFFUL << 8)
109 #define SSP_CR0_MASK_CSS (0x1FUL << 16)
110 #define SSP_CR0_MASK_FRF (0x3UL << 21)
113 * SSP Control Register 0 - SSP_CR1
115 #define SSP_CR1_MASK_LBM (0x1UL << 0)
116 #define SSP_CR1_MASK_SSE (0x1UL << 1)
117 #define SSP_CR1_MASK_MS (0x1UL << 2)
118 #define SSP_CR1_MASK_SOD (0x1UL << 3)
119 #define SSP_CR1_MASK_RENDN (0x1UL << 4)
120 #define SSP_CR1_MASK_TENDN (0x1UL << 5)
121 #define SSP_CR1_MASK_MWAIT (0x1UL << 6)
122 #define SSP_CR1_MASK_RXIFLSEL (0x7UL << 7)
123 #define SSP_CR1_MASK_TXIFLSEL (0x7UL << 10)
126 * SSP Data Register - SSP_DR
128 #define SSP_DR_MASK_DATA 0xFFFFFFFF
131 * SSP Status Register - SSP_SR
133 #define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */
134 #define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */
135 #define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */
136 #define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */
137 #define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */
140 * SSP Clock Prescale Register - SSP_CPSR
142 #define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0)
145 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
147 #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
148 #define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */
149 #define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */
150 #define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */
153 * SSP Raw Interrupt Status Register - SSP_RIS
155 /* Receive Overrun Raw Interrupt status */
156 #define SSP_RIS_MASK_RORRIS (0x1UL << 0)
157 /* Receive Timeout Raw Interrupt status */
158 #define SSP_RIS_MASK_RTRIS (0x1UL << 1)
159 /* Receive FIFO Raw Interrupt status */
160 #define SSP_RIS_MASK_RXRIS (0x1UL << 2)
161 /* Transmit FIFO Raw Interrupt status */
162 #define SSP_RIS_MASK_TXRIS (0x1UL << 3)
165 * SSP Masked Interrupt Status Register - SSP_MIS
167 /* Receive Overrun Masked Interrupt status */
168 #define SSP_MIS_MASK_RORMIS (0x1UL << 0)
169 /* Receive Timeout Masked Interrupt status */
170 #define SSP_MIS_MASK_RTMIS (0x1UL << 1)
171 /* Receive FIFO Masked Interrupt status */
172 #define SSP_MIS_MASK_RXMIS (0x1UL << 2)
173 /* Transmit FIFO Masked Interrupt status */
174 #define SSP_MIS_MASK_TXMIS (0x1UL << 3)
177 * SSP Interrupt Clear Register - SSP_ICR
179 /* Receive Overrun Raw Clear Interrupt bit */
180 #define SSP_ICR_MASK_RORIC (0x1UL << 0)
181 /* Receive Timeout Clear Interrupt bit */
182 #define SSP_ICR_MASK_RTIC (0x1UL << 1)
185 * SSP DMA Control Register - SSP_DMACR
187 /* Receive DMA Enable bit */
188 #define SSP_DMACR_MASK_RXDMAE (0x1UL << 0)
189 /* Transmit DMA Enable bit */
190 #define SSP_DMACR_MASK_TXDMAE (0x1UL << 1)
193 * SSP Integration Test control Register - SSP_ITCR
195 #define SSP_ITCR_MASK_ITEN (0x1UL << 0)
196 #define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1)
199 * SSP Integration Test Input Register - SSP_ITIP
201 #define ITIP_MASK_SSPRXD (0x1UL << 0)
202 #define ITIP_MASK_SSPFSSIN (0x1UL << 1)
203 #define ITIP_MASK_SSPCLKIN (0x1UL << 2)
204 #define ITIP_MASK_RXDMAC (0x1UL << 3)
205 #define ITIP_MASK_TXDMAC (0x1UL << 4)
206 #define ITIP_MASK_SSPTXDIN (0x1UL << 5)
209 * SSP Integration Test output Register - SSP_ITOP
211 #define ITOP_MASK_SSPTXD (0x1UL << 0)
212 #define ITOP_MASK_SSPFSSOUT (0x1UL << 1)
213 #define ITOP_MASK_SSPCLKOUT (0x1UL << 2)
214 #define ITOP_MASK_SSPOEn (0x1UL << 3)
215 #define ITOP_MASK_SSPCTLOEn (0x1UL << 4)
216 #define ITOP_MASK_RORINTR (0x1UL << 5)
217 #define ITOP_MASK_RTINTR (0x1UL << 6)
218 #define ITOP_MASK_RXINTR (0x1UL << 7)
219 #define ITOP_MASK_TXINTR (0x1UL << 8)
220 #define ITOP_MASK_INTR (0x1UL << 9)
221 #define ITOP_MASK_RXDMABREQ (0x1UL << 10)
222 #define ITOP_MASK_RXDMASREQ (0x1UL << 11)
223 #define ITOP_MASK_TXDMABREQ (0x1UL << 12)
224 #define ITOP_MASK_TXDMASREQ (0x1UL << 13)
227 * SSP Test Data Register - SSP_TDR
229 #define TDR_MASK_TESTDATA (0xFFFFFFFF)
233 * we use the spi_message.state (void *) pointer to
234 * hold a single state value, that's why all this
235 * (void *) casting is done here.
