sound: oxygen: allow custom MCLK rates
[firewire-audio.git] / net / ipv4 / udp.c
blobebaaa7f973d70a8dd4038b30c621adf01a4c6268
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The User Datagram Protocol (UDP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
12 * Hirokazu Takahashi, <taka@valinux.co.jp>
14 * Fixes:
15 * Alan Cox : verify_area() calls
16 * Alan Cox : stopped close while in use off icmp
17 * messages. Not a fix but a botch that
18 * for udp at least is 'valid'.
19 * Alan Cox : Fixed icmp handling properly
20 * Alan Cox : Correct error for oversized datagrams
21 * Alan Cox : Tidied select() semantics.
22 * Alan Cox : udp_err() fixed properly, also now
23 * select and read wake correctly on errors
24 * Alan Cox : udp_send verify_area moved to avoid mem leak
25 * Alan Cox : UDP can count its memory
26 * Alan Cox : send to an unknown connection causes
27 * an ECONNREFUSED off the icmp, but
28 * does NOT close.
29 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
31 * bug no longer crashes it.
32 * Fred Van Kempen : Net2e support for sk->broadcast.
33 * Alan Cox : Uses skb_free_datagram
34 * Alan Cox : Added get/set sockopt support.
35 * Alan Cox : Broadcasting without option set returns EACCES.
36 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
37 * Alan Cox : Use ip_tos and ip_ttl
38 * Alan Cox : SNMP Mibs
39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
40 * Matt Dillon : UDP length checks.
41 * Alan Cox : Smarter af_inet used properly.
42 * Alan Cox : Use new kernel side addressing.
43 * Alan Cox : Incorrect return on truncated datagram receive.
44 * Arnt Gulbrandsen : New udp_send and stuff
45 * Alan Cox : Cache last socket
46 * Alan Cox : Route cache
47 * Jon Peatfield : Minor efficiency fix to sendto().
48 * Mike Shaver : RFC1122 checks.
49 * Alan Cox : Nonblocking error fix.
50 * Willy Konynenberg : Transparent proxying support.
51 * Mike McLagan : Routing by source
52 * David S. Miller : New socket lookup architecture.
53 * Last socket cache retained as it
54 * does have a high hit rate.
55 * Olaf Kirch : Don't linearise iovec on sendmsg.
56 * Andi Kleen : Some cleanups, cache destination entry
57 * for connect.
58 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
59 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
60 * return ENOTCONN for unconnected sockets (POSIX)
61 * Janos Farkas : don't deliver multi/broadcasts to a different
62 * bound-to-device socket
63 * Hirokazu Takahashi : HW checksumming for outgoing UDP
64 * datagrams.
65 * Hirokazu Takahashi : sendfile() on UDP works now.
66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
69 * a single port at the same time.
70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71 * James Chapman : Add L2TP encapsulation type.
74 * This program is free software; you can redistribute it and/or
75 * modify it under the terms of the GNU General Public License
76 * as published by the Free Software Foundation; either version
77 * 2 of the License, or (at your option) any later version.
80 #include <asm/system.h>
81 #include <asm/uaccess.h>
82 #include <asm/ioctls.h>
83 #include <linux/bootmem.h>
84 #include <linux/highmem.h>
85 #include <linux/swap.h>
86 #include <linux/types.h>
87 #include <linux/fcntl.h>
88 #include <linux/module.h>
89 #include <linux/socket.h>
90 #include <linux/sockios.h>
91 #include <linux/igmp.h>
92 #include <linux/in.h>
93 #include <linux/errno.h>
94 #include <linux/timer.h>
95 #include <linux/mm.h>
96 #include <linux/inet.h>
97 #include <linux/netdevice.h>
98 #include <net/tcp_states.h>
99 #include <linux/skbuff.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <net/net_namespace.h>
103 #include <net/icmp.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include "udp_impl.h"
109 struct udp_table udp_table;
110 EXPORT_SYMBOL(udp_table);
112 int sysctl_udp_mem[3] __read_mostly;
113 EXPORT_SYMBOL(sysctl_udp_mem);
115 int sysctl_udp_rmem_min __read_mostly;
116 EXPORT_SYMBOL(sysctl_udp_rmem_min);
118 int sysctl_udp_wmem_min __read_mostly;
119 EXPORT_SYMBOL(sysctl_udp_wmem_min);
121 atomic_t udp_memory_allocated;
122 EXPORT_SYMBOL(udp_memory_allocated);
124 #define PORTS_PER_CHAIN (65536 / UDP_HTABLE_SIZE)
126 static int udp_lib_lport_inuse(struct net *net, __u16 num,
127 const struct udp_hslot *hslot,
128 unsigned long *bitmap,
129 struct sock *sk,
130 int (*saddr_comp)(const struct sock *sk1,
131 const struct sock *sk2))
133 struct sock *sk2;
134 struct hlist_nulls_node *node;
136 sk_nulls_for_each(sk2, node, &hslot->head)
137 if (net_eq(sock_net(sk2), net) &&
138 sk2 != sk &&
139 (bitmap || sk2->sk_hash == num) &&
140 (!sk2->sk_reuse || !sk->sk_reuse) &&
141 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if
142 || sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
143 (*saddr_comp)(sk, sk2)) {
144 if (bitmap)
145 __set_bit(sk2->sk_hash / UDP_HTABLE_SIZE,
146 bitmap);
147 else
148 return 1;
150 return 0;
154 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
156 * @sk: socket struct in question
157 * @snum: port number to look up
158 * @saddr_comp: AF-dependent comparison of bound local IP addresses
160 int udp_lib_get_port(struct sock *sk, unsigned short snum,
161 int (*saddr_comp)(const struct sock *sk1,
162 const struct sock *sk2))
164 struct udp_hslot *hslot;
165 struct udp_table *udptable = sk->sk_prot->h.udp_table;
166 int error = 1;
167 struct net *net = sock_net(sk);
169 if (!snum) {
170 int low, high, remaining;
171 unsigned rand;
172 unsigned short first, last;
173 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
175 inet_get_local_port_range(&low, &high);
176 remaining = (high - low) + 1;
178 rand = net_random();
179 first = (((u64)rand * remaining) >> 32) + low;
181 * force rand to be an odd multiple of UDP_HTABLE_SIZE
183 rand = (rand | 1) * UDP_HTABLE_SIZE;
184 for (last = first + UDP_HTABLE_SIZE; first != last; first++) {
185 hslot = &udptable->hash[udp_hashfn(net, first)];
186 bitmap_zero(bitmap, PORTS_PER_CHAIN);
187 spin_lock_bh(&hslot->lock);
188 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
189 saddr_comp);
191 snum = first;
193 * Iterate on all possible values of snum for this hash.
194 * Using steps of an odd multiple of UDP_HTABLE_SIZE
195 * give us randomization and full range coverage.
