2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
8 static inline int rt_overloaded(struct rq
*rq
)
10 return atomic_read(&rq
->rd
->rto_count
);
13 static inline void rt_set_overload(struct rq
*rq
)
18 cpu_set(rq
->cpu
, rq
->rd
->rto_mask
);
20 * Make sure the mask is visible before we set
21 * the overload count. That is checked to determine
22 * if we should look at the mask. It would be a shame
23 * if we looked at the mask, but the mask was not
27 atomic_inc(&rq
->rd
->rto_count
);
30 static inline void rt_clear_overload(struct rq
*rq
)
35 /* the order here really doesn't matter */
36 atomic_dec(&rq
->rd
->rto_count
);
37 cpu_clear(rq
->cpu
, rq
->rd
->rto_mask
);
40 static void update_rt_migration(struct rq
*rq
)
42 if (rq
->rt
.rt_nr_migratory
&& (rq
->rt
.rt_nr_running
> 1)) {
43 if (!rq
->rt
.overloaded
) {
45 rq
->rt
.overloaded
= 1;
47 } else if (rq
->rt
.overloaded
) {
48 rt_clear_overload(rq
);
49 rq
->rt
.overloaded
= 0;
52 #endif /* CONFIG_SMP */
54 static inline struct task_struct
*rt_task_of(struct sched_rt_entity
*rt_se
)
56 return container_of(rt_se
, struct task_struct
, rt
);
59 static inline int on_rt_rq(struct sched_rt_entity
*rt_se
)
61 return !list_empty(&rt_se
->run_list
);
64 #ifdef CONFIG_RT_GROUP_SCHED
66 static inline u64
sched_rt_runtime(struct rt_rq
*rt_rq
)
71 return rt_rq
->rt_runtime
;
74 static inline u64
sched_rt_period(struct rt_rq
*rt_rq
)
76 return ktime_to_ns(rt_rq
->tg
->rt_bandwidth
.rt_period
);
79 #define for_each_leaf_rt_rq(rt_rq, rq) \
80 list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
82 static inline struct rq
*rq_of_rt_rq(struct rt_rq
*rt_rq
)
87 static inline struct rt_rq
*rt_rq_of_se(struct sched_rt_entity
*rt_se
)
92 #define for_each_sched_rt_entity(rt_se) \
93 for (; rt_se; rt_se = rt_se->parent)
95 static inline struct rt_rq
*group_rt_rq(struct sched_rt_entity
*rt_se
)
100 static void enqueue_rt_entity(struct sched_rt_entity
*rt_se
);
101 static void dequeue_rt_entity(struct sched_rt_entity
*rt_se
);
103 static void sched_rt_rq_enqueue(struct rt_rq
*rt_rq
)
105 struct sched_rt_entity
*rt_se
= rt_rq
->rt_se
;
107 if (rt_se
&& !on_rt_rq(rt_se
) && rt_rq
->rt_nr_running
) {
108 struct task_struct
*curr
= rq_of_rt_rq(rt_rq
)->curr
;
110 enqueue_rt_entity(rt_se
);
111 if (rt_rq
->highest_prio
< curr
->prio
)
116 static void sched_rt_rq_dequeue(struct rt_rq
*rt_rq
)
118 struct sched_rt_entity
*rt_se
= rt_rq
->rt_se
;
120 if (rt_se
&& on_rt_rq(rt_se
))
121 dequeue_rt_entity(rt_se
);
124 static inline int rt_rq_throttled(struct rt_rq
*rt_rq
)
126 return rt_rq
->rt_throttled
&& !rt_rq
->rt_nr_boosted
;
129 static int rt_se_boosted(struct sched_rt_entity
*rt_se
)
131 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
132 struct task_struct
*p
;
135 return !!rt_rq
->rt_nr_boosted
;
137 p
= rt_task_of(rt_se
);
138 return p
->prio
!= p
->normal_prio
;
142 static inline cpumask_t
sched_rt_period_mask(void)
144 return cpu_rq(smp_processor_id())->rd
->span
;
147 static inline cpumask_t
sched_rt_period_mask(void)
149 return cpu_online_map
;
154 struct rt_rq
*sched_rt_period_rt_rq(struct rt_bandwidth
*rt_b
, int cpu
)
156 return container_of(rt_b