237 #define STATE_START ((void *) 0)
238 #define STATE_RUNNING ((void *) 1)
239 #define STATE_DONE ((void *) 2)
240 #define STATE_ERROR ((void *) -1)
245 #define QUEUE_RUNNING (0)
246 #define QUEUE_STOPPED (1)
248 * SSP State - Whether Enabled or Disabled
250 #define SSP_DISABLED (0)
251 #define SSP_ENABLED (1)
254 * SSP DMA State - Whether DMA Enabled or Disabled
256 #define SSP_DMA_DISABLED (0)
257 #define SSP_DMA_ENABLED (1)
262 #define NMDK_SSP_DEFAULT_CLKRATE 0x2
263 #define NMDK_SSP_DEFAULT_PRESCALE 0x40
266 * SSP Clock Parameter ranges
268 #define CPSDVR_MIN 0x02
269 #define CPSDVR_MAX 0xFE
274 * SSP Interrupt related Macros
276 #define DEFAULT_SSP_REG_IMSC 0x0UL
277 #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
278 #define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)
280 #define CLEAR_ALL_INTERRUPTS 0x3
284 * The type of reading going on on this chip
294 * The type of writing going on on this chip
304 * struct vendor_data - vendor-specific config parameters
305 * for PL022 derivates
306 * @fifodepth: depth of FIFOs (both)
307 * @max_bpw: maximum number of bits per word
308 * @unidir: supports unidirection transfers
317 * struct pl022 - This is the private SSP driver data structure
318 * @adev: AMBA device model hookup
319 * @phybase: The physical memory where the SSP device resides
320 * @virtbase: The virtual memory where the SSP is mapped
321 * @master: SPI framework hookup
322 * @master_info: controller-specific data from machine setup
323 * @regs: SSP controller register's virtual address
324 * @pump_messages: Work struct for scheduling work to the workqueue
325 * @lock: spinlock to syncronise access to driver data
326 * @workqueue: a workqueue on which any spi_message request is queued
327 * @busy: workqueue is busy
328 * @run: workqueue is running
329 * @pump_transfers: Tasklet used in Interrupt Transfer mode
330 * @cur_msg: Pointer to current spi_message being processed
331 * @cur_transfer: Pointer to current spi_transfer
332 * @cur_chip: pointer to current clients chip(assigned from controller_state)
333 * @tx: current position in TX buffer to be read
334 * @tx_end: end position in TX buffer to be read
335 * @rx: current position in RX buffer to be written
336 * @rx_end: end position in RX buffer to be written
337 * @readingtype: the type of read currently going on
338 * @writingtype: the type or write currently going on
341 struct amba_device
*adev
;
342 struct vendor_data
*vendor
;
343 resource_size_t phybase
;
344 void __iomem
*virtbase
;
346 struct spi_master
*master
;
347 struct pl022_ssp_controller
*master_info
;
348 /* Driver message queue */
349 struct workqueue_struct
*workqueue
;
350 struct work_struct pump_messages
;
351 spinlock_t queue_lock
;
352 struct list_head queue
;
355 /* Message transfer pump */
356 struct tasklet_struct pump_transfers
;
357 struct spi_message
*cur_msg
;
358 struct spi_transfer
*cur_transfer
;
359 struct chip_data
*cur_chip
;
364 enum ssp_reading read
;
365 enum ssp_writing write
;
369 * struct chip_data - To maintain runtime state of SSP for each client chip
370 * @cr0: Value of control register CR0 of SSP
371 * @cr1: Value of control register CR1 of SSP
372 * @dmacr: Value of DMA control Register of SSP
373 * @cpsr: Value of Clock prescale register
374 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
375 * @enable_dma: Whether to enable DMA or not
376 * @write: function ptr to be used to write when doing xfer for this chip
377 * @read: function ptr to be used to read when doing xfer for this chip
378 * @cs_control: chip select callback provided by chip
379 * @xfer_type: polling/interrupt/DMA
381 * Runtime state of the SSP controller, maintained per chip,
382 * This would be set according to the current message that would be served
391 enum ssp_reading read
;
392 enum ssp_writing write
;
393 void (*cs_control
) (u32 command
);
398 * null_cs_control - Dummy chip select function
399 * @command: select/delect the chip
401 * If no chip select function is provided by client this is used as dummy
404 static void null_cs_control(u32 command
)
406 pr_debug("pl022: dummy chip select control, CS=0x%x\n", command
);
410 * giveback - current spi_message is over, schedule next message and call
411 * callback of this message. Assumes that caller already
412 * set message->status; dma and pio irqs are blocked
413 * @pl022: SSP driver private data structure
415 static void giveback(struct pl022
*pl022
)
417 struct spi_transfer
*last_transfer
;
419 struct spi_message
*msg
;
420 void (*curr_cs_control
) (u32 command
);
423 * This local reference to the chip select function
424 * is needed because we set curr_chip to NULL
425 * as a step toward termininating the message.
427 curr_cs_control
= pl022
->cur_chip
->cs_control
;
428 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
429 msg
= pl022
->cur_msg
;
430 pl022
->cur_msg
= NULL
;
431 pl022
->cur_transfer
= NULL
;
432 pl022
->cur_chip
= NULL
;
433 queue_work(pl022
->workqueue
, &pl022
->pump_messages
);
434 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
436 last_transfer
= list_entry(msg
->transfers
.prev
,
440 /* Delay if requested before any change in chip select */
441 if (last_transfer
->delay_usecs
)
443 * FIXME: This runs in interrupt context.
444 * Is this really smart?
446 udelay(last_transfer
->delay_usecs
);
449 * Drop chip select UNLESS cs_change is true or we are returning
450 * a message with an error, or next message is for another chip
452 if (!last_transfer
->cs_change
)
453 curr_cs_control(SSP_CHIP_DESELECT
);
455 struct spi_message
*next_msg
;
457 /* Holding of cs was hinted, but we need to make sure
458 * the next message is for the same chip. Don't waste
459 * time with the following tests unless this was hinted.
461 * We cannot postpone this until pump_messages, because
462 * after calling msg->complete (below) the driver that
463 * sent the current message could be unloaded, which
464 * could invalidate the cs_control() callback...
467 /* get a pointer to the next message, if any */
468 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
469 if (list_empty(&pl022
->queue
))
472 next_msg
= list_entry(pl022
->queue
.next
,
473 struct spi_message
, queue
);
474 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
476 /* see if the next and current messages point
479 if (next_msg
&& next_msg
->spi
!= msg
->spi
)
481 if (!next_msg
|| msg
->state
== STATE_ERROR
)
482 curr_cs_control(SSP_CHIP_DESELECT
);
486 msg
->complete(msg
->context
);
487 /* This message is completed, so let's turn off the clock! */
488 clk_disable(pl022
->clk
);
492 * flush - flush the FIFO to reach a clean state
493 * @pl022: SSP driver private data structure
495 static int flush(struct pl022
*pl022
)
497 unsigned long limit
= loops_per_jiffy
<< 1;
499 dev_dbg(&pl022
->adev
->dev
, "flush\n");
501 while (readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RNE
)
502 readw(SSP_DR(pl022
->virtbase
));
503 } while ((readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_BSY
) && limit
--);
508 * restore_state - Load configuration of current chip
509 * @pl022: SSP driver private data structure
511 static void restore_state(struct pl022
*pl022
)
513 struct chip_data
*chip
= pl022
->cur_chip
;
515 writew(chip
->cr0
, SSP_CR0(pl022
->virtbase
));
516 writew(chip
->cr1
, SSP_CR1(pl022
->virtbase
));
517 writew(chip
->dmacr
, SSP_DMACR(pl022
->virtbase
));
518 writew(chip
->cpsr
, SSP_CPSR(pl022
->virtbase
));
519 writew(DISABLE_ALL_INTERRUPTS
, SSP_IMSC(pl022
->virtbase
));
520 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
524 * load_ssp_default_config - Load default configuration for SSP
525 * @pl022: SSP driver private data structure
529 * Default SSP Register Values
531 #define DEFAULT_SSP_REG_CR0 ( \
532 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \
533 GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP, 5) | \
534 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
535 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
536 GEN_MASK_BITS(NMDK_SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
537 GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS, 16) | \
538 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 21) \
541 #define DEFAULT_SSP_REG_CR1 ( \
542 GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
543 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
544 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
545 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
546 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN, 4) | \
547 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN, 5) | \
548 GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT, 6) |\
549 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL, 7) | \
550 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL, 10) \
553 #define DEFAULT_SSP_REG_CPSR ( \
554 GEN_MASK_BITS(NMDK_SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
557 #define DEFAULT_SSP_REG_DMACR (\
558 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
559 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
563 static void load_ssp_default_config(struct pl022
*pl022
)
565 writew(DEFAULT_SSP_REG_CR0
, SSP_CR0(pl022
->virtbase
));
566 writew(DEFAULT_SSP_REG_CR1
, SSP_CR1(pl022
->virtbase
));
567 writew(DEFAULT_SSP_REG_DMACR
, SSP_DMACR(pl022
->virtbase
));
568 writew(DEFAULT_SSP_REG_CPSR
, SSP_CPSR(pl022
->virtbase
));
569 writew(DISABLE_ALL_INTERRUPTS
, SSP_IMSC(pl022
->virtbase
));
570 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
574 * This will write to TX and read from RX according to the parameters
577 static void readwriter(struct pl022
*pl022
)
581 * The FIFO depth is different inbetween primecell variants.