197 do {
198 if (low <= snum && snum <= high &&
199 !test_bit(snum / UDP_HTABLE_SIZE, bitmap))
200 goto found;
201 snum += rand;
202 } while (snum != first);
203 spin_unlock_bh(&hslot->lock);
205 goto fail;
206 } else {
207 hslot = &udptable->hash[udp_hashfn(net, snum)];
208 spin_lock_bh(&hslot->lock);
209 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, saddr_comp))
210 goto fail_unlock;
212 found:
213 inet_sk(sk)->num = snum;
214 sk->sk_hash = snum;
215 if (sk_unhashed(sk)) {
216 sk_nulls_add_node_rcu(sk, &hslot->head);
217 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
219 error = 0;
220 fail_unlock:
221 spin_unlock_bh(&hslot->lock);
222 fail:
223 return error;
225 EXPORT_SYMBOL(udp_lib_get_port);
227 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
229 struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
231 return (!ipv6_only_sock(sk2) &&
232 (!inet1->rcv_saddr || !inet2->rcv_saddr ||
233 inet1->rcv_saddr == inet2->rcv_saddr));
236 int udp_v4_get_port(struct sock *sk, unsigned short snum)
238 return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal);
241 static inline int compute_score(struct sock *sk, struct net *net, __be32 saddr,
242 unsigned short hnum,
243 __be16 sport, __be32 daddr, __be16 dport, int dif)
245 int score = -1;
247 if (net_eq(sock_net(sk), net) && sk->sk_hash == hnum &&
248 !ipv6_only_sock(sk)) {
249 struct inet_sock *inet = inet_sk(sk);
251 score = (sk->sk_family == PF_INET ? 1 : 0);
252 if (inet->rcv_saddr) {
253 if (inet->rcv_saddr != daddr)
254 return -1;
255 score += 2;
257 if (inet->daddr) {
258 if (inet->daddr != saddr)
259 return -1;
260 score += 2;
262 if (inet->dport) {
263 if (inet->dport != sport)
264 return -1;
265 score += 2;
267 if (sk->sk_bound_dev_if) {
268 if (sk->sk_bound_dev_if != dif)
269 return -1;
270 score += 2;
273 return score;
276 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
277 * harder than this. -DaveM
279 static struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
280 __be16 sport, __be32 daddr, __be16 dport,
281 int dif, struct udp_table *udptable)
283 struct sock *sk, *result;
284 struct hlist_nulls_node *node;
285 unsigned short hnum = ntohs(dport);
286 unsigned int hash = udp_hashfn(net, hnum);
287 struct udp_hslot *hslot = &udptable->hash[hash];
288 int score, badness;
290 rcu_read_lock();
291 begin:
292 result = NULL;
293 badness = -1;
294 sk_nulls_for_each_rcu(sk, node, &hslot->head) {
295 score = compute_score(sk, net, saddr, hnum, sport,
296 daddr, dport, dif);
297 if (score > badness) {
298 result = sk;
299 badness = score;
303 * if the nulls value we got at the end of this lookup is
304 * not the expected one, we must restart lookup.
305 * We probably met an item that was moved to another chain.
307 if (get_nulls_value(node) != hash)
308 goto begin;
310 if (result) {
311 if (unlikely(!atomic_inc_not_zero(&result->sk_refcnt)))
312 result = NULL;
313 else if (unlikely(compute_score(result, net, saddr, hnum, sport,
314 daddr, dport, dif) < badness)) {
315 sock_put(result);
316 goto begin;
319 rcu_read_unlock();
320 return result;
323 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
324 __be16 sport, __be16 dport,
325 struct udp_table *udptable)
327 struct sock *sk;
328 const struct iphdr *iph = ip_hdr(skb);
330 if (unlikely(sk = skb_steal_sock(skb)))
331 return sk;
332 else
333 return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
334 iph->daddr, dport, inet_iif(skb),
335 udptable);
338 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
339 __be32 daddr, __be16 dport, int dif)
341 return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
343 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
345 static inline struct sock *udp_v4_mcast_next(struct net *net, struct sock *sk,
346 __be16 loc_port, __be32 loc_addr,
347 __be16 rmt_port, __be32 rmt_addr,
348 int dif)
350 struct hlist_nulls_node *node;
351 struct sock *s = sk;
352 unsigned short hnum = ntohs(loc_port);
354 sk_nulls_for_each_from(s, node) {
355 struct inet_sock *inet = inet_sk(s);
357 if (!net_eq(sock_net(s), net) ||
358 s->sk_hash != hnum ||
359 (inet->daddr && inet->daddr != rmt_addr) ||
360 (inet->dport != rmt_port && inet->dport) ||
361 (inet->rcv_saddr && inet->rcv_saddr != loc_addr) ||
362 ipv6_only_sock(s) ||
363 (s->sk_bound_dev_if && s->sk_bound_dev_if != dif))
364 continue;
365 if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif))
366 continue;
367 goto found;
369 s = NULL;
370 found:
371 return s;
375 * This routine is called by the ICMP module when it gets some
376 * sort of error condition. If err < 0 then the socket should
377 * be closed and the error returned to the user. If err > 0
378 * it's just the icmp type << 8 | icmp code.
379 * Header points to the ip header of the error packet. We move
380 * on past this. Then (as it used to claim before adjustment)
381 * header points to the first 8 bytes of the udp header. We need
382 * to find the appropriate port.
385 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
387 struct inet_sock *inet;
388 struct iphdr *iph = (struct iphdr *)skb->data;
389 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
390 const int type = icmp_hdr(skb)->type;
391 const int code = icmp_hdr(skb)->code;
392 struct sock *sk;
393 int harderr;
394 int err;
395 struct net *net = dev_net(skb->dev);
397 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
398 iph->saddr, uh->source, skb->dev->ifindex, udptable);
399 if (sk == NULL) {
400 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
401 return; /* No socket for error */
404 err = 0;
405 harderr = 0;
406 inet = inet_sk(sk);
408 switch (type) {
409 default:
410 case ICMP_TIME_EXCEEDED:
411 err = EHOSTUNREACH;
412 break;
413 case ICMP_SOURCE_QUENCH:
414 goto out;
415 case ICMP_PARAMETERPROB:
416 err = EPROTO;
417 harderr = 1;
418 break;
419 case ICMP_DEST_UNREACH:
420 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
421 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
422 err = EMSGSIZE;
423 harderr = 1;
424 break;
426 goto out;
428 err = EHOSTUNREACH;
429 if (code <= NR_ICMP_UNREACH) {
430 harderr = icmp_err_convert[code].fatal;
431 err = icmp_err_convert[code].errno;
433 break;
437 * RFC1122: OK. Passes ICMP errors back to application, as per
438 * 4.1.3.3.
440 if (!inet->recverr) {
441 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
442 goto out;
443 } else {
444 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
446 sk->sk_err = err;
447 sk->sk_error_report(sk);
448 out:
449 sock_put(sk);
452 void udp_err(struct sk_buff *skb, u32 info)
454 __udp4_lib_err(skb, info, &udp_table);
458 * Throw away all pending data and cancel the corking. Socket is locked.
