[PATCH] i386: Retrieve CLFLUSH size from CPUID
[firewire-audio.git] / arch / i386 / kernel / cpu / common.c
blobcda41aef79addd18f0fd9a05eff8c39f2356b0e1
1 #include <linux/init.h>
2 #include <linux/string.h>
3 #include <linux/delay.h>
4 #include <linux/smp.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/bootmem.h>
8 #include <asm/semaphore.h>
9 #include <asm/processor.h>
10 #include <asm/i387.h>
11 #include <asm/msr.h>
12 #include <asm/io.h>
13 #include <asm/mmu_context.h>
14 #include <asm/mtrr.h>
15 #include <asm/mce.h>
16 #ifdef CONFIG_X86_LOCAL_APIC
17 #include <asm/mpspec.h>
18 #include <asm/apic.h>
19 #include <mach_apic.h>
20 #endif
21 #include <asm/pda.h>
23 #include "cpu.h"
25 DEFINE_PER_CPU(struct Xgt_desc_struct, cpu_gdt_descr);
26 EXPORT_PER_CPU_SYMBOL(cpu_gdt_descr);
28 struct i386_pda *_cpu_pda[NR_CPUS] __read_mostly;
29 EXPORT_SYMBOL(_cpu_pda);
31 static int cachesize_override __cpuinitdata = -1;
32 static int disable_x86_fxsr __cpuinitdata;
33 static int disable_x86_serial_nr __cpuinitdata = 1;
34 static int disable_x86_sep __cpuinitdata;
36 struct cpu_dev * cpu_devs[X86_VENDOR_NUM] = {};
38 extern int disable_pse;
40 static void __cpuinit default_init(struct cpuinfo_x86 * c)
42 /* Not much we can do here... */
43 /* Check if at least it has cpuid */
44 if (c->cpuid_level == -1) {
45 /* No cpuid. It must be an ancient CPU */
46 if (c->x86 == 4)
47 strcpy(c->x86_model_id, "486");
48 else if (c->x86 == 3)
49 strcpy(c->x86_model_id, "386");
53 static struct cpu_dev __cpuinitdata default_cpu = {
54 .c_init = default_init,
55 .c_vendor = "Unknown",
57 static struct cpu_dev * this_cpu = &default_cpu;
59 static int __init cachesize_setup(char *str)
61 get_option (&str, &cachesize_override);
62 return 1;
64 __setup("cachesize=", cachesize_setup);
66 int __cpuinit get_model_name(struct cpuinfo_x86 *c)
68 unsigned int *v;
69 char *p, *q;
71 if (cpuid_eax(0x80000000) < 0x80000004)
72 return 0;
74 v = (unsigned int *) c->x86_model_id;
75 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
76 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
77 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
78 c->x86_model_id[48] = 0;
80 /* Intel chips right-justify this string for some dumb reason;
81 undo that brain damage */
82 p = q = &c->x86_model_id[0];
83 while ( *p == ' ' )
84 p++;
85 if ( p != q ) {
86 while ( *p )
87 *q++ = *p++;
88 while ( q <= &c->x86_model_id[48] )
89 *q++ = '\0'; /* Zero-pad the rest */
92 return 1;
96 void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
98 unsigned int n, dummy, ecx, edx, l2size;
100 n = cpuid_eax(0x80000000);
102 if (n >= 0x80000005) {
103 cpuid(0x80000005, &dummy, &dummy, &ecx, &edx);
104 printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
105 edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
106 c->x86_cache_size=(ecx>>24)+(edx>>24);
109 if (n < 0x80000006) /* Some chips just has a large L1. */