582 * I believe filling in too much in the FIFO might cause
583 * errons in 8bit wide transfers on ARM variants (just 8 words
584 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
586 * FIXME: currently we have no logic to account for this.
587 * perhaps there is even something broken in HW regarding
588 * 8bit transfers (it doesn't fail on 16bit) so this needs
589 * more investigation...
591 dev_dbg(&pl022
->adev
->dev
,
592 "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
593 __func__
, pl022
->rx
, pl022
->rx_end
, pl022
->tx
, pl022
->tx_end
);
595 /* Read as much as you can */
596 while ((readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RNE
)
597 && (pl022
->rx
< pl022
->rx_end
)) {
598 switch (pl022
->read
) {
600 readw(SSP_DR(pl022
->virtbase
));
603 *(u8
*) (pl022
->rx
) =
604 readw(SSP_DR(pl022
->virtbase
)) & 0xFFU
;
607 *(u16
*) (pl022
->rx
) =
608 (u16
) readw(SSP_DR(pl022
->virtbase
));
611 *(u32
*) (pl022
->rx
) =
612 readl(SSP_DR(pl022
->virtbase
));
615 pl022
->rx
+= (pl022
->cur_chip
->n_bytes
);
618 * Write as much as you can, while keeping an eye on the RX FIFO!
620 while ((readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_TNF
)
621 && (pl022
->tx
< pl022
->tx_end
)) {
622 switch (pl022
->write
) {
624 writew(0x0, SSP_DR(pl022
->virtbase
));
627 writew(*(u8
*) (pl022
->tx
), SSP_DR(pl022
->virtbase
));
630 writew((*(u16
*) (pl022
->tx
)), SSP_DR(pl022
->virtbase
));
633 writel(*(u32
*) (pl022
->tx
), SSP_DR(pl022
->virtbase
));
636 pl022
->tx
+= (pl022
->cur_chip
->n_bytes
);
638 * This inner reader takes care of things appearing in the RX
639 * FIFO as we're transmitting. This will happen a lot since the
640 * clock starts running when you put things into the TX FIFO,
641 * and then things are continously clocked into the RX FIFO.
643 while ((readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RNE
)
644 && (pl022
->rx
< pl022
->rx_end
)) {
645 switch (pl022
->read
) {
647 readw(SSP_DR(pl022
->virtbase
));
650 *(u8
*) (pl022
->rx
) =
651 readw(SSP_DR(pl022
->virtbase
)) & 0xFFU
;
654 *(u16
*) (pl022
->rx
) =
655 (u16
) readw(SSP_DR(pl022
->virtbase
));
658 *(u32
*) (pl022
->rx
) =
659 readl(SSP_DR(pl022
->virtbase
));
662 pl022
->rx
+= (pl022
->cur_chip
->n_bytes
);
666 * When we exit here the TX FIFO should be full and the RX FIFO
673 * next_transfer - Move to the Next transfer in the current spi message
674 * @pl022: SSP driver private data structure
676 * This function moves though the linked list of spi transfers in the
677 * current spi message and returns with the state of current spi
678 * message i.e whether its last transfer is done(STATE_DONE) or
679 * Next transfer is ready(STATE_RUNNING)
681 static void *next_transfer(struct pl022
*pl022
)
683 struct spi_message
*msg
= pl022
->cur_msg
;
684 struct spi_transfer
*trans
= pl022
->cur_transfer
;
686 /* Move to next transfer */
687 if (trans
->transfer_list
.next
!= &msg
->transfers
) {
688 pl022
->cur_transfer
=
689 list_entry(trans
->transfer_list
.next
,
690 struct spi_transfer
, transfer_list
);
691 return STATE_RUNNING
;
696 * pl022_interrupt_handler - Interrupt handler for SSP controller
698 * This function handles interrupts generated for an interrupt based transfer.
699 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
700 * current message's state as STATE_ERROR and schedule the tasklet
701 * pump_transfers which will do the postprocessing of the current message by
702 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
703 * more data, and writes data in TX FIFO till it is not full. If we complete
704 * the transfer we move to the next transfer and schedule the tasklet.
706 static irqreturn_t
pl022_interrupt_handler(int irq
, void *dev_id
)
708 struct pl022
*pl022
= dev_id
;
709 struct spi_message
*msg
= pl022
->cur_msg
;
713 if (unlikely(!msg
)) {
714 dev_err(&pl022
->adev
->dev
,
715 "bad message state in interrupt handler");
720 /* Read the Interrupt Status Register */
721 irq_status
= readw(SSP_MIS(pl022
->virtbase
));
723 if (unlikely(!irq_status
))
726 /* This handles the error code interrupts */
727 if (unlikely(irq_status
& SSP_MIS_MASK_RORMIS
)) {
729 * Overrun interrupt - bail out since our Data has been
732 dev_err(&pl022
->adev
->dev
,
734 if (readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RFF
)
735 dev_err(&pl022
->adev
->dev
,
737 if (readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_TNF
)
738 dev_err(&pl022
->adev
->dev
,
742 * Disable and clear interrupts, disable SSP,
743 * mark message with bad status so it can be
746 writew(DISABLE_ALL_INTERRUPTS
,
747 SSP_IMSC(pl022
->virtbase
));
748 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
749 writew((readw(SSP_CR1(pl022
->virtbase
)) &
750 (~SSP_CR1_MASK_SSE
)), SSP_CR1(pl022
->virtbase
));
751 msg
->state
= STATE_ERROR
;
753 /* Schedule message queue handler */
754 tasklet_schedule(&pl022
->pump_transfers
);
760 if ((pl022
->tx
== pl022
->tx_end
) && (flag
== 0)) {
762 /* Disable Transmit interrupt */
763 writew(readw(SSP_IMSC(pl022
->virtbase
)) &
764 (~SSP_IMSC_MASK_TXIM
),
765 SSP_IMSC(pl022
->virtbase
));
769 * Since all transactions must write as much as shall be read,
770 * we can conclude the entire transaction once RX is complete.
771 * At this point, all TX will always be finished.
773 if (pl022
->rx
>= pl022
->rx_end
) {
774 writew(DISABLE_ALL_INTERRUPTS
,
775 SSP_IMSC(pl022
->virtbase
));
776 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
777 if (unlikely(pl022
->rx
> pl022
->rx_end
)) {
778 dev_warn(&pl022
->adev
->dev
, "read %u surplus "
779 "bytes (did you request an odd "
780 "number of bytes on a 16bit bus?)\n",
781 (u32
) (pl022
->rx
- pl022
->rx_end
));
783 /* Update total bytes transfered */
784 msg
->actual_length
+= pl022
->cur_transfer
->len
;
785 if (pl022
->cur_transfer
->cs_change
)
787 cs_control(SSP_CHIP_DESELECT
);
788 /* Move to next transfer */
789 msg
->state
= next_transfer(pl022
);
790 tasklet_schedule(&pl022
->pump_transfers
);
798 * This sets up the pointers to memory for the next message to
799 * send out on the SPI bus.