, struct task_group
, rt_bandwidth
)->rt_rq
[cpu
];
159 static inline struct rt_bandwidth
*sched_rt_bandwidth(struct rt_rq
*rt_rq
)
161 return &rt_rq
->tg
->rt_bandwidth
;
164 #else /* !CONFIG_RT_GROUP_SCHED */
166 static inline u64
sched_rt_runtime(struct rt_rq
*rt_rq
)
168 return rt_rq
->rt_runtime
;
171 static inline u64
sched_rt_period(struct rt_rq
*rt_rq
)
173 return ktime_to_ns(def_rt_bandwidth
.rt_period
);
176 #define for_each_leaf_rt_rq(rt_rq, rq) \
177 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
179 static inline struct rq
*rq_of_rt_rq(struct rt_rq
*rt_rq
)
181 return container_of(rt_rq
, struct rq
, rt
);
184 static inline struct rt_rq
*rt_rq_of_se(struct sched_rt_entity
*rt_se
)
186 struct task_struct
*p
= rt_task_of(rt_se
);
187 struct rq
*rq
= task_rq(p
);
192 #define for_each_sched_rt_entity(rt_se) \
193 for (; rt_se; rt_se = NULL)
195 static inline struct rt_rq
*group_rt_rq(struct sched_rt_entity
*rt_se
)
200 static inline void sched_rt_rq_enqueue(struct rt_rq
*rt_rq
)
202 if (rt_rq
->rt_nr_running
)
203 resched_task(rq_of_rt_rq(rt_rq
)->curr
);
206 static inline void sched_rt_rq_dequeue(struct rt_rq
*rt_rq
)
210 static inline int rt_rq_throttled(struct rt_rq
*rt_rq
)
212 return rt_rq
->rt_throttled
;
215 static inline cpumask_t
sched_rt_period_mask(void)
217 return cpu_online_map
;
221 struct rt_rq
*sched_rt_period_rt_rq(struct rt_bandwidth
*rt_b
, int cpu
)
223 return &cpu_rq(cpu
)->rt
;
226 static inline struct rt_bandwidth
*sched_rt_bandwidth(struct rt_rq
*rt_rq
)
228 return &def_rt_bandwidth
;
231 #endif /* CONFIG_RT_GROUP_SCHED */
234 static int do_balance_runtime(struct rt_rq
*rt_rq
)
236 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
237 struct root_domain
*rd
= cpu_rq(smp_processor_id())->rd
;
238 int i
, weight
, more
= 0;
241 weight
= cpus_weight(rd
->span
);
243 spin_lock(&rt_b
->rt_runtime_lock
);
244 rt_period
= ktime_to_ns(rt_b
->rt_period
);
245 for_each_cpu_mask_nr(i
, rd
->span
) {
246 struct rt_rq
*iter
= sched_rt_period_rt_rq(rt_b
, i
);
252 spin_lock(&iter
->rt_runtime_lock
);
253 if (iter
->rt_runtime
== RUNTIME_INF
)
256 diff
= iter
->rt_runtime
- iter
->rt_time
;
258 diff
= div_u64((u64
)diff
, weight
);
259 if (rt_rq
->rt_runtime
+ diff
> rt_period
)
260 diff
= rt_period
- rt_rq
->rt_runtime
;
261 iter
->rt_runtime
-= diff
;
262 rt_rq
->rt_runtime
+= diff
;
264 if (rt_rq
->rt_runtime
== rt_period
) {
265 spin_unlock(&iter
->rt_runtime_lock
);
270 spin_unlock(&iter
->rt_runtime_lock
);
272 spin_unlock(&rt_b
->rt_runtime_lock
);
277 static void __disable_runtime(struct rq
*rq
)
279 struct root_domain
*rd
= rq
->rd
;
282 if (unlikely(!scheduler_running
))
285 for_each_leaf_rt_rq(rt_rq
, rq
) {
286 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
290 spin_lock(&rt_b
->rt_runtime_lock
);
291 spin_lock(&rt_rq
->rt_runtime_lock
);
292 if (rt_rq
->rt_runtime
== RUNTIME_INF
||
293 rt_rq
->rt_runtime
== rt_b
->rt_runtime
)
295 spin_unlock(&rt_rq
->rt_runtime_lock
);
297 want
= rt_b
->rt_runtime
- rt_rq
->rt_runtime
;
299 for_each_cpu_mask(i
, rd
->span
) {
300 struct rt_rq
*iter
= sched_rt_period_rt_rq(rt_b
, i
);
303 if (iter
== rt_rq
|| iter