110 return;
112 ecx = cpuid_ecx(0x80000006);
113 l2size = ecx >> 16;
115 /* do processor-specific cache resizing */
116 if (this_cpu->c_size_cache)
117 l2size = this_cpu->c_size_cache(c,l2size);
119 /* Allow user to override all this if necessary. */
120 if (cachesize_override != -1)
121 l2size = cachesize_override;
123 if ( l2size == 0 )
124 return; /* Again, no L2 cache is possible */
126 c->x86_cache_size = l2size;
128 printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
129 l2size, ecx & 0xFF);
132 /* Naming convention should be: <Name> [(<Codename>)] */
133 /* This table only is used unless init_<vendor>() below doesn't set it; */
134 /* in particular, if CPUID levels 0x80000002..4 are supported, this isn't used */
136 /* Look up CPU names by table lookup. */
137 static char __cpuinit *table_lookup_model(struct cpuinfo_x86 *c)
139 struct cpu_model_info *info;
141 if ( c->x86_model >= 16 )
142 return NULL; /* Range check */
144 if (!this_cpu)
145 return NULL;
147 info = this_cpu->c_models;
149 while (info && info->family) {
150 if (info->family == c->x86)
151 return info->model_names[c->x86_model];
152 info++;
154 return NULL; /* Not found */
158 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c, int early)
160 char *v = c->x86_vendor_id;
161 int i;
162 static int printed;
164 for (i = 0; i < X86_VENDOR_NUM; i++) {
165 if (cpu_devs[i]) {
166 if (!strcmp(v,cpu_devs[i]->c_ident[0]) ||
167 (cpu_devs[i]->c_ident[1] &&
168 !strcmp(v,cpu_devs[i]->c_ident[1]))) {
169 c->x86_vendor = i;
170 if (!early)
171 this_cpu = cpu_devs[i];
172 return;
176 if (!printed) {
177 printed++;
178 printk(KERN_ERR "CPU: Vendor unknown, using generic init.\n");
179 printk(KERN_ERR "CPU: Your system may be unstable.\n");
181 c->x86_vendor = X86_VENDOR_UNKNOWN;
182 this_cpu = &default_cpu;
186 static int __init x86_fxsr_setup(char * s)
188 /* Tell all the other CPU's to not use it... */
189 disable_x86_fxsr = 1;
192 * ... and clear the bits early in the boot_cpu_data
193 * so that the bootup process doesn't try to do this
194 * either.
196 clear_bit(X86_FEATURE_FXSR, boot_cpu_data.x86_capability);
197 clear_bit(X86_FEATURE_XMM, boot_cpu_data.x86_capability);
198 return 1;
200 __setup("nofxsr", x86_fxsr_setup);
203 static int __init x86_sep_setup(char * s)
205 disable_x86_sep = 1;
206 return 1;
208 __setup("nosep", x86_sep_setup);
211 /* Standard macro to see if a specific flag is changeable */
212 static inline int flag_is_changeable_p(u32 flag)
214 u32 f1, f2;
216 asm("pushfl\n\t"
217 "pushfl\n\t"
218 "popl %0\n\t"
219 "movl %0,%1\n\t"
220 "xorl %2,%0\n\t"
221 "pushl %0\n\t"
222 "popfl\n\t"
223 "pushfl\n\t"
224 "popl %0\n\t"
225 "popfl\n\t"
226 : "=&r" (f1), "=&r" (f2)
227 : "ir" (flag));
229 return ((f1^f2) & flag) != 0;
233 /* Probe for the CPUID instruction */
234 static int __cpuinit have_cpuid_p(void)
236 return flag_is_changeable_p(X86_EFLAGS_ID);
239 /* Do minimum CPU detection early.