801 static int set_up_next_transfer(struct pl022
*pl022
,
802 struct spi_transfer
*transfer
)
806 /* Sanity check the message for this bus width */
807 residue
= pl022
->cur_transfer
->len
% pl022
->cur_chip
->n_bytes
;
808 if (unlikely(residue
!= 0)) {
809 dev_err(&pl022
->adev
->dev
,
810 "message of %u bytes to transmit but the current "
811 "chip bus has a data width of %u bytes!\n",
812 pl022
->cur_transfer
->len
,
813 pl022
->cur_chip
->n_bytes
);
814 dev_err(&pl022
->adev
->dev
, "skipping this message\n");
817 pl022
->tx
= (void *)transfer
->tx_buf
;
818 pl022
->tx_end
= pl022
->tx
+ pl022
->cur_transfer
->len
;
819 pl022
->rx
= (void *)transfer
->rx_buf
;
820 pl022
->rx_end
= pl022
->rx
+ pl022
->cur_transfer
->len
;
822 pl022
->tx
? pl022
->cur_chip
->write
: WRITING_NULL
;
823 pl022
->read
= pl022
->rx
? pl022
->cur_chip
->read
: READING_NULL
;
828 * pump_transfers - Tasklet function which schedules next interrupt transfer
829 * when running in interrupt transfer mode.
830 * @data: SSP driver private data structure
833 static void pump_transfers(unsigned long data
)
835 struct pl022
*pl022
= (struct pl022
*) data
;
836 struct spi_message
*message
= NULL
;
837 struct spi_transfer
*transfer
= NULL
;
838 struct spi_transfer
*previous
= NULL
;
840 /* Get current state information */
841 message
= pl022
->cur_msg
;
842 transfer
= pl022
->cur_transfer
;
844 /* Handle for abort */
845 if (message
->state
== STATE_ERROR
) {
846 message
->status
= -EIO
;
851 /* Handle end of message */
852 if (message
->state
== STATE_DONE
) {
858 /* Delay if requested at end of transfer before CS change */
859 if (message
->state
== STATE_RUNNING
) {
860 previous
= list_entry(transfer
->transfer_list
.prev
,
863 if (previous
->delay_usecs
)
865 * FIXME: This runs in interrupt context.
866 * Is this really smart?
868 udelay(previous
->delay_usecs
);
870 /* Drop chip select only if cs_change is requested */
871 if (previous
->cs_change
)
872 pl022
->cur_chip
->cs_control(SSP_CHIP_SELECT
);
875 message
->state
= STATE_RUNNING
;
878 if (set_up_next_transfer(pl022
, transfer
)) {
879 message
->state
= STATE_ERROR
;
880 message
->status
= -EIO
;
884 /* Flush the FIFOs and let's go! */
886 writew(ENABLE_ALL_INTERRUPTS
, SSP_IMSC(pl022
->virtbase
));
891 * configure_dma - It configures the DMA pipes for DMA transfers
892 * @data: SSP driver's private data structure
895 static int configure_dma(void *data
)
897 struct pl022
*pl022
= data
;
898 dev_dbg(&pl022
->adev
->dev
, "configure DMA\n");
903 * do_dma_transfer - It handles transfers of the current message
905 * NOT FULLY IMPLEMENTED
906 * @data: SSP driver's private data structure
908 static void do_dma_transfer(void *data
)
910 struct pl022
*pl022
= data
;
912 if (configure_dma(data
)) {
913 dev_dbg(&pl022
->adev
->dev
, "configuration of DMA Failed!\n");
917 /* TODO: Implememt DMA setup of pipes here */
919 /* Enable target chip, set up transfer */
920 pl022
->cur_chip
->cs_control(SSP_CHIP_SELECT
);
921 if (set_up_next_transfer(pl022
, pl022
->cur_transfer
)) {
923 pl022
->cur_msg
->state
= STATE_ERROR
;
924 pl022
->cur_msg
->status
= -EIO
;
929 writew((readw(SSP_CR1(pl022
->virtbase
)) | SSP_CR1_MASK_SSE
),
930 SSP_CR1(pl022
->virtbase
));
932 /* TODO: Enable the DMA transfer here */
936 pl022
->cur_msg
->state
= STATE_ERROR
;
937 pl022
->cur_msg
->status
= -EIO
;
942 static void do_interrupt_transfer(void *data
)
944 struct pl022
*pl022
= data
;
946 /* Enable target chip */
947 pl022
->cur_chip
->cs_control(SSP_CHIP_SELECT
);
948 if (set_up_next_transfer(pl022
, pl022
->cur_transfer
)) {
950 pl022
->cur_msg
->state
= STATE_ERROR
;
951 pl022
->cur_msg
->status
= -EIO
;
955 /* Enable SSP, turn on interrupts */
956 writew((readw(SSP_CR1(pl022
->virtbase
)) | SSP_CR1_MASK_SSE
),
957 SSP_CR1(pl022
->virtbase
));
958 writew(ENABLE_ALL_INTERRUPTS
, SSP_IMSC(pl022
->virtbase
));
961 static void do_polling_transfer(void *data
)
963 struct pl022
*pl022
= data
;
964 struct spi_message
*message
= NULL
;
965 struct spi_transfer
*transfer
= NULL
;
966 struct spi_transfer
*previous
= NULL
;
967 struct chip_data
*chip
;
969 chip
= pl022
->cur_chip
;
970 message
= pl022
->cur_msg
;
972 while (message
->state
!= STATE_DONE
) {
973 /* Handle for abort */
974 if (message
->state
== STATE_ERROR
)
976 transfer
= pl022
->cur_transfer
;
978 /* Delay if requested at end of transfer */
979 if (message
->state
== STATE_RUNNING
) {
981 list_entry(transfer
->transfer_list
.prev
,
982 struct spi_transfer
, transfer_list
);
983 if (previous
->delay_usecs
)
984 udelay(previous
->delay_usecs
);
985 if (previous
->cs_change
)
986 pl022
->cur_chip
->cs_control(SSP_CHIP_SELECT
);
989 message
->state
= STATE_RUNNING
;
990 pl022
->cur_chip
->cs_control(SSP_CHIP_SELECT
);
993 /* Configuration Changing Per Transfer */
994 if (set_up_next_transfer(pl022
, transfer
)) {
996 message
->state
= STATE_ERROR
;
999 /* Flush FIFOs and enable SSP */
1001 writew((readw(SSP_CR1(pl022
->virtbase
)) | SSP_CR1_MASK_SSE
),
1002 SSP_CR1(pl022
->virtbase
));
1004 dev_dbg(&pl022
->adev
->dev
, "POLLING TRANSFER ONGOING ... \n");
1005 /* FIXME: insert a timeout so we don't hang here indefinately */
1006 while (pl022
->tx
< pl022
->tx_end
|| pl022
->rx
< pl022
->rx_end
)
1009 /* Update total byte transfered */
1010 message
->actual_length
+= pl022
->cur_transfer
->len
;
1011 if (pl022
->cur_transfer
->cs_change
)
1012 pl022
->cur_chip
->cs_control(SSP_CHIP_DESELECT
);
1013 /* Move to next transfer */
1014 message
->state
= next_transfer(pl022
);
1017 /* Handle end of message */
1018 if (message
->state
== STATE_DONE
)
1019 message
->status
= 0;
1021 message
->status
= -EIO
;
1028 * pump_messages - Workqueue function which processes spi message queue