460 void udp_flush_pending_frames(struct sock *sk)
462 struct udp_sock *up = udp_sk(sk);
464 if (up->pending) {
465 up->len = 0;
466 up->pending = 0;
467 ip_flush_pending_frames(sk);
470 EXPORT_SYMBOL(udp_flush_pending_frames);
473 * udp4_hwcsum_outgoing - handle outgoing HW checksumming
474 * @sk: socket we are sending on
475 * @skb: sk_buff containing the filled-in UDP header
476 * (checksum field must be zeroed out)
478 static void udp4_hwcsum_outgoing(struct sock *sk, struct sk_buff *skb,
479 __be32 src, __be32 dst, int len)
481 unsigned int offset;
482 struct udphdr *uh = udp_hdr(skb);
483 __wsum csum = 0;
485 if (skb_queue_len(&sk->sk_write_queue) == 1) {
487 * Only one fragment on the socket.
489 skb->csum_start = skb_transport_header(skb) - skb->head;
490 skb->csum_offset = offsetof(struct udphdr, check);
491 uh->check = ~csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, 0);
492 } else {
494 * HW-checksum won't work as there are two or more
495 * fragments on the socket so that all csums of sk_buffs
496 * should be together
498 offset = skb_transport_offset(skb);
499 skb->csum = skb_checksum(skb, offset, skb->len - offset, 0);
501 skb->ip_summed = CHECKSUM_NONE;
503 skb_queue_walk(&sk->sk_write_queue, skb) {
504 csum = csum_add(csum, skb->csum);
507 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
508 if (uh->check == 0)
509 uh->check = CSUM_MANGLED_0;
514 * Push out all pending data as one UDP datagram. Socket is locked.
516 static int udp_push_pending_frames(struct sock *sk)
518 struct udp_sock *up = udp_sk(sk);
519 struct inet_sock *inet = inet_sk(sk);
520 struct flowi *fl = &inet->cork.fl;
521 struct sk_buff *skb;
522 struct udphdr *uh;
523 int err = 0;
524 int is_udplite = IS_UDPLITE(sk);
525 __wsum csum = 0;
527 /* Grab the skbuff where UDP header space exists. */
528 if ((skb = skb_peek(&sk->sk_write_queue)) == NULL)
529 goto out;
532 * Create a UDP header
534 uh = udp_hdr(skb);
535 uh->source = fl->fl_ip_sport;
536 uh->dest = fl->fl_ip_dport;
537 uh->len = htons(up->len);
538 uh->check = 0;
540 if (is_udplite) /* UDP-Lite */
541 csum = udplite_csum_outgoing(sk, skb);
543 else if (sk->sk_no_check == UDP_CSUM_NOXMIT) { /* UDP csum disabled */
545 skb->ip_summed = CHECKSUM_NONE;
546 goto send;
548 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
550 udp4_hwcsum_outgoing(sk, skb, fl->fl4_src, fl->fl4_dst, up->len);
551 goto send;
553 } else /* `normal' UDP */
554 csum = udp_csum_outgoing(sk, skb);
556 /* add protocol-dependent pseudo-header */
557 uh->check = csum_tcpudp_magic(fl->fl4_src, fl->fl4_dst, up->len,
558 sk->sk_protocol, csum);
559 if (uh->check == 0)
560 uh->check = CSUM_MANGLED_0;
562 send:
563 err = ip_push_pending_frames(sk);
564 if (err) {
565 if (err == -ENOBUFS && !inet->recverr) {
566 UDP_INC_STATS_USER(sock_net(sk),
567 UDP_MIB_SNDBUFERRORS, is_udplite);
568 err = 0;
570 } else
571 UDP_INC_STATS_USER(sock_net(sk),
572 UDP_MIB_OUTDATAGRAMS, is_udplite);
573 out:
574 up->len = 0;
575 up->pending = 0;
576 return err;
579 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
580 size_t len)
582 struct inet_sock *inet = inet_sk(sk);
583 struct udp_sock *up = udp_sk(sk);
584 int ulen = len;
585 struct ipcm_cookie ipc;
586 struct rtable *rt = NULL;
587 int free = 0;
588 int connected = 0;
589 __be32 daddr, faddr, saddr;
590 __be16 dport;
591 u8 tos;
592 int err, is_udplite = IS_UDPLITE(sk);
593 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
594 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
596 if (len > 0xFFFF)
597 return -EMSGSIZE;
600 * Check the flags.
603 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
604 return -EOPNOTSUPP;
606 ipc.opt = NULL;
607 ipc.shtx.flags = 0;
609 if (up->pending) {
611 * There are pending frames.
612 * The socket lock must be held while it's corked.
614 lock_sock(sk);
615 if (likely(up->pending)) {
616 if (unlikely(up->pending != AF_INET)) {
617 release_sock(sk);
618 return -EINVAL;
620 goto do_append_data;
622 release_sock(sk);
624 ulen += sizeof(struct udphdr);
627 * Get and verify the address.
629 if (msg->msg_name) {
630 struct sockaddr_in * usin = (struct sockaddr_in *)msg->msg_name;
631 if (msg->msg_namelen < sizeof(*usin))
632 return -EINVAL;
633 if (usin->sin_family != AF_INET) {
634 if (usin->sin_family != AF_UNSPEC)
635 return -EAFNOSUPPORT;
638 daddr = usin->sin_addr.s_addr;
639 dport = usin->sin_port;
640 if (dport == 0)
641 return -EINVAL;
642 } else {
643 if (sk->sk_state != TCP_ESTABLISHED)
644 return -EDESTADDRREQ;
645 daddr = inet->daddr;
646 dport = inet->dport;
647 /* Open fast path for connected socket.