240 Fields really needed: vendor, cpuid_level, family, model, mask, cache alignment.
241 The others are not touched to avoid unwanted side effects.
243 WARNING: this function is only called on the BP. Don't add code here
244 that is supposed to run on all CPUs. */
245 static void __init early_cpu_detect(void)
247 struct cpuinfo_x86 *c = &boot_cpu_data;
249 c->x86_cache_alignment = 32;
251 if (!have_cpuid_p())
252 return;
254 /* Get vendor name */
255 cpuid(0x00000000, &c->cpuid_level,
256 (int *)&c->x86_vendor_id[0],
257 (int *)&c->x86_vendor_id[8],
258 (int *)&c->x86_vendor_id[4]);
260 get_cpu_vendor(c, 1);
262 c->x86 = 4;
263 if (c->cpuid_level >= 0x00000001) {
264 u32 junk, tfms, cap0, misc;
265 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
266 c->x86 = (tfms >> 8) & 15;
267 c->x86_model = (tfms >> 4) & 15;
268 if (c->x86 == 0xf)
269 c->x86 += (tfms >> 20) & 0xff;
270 if (c->x86 >= 0x6)
271 c->x86_model += ((tfms >> 16) & 0xF) << 4;
272 c->x86_mask = tfms & 15;
273 if (cap0 & (1<<19))
274 c->x86_cache_alignment = ((misc >> 8) & 0xff) * 8;
278 static void __cpuinit generic_identify(struct cpuinfo_x86 * c)
280 u32 tfms, xlvl;
281 int ebx;
283 if (have_cpuid_p()) {
284 /* Get vendor name */
285 cpuid(0x00000000, &c->cpuid_level,
286 (int *)&c->x86_vendor_id[0],
287 (int *)&c->x86_vendor_id[8],
288 (int *)&c->x86_vendor_id[4]);
290 get_cpu_vendor(c, 0);
291 /* Initialize the standard set of capabilities */
292 /* Note that the vendor-specific code below might override */
294 /* Intel-defined flags: level 0x00000001 */
295 if ( c->cpuid_level >= 0x00000001 ) {
296 u32 capability, excap;
297 cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
298 c->x86_capability[0] = capability;
299 c->x86_capability[4] = excap;
300 c->x86 = (tfms >> 8) & 15;
301 c->x86_model = (tfms >> 4) & 15;
302 if (c->x86 == 0xf)
303 c->x86 += (tfms >> 20) & 0xff;
304 if (c->x86 >= 0x6)
305 c->x86_model += ((tfms >> 16) & 0xF) << 4;
306 c->x86_mask = tfms & 15;
307 #ifdef CONFIG_X86_HT
308 c->apicid = phys_pkg_id((ebx >> 24) & 0xFF, 0);
309 #else
310 c->apicid = (ebx >> 24) & 0xFF;
311 #endif
312 if (c->x86_capability[0] & (1<<19))
313 c->x86_clflush_size = ((ebx >> 8) & 0xff) * 8;
314 } else {
315 /* Have CPUID level 0 only - unheard of */
316 c->x86 = 4;
319 /* AMD-defined flags: level 0x80000001 */
320 xlvl = cpuid_eax(0x80000000);
321 if ( (xlvl & 0xffff0000) == 0x80000000 ) {
322 if ( xlvl >= 0x80000001 ) {
323 c->x86_capability[1] = cpuid_edx(0x80000001);
324 c->x86_capability[6] = cpuid_ecx(0x80000001);
326 if ( xlvl >= 0x80000004 )
327 get_model_name(c); /* Default name */
331 early_intel_workaround(c);
333 #ifdef CONFIG_X86_HT
334 c->phys_proc_id = (cpuid_ebx(1) >> 24) & 0xff;
335 #endif
338 static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
340 if (cpu_has(c, X86_FEATURE_PN) && disable_x86_serial_nr ) {
341 /* Disable processor serial number */
342 unsigned long lo,hi;
343 rdmsr(MSR_IA32_BBL_CR_CTL,lo,hi);
344 lo |= 0x200000;
345 wrmsr(MSR_IA32_BBL_CR_CTL,lo,hi);
346 printk(KERN_NOTICE "CPU serial number disabled.\n");
347 clear_bit(X86_FEATURE_PN, c->x86_capability);
349 /* Disabling the serial number may affect the cpuid level */
350 c->cpuid_level = cpuid_eax(0);
354 static int __init x86_serial_nr_setup(char *s)
356 disable_x86_serial_nr = 0;
357 return 1;
359 __setup("serialnumber", x86_serial_nr_setup);
364 * This does the hard work of actually picking apart the CPU stuff...