1029 * @data: pointer to private data of SSP driver
1031 * This function checks if there is any spi message in the queue that
1032 * needs processing and delegate control to appropriate function
1033 * do_polling_transfer()/do_interrupt_transfer()/do_dma_transfer()
1034 * based on the kind of the transfer
1037 static void pump_messages(struct work_struct
*work
)
1039 struct pl022
*pl022
=
1040 container_of(work
, struct pl022
, pump_messages
);
1041 unsigned long flags
;
1043 /* Lock queue and check for queue work */
1044 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
1045 if (list_empty(&pl022
->queue
) || pl022
->run
== QUEUE_STOPPED
) {
1047 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1050 /* Make sure we are not already running a message */
1051 if (pl022
->cur_msg
) {
1052 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1055 /* Extract head of queue */
1057 list_entry(pl022
->queue
.next
, struct spi_message
, queue
);
1059 list_del_init(&pl022
->cur_msg
->queue
);
1061 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1063 /* Initial message state */
1064 pl022
->cur_msg
->state
= STATE_START
;
1065 pl022
->cur_transfer
= list_entry(pl022
->cur_msg
->transfers
.next
,
1066 struct spi_transfer
,
1069 /* Setup the SPI using the per chip configuration */
1070 pl022
->cur_chip
= spi_get_ctldata(pl022
->cur_msg
->spi
);
1072 * We enable the clock here, then the clock will be disabled when
1073 * giveback() is called in each method (poll/interrupt/DMA)
1075 clk_enable(pl022
->clk
);
1076 restore_state(pl022
);
1079 if (pl022
->cur_chip
->xfer_type
== POLLING_TRANSFER
)
1080 do_polling_transfer(pl022
);
1081 else if (pl022
->cur_chip
->xfer_type
== INTERRUPT_TRANSFER
)
1082 do_interrupt_transfer(pl022
);
1084 do_dma_transfer(pl022
);
1088 static int __init
init_queue(struct pl022
*pl022
)
1090 INIT_LIST_HEAD(&pl022
->queue
);
1091 spin_lock_init(&pl022
->queue_lock
);
1093 pl022
->run
= QUEUE_STOPPED
;
1096 tasklet_init(&pl022
->pump_transfers
,
1097 pump_transfers
, (unsigned long)pl022
);
1099 INIT_WORK(&pl022
->pump_messages
, pump_messages
);
1100 pl022
->workqueue
= create_singlethread_workqueue(
1101 dev_name(pl022
->master
->dev
.parent
));
1102 if (pl022
->workqueue
== NULL
)
1109 static int start_queue(struct pl022
*pl022
)
1111 unsigned long flags
;
1113 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
1115 if (pl022
->run
== QUEUE_RUNNING
|| pl022
->busy
) {
1116 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1120 pl022
->run
= QUEUE_RUNNING
;
1121 pl022
->cur_msg
= NULL
;
1122 pl022
->cur_transfer
= NULL
;
1123 pl022
->cur_chip
= NULL
;
1124 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1126 queue_work(pl022
->workqueue
, &pl022
->pump_messages
);
1132 static int stop_queue(struct pl022
*pl022
)
1134 unsigned long flags
;
1135 unsigned limit
= 500;
1138 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
1140 /* This is a bit lame, but is optimized for the common execution path.
1141 * A wait_queue on the pl022->busy could be used, but then the common
1142 * execution path (pump_messages) would be required to call wake_up or
1143 * friends on every SPI message. Do this instead */
1144 pl022
->run
= QUEUE_STOPPED
;
1145 while (!list_empty(&pl022
->queue
) && pl022
->busy
&& limit
--) {
1146 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1148 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
1151 if (!list_empty(&pl022
->queue
) || pl022
->busy
)
1154 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1159 static int destroy_queue(struct pl022
*pl022
)
1163 status
= stop_queue(pl022
);
1164 /* we are unloading the module or failing to load (only two calls
1165 * to this routine), and neither call can handle a return value.
1166 * However, destroy_workqueue calls flush_workqueue, and that will
1167 * block until all work is done. If the reason that stop_queue
1168 * timed out is that the work will never finish, then it does no
1169 * good to call destroy_workqueue, so return anyway. */
1173 destroy_workqueue(pl022
->workqueue
);
1178 static int verify_controller_parameters(struct pl022
*pl022
,
1179 struct pl022_config_chip
*chip_info
)
1181 if ((chip_info
->lbm
!= LOOPBACK_ENABLED
)
1182 && (chip_info
->lbm
!= LOOPBACK_DISABLED
)) {
1183 dev_err(chip_info
->dev
,
1184 "loopback Mode is configured incorrectly\n");
1187 if ((chip_info
->iface
< SSP_INTERFACE_MOTOROLA_SPI
)
1188 || (chip_info
->iface
> SSP_INTERFACE_UNIDIRECTIONAL
)) {
1189 dev_err(chip_info
->dev
,
1190 "interface is configured incorrectly\n");
1193 if ((chip_info
->iface
== SSP_INTERFACE_UNIDIRECTIONAL
) &&
1194 (!pl022
->vendor
->unidir
)) {
1195 dev_err(chip_info
->dev
,
1196 "unidirectional mode not supported in this "
1197 "hardware version\n");
1200 if ((chip_info
->hierarchy
!= SSP_MASTER
)
1201 && (chip_info
->hierarchy
!= SSP_SLAVE
)) {
1202 dev_err(chip_info
->dev
,
1203 "hierarchy is configured incorrectly\n");
1206 if (((chip_info
->clk_freq
).cpsdvsr
< CPSDVR_MIN
)
1207 || ((chip_info
->clk_freq
).cpsdvsr
> CPSDVR_MAX
)) {
1208 dev_err(chip_info
->dev
,
1209 "cpsdvsr is configured incorrectly\n");
1212 if ((chip_info
->endian_rx
!= SSP_RX_MSB
)
1213 && (chip_info
->endian_rx
!= SSP_RX_LSB
)) {
1214 dev_err(chip_info
->dev
,
1215 "RX FIFO endianess is configured incorrectly\n");
1218 if ((chip_info
->endian_tx
!= SSP_TX_MSB
)
1219 && (chip_info
->endian_tx
!= SSP_TX_LSB
)) {
1220 dev_err(chip_info
->dev
,
1221 "TX FIFO endianess is configured incorrectly\n");
1224 if ((chip_info
->data_size
< SSP_DATA_BITS_4
)
1225 || (chip_info
->data_size
> SSP_DATA_BITS_32
)) {
1226 dev_err(chip_info
->dev
,
1227 "DATA Size is configured incorrectly\n");
1230 if ((chip_info