648 Route will not be used, if at least one option is set.
650 connected = 1;
652 ipc.addr = inet->saddr;
654 ipc.oif = sk->sk_bound_dev_if;
655 err = sock_tx_timestamp(msg, sk, &ipc.shtx);
656 if (err)
657 return err;
658 if (msg->msg_controllen) {
659 err = ip_cmsg_send(sock_net(sk), msg, &ipc);
660 if (err)
661 return err;
662 if (ipc.opt)
663 free = 1;
664 connected = 0;
666 if (!ipc.opt)
667 ipc.opt = inet->opt;
669 saddr = ipc.addr;
670 ipc.addr = faddr = daddr;
672 if (ipc.opt && ipc.opt->srr) {
673 if (!daddr)
674 return -EINVAL;
675 faddr = ipc.opt->faddr;
676 connected = 0;
678 tos = RT_TOS(inet->tos);
679 if (sock_flag(sk, SOCK_LOCALROUTE) ||
680 (msg->msg_flags & MSG_DONTROUTE) ||
681 (ipc.opt && ipc.opt->is_strictroute)) {
682 tos |= RTO_ONLINK;
683 connected = 0;
686 if (ipv4_is_multicast(daddr)) {
687 if (!ipc.oif)
688 ipc.oif = inet->mc_index;
689 if (!saddr)
690 saddr = inet->mc_addr;
691 connected = 0;
694 if (connected)
695 rt = (struct rtable *)sk_dst_check(sk, 0);
697 if (rt == NULL) {
698 struct flowi fl = { .oif = ipc.oif,
699 .nl_u = { .ip4_u =
700 { .daddr = faddr,
701 .saddr = saddr,
702 .tos = tos } },
703 .proto = sk->sk_protocol,
704 .flags = inet_sk_flowi_flags(sk),
705 .uli_u = { .ports =
706 { .sport = inet->sport,
707 .dport = dport } } };
708 struct net *net = sock_net(sk);
710 security_sk_classify_flow(sk, &fl);
711 err = ip_route_output_flow(net, &rt, &fl, sk, 1);
712 if (err) {
713 if (err == -ENETUNREACH)
714 IP_INC_STATS_BH(net, IPSTATS_MIB_OUTNOROUTES);
715 goto out;
718 err = -EACCES;
719 if ((rt->rt_flags & RTCF_BROADCAST) &&
720 !sock_flag(sk, SOCK_BROADCAST))
721 goto out;
722 if (connected)
723 sk_dst_set(sk, dst_clone(&rt->u.dst));
726 if (msg->msg_flags&MSG_CONFIRM)
727 goto do_confirm;
728 back_from_confirm:
730 saddr = rt->rt_src;
731 if (!ipc.addr)
732 daddr = ipc.addr = rt->rt_dst;
734 lock_sock(sk);
735 if (unlikely(up->pending)) {
736 /* The socket is already corked while preparing it. */
737 /* ... which is an evident application bug. --ANK */
738 release_sock(sk);
740 LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 2\n");
741 err = -EINVAL;
742 goto out;
745 * Now cork the socket to pend data.
747 inet->cork.fl.fl4_dst = daddr;
748 inet->cork.fl.fl_ip_dport = dport;
749 inet->cork.fl.fl4_src = saddr;
750 inet->cork.fl.fl_ip_sport = inet->sport;
751 up->pending = AF_INET;
753 do_append_data:
754 up->len += ulen;
755 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
756 err = ip_append_data(sk, getfrag, msg->msg_iov, ulen,
757 sizeof(struct udphdr), &ipc, &rt,
758 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
759 if (err)
760 udp_flush_pending_frames(sk);
761 else if (!corkreq)
762 err = udp_push_pending_frames(sk);
763 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
764 up->pending = 0;
765 release_sock(sk);
767 out:
768 ip_rt_put(rt);
769 if (free)
770 kfree(ipc.opt);
771 if (!err)
772 return len;
774 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
775 * ENOBUFS might not be good (it's not tunable per se), but otherwise
776 * we don't have a good statistic (IpOutDiscards but it can be too many
777 * things). We could add another new stat but at least for now that
778 * seems like overkill.
780 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
781 UDP_INC_STATS_USER(sock_net(sk),
782 UDP_MIB_SNDBUFERRORS, is_udplite);
784 return err;
786 do_confirm:
787 dst_confirm(&rt->u.dst);
788 if (!(msg->msg_flags&MSG_PROBE) || len)
789 goto back_from_confirm;
790 err = 0;
791 goto out;
793 EXPORT_SYMBOL(udp_sendmsg);
795 int udp_sendpage(struct sock *sk, struct page *page, int offset,
796 size_t size, int flags)
798 struct udp_sock *up = udp_sk(sk);
799 int ret;
801 if (!up->pending) {
802 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
804 /* Call udp_sendmsg to specify destination address which
805 * sendpage interface can't pass.
806 * This will succeed only when the socket is connected.
808 ret = udp_sendmsg(NULL, sk, &msg, 0);
809 if (ret < 0)
810 return ret;
813 lock_sock(sk);
815 if (unlikely(!up->pending)) {
816 release_sock(sk);
818 LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 3\n");
819 return -EINVAL;
822 ret = ip_append_page(sk, page, offset, size, flags);
823 if (ret == -EOPNOTSUPP) {
824 release_sock(sk);
825 return sock_no_sendpage(sk->sk_socket, page, offset,
826 size, flags);
828 if (ret < 0) {
829 udp_flush_pending_frames(sk);
830 goto out;
833 up->len += size;
834 if (!(up->corkflag || (flags&MSG_MORE)))
835 ret = udp_push_pending_frames(sk);
836 if (!ret)
837 ret = size;
838 out:
839 release_sock(sk);
840 return ret;
844 * IOCTL requests applicable to the UDP protocol
847 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
849 switch (cmd) {
850 case SIOCOUTQ:
852 int amount = sk_wmem_alloc_get(sk);
854 return put_user(amount, (int __user *)arg);
857 case SIOCINQ:
859 struct sk_buff *skb;
860 unsigned long amount;
862 amount = 0;
863 spin_lock_bh(&sk->sk_receive_queue.lock);
864 skb = skb_peek(&sk->sk_receive_queue);
865 if (skb != NULL) {
867 * We will only return the amount
868 * of this packet since that is all
869 * that will be read.
871 amount = skb->len - sizeof(struct udphdr);
873 spin_unlock_bh(&sk->sk_receive_queue.lock);
874 return put_user(amount, (int __user *)arg);
877 default:
878 return -ENOIOCTLCMD;
881 return 0;
883 EXPORT_SYMBOL(udp_ioctl);
886 * This should be easy, if there is something there we
887 * return it, otherwise we block.
890 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
891 size_t len, int noblock, int flags, int *addr_len)
893 struct inet_sock *inet = inet_sk(sk);
894 struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
895 struct sk_buff *skb;
896 unsigned int ulen, copied;
897 int peeked;
898 int err;
899 int is_udplite = IS_UDPLITE(sk);
902 * Check any passed addresses
904 if (addr_len)
905 *addr_len = sizeof(*sin);
907 if (flags & MSG_ERRQUEUE)
908 return ip_recv_error(sk, msg, len);
910 try_again:
911 skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
912 &peeked, &err);
913 if (!skb)
914 goto out;
916 ulen = skb->len - sizeof(struct udphdr);
917 copied = len;
918 if (copied > ulen)
919 copied = ulen;
920 else if (copied < ulen)
921 msg->msg_flags |= MSG_TRUNC;
924 * If checksum is needed at all, try to do it while copying the
925 * data. If the data is truncated, or if we only want a partial
926 * coverage checksum (UDP-Lite), do it before the copy.