366 void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
368 int i;
370 c->loops_per_jiffy = loops_per_jiffy;
371 c->x86_cache_size = -1;
372 c->x86_vendor = X86_VENDOR_UNKNOWN;
373 c->cpuid_level = -1; /* CPUID not detected */
374 c->x86_model = c->x86_mask = 0; /* So far unknown... */
375 c->x86_vendor_id[0] = '\0'; /* Unset */
376 c->x86_model_id[0] = '\0'; /* Unset */
377 c->x86_max_cores = 1;
378 c->x86_clflush_size = 32;
379 memset(&c->x86_capability, 0, sizeof c->x86_capability);
381 if (!have_cpuid_p()) {
382 /* First of all, decide if this is a 486 or higher */
383 /* It's a 486 if we can modify the AC flag */
384 if ( flag_is_changeable_p(X86_EFLAGS_AC) )
385 c->x86 = 4;
386 else
387 c->x86 = 3;
390 generic_identify(c);
392 printk(KERN_DEBUG "CPU: After generic identify, caps:");
393 for (i = 0; i < NCAPINTS; i++)
394 printk(" %08lx", c->x86_capability[i]);
395 printk("\n");
397 if (this_cpu->c_identify) {
398 this_cpu->c_identify(c);
400 printk(KERN_DEBUG "CPU: After vendor identify, caps:");
401 for (i = 0; i < NCAPINTS; i++)
402 printk(" %08lx", c->x86_capability[i]);
403 printk("\n");
407 * Vendor-specific initialization. In this section we
408 * canonicalize the feature flags, meaning if there are
409 * features a certain CPU supports which CPUID doesn't
410 * tell us, CPUID claiming incorrect flags, or other bugs,
411 * we handle them here.
413 * At the end of this section, c->x86_capability better
414 * indicate the features this CPU genuinely supports!
416 if (this_cpu->c_init)
417 this_cpu->c_init(c);
419 /* Disable the PN if appropriate */
420 squash_the_stupid_serial_number(c);
423 * The vendor-specific functions might have changed features. Now
424 * we do "generic changes."
427 /* TSC disabled? */
428 if ( tsc_disable )
429 clear_bit(X86_FEATURE_TSC, c->x86_capability);
431 /* FXSR disabled? */
432 if (disable_x86_fxsr) {
433 clear_bit(X86_FEATURE_FXSR, c->x86_capability);
434 clear_bit(X86_FEATURE_XMM, c->x86_capability);
437 /* SEP disabled? */
438 if (disable_x86_sep)
439 clear_bit(X86_FEATURE_SEP, c->x86_capability);
441 if (disable_pse)
442 clear_bit(X86_FEATURE_PSE, c->x86_capability);
444 /* If the model name is still unset, do table lookup. */
445 if ( !c->x86_model_id[0] ) {
446 char *p;
447 p = table_lookup_model(c);
448 if ( p )
449 strcpy(c->x86_model_id, p);
450 else
451 /* Last resort... */
452 sprintf(c->x86_model_id, "%02x/%02x",
453 c->x86, c->x86_model);
456 /* Now the feature flags better reflect actual CPU features! */
458 printk(KERN_DEBUG "CPU: After all inits, caps:");
459 for (i = 0; i < NCAPINTS; i++)
460 printk(" %08lx", c->x86_capability[i]);
461 printk("\n");
464 * On SMP, boot_cpu_data holds the common feature set between
465 * all CPUs; so make sure that we indicate which features are
466 * common between the CPUs. The first time this routine gets
467 * executed, c == &boot_cpu_data.