->com_mode
!= INTERRUPT_TRANSFER
)
1231 && (chip_info
->com_mode
!= DMA_TRANSFER
)
1232 && (chip_info
->com_mode
!= POLLING_TRANSFER
)) {
1233 dev_err(chip_info
->dev
,
1234 "Communication mode is configured incorrectly\n");
1237 if ((chip_info
->rx_lev_trig
< SSP_RX_1_OR_MORE_ELEM
)
1238 || (chip_info
->rx_lev_trig
> SSP_RX_32_OR_MORE_ELEM
)) {
1239 dev_err(chip_info
->dev
,
1240 "RX FIFO Trigger Level is configured incorrectly\n");
1243 if ((chip_info
->tx_lev_trig
< SSP_TX_1_OR_MORE_EMPTY_LOC
)
1244 || (chip_info
->tx_lev_trig
> SSP_TX_32_OR_MORE_EMPTY_LOC
)) {
1245 dev_err(chip_info
->dev
,
1246 "TX FIFO Trigger Level is configured incorrectly\n");
1249 if (chip_info
->iface
== SSP_INTERFACE_MOTOROLA_SPI
) {
1250 if ((chip_info
->clk_phase
!= SSP_CLK_FIRST_EDGE
)
1251 && (chip_info
->clk_phase
!= SSP_CLK_SECOND_EDGE
)) {
1252 dev_err(chip_info
->dev
,
1253 "Clock Phase is configured incorrectly\n");
1256 if ((chip_info
->clk_pol
!= SSP_CLK_POL_IDLE_LOW
)
1257 && (chip_info
->clk_pol
!= SSP_CLK_POL_IDLE_HIGH
)) {
1258 dev_err(chip_info
->dev
,
1259 "Clock Polarity is configured incorrectly\n");
1263 if (chip_info
->iface
== SSP_INTERFACE_NATIONAL_MICROWIRE
) {
1264 if ((chip_info
->ctrl_len
< SSP_BITS_4
)
1265 || (chip_info
->ctrl_len
> SSP_BITS_32
)) {
1266 dev_err(chip_info
->dev
,
1267 "CTRL LEN is configured incorrectly\n");
1270 if ((chip_info
->wait_state
!= SSP_MWIRE_WAIT_ZERO
)
1271 && (chip_info
->wait_state
!= SSP_MWIRE_WAIT_ONE
)) {
1272 dev_err(chip_info
->dev
,
1273 "Wait State is configured incorrectly\n");
1276 if ((chip_info
->duplex
!= SSP_MICROWIRE_CHANNEL_FULL_DUPLEX
)
1277 && (chip_info
->duplex
!=
1278 SSP_MICROWIRE_CHANNEL_HALF_DUPLEX
)) {
1279 dev_err(chip_info
->dev
,
1280 "DUPLEX is configured incorrectly\n");
1284 if (chip_info
->cs_control
== NULL
) {
1285 dev_warn(chip_info
->dev
,
1286 "Chip Select Function is NULL for this chip\n");
1287 chip_info
->cs_control
= null_cs_control
;
1293 * pl022_transfer - transfer function registered to SPI master framework
1294 * @spi: spi device which is requesting transfer
1295 * @msg: spi message which is to handled is queued to driver queue
1297 * This function is registered to the SPI framework for this SPI master
1298 * controller. It will queue the spi_message in the queue of driver if
1299 * the queue is not stopped and return.
1301 static int pl022_transfer(struct spi_device
*spi
, struct spi_message
*msg
)
1303 struct pl022
*pl022
= spi_master_get_devdata(spi
->master
);
1304 unsigned long flags
;
1306 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
1308 if (pl022
->run
== QUEUE_STOPPED
) {
1309 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1312 msg
->actual_length
= 0;
1313 msg
->status
= -EINPROGRESS
;
1314 msg
->state
= STATE_START
;
1316 list_add_tail(&msg
->queue
, &pl022
->queue
);
1317 if (pl022
->run
== QUEUE_RUNNING
&& !pl022
->busy
)
1318 queue_work(pl022
->workqueue
, &pl022
->pump_messages
);
1320 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1324 static int calculate_effective_freq(struct pl022
*pl022
,
1326 struct ssp_clock_params
*clk_freq
)
1328 /* Lets calculate the frequency parameters */
1331 bool freq_found
= false;
1336 rate
= clk_get_rate(pl022
->clk
);
1337 /* cpsdvscr = 2 & scr 0 */
1338 max_tclk
= (rate
/ (CPSDVR_MIN
* (1 + SCR_MIN
)));
1339 /* cpsdvsr = 254 & scr = 255 */
1340 min_tclk
= (rate
/ (CPSDVR_MAX
* (1 + SCR_MAX
)));
1342 if ((freq
<= max_tclk
) && (freq
>= min_tclk
)) {
1343 while (cpsdvsr
<= CPSDVR_MAX
&& !freq_found
) {
1344 while (scr
<= SCR_MAX
&& !freq_found
) {
1346 (cpsdvsr
* (1 + scr
))) > freq
)
1350 * This bool is made true when
1351 * effective frequency >=
1352 * target frequency is found
1356 (cpsdvsr
* (1 + scr
))) != freq
) {
1357 if (scr
== SCR_MIN
) {
1371 dev_dbg(&pl022
->adev
->dev
,
1372 "SSP Effective Frequency is %u\n",
1373 (rate
/ (cpsdvsr
* (1 + scr
))));
1374 clk_freq
->cpsdvsr
= (u8
) (cpsdvsr
& 0xFF);
1375 clk_freq
->scr
= (u8
) (scr
& 0xFF);
1376 dev_dbg(&pl022
->adev
->dev
,
1377 "SSP cpsdvsr = %d, scr = %d\n",
1378 clk_freq
->cpsdvsr
, clk_freq
->scr
);
1381 dev_err(&pl022
->adev
->dev
,
1382 "controller data is incorrect: out of range frequency");
1390 * process_dma_info - Processes the DMA info provided by client drivers
1391 * @chip_info: chip info provided by client device
1392 * @chip: Runtime state maintained by the SSP controller for each spi device
1394 * This function processes and stores DMA config provided by client driver
1395 * into the runtime state maintained by the SSP controller driver
1397 static int process_dma_info(struct pl022_config_chip
*chip_info
,
1398 struct chip_data
*chip
)
1400 dev_err(chip_info
->dev
,
1401 "cannot process DMA info, DMA not implemented!\n");
1406 * pl022_setup - setup function registered to SPI master framework
1407 * @spi: spi device which is requesting setup
1409 * This function is registered to the SPI framework for this SPI master
1410 * controller. If it is the first time when setup is called by this device,
1411 * this function will initialize the runtime state for this chip and save
1412 * the same in the device structure. Else it will update the runtime info
1413 * with the updated chip info. Nothing is really being written to the
1414 * controller hardware here, that is not done until the actual transfer
1418 /* FIXME: JUST GUESSING the spi->mode bits understood by this driver */
1419 #define MODEBITS (SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \
1420 | SPI_LSB_FIRST | SPI_LOOP)
1422 static int pl022_setup(struct spi_device
*spi
)
1424 struct pl022_config_chip
*chip_info
;
1425 struct chip_data
*chip
;
1427 struct pl022
*pl022
= spi_master_get_devdata(spi
->master
);
1429 if (spi