929 if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
930 if (udp_lib_checksum_complete(skb))
931 goto csum_copy_err;
934 if (skb_csum_unnecessary(skb))
935 err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
936 msg->msg_iov, copied);
937 else {
938 err = skb_copy_and_csum_datagram_iovec(skb,
939 sizeof(struct udphdr),
940 msg->msg_iov);
942 if (err == -EINVAL)
943 goto csum_copy_err;
946 if (err)
947 goto out_free;
949 if (!peeked)
950 UDP_INC_STATS_USER(sock_net(sk),
951 UDP_MIB_INDATAGRAMS, is_udplite);
953 sock_recv_timestamp(msg, sk, skb);
955 /* Copy the address. */
956 if (sin) {
957 sin->sin_family = AF_INET;
958 sin->sin_port = udp_hdr(skb)->source;
959 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
960 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
962 if (inet->cmsg_flags)
963 ip_cmsg_recv(msg, skb);
965 err = copied;
966 if (flags & MSG_TRUNC)
967 err = ulen;
969 out_free:
970 lock_sock(sk);
971 skb_free_datagram(sk, skb);
972 release_sock(sk);
973 out:
974 return err;
976 csum_copy_err:
977 lock_sock(sk);
978 if (!skb_kill_datagram(sk, skb, flags))
979 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
980 release_sock(sk);
982 if (noblock)
983 return -EAGAIN;
984 goto try_again;
988 int udp_disconnect(struct sock *sk, int flags)
990 struct inet_sock *inet = inet_sk(sk);
992 * 1003.1g - break association.
995 sk->sk_state = TCP_CLOSE;
996 inet->daddr = 0;
997 inet->dport = 0;
998 sk->sk_bound_dev_if = 0;
999 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1000 inet_reset_saddr(sk);
1002 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1003 sk->sk_prot->unhash(sk);
1004 inet->sport = 0;
1006 sk_dst_reset(sk);
1007 return 0;
1009 EXPORT_SYMBOL(udp_disconnect);
1011 void udp_lib_unhash(struct sock *sk)
1013 if (sk_hashed(sk)) {
1014 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1015 unsigned int hash = udp_hashfn(sock_net(sk), sk->sk_hash);
1016 struct udp_hslot *hslot = &udptable->hash[hash];
1018 spin_lock_bh(&hslot->lock);
1019 if (sk_nulls_del_node_init_rcu(sk)) {
1020 inet_sk(sk)->num = 0;
1021 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1023 spin_unlock_bh(&hslot->lock);
1026 EXPORT_SYMBOL(udp_lib_unhash);
1028 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1030 int is_udplite = IS_UDPLITE(sk);
1031 int rc;
1033 if ((rc = sock_queue_rcv_skb(sk, skb)) < 0) {
1034 /* Note that an ENOMEM error is charged twice */
1035 if (rc == -ENOMEM) {
1036 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1037 is_udplite);
1038 atomic_inc(&sk->sk_drops);
1040 goto drop;
1043 return 0;
1045 drop:
1046 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1047 kfree_skb(skb);
1048 return -1;
1051 /* returns:
1052 * -1: error
1053 * 0: success
1054 * >0: "udp encap" protocol resubmission
1056 * Note that in the success and error cases, the skb is assumed to
1057 * have either been requeued or freed.
1059 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1061 struct udp_sock *up = udp_sk(sk);
1062 int rc;
1063 int is_udplite = IS_UDPLITE(sk);
1066 * Charge it to the socket, dropping if the queue is full.
1068 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1069 goto drop;
1070 nf_reset(skb);
1072 if (up->encap_type) {
1074 * This is an encapsulation socket so pass the skb to
1075 * the socket's udp_encap_rcv() hook. Otherwise, just
1076 * fall through and pass this up the UDP socket.
1077 * up->encap_rcv() returns the following value:
1078 * =0 if skb was successfully passed to the encap
1079 * handler or was discarded by it.
1080 * >0 if skb should be passed on to UDP.
1081 * <0 if skb should be resubmitted as proto -N
1084 /* if we're overly short, let UDP handle it */
1085 if (skb->len > sizeof(struct udphdr) &&
1086 up->encap_rcv != NULL) {
1087 int ret;
1089 ret = (*up->encap_rcv)(sk, skb);
1090 if (ret <= 0) {
1091 UDP_INC_STATS_BH(sock_net(sk),
1092 UDP_MIB_INDATAGRAMS,
1093 is_udplite);
1094 return -ret;
1098 /* FALLTHROUGH -- it's a UDP Packet */
1102 * UDP-Lite specific tests, ignored on UDP sockets
1104 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
1107 * MIB statistics other than incrementing the error count are
1108 * disabled for the following two types of errors: these depend
1109 * on the application settings, not on the functioning of the
1110 * protocol stack as such.
1112 * RFC 3828 here recommends (sec 3.3): "There should also be a
1113 * way ... to ... at least let the receiving application block
1114 * delivery of packets with coverage values less than a value
1115 * provided by the application."
1117 if (up->pcrlen == 0) { /* full coverage was set */
1118 LIMIT_NETDEBUG(KERN_WARNING "UDPLITE: partial coverage "
1119 "%d while full coverage %d requested\n",
1120 UDP_SKB_CB(skb)->cscov, skb->len);
1121 goto drop;
1123 /* The next case involves violating the min. coverage requested
1124 * by the receiver. This is subtle: if receiver wants x and x is
1125 * greater than the buffersize/MTU then receiver will complain
1126 * that it wants x while sender emits packets of smaller size y.
1127 * Therefore the above ...()->partial_cov statement is essential.
1129 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
1130 LIMIT_NETDEBUG(KERN_WARNING
1131 "UDPLITE: coverage %d too small, need min %d\n",
1132 UDP_SKB_CB(skb)->cscov, up->pcrlen);
1133 goto drop;
1137 if (sk->sk_filter) {
1138 if (udp_lib_checksum_complete(skb))
1139 goto drop;
1142 rc = 0;
1144 bh_lock_sock(sk);
1145 if (!sock_owned_by_user(sk))
1146 rc = __udp_queue_rcv_skb(sk, skb);
1147 else
1148 sk_add_backlog(sk, skb);
1149 bh_unlock_sock(sk);
1151 return rc;
1153 drop:
1154 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1155 kfree_skb(skb);
1156 return -1;
1160 * Multicasts and broadcasts go to each listener.
1162 * Note: called only from the BH handler context,
1163 * so we don't need to lock the hashes.
1165 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1166 struct udphdr *uh,
1167 __be32 saddr, __be32 daddr,
1168 struct udp_table *udptable)
1170 struct sock *sk;
1171 struct udp_hslot *hslot = &udptable->hash[udp_hashfn(net, ntohs(uh->dest))];
1172 int dif;
1174 spin_lock(&hslot->lock);
1175 sk = sk_nulls_head(&hslot->head);
1176 dif = skb->dev->ifindex;
1177 sk = udp_v4_mcast_next(net, sk, uh->dest, daddr, uh->source, saddr, dif);
1178 if (sk) {
1179 struct sock *sknext = NULL;
1181 do {
1182 struct sk_buff *skb1 = skb;
1184 sknext = udp_v4_mcast_next(net, sk_nulls_next(sk), uh->dest,
1185 daddr, uh->source, saddr,
1186 dif);
1187 if (sknext)
1188 skb1 = skb_clone(skb, GFP_ATOMIC);
1190 if (skb1) {
1191 int ret = udp_queue_rcv_skb(sk, skb1);
1192 if (ret > 0)
1193 /* we should probably re-process instead
1194 * of dropping packets here. */
1195 kfree_skb(skb1);
1197 sk = sknext;
1198 } while (sknext);
1199 } else
1200 consume_skb(skb);
1201 spin_unlock(&hslot->lock);
1202 return 0;
1205 /* Initialize UDP checksum. If exited with zero value (success),
1206 * CHECKSUM_UNNECESSARY means, that no more checks are required.