469 if ( c != &boot_cpu_data ) {
470 /* AND the already accumulated flags with these */
471 for ( i = 0 ; i < NCAPINTS ; i++ )
472 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
475 /* Init Machine Check Exception if available. */
476 mcheck_init(c);
478 if (c == &boot_cpu_data)
479 sysenter_setup();
480 enable_sep_cpu();
482 if (c == &boot_cpu_data)
483 mtrr_bp_init();
484 else
485 mtrr_ap_init();
488 #ifdef CONFIG_X86_HT
489 void __cpuinit detect_ht(struct cpuinfo_x86 *c)
491 u32 eax, ebx, ecx, edx;
492 int index_msb, core_bits;
494 cpuid(1, &eax, &ebx, &ecx, &edx);
496 if (!cpu_has(c, X86_FEATURE_HT) || cpu_has(c, X86_FEATURE_CMP_LEGACY))
497 return;
499 smp_num_siblings = (ebx & 0xff0000) >> 16;
501 if (smp_num_siblings == 1) {
502 printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
503 } else if (smp_num_siblings > 1 ) {
505 if (smp_num_siblings > NR_CPUS) {
506 printk(KERN_WARNING "CPU: Unsupported number of the "
507 "siblings %d", smp_num_siblings);
508 smp_num_siblings = 1;
509 return;
512 index_msb = get_count_order(smp_num_siblings);
513 c->phys_proc_id = phys_pkg_id((ebx >> 24) & 0xFF, index_msb);
515 printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
516 c->phys_proc_id);
518 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
520 index_msb = get_count_order(smp_num_siblings) ;
522 core_bits = get_count_order(c->x86_max_cores);
524 c->cpu_core_id = phys_pkg_id((ebx >> 24) & 0xFF, index_msb) &
525 ((1 << core_bits) - 1);
527 if (c->x86_max_cores > 1)
528 printk(KERN_INFO "CPU: Processor Core ID: %d\n",
529 c->cpu_core_id);
532 #endif
534 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
536 char *vendor = NULL;
538 if (c->x86_vendor < X86_VENDOR_NUM)
539 vendor = this_cpu->c_vendor;
540 else if (c->cpuid_level >= 0)
541 vendor = c->x86_vendor_id;
543 if (vendor && strncmp(c->x86_model_id, vendor, strlen(vendor)))
544 printk("%s ", vendor);
546 if (!c->x86_model_id[0])
547 printk("%d86", c->x86);
548 else
549 printk("%s", c->x86_model_id);
551 if (c->x86_mask || c->cpuid_level >= 0)
552 printk(" stepping %02x\n", c->x86_mask);
553 else
554 printk("\n");
557 cpumask_t cpu_initialized __cpuinitdata = CPU_MASK_NONE;
559 /* This is hacky. :)
560 * We're emulating future behavior.
561 * In the future, the cpu-specific init functions will be called implicitly
562 * via the magic of initcalls.
563 * They will insert themselves into the cpu_devs structure.
564 * Then, when cpu_init() is called, we can just iterate over that array.
567 extern int intel_cpu_init(void);
568 extern int cyrix_init_cpu(void);
569 extern int nsc_init_cpu(void);
570 extern int amd_init_cpu(void);
571 extern int centaur_init_cpu(void);
572 extern int transmeta_init_cpu(void);
573 extern int rise_init_cpu(void);
574 extern int nexgen_init_cpu(void);
575 extern int umc_init_cpu(void);
577 void __init early_cpu_init(void)
579 intel_cpu_init();
580 cyrix_init_cpu();
581 nsc_init_cpu();
582 amd_init_cpu();
583 centaur_init_cpu();
584 transmeta_init_cpu();
585 rise_init_cpu();
586 nexgen_init_cpu();
587 umc_init_cpu();
588 early_cpu_detect();
590 #ifdef CONFIG_DEBUG_PAGEALLOC
591 /* pse is not compatible with on-the-fly unmapping,
592 * disable it even if the cpus claim to support it.