->mode
& ~MODEBITS
) {
1430 dev_dbg(&spi
->dev
, "unsupported mode bits %x\n",
1431 spi
->mode
& ~MODEBITS
);
1435 if (!spi
->max_speed_hz
)
1438 /* Get controller_state if one is supplied */
1439 chip
= spi_get_ctldata(spi
);
1442 chip
= kzalloc(sizeof(struct chip_data
), GFP_KERNEL
);
1445 "cannot allocate controller state\n");
1449 "allocated memory for controller's runtime state\n");
1452 /* Get controller data if one is supplied */
1453 chip_info
= spi
->controller_data
;
1455 if (chip_info
== NULL
) {
1456 /* spi_board_info.controller_data not is supplied */
1458 "using default controller_data settings\n");
1461 kzalloc(sizeof(struct pl022_config_chip
), GFP_KERNEL
);
1465 "cannot allocate controller data\n");
1467 goto err_first_setup
;
1470 dev_dbg(&spi
->dev
, "allocated memory for controller data\n");
1472 /* Pointer back to the SPI device */
1473 chip_info
->dev
= &spi
->dev
;
1475 * Set controller data default values:
1476 * Polling is supported by default
1478 chip_info
->lbm
= LOOPBACK_DISABLED
;
1479 chip_info
->com_mode
= POLLING_TRANSFER
;
1480 chip_info
->iface
= SSP_INTERFACE_MOTOROLA_SPI
;
1481 chip_info
->hierarchy
= SSP_SLAVE
;
1482 chip_info
->slave_tx_disable
= DO_NOT_DRIVE_TX
;
1483 chip_info
->endian_tx
= SSP_TX_LSB
;
1484 chip_info
->endian_rx
= SSP_RX_LSB
;
1485 chip_info
->data_size
= SSP_DATA_BITS_12
;
1486 chip_info
->rx_lev_trig
= SSP_RX_1_OR_MORE_ELEM
;
1487 chip_info
->tx_lev_trig
= SSP_TX_1_OR_MORE_EMPTY_LOC
;
1488 chip_info
->clk_phase
= SSP_CLK_SECOND_EDGE
;
1489 chip_info
->clk_pol
= SSP_CLK_POL_IDLE_LOW
;
1490 chip_info
->ctrl_len
= SSP_BITS_8
;
1491 chip_info
->wait_state
= SSP_MWIRE_WAIT_ZERO
;
1492 chip_info
->duplex
= SSP_MICROWIRE_CHANNEL_FULL_DUPLEX
;
1493 chip_info
->cs_control
= null_cs_control
;
1496 "using user supplied controller_data settings\n");
1500 * We can override with custom divisors, else we use the board
1503 if ((0 == chip_info
->clk_freq
.cpsdvsr
)
1504 && (0 == chip_info
->clk_freq
.scr
)) {
1505 status
= calculate_effective_freq(pl022
,
1507 &chip_info
->clk_freq
);
1509 goto err_config_params
;
1511 if ((chip_info
->clk_freq
.cpsdvsr
% 2) != 0)
1512 chip_info
->clk_freq
.cpsdvsr
=
1513 chip_info
->clk_freq
.cpsdvsr
- 1;
1515 status
= verify_controller_parameters(pl022
, chip_info
);
1517 dev_err(&spi
->dev
, "controller data is incorrect");
1518 goto err_config_params
;
1520 /* Now set controller state based on controller data */
1521 chip
->xfer_type
= chip_info
->com_mode
;
1522 chip
->cs_control
= chip_info
->cs_control
;
1524 if (chip_info
->data_size
<= 8) {
1525 dev_dbg(&spi
->dev
, "1 <= n <=8 bits per word\n");
1527 chip
->read
= READING_U8
;
1528 chip
->write
= WRITING_U8
;
1529 } else if (chip_info
->data_size
<= 16) {
1530 dev_dbg(&spi
->dev
, "9 <= n <= 16 bits per word\n");
1532 chip
->read
= READING_U16
;
1533 chip
->write
= WRITING_U16
;
1535 if (pl022
->vendor
->max_bpw
>= 32) {
1536 dev_dbg(&spi
->dev
, "17 <= n <= 32 bits per word\n");
1538 chip
->read
= READING_U32
;
1539 chip
->write
= WRITING_U32
;
1542 "illegal data size for this controller!\n");
1544 "a standard pl022 can only handle "
1545 "1 <= n <= 16 bit words\n");
1546 goto err_config_params
;
1550 /* Now Initialize all register settings required for this chip */
1555 if ((chip_info
->com_mode
== DMA_TRANSFER
)
1556 && ((pl022
->master_info
)->enable_dma
)) {
1557 chip
->enable_dma
= 1;
1558 dev_dbg(&spi
->dev
, "DMA mode set in controller state\n");
1559 status
= process_dma_info(chip_info
, chip
);
1561 goto err_config_params
;
1562 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_ENABLED
,
1563 SSP_DMACR_MASK_RXDMAE
, 0);
1564 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_ENABLED
,
1565 SSP_DMACR_MASK_TXDMAE
, 1);
1567 chip
->enable_dma
= 0;
1568 dev_dbg(&spi
->dev
, "DMA mode NOT set in controller state\n");
1569 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_DISABLED
,
1570 SSP_DMACR_MASK_RXDMAE
, 0);
1571 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_DISABLED
,
1572 SSP_DMACR_MASK_TXDMAE
, 1);
1575 chip
->cpsr
= chip_info
->clk_freq
.cpsdvsr
;
1577 SSP_WRITE_BITS(chip
->cr0
, chip_info
->data_size
, SSP_CR0_MASK_DSS
, 0);
1578 SSP_WRITE_BITS(chip
->cr0
, chip_info
->duplex
, SSP_CR0_MASK_HALFDUP
, 5);
1579 SSP_WRITE_BITS(chip
->cr0
, chip_info
->clk_pol
, SSP_CR0_MASK_SPO
, 6);
1580 SSP_WRITE_BITS(chip
->cr0
, chip_info
->clk_phase
, SSP_CR0_MASK_SPH
, 7);
1581 SSP_WRITE_BITS(chip
->cr0
, chip_info
->clk_freq
.scr
, SSP_CR0_MASK_SCR
, 8);
1582 SSP_WRITE_BITS(chip
->cr0
, chip_info
->ctrl_len
, SSP_CR0_MASK_CSS
, 16);
1583 SSP_WRITE_BITS(chip
->cr0
, chip_info
->iface
, SSP_CR0_MASK_FRF
, 21);
1584 SSP_WRITE_BITS(chip
->cr1
, chip_info
->lbm
, SSP_CR1_MASK_LBM
, 0);
1585 SSP_WRITE_BITS(chip
->cr1
, SSP_DISABLED
, SSP_CR1_MASK_SSE
, 1);
1586 SSP_WRITE_BITS(chip
->cr1
, chip_info
->hierarchy
, SSP_CR1_MASK_MS
, 2);
1587 SSP_WRITE_BITS(chip
->cr1
, chip_info
->slave_tx_disable
, SSP_CR1_MASK_SOD
, 3);
1588 SSP_WRITE_BITS(chip
->cr1
, chip_info
->endian_rx
, SSP_CR1_MASK_RENDN
, 4);
1589 SSP_WRITE_BITS(chip
->cr1
, chip_info
->endian_tx
, SSP_CR1_MASK_TENDN
, 5);
1590 SSP_WRITE_BITS(chip
->cr1
, chip_info
->wait_state
, SSP_CR1_MASK_MWAIT
, 6);
1591 SSP_WRITE_BITS(chip
->cr1
, chip_info
->rx_lev_trig
, SSP_CR1_MASK_RXIFLSEL
, 7);
1592 SSP_WRITE_BITS(chip
->cr1
, chip_info
->tx_lev_trig
, SSP_CR1_MASK_TXIFLSEL
, 10);
1594 /* Save controller_state */
1595 spi_set_ctldata(spi
, chip
);
1604 * pl022_cleanup - cleanup function registered to SPI master framework
1605 * @spi: spi device which is requesting cleanup
1607 * This function is registered to the SPI framework for this SPI master
1608 * controller. It will free the runtime state of chip.