1207 * Otherwise, csum completion requires chacksumming packet body,
1208 * including udp header and folding it to skb->csum.
1210 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1211 int proto)
1213 const struct iphdr *iph;
1214 int err;
1216 UDP_SKB_CB(skb)->partial_cov = 0;
1217 UDP_SKB_CB(skb)->cscov = skb->len;
1219 if (proto == IPPROTO_UDPLITE) {
1220 err = udplite_checksum_init(skb, uh);
1221 if (err)
1222 return err;
1225 iph = ip_hdr(skb);
1226 if (uh->check == 0) {
1227 skb->ip_summed = CHECKSUM_UNNECESSARY;
1228 } else if (skb->ip_summed == CHECKSUM_COMPLETE) {
1229 if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
1230 proto, skb->csum))
1231 skb->ip_summed = CHECKSUM_UNNECESSARY;
1233 if (!skb_csum_unnecessary(skb))
1234 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1235 skb->len, proto, 0);
1236 /* Probably, we should checksum udp header (it should be in cache
1237 * in any case) and data in tiny packets (< rx copybreak).
1240 return 0;
1244 * All we need to do is get the socket, and then do a checksum.
1247 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1248 int proto)
1250 struct sock *sk;
1251 struct udphdr *uh;
1252 unsigned short ulen;
1253 struct rtable *rt = skb_rtable(skb);
1254 __be32 saddr, daddr;
1255 struct net *net = dev_net(skb->dev);
1258 * Validate the packet.
1260 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1261 goto drop; /* No space for header. */
1263 uh = udp_hdr(skb);
1264 ulen = ntohs(uh->len);
1265 if (ulen > skb->len)
1266 goto short_packet;
1268 if (proto == IPPROTO_UDP) {
1269 /* UDP validates ulen. */
1270 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1271 goto short_packet;
1272 uh = udp_hdr(skb);
1275 if (udp4_csum_init(skb, uh, proto))
1276 goto csum_error;
1278 saddr = ip_hdr(skb)->saddr;
1279 daddr = ip_hdr(skb)->daddr;
1281 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1282 return __udp4_lib_mcast_deliver(net, skb, uh,
1283 saddr, daddr, udptable);
1285 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1287 if (sk != NULL) {
1288 int ret = udp_queue_rcv_skb(sk, skb);
1289 sock_put(sk);
1291 /* a return value > 0 means to resubmit the input, but
1292 * it wants the return to be -protocol, or 0
1294 if (ret > 0)
1295 return -ret;
1296 return 0;
1299 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1300 goto drop;
1301 nf_reset(skb);
1303 /* No socket. Drop packet silently, if checksum is wrong */
1304 if (udp_lib_checksum_complete(skb))
1305 goto csum_error;
1307 UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1308 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1311 * Hmm. We got an UDP packet to a port to which we
1312 * don't wanna listen. Ignore it.
1314 kfree_skb(skb);
1315 return 0;
1317 short_packet:
1318 LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1319 proto == IPPROTO_UDPLITE ? "-Lite" : "",
1320 &saddr,
1321 ntohs(uh->source),
1322 ulen,
1323 skb->len,
1324 &daddr,
1325 ntohs(uh->dest));
1326 goto drop;
1328 csum_error:
1330 * RFC1122: OK. Discards the bad packet silently (as far as
1331 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1333 LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1334 proto == IPPROTO_UDPLITE ? "-Lite" : "",
1335 &saddr,
1336 ntohs(uh->source),
1337 &daddr,
1338 ntohs(uh->dest),
1339 ulen);
1340 drop:
1341 UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1342 kfree_skb(skb);
1343 return 0;
1346 int udp_rcv(struct sk_buff *skb)
1348 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
1351 void udp_destroy_sock(struct sock *sk)
1353 lock_sock(sk);
1354 udp_flush_pending_frames(sk);
1355 release_sock(sk);
1359 * Socket option code for UDP
1361 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1362 char __user *optval, int optlen,
1363 int (*push_pending_frames)(struct sock *))
1365 struct udp_sock *up = udp_sk(sk);
1366 int val;
1367 int err = 0;
1368 int is_udplite = IS_UDPLITE(sk);
1370 if (optlen < sizeof(int))
1371 return -EINVAL;
1373 if (get_user(val, (int __user *)optval))
1374 return -EFAULT;
1376 switch (optname) {
1377 case UDP_CORK:
1378 if (val != 0) {
1379 up->corkflag = 1;
1380 } else {
1381 up->corkflag = 0;
1382 lock_sock(sk);
1383 (*push_pending_frames)(sk);
1384 release_sock(sk);
1386 break;
1388 case UDP_ENCAP:
1389 switch (val) {
1390 case 0:
1391 case UDP_ENCAP_ESPINUDP:
1392 case UDP_ENCAP_ESPINUDP_NON_IKE:
1393 up->encap_rcv = xfrm4_udp_encap_rcv;
1394 /* FALLTHROUGH */
1395 case UDP_ENCAP_L2TPINUDP:
1396 up->encap_type = val;
1397 break;
1398 default:
1399 err = -ENOPROTOOPT;
1400 break;
1402 break;
1405 * UDP-Lite's partial checksum coverage (RFC 3828).
1407 /* The sender sets actual checksum coverage length via this option.