->rt_runtime
== RUNTIME_INF
)
306 spin_lock(&iter
->rt_runtime_lock
);
308 diff
= min_t(s64
, iter
->rt_runtime
, want
);
309 iter
->rt_runtime
-= diff
;
312 iter
->rt_runtime
-= want
;
315 spin_unlock(&iter
->rt_runtime_lock
);
321 spin_lock(&rt_rq
->rt_runtime_lock
);
324 rt_rq
->rt_runtime
= RUNTIME_INF
;
325 spin_unlock(&rt_rq
->rt_runtime_lock
);
326 spin_unlock(&rt_b
->rt_runtime_lock
);
330 static void disable_runtime(struct rq
*rq
)
334 spin_lock_irqsave(&rq
->lock
, flags
);
335 __disable_runtime(rq
);
336 spin_unlock_irqrestore(&rq
->lock
, flags
);
339 static void __enable_runtime(struct rq
*rq
)
343 if (unlikely(!scheduler_running
))
346 for_each_leaf_rt_rq(rt_rq
, rq
) {
347 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
349 spin_lock(&rt_b
->rt_runtime_lock
);
350 spin_lock(&rt_rq
->rt_runtime_lock
);
351 rt_rq
->rt_runtime
= rt_b
->rt_runtime
;
353 rt_rq
->rt_throttled
= 0;
354 spin_unlock(&rt_rq
->rt_runtime_lock
);
355 spin_unlock(&rt_b
->rt_runtime_lock
);
359 static void enable_runtime(struct rq
*rq
)
363 spin_lock_irqsave(&rq
->lock
, flags
);
364 __enable_runtime(rq
);
365 spin_unlock_irqrestore(&rq
->lock
, flags
);
368 static int balance_runtime(struct rt_rq
*rt_rq
)
372 if (rt_rq
->rt_time
> rt_rq
->rt_runtime
) {
373 spin_unlock(&rt_rq
->rt_runtime_lock
);
374 more
= do_balance_runtime(rt_rq
);
375 spin_lock(&rt_rq
->rt_runtime_lock
);
380 #else /* !CONFIG_SMP */
381 static inline int balance_runtime(struct rt_rq
*rt_rq
)
385 #endif /* CONFIG_SMP */
387 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
)
392 if (rt_b
->rt_runtime
== RUNTIME_INF
)
395 span
= sched_rt_period_mask();
396 for_each_cpu_mask(i
, span
) {
398 struct rt_rq
*rt_rq
= sched_rt_period_rt_rq(rt_b
, i
);
399 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
401 spin_lock(&rq
->lock
);
402 if (rt_rq
->rt_time
) {
405 spin_lock(&rt_rq
->rt_runtime_lock
);
406 if (rt_rq
->rt_throttled
)
407 balance_runtime(rt_rq
);
408 runtime
= rt_rq
->rt_runtime
;
409 rt_rq
->rt_time
-= min(rt_rq
->rt_time
, overrun
*runtime
);
410 if (rt_rq
->rt_throttled
&& rt_rq
->rt_time
< runtime
) {
411 rt_rq
->rt_throttled
= 0;
414 if (rt_rq
->rt_time
|| rt_rq
->rt_nr_running
)
416 spin_unlock(&rt_rq
->rt_runtime_lock
);
417 } else if (rt_rq
->rt_nr_running
)
421 sched_rt_rq_enqueue(rt_rq
);
422 spin_unlock(&rq
->lock
);
428 static inline int rt_se_prio(struct sched_rt_entity
*rt_se
)
430 #ifdef CONFIG_RT_GROUP_SCHED
431 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
434 return rt_rq
->highest_prio
;
437 return rt_task_of(rt_se
)->prio
;
440 static int sched_rt_runtime_exceeded(struct rt_rq
*rt_rq
)
442 u64 runtime
= sched_rt_runtime(rt_rq
);
444 if (rt_rq
->rt_throttled
)
445 return rt_rq_throttled(rt_rq
);
447 if (sched_rt_runtime(rt_rq
) >= sched_rt_period(rt_rq
))
450 balance_runtime(rt_rq
);
451 runtime
= sched_rt_runtime(rt_rq
);
452 if (runtime
== RUNTIME_INF
)
455 if (rt_rq
->rt_time
> runtime
) {
456 rt_rq
->rt_throttled
= 1;
457 if (rt_rq_throttled(rt_rq
)) {
458 sched_rt_rq_dequeue(rt_rq
);
467 * Update the current task's runtime statistics. Skip current tasks that
468 * are not in our scheduling class.