594 clear_bit(X86_FEATURE_PSE, boot_cpu_data.x86_capability);
595 disable_pse = 1;
596 #endif
599 /* Make sure %gs is initialized properly in idle threads */
600 struct pt_regs * __devinit idle_regs(struct pt_regs *regs)
602 memset(regs, 0, sizeof(struct pt_regs));
603 regs->xgs = __KERNEL_PDA;
604 return regs;
607 __cpuinit int alloc_gdt(int cpu)
609 struct Xgt_desc_struct *cpu_gdt_descr = &per_cpu(cpu_gdt_descr, cpu);
610 struct desc_struct *gdt;
611 struct i386_pda *pda;
613 gdt = (struct desc_struct *)cpu_gdt_descr->address;
614 pda = cpu_pda(cpu);
617 * This is a horrible hack to allocate the GDT. The problem
618 * is that cpu_init() is called really early for the boot CPU
619 * (and hence needs bootmem) but much later for the secondary
620 * CPUs, when bootmem will have gone away
622 if (NODE_DATA(0)->bdata->node_bootmem_map) {
623 BUG_ON(gdt != NULL || pda != NULL);
625 gdt = alloc_bootmem_pages(PAGE_SIZE);
626 pda = alloc_bootmem(sizeof(*pda));
627 /* alloc_bootmem(_pages) panics on failure, so no check */
629 memset(gdt, 0, PAGE_SIZE);
630 memset(pda, 0, sizeof(*pda));
631 } else {
632 /* GDT and PDA might already have been allocated if
633 this is a CPU hotplug re-insertion. */
634 if (gdt == NULL)
635 gdt = (struct desc_struct *)get_zeroed_page(GFP_KERNEL);
637 if (pda == NULL)
638 pda = kmalloc_node(sizeof(*pda), GFP_KERNEL, cpu_to_node(cpu));
640 if (unlikely(!gdt || !pda)) {
641 free_pages((unsigned long)gdt, 0);
642 kfree(pda);
643 return 0;
647 cpu_gdt_descr->address = (unsigned long)gdt;
648 cpu_pda(cpu) = pda;
650 return 1;
653 /* Initial PDA used by boot CPU */
654 struct i386_pda boot_pda = {
655 ._pda = &boot_pda,
656 .cpu_number = 0,
657 .pcurrent = &init_task,
660 static inline void set_kernel_gs(void)
662 /* Set %gs for this CPU's PDA. Memory clobber is to create a
663 barrier with respect to any PDA operations, so the compiler
664 doesn't move any before here. */
665 asm volatile ("mov %0, %%gs" : : "r" (__KERNEL_PDA) : "memory");
668 /* Initialize the CPU's GDT and PDA. The boot CPU does this for
669 itself, but secondaries find this done for them. */
670 __cpuinit int init_gdt(int cpu, struct task_struct *idle)
672 struct Xgt_desc_struct *cpu_gdt_descr = &per_cpu(cpu_gdt_descr, cpu);
673 struct desc_struct *gdt;
674 struct i386_pda *pda;
676 /* For non-boot CPUs, the GDT and PDA should already have been
677 allocated. */
678 if (!alloc_gdt(cpu)) {
679 printk(KERN_CRIT "CPU%d failed to allocate GDT or PDA\n", cpu);
680 return 0;
683 gdt = (struct desc_struct *)cpu_gdt_descr->address;
684 pda = cpu_pda(cpu);
686 BUG_ON(gdt == NULL || pda == NULL);
689 * Initialize the per-CPU GDT with the boot GDT,
690 * and set up the GDT descriptor:
692 memcpy(gdt, cpu_gdt_table, GDT_SIZE);
693 cpu_gdt_descr->size = GDT_SIZE - 1;
695 pack_descriptor((u32 *)&gdt[GDT_ENTRY_PDA].a,
696 (u32 *)&gdt[GDT_ENTRY_PDA].b,
697 (unsigned long)pda, sizeof(*pda) - 1,
698 0x80 | DESCTYPE_S | 0x2, 0); /* present read-write data segment */
700 memset(pda, 0, sizeof(*pda));
701 pda->_pda = pda;