1408 * The case coverage > packet length is handled by send module. */
1409 case UDPLITE_SEND_CSCOV:
1410 if (!is_udplite) /* Disable the option on UDP sockets */
1411 return -ENOPROTOOPT;
1412 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
1413 val = 8;
1414 else if (val > USHORT_MAX)
1415 val = USHORT_MAX;
1416 up->pcslen = val;
1417 up->pcflag |= UDPLITE_SEND_CC;
1418 break;
1420 /* The receiver specifies a minimum checksum coverage value. To make
1421 * sense, this should be set to at least 8 (as done below). If zero is
1422 * used, this again means full checksum coverage. */
1423 case UDPLITE_RECV_CSCOV:
1424 if (!is_udplite) /* Disable the option on UDP sockets */
1425 return -ENOPROTOOPT;
1426 if (val != 0 && val < 8) /* Avoid silly minimal values. */
1427 val = 8;
1428 else if (val > USHORT_MAX)
1429 val = USHORT_MAX;
1430 up->pcrlen = val;
1431 up->pcflag |= UDPLITE_RECV_CC;
1432 break;
1434 default:
1435 err = -ENOPROTOOPT;
1436 break;
1439 return err;
1441 EXPORT_SYMBOL(udp_lib_setsockopt);
1443 int udp_setsockopt(struct sock *sk, int level, int optname,
1444 char __user *optval, int optlen)
1446 if (level == SOL_UDP || level == SOL_UDPLITE)
1447 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1448 udp_push_pending_frames);
1449 return ip_setsockopt(sk, level, optname, optval, optlen);
1452 #ifdef CONFIG_COMPAT
1453 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
1454 char __user *optval, int optlen)
1456 if (level == SOL_UDP || level == SOL_UDPLITE)
1457 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1458 udp_push_pending_frames);
1459 return compat_ip_setsockopt(sk, level, optname, optval, optlen);
1461 #endif
1463 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
1464 char __user *optval, int __user *optlen)
1466 struct udp_sock *up = udp_sk(sk);
1467 int val, len;
1469 if (get_user(len, optlen))
1470 return -EFAULT;
1472 len = min_t(unsigned int, len, sizeof(int));
1474 if (len < 0)
1475 return -EINVAL;
1477 switch (optname) {
1478 case UDP_CORK:
1479 val = up->corkflag;
1480 break;
1482 case UDP_ENCAP:
1483 val = up->encap_type;
1484 break;
1486 /* The following two cannot be changed on UDP sockets, the return is
1487 * always 0 (which corresponds to the full checksum coverage of UDP). */
1488 case UDPLITE_SEND_CSCOV:
1489 val = up->pcslen;
1490 break;
1492 case UDPLITE_RECV_CSCOV:
1493 val = up->pcrlen;
1494 break;
1496 default:
1497 return -ENOPROTOOPT;
1500 if (put_user(len, optlen))
1501 return -EFAULT;
1502 if (copy_to_user(optval, &val, len))
1503 return -EFAULT;
1504 return 0;
1506 EXPORT_SYMBOL(udp_lib_getsockopt);
1508 int udp_getsockopt(struct sock *sk, int level, int optname,
1509 char __user *optval, int __user *optlen)
1511 if (level == SOL_UDP || level == SOL_UDPLITE)
1512 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1513 return ip_getsockopt(sk, level, optname, optval, optlen);
1516 #ifdef CONFIG_COMPAT
1517 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
1518 char __user *optval, int __user *optlen)
1520 if (level == SOL_UDP || level == SOL_UDPLITE)
1521 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1522 return compat_ip_getsockopt(sk, level, optname, optval, optlen);
1524 #endif
1526 * udp_poll - wait for a UDP event.
1527 * @file - file struct
1528 * @sock - socket
1529 * @wait - poll table
1531 * This is same as datagram poll, except for the special case of
1532 * blocking sockets. If application is using a blocking fd
1533 * and a packet with checksum error is in the queue;
1534 * then it could get return from select indicating data available
1535 * but then block when reading it. Add special case code
1536 * to work around these arguably broken applications.
1538 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
1540 unsigned int mask = datagram_poll(file, sock, wait);
1541 struct sock *sk = sock->sk;
1542 int is_lite = IS_UDPLITE(sk);
1544 /* Check for false positives due to checksum errors */
1545 if ((mask & POLLRDNORM) &&
1546 !(file->f_flags & O_NONBLOCK) &&
1547 !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1548 struct sk_buff_head *rcvq = &sk->sk_receive_queue;
1549 struct sk_buff *skb;
1551 spin_lock_bh(&rcvq->lock);
1552 while ((skb = skb_peek(rcvq)) != NULL &&
1553 udp_lib_checksum_complete(skb)) {
1554 UDP_INC_STATS_BH(sock_net(sk),
1555 UDP_MIB_INERRORS, is_lite);
1556 __skb_unlink(skb, rcvq);
1557 kfree_skb(skb);
1559 spin_unlock_bh(&rcvq->lock);
1561 /* nothing to see, move along */
1562 if (skb == NULL)
1563 mask &= ~(POLLIN | POLLRDNORM);
1566 return mask;
1569 EXPORT_SYMBOL(udp_poll);
1571 struct proto udp_prot = {
1572 .name = "UDP",
1573 .owner = THIS_MODULE,
1574 .close = udp_lib_close,
1575 .connect = ip4_datagram_connect,
1576 .disconnect = udp_disconnect,
1577 .ioctl = udp_ioctl,
1578 .destroy = udp_destroy_sock,
1579 .setsockopt = udp_setsockopt,
1580 .getsockopt = udp_getsockopt,
1581 .sendmsg = udp_sendmsg,
1582 .recvmsg = udp_recvmsg,
1583 .sendpage = udp_sendpage,
1584 .backlog_rcv = __udp_queue_rcv_skb,
1585 .hash = udp_lib_hash,
1586 .unhash = udp_lib_unhash,
1587 .get_port = udp_v4_get_port,
1588 .memory_allocated = &udp_memory_allocated,
1589 .sysctl_mem = sysctl_udp_mem,
1590 .sysctl_wmem = &sysctl_udp_wmem_min,
1591 .sysctl_rmem = &sysctl_udp_rmem_min,
1592 .obj_size = sizeof(struct udp_sock),
1593 .slab_flags = SLAB_DESTROY_BY_RCU,
1594 .h.udp_table = &udp_table,
1595 #ifdef CONFIG_COMPAT
1596 .compat_setsockopt = compat_udp_setsockopt,
1597 .compat_getsockopt = compat_udp_getsockopt,
1598 #endif
1600 EXPORT_SYMBOL(udp_prot);
1602 /* ------------------------------------------------------------------------ */
1603 #ifdef CONFIG_PROC_FS
1605 static struct sock *udp_get_first(struct seq_file *seq, int start)
1607 struct sock *sk;
1608 struct udp_iter_state *state = seq->private;
1609 struct net *net = seq_file_net(seq);
1611 for (state->bucket = start; state->bucket < UDP_HTABLE_SIZE; ++state->bucket) {
1612 struct hlist_nulls_node *node;
1613 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
1614 spin_lock_bh(&hslot->lock);
1615 sk_nulls_for_each(sk, node, &hslot->head) {
1616 if (!net_eq(sock_net(sk), net))
1617 continue;
1618 if (sk->sk_family == state->family)
1619 goto found;
1621 spin_unlock_bh(&hslot->lock);
1623 sk = NULL;
1624 found:
1625 return sk;
1628 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
1630 struct udp_iter_state *state = seq->private;
1631 struct net *net = seq_file_net(seq);
1633 do {
1634 sk = sk_nulls_next(sk);
1635 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
1637 if (!sk) {
1638 if (state->bucket < UDP_HTABLE_SIZE)
1639 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
1640 return udp_get_first(seq, state->bucket + 1);
1642 return sk;