470 static void update_curr_rt(struct rq
*rq
)
472 struct task_struct
*curr
= rq
->curr
;
473 struct sched_rt_entity
*rt_se
= &curr
->rt
;
474 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
477 if (!task_has_rt_policy(curr
))
480 delta_exec
= rq
->clock
- curr
->se
.exec_start
;
481 if (unlikely((s64
)delta_exec
< 0))
484 schedstat_set(curr
->se
.exec_max
, max(curr
->se
.exec_max
, delta_exec
));
486 curr
->se
.sum_exec_runtime
+= delta_exec
;
487 curr
->se
.exec_start
= rq
->clock
;
488 cpuacct_charge(curr
, delta_exec
);
490 for_each_sched_rt_entity(rt_se
) {
491 rt_rq
= rt_rq_of_se(rt_se
);
493 spin_lock(&rt_rq
->rt_runtime_lock
);
494 if (sched_rt_runtime(rt_rq
) != RUNTIME_INF
) {
495 rt_rq
->rt_time
+= delta_exec
;
496 if (sched_rt_runtime_exceeded(rt_rq
))
499 spin_unlock(&rt_rq
->rt_runtime_lock
);
504 void inc_rt_tasks(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
506 WARN_ON(!rt_prio(rt_se_prio(rt_se
)));
507 rt_rq
->rt_nr_running
++;
508 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
509 if (rt_se_prio(rt_se
) < rt_rq
->highest_prio
) {
511 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
514 rt_rq
->highest_prio
= rt_se_prio(rt_se
);
517 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
,
523 if (rt_se
->nr_cpus_allowed
> 1) {
524 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
526 rq
->rt
.rt_nr_migratory
++;
529 update_rt_migration(rq_of_rt_rq(rt_rq
));
531 #ifdef CONFIG_RT_GROUP_SCHED
532 if (rt_se_boosted(rt_se
))
533 rt_rq
->rt_nr_boosted
++;
536 start_rt_bandwidth(&rt_rq
->tg
->rt_bandwidth
);
538 start_rt_bandwidth(&def_rt_bandwidth
);
543 void dec_rt_tasks(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
546 int highest_prio
= rt_rq
->highest_prio
;
549 WARN_ON(!rt_prio(rt_se_prio(rt_se
)));
550 WARN_ON(!rt_rq
->rt_nr_running
);
551 rt_rq
->rt_nr_running
--;
552 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
553 if (rt_rq
->rt_nr_running
) {
554 struct rt_prio_array
*array
;
556 WARN_ON(rt_se_prio(rt_se
) < rt_rq
->highest_prio
);
557 if (rt_se_prio(rt_se
) == rt_rq
->highest_prio
) {
559 array
= &rt_rq
->active
;
560 rt_rq
->highest_prio
=
561 sched_find_first_bit(array
->bitmap
);
562 } /* otherwise leave rq->highest prio alone */
564 rt_rq
->highest_prio
= MAX_RT_PRIO
;
567 if (rt_se
->nr_cpus_allowed
> 1) {
568 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
569 rq
->rt
.rt_nr_migratory
--;
572 if (rt_rq
->highest_prio
!= highest_prio
) {
573 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
576 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
,
577 rt_rq
->highest_prio
);
580 update_rt_migration(rq_of_rt_rq(rt_rq
));
581 #endif /* CONFIG_SMP */
582 #ifdef CONFIG_RT_GROUP_SCHED
583 if (rt_se_boosted(rt_se
))
584 rt_rq
->rt_nr_boosted
--;
586 WARN_ON(!rt_rq
->rt_nr_running
&& rt_rq
->rt_nr_boosted
);
590 static void __enqueue_rt_entity(struct sched_rt_entity
*rt_se
)
592 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
593 struct rt_prio_array
*array
= &rt_rq
->active
;
594 struct rt_rq
*group_rq
= group_rt_rq(rt_se
);
595 struct list_head
*queue
= array
->queue
+ rt_se_prio(rt_se
);
598 * Don't enqueue the group if its throttled, or when empty.
599 * The latter is a consequence of the former when a child group
600 * get throttled and the current group doesn't have any other
603 if (group_rq
&& (rt_rq_throttled(group_rq
) || !group_rq
->rt_nr_running
))
606 list_add_tail(&rt_se
->run_list
, queue
);
607 __set_bit(rt_se_prio(rt_se
), array
->bitmap
);
609 inc_rt_tasks(rt_se
, rt_rq
);
612 static void __dequeue_rt_entity(struct sched_rt_entity
*rt_se
)
614 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
615 struct rt_prio_array
*array
= &rt_rq
->active
;
617 list_del_init(&rt_se
->run_list
);
618 if (list_empty(array
->queue
+ rt_se_prio(rt_se
)))
619 __clear_bit(rt_se_prio(rt_se
), array
->bitmap
);
621 dec_rt_tasks(rt_se
, rt_rq
);
625 * Because the prio of an upper entry depends on the lower
626 * entries, we must remove entries top - down.