1610 static void pl022_cleanup(struct spi_device
*spi
)
1612 struct chip_data
*chip
= spi_get_ctldata(spi
);
1614 spi_set_ctldata(spi
, NULL
);
1620 pl022_probe(struct amba_device
*adev
, struct amba_id
*id
)
1622 struct device
*dev
= &adev
->dev
;
1623 struct pl022_ssp_controller
*platform_info
= adev
->dev
.platform_data
;
1624 struct spi_master
*master
;
1625 struct pl022
*pl022
= NULL
; /*Data for this driver */
1628 dev_info(&adev
->dev
,
1629 "ARM PL022 driver, device ID: 0x%08x\n", adev
->periphid
);
1630 if (platform_info
== NULL
) {
1631 dev_err(&adev
->dev
, "probe - no platform data supplied\n");
1636 /* Allocate master with space for data */
1637 master
= spi_alloc_master(dev
, sizeof(struct pl022
));
1638 if (master
== NULL
) {
1639 dev_err(&adev
->dev
, "probe - cannot alloc SPI master\n");
1644 pl022
= spi_master_get_devdata(master
);
1645 pl022
->master
= master
;
1646 pl022
->master_info
= platform_info
;
1648 pl022
->vendor
= id
->data
;
1651 * Bus Number Which has been Assigned to this SSP controller
1654 master
->bus_num
= platform_info
->bus_id
;
1655 master
->num_chipselect
= platform_info
->num_chipselect
;
1656 master
->cleanup
= pl022_cleanup
;
1657 master
->setup
= pl022_setup
;
1658 master
->transfer
= pl022_transfer
;
1660 dev_dbg(&adev
->dev
, "BUSNO: %d\n", master
->bus_num
);
1662 status
= amba_request_regions(adev
, NULL
);
1664 goto err_no_ioregion
;
1666 pl022
->virtbase
= ioremap(adev
->res
.start
, resource_size(&adev
->res
));
1667 if (pl022
->virtbase
== NULL
) {
1669 goto err_no_ioremap
;
1671 printk(KERN_INFO
"pl022: mapped registers from 0x%08x to %p\n",
1672 adev
->res
.start
, pl022
->virtbase
);
1674 pl022
->clk
= clk_get(&adev
->dev
, NULL
);
1675 if (IS_ERR(pl022
->clk
)) {
1676 status
= PTR_ERR(pl022
->clk
);
1677 dev_err(&adev
->dev
, "could not retrieve SSP/SPI bus clock\n");
1682 clk_enable(pl022
->clk
);
1683 writew((readw(SSP_CR1(pl022
->virtbase
)) & (~SSP_CR1_MASK_SSE
)),
1684 SSP_CR1(pl022
->virtbase
));
1685 load_ssp_default_config(pl022
);
1686 clk_disable(pl022
->clk
);
1688 status
= request_irq(adev
->irq
[0], pl022_interrupt_handler
, 0, "pl022",
1691 dev_err(&adev
->dev
, "probe - cannot get IRQ (%d)\n", status
);
1694 /* Initialize and start queue */
1695 status
= init_queue(pl022
);
1697 dev_err(&adev
->dev
, "probe - problem initializing queue\n");
1698 goto err_init_queue
;
1700 status
= start_queue(pl022
);
1702 dev_err(&adev
->dev
, "probe - problem starting queue\n");
1703 goto err_start_queue
;
1705 /* Register with the SPI framework */
1706 amba_set_drvdata(adev
, pl022
);
1707 status
= spi_register_master(master
);
1710 "probe - problem registering spi master\n");
1711 goto err_spi_register
;
1713 dev_dbg(dev
, "probe succeded\n");
1719 destroy_queue(pl022
);
1720 free_irq(adev
->irq
[0], pl022
);
1722 clk_put(pl022
->clk
);
1724 iounmap(pl022
->virtbase
);
1726 amba_release_regions(adev
);
1728 spi_master_put(master
);
1735 pl022_remove(struct amba_device
*adev
)
1737 struct pl022
*pl022
= amba_get_drvdata(adev
);
1742 /* Remove the queue */
1743 status
= destroy_queue(pl022
);
1746 "queue remove failed (%d)\n", status
);
1749 load_ssp_default_config(pl022
);
1750 free_irq(adev
->irq
[0], pl022
);
1751 clk_disable(pl022
->clk
);
1752 clk_put(pl022
->clk
);
1753 iounmap(pl022
->virtbase
);
1754 amba_release_regions(adev
);
1755 tasklet_disable(&pl022
->pump_transfers
);
1756 spi_unregister_master(pl022
->master
);
1757 spi_master_put(pl022
->master
);
1758 amba_set_drvdata(adev
, NULL
);
1759 dev_dbg(&adev
->dev
, "remove succeded\n");
1764 static int pl022_suspend(struct amba_device
*adev
, pm_message_t state
)
1766 struct pl022
*pl022
= amba_get_drvdata(adev
);
1769 status
= stop_queue(pl022
);
1771 dev_warn(&adev
->dev
, "suspend cannot stop queue\n");
1775 clk_enable(pl022
->clk
);
1776 load_ssp_default_config(pl022
);
1777 clk_disable(pl022
->clk
);
1778 dev_dbg(&adev
->dev
, "suspended\n");
1782 static int pl022_resume(struct amba_device
*adev
)
1784 struct pl022
*pl022
= amba_get_drvdata(adev
);
1787 /* Start the queue running */
1788 status
= start_queue(pl022
);
1790 dev_err(&adev
->dev
, "problem starting queue (%d)\n", status
);
1792 dev_dbg(&adev
->dev
, "resumed\n");
1797 #define pl022_suspend NULL
1798 #define pl022_resume NULL
1799 #endif /* CONFIG_PM */
1801 static struct vendor_data vendor_arm
= {
1808 static struct vendor_data vendor_st
= {
1814 static struct amba_id pl022_ids
[] = {
1817 * ARM PL022 variant, this has a 16bit wide
1818 * and 8 locations deep TX/RX FIFO
1822 .data
= &vendor_arm
,
1826 * ST Micro derivative, this has 32bit wide
1827 * and 32 locations deep TX/RX FIFO
1836 static struct amba_driver pl022_driver
= {
1838 .name
= "ssp-pl022",
1840 .id_table
= pl022_ids
,
1841 .probe
= pl022_probe
,
1842 .remove
= __exit_p(pl022_remove
),
1843 .suspend
= pl022_suspend
,
1844 .resume
= pl022_resume
,
1848 static int __init
pl022_init(void)
1850 return amba_driver_register(&pl022_driver
);
1853 module_init(pl022_init
);
1855 static void __exit
pl022_exit(void)
1857 amba_driver_unregister(&pl022_driver
);
1860 module_exit(pl022_exit
);
1862 MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
1863 MODULE_DESCRIPTION("PL022 SSP Controller Driver");
1864 MODULE_LICENSE("GPL");