1645 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
1647 struct sock *sk = udp_get_first(seq, 0);
1649 if (sk)
1650 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
1651 --pos;
1652 return pos ? NULL : sk;
1655 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
1657 struct udp_iter_state *state = seq->private;
1658 state->bucket = UDP_HTABLE_SIZE;
1660 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
1663 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1665 struct sock *sk;
1667 if (v == SEQ_START_TOKEN)
1668 sk = udp_get_idx(seq, 0);
1669 else
1670 sk = udp_get_next(seq, v);
1672 ++*pos;
1673 return sk;
1676 static void udp_seq_stop(struct seq_file *seq, void *v)
1678 struct udp_iter_state *state = seq->private;
1680 if (state->bucket < UDP_HTABLE_SIZE)
1681 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
1684 static int udp_seq_open(struct inode *inode, struct file *file)
1686 struct udp_seq_afinfo *afinfo = PDE(inode)->data;
1687 struct udp_iter_state *s;
1688 int err;
1690 err = seq_open_net(inode, file, &afinfo->seq_ops,
1691 sizeof(struct udp_iter_state));
1692 if (err < 0)
1693 return err;
1695 s = ((struct seq_file *)file->private_data)->private;
1696 s->family = afinfo->family;
1697 s->udp_table = afinfo->udp_table;
1698 return err;
1701 /* ------------------------------------------------------------------------ */
1702 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
1704 struct proc_dir_entry *p;
1705 int rc = 0;
1707 afinfo->seq_fops.open = udp_seq_open;
1708 afinfo->seq_fops.read = seq_read;
1709 afinfo->seq_fops.llseek = seq_lseek;
1710 afinfo->seq_fops.release = seq_release_net;
1712 afinfo->seq_ops.start = udp_seq_start;
1713 afinfo->seq_ops.next = udp_seq_next;
1714 afinfo->seq_ops.stop = udp_seq_stop;
1716 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
1717 &afinfo->seq_fops, afinfo);
1718 if (!p)
1719 rc = -ENOMEM;
1720 return rc;
1722 EXPORT_SYMBOL(udp_proc_register);
1724 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
1726 proc_net_remove(net, afinfo->name);
1728 EXPORT_SYMBOL(udp_proc_unregister);
1730 /* ------------------------------------------------------------------------ */
1731 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
1732 int bucket, int *len)
1734 struct inet_sock *inet = inet_sk(sp);
1735 __be32 dest = inet->daddr;
1736 __be32 src = inet->rcv_saddr;
1737 __u16 destp = ntohs(inet->dport);
1738 __u16 srcp = ntohs(inet->sport);
1740 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
1741 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %p %d%n",
1742 bucket, src, srcp, dest, destp, sp->sk_state,
1743 sk_wmem_alloc_get(sp),
1744 sk_rmem_alloc_get(sp),
1745 0, 0L, 0, sock_i_uid(sp), 0, sock_i_ino(sp),
1746 atomic_read(&sp->sk_refcnt), sp,
1747 atomic_read(&sp->sk_drops), len);
1750 int udp4_seq_show(struct seq_file *seq, void *v)
1752 if (v == SEQ_START_TOKEN)
1753 seq_printf(seq, "%-127s\n",
1754 " sl local_address rem_address st tx_queue "
1755 "rx_queue tr tm->when retrnsmt uid timeout "
1756 "inode ref pointer drops");
1757 else {
1758 struct udp_iter_state *state = seq->private;
1759 int len;
1761 udp4_format_sock(v, seq, state->bucket, &len);
1762 seq_printf(seq, "%*s\n", 127 - len, "");
1764 return 0;
1767 /* ------------------------------------------------------------------------ */
1768 static struct udp_seq_afinfo udp4_seq_afinfo = {
1769 .name = "udp",
1770 .family = AF_INET,
1771 .udp_table = &udp_table,
1772 .seq_fops = {
1773 .owner = THIS_MODULE,
1775 .seq_ops = {
1776 .show = udp4_seq_show,
1780 static int udp4_proc_init_net(struct net *net)
1782 return udp_proc_register(net, &udp4_seq_afinfo);
1785 static void udp4_proc_exit_net(struct net *net)
1787 udp_proc_unregister(net, &udp4_seq_afinfo);
1790 static struct pernet_operations udp4_net_ops = {
1791 .init = udp4_proc_init_net,
1792 .exit = udp4_proc_exit_net,
1795 int __init udp4_proc_init(void)
1797 return register_pernet_subsys(&udp4_net_ops);
1800 void udp4_proc_exit(void)
1802 unregister_pernet_subsys(&udp4_net_ops);
1804 #endif /* CONFIG_PROC_FS */
1806 void __init udp_table_init(struct udp_table *table)
1808 int i;
1810 for (i = 0; i < UDP_HTABLE_SIZE; i++) {
1811 INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
1812 spin_lock_init(&table->hash[i].lock);
1816 void __init udp_init(void)
1818 unsigned long nr_pages, limit;
1820 udp_table_init(&udp_table);
1821 /* Set the pressure threshold up by the same strategy of TCP. It is a
1822 * fraction of global memory that is up to 1/2 at 256 MB, decreasing
1823 * toward zero with the amount of memory, with a floor of 128 pages.
1825 nr_pages = totalram_pages - totalhigh_pages;
1826 limit = min(nr_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT);
1827 limit = (limit * (nr_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11);
1828 limit = max(limit, 128UL);
1829 sysctl_udp_mem[0] = limit / 4 * 3;
1830 sysctl_udp_mem[1] = limit;
1831 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
1833 sysctl_udp_rmem_min = SK_MEM_QUANTUM;
1834 sysctl_udp_wmem_min = SK_MEM_QUANTUM;
1837 int udp4_ufo_send_check(struct sk_buff *skb)
1839 const struct iphdr *iph;
1840 struct udphdr *uh;
1842 if (!pskb_may_pull(skb, sizeof(*uh)))
1843 return -EINVAL;
1845 iph = ip_hdr(skb);
1846 uh = udp_hdr(skb);
1848 uh->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
1849 IPPROTO_UDP, 0);
1850 skb->csum_start = skb_transport_header(skb) - skb->head;
1851 skb->csum_offset = offsetof(struct udphdr, check);
1852 skb->ip_summed = CHECKSUM_PARTIAL;
1853 return 0;
1856 struct sk_buff *udp4_ufo_fragment(struct sk_buff *skb, int features)
1858 struct sk_buff *segs = ERR_PTR(-EINVAL);
1859 unsigned int mss;
1860 int offset;
1861 __wsum csum;
1863 mss = skb_shinfo(skb)->gso_size;
1864 if (unlikely(skb->len <= mss))
1865 goto out;
1867 if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
1868 /* Packet is from an untrusted source, reset gso_segs. */
1869 int type = skb_shinfo(skb)->gso_type;
1871 if (unlikely(type & ~(SKB_GSO_UDP | SKB_GSO_DODGY) ||
1872 !(type & (SKB_GSO_UDP))))
1873 goto out;
1875 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
1877 segs = NULL;
1878 goto out;
1881 /* Do software UFO. Complete and fill in the UDP checksum as HW cannot
1882 * do checksum of UDP packets sent as multiple IP fragments.
1884 offset = skb->csum_start - skb_headroom(skb);
1885 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1886 offset += skb->csum_offset;
1887 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1888 skb->ip_summed = CHECKSUM_NONE;
1890 /* Fragment the skb. IP headers of the fragments are updated in
1891 * inet_gso_segment()
1893 segs = skb_segment(skb, features);
1894 out:
1895 return segs;