628 static void dequeue_rt_stack(struct sched_rt_entity
*rt_se
)
630 struct sched_rt_entity
*back
= NULL
;
632 for_each_sched_rt_entity(rt_se
) {
637 for (rt_se
= back
; rt_se
; rt_se
= rt_se
->back
) {
639 __dequeue_rt_entity(rt_se
);
643 static void enqueue_rt_entity(struct sched_rt_entity
*rt_se
)
645 dequeue_rt_stack(rt_se
);
646 for_each_sched_rt_entity(rt_se
)
647 __enqueue_rt_entity(rt_se
);
650 static void dequeue_rt_entity(struct sched_rt_entity
*rt_se
)
652 dequeue_rt_stack(rt_se
);
654 for_each_sched_rt_entity(rt_se
) {
655 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
657 if (rt_rq
&& rt_rq
->rt_nr_running
)
658 __enqueue_rt_entity(rt_se
);
663 * Adding/removing a task to/from a priority array:
665 static void enqueue_task_rt(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
667 struct sched_rt_entity
*rt_se
= &p
->rt
;
672 enqueue_rt_entity(rt_se
);
674 inc_cpu_load(rq
, p
->se
.load
.weight
);
677 static void dequeue_task_rt(struct rq
*rq
, struct task_struct
*p
, int sleep
)
679 struct sched_rt_entity
*rt_se
= &p
->rt
;
682 dequeue_rt_entity(rt_se
);
684 dec_cpu_load(rq
, p
->se
.load
.weight
);
688 * Put task to the end of the run list without the overhead of dequeue
689 * followed by enqueue.
692 requeue_rt_entity(struct rt_rq
*rt_rq
, struct sched_rt_entity
*rt_se
, int head
)
694 if (on_rt_rq(rt_se
)) {
695 struct rt_prio_array
*array
= &rt_rq
->active
;
696 struct list_head
*queue
= array
->queue
+ rt_se_prio(rt_se
);
699 list_move(&rt_se
->run_list
, queue
);
701 list_move_tail(&rt_se
->run_list
, queue
);
705 static void requeue_task_rt(struct rq
*rq
, struct task_struct
*p
, int head
)
707 struct sched_rt_entity
*rt_se
= &p
->rt
;
710 for_each_sched_rt_entity(rt_se
) {
711 rt_rq
= rt_rq_of_se(rt_se
);
712 requeue_rt_entity(rt_rq
, rt_se
, head
);
716 static void yield_task_rt(struct rq
*rq
)
718 requeue_task_rt(rq
, rq
->curr
, 0);
722 static int find_lowest_rq(struct task_struct
*task
);
724 static int select_task_rq_rt(struct task_struct
*p
, int sync
)
726 struct rq
*rq
= task_rq(p
);
729 * If the current task is an RT task, then
730 * try to see if we can wake this RT task up on another
731 * runqueue. Otherwise simply start this RT task
732 * on its current runqueue.
734 * We want to avoid overloading runqueues. Even if
735 * the RT task is of higher priority than the current RT task.
736 * RT tasks behave differently than other tasks. If
737 * one gets preempted, we try to push it off to another queue.
738 * So trying to keep a preempting RT task on the same
739 * cache hot CPU will force the running RT task to
740 * a cold CPU. So we waste all the cache for the lower
741 * RT task in hopes of saving some of a RT task
742 * that is just being woken and probably will have
745 if (unlikely(rt_task(rq
->curr
)) &&
746 (p
->rt
.nr_cpus_allowed
> 1)) {
747 int cpu
= find_lowest_rq(p
);
749 return (cpu
== -1) ? task_cpu(p
) : cpu
;
753 * Otherwise, just let it ride on the affined RQ and the
754 * post-schedule router will push the preempted task away
759 static void check_preempt_equal_prio(struct rq
*rq
, struct task_struct
*p
)
763 if (rq
->curr
->rt
.nr_cpus_allowed
== 1)
766 if (p
->rt
.nr_cpus_allowed
!= 1
767 && cpupri_find(&rq
->rd
->cpupri
, p
, &mask
))
770 if (!cpupri_find(&rq
->rd
->cpupri
, rq
->curr
, &mask
))
774 * There appears to be other cpus that can accept
775 * current and none