702 pda->cpu_number = cpu;
703 pda->pcurrent = idle;
705 return 1;
708 /* Common CPU init for both boot and secondary CPUs */
709 static void __cpuinit _cpu_init(int cpu, struct task_struct *curr)
711 struct tss_struct * t = &per_cpu(init_tss, cpu);
712 struct thread_struct *thread = &curr->thread;
713 struct Xgt_desc_struct *cpu_gdt_descr = &per_cpu(cpu_gdt_descr, cpu);
715 /* Reinit these anyway, even if they've already been done (on
716 the boot CPU, this will transition from the boot gdt+pda to
717 the real ones). */
718 load_gdt(cpu_gdt_descr);
719 set_kernel_gs();
721 if (cpu_test_and_set(cpu, cpu_initialized)) {
722 printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
723 for (;;) local_irq_enable();
726 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
728 if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
729 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
730 if (tsc_disable && cpu_has_tsc) {
731 printk(KERN_NOTICE "Disabling TSC...\n");
732 /**** FIX-HPA: DOES THIS REALLY BELONG HERE? ****/
733 clear_bit(X86_FEATURE_TSC, boot_cpu_data.x86_capability);
734 set_in_cr4(X86_CR4_TSD);
737 load_idt(&idt_descr);
740 * Set up and load the per-CPU TSS and LDT
742 atomic_inc(&init_mm.mm_count);
743 curr->active_mm = &init_mm;
744 if (curr->mm)
745 BUG();
746 enter_lazy_tlb(&init_mm, curr);
748 load_esp0(t, thread);
749 set_tss_desc(cpu,t);
750 load_TR_desc();
751 load_LDT(&init_mm.context);
753 #ifdef CONFIG_DOUBLEFAULT
754 /* Set up doublefault TSS pointer in the GDT */
755 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
756 #endif
758 /* Clear %fs. */
759 asm volatile ("mov %0, %%fs" : : "r" (0));
761 /* Clear all 6 debug registers: */
762 set_debugreg(0, 0);
763 set_debugreg(0, 1);
764 set_debugreg(0, 2);
765 set_debugreg(0, 3);
766 set_debugreg(0, 6);
767 set_debugreg(0, 7);
770 * Force FPU initialization:
772 current_thread_info()->status = 0;
773 clear_used_math();
774 mxcsr_feature_mask_init();
777 /* Entrypoint to initialize secondary CPU */
778 void __cpuinit secondary_cpu_init(void)
780 int cpu = smp_processor_id();
781 struct task_struct *curr = current;
783 _cpu_init(cpu, curr);
787 * cpu_init() initializes state that is per-CPU. Some data is already
788 * initialized (naturally) in the bootstrap process, such as the GDT
789 * and IDT. We reload them nevertheless, this function acts as a
790 * 'CPU state barrier', nothing should get across.
792 void __cpuinit cpu_init(void)
794 int cpu = smp_processor_id();
795 struct task_struct *curr = current;
797 /* Set up the real GDT and PDA, so we can transition from the
798 boot versions. */
799 if (!init_gdt(cpu, curr)) {
800 /* failed to allocate something; not much we can do... */
801 for (;;)
802 local_irq_enable();
805 _cpu_init(cpu, curr);
808 #ifdef CONFIG_HOTPLUG_CPU
809 void __cpuinit cpu_uninit(void)
811 int cpu = raw_smp_processor_id();
812 cpu_clear(cpu, cpu_initialized);
814 /* lazy TLB state */
815 per_cpu(cpu_tlbstate, cpu).state = 0;
816 per_cpu(cpu_tlbstate, cpu).active_mm = &init_mm;
818 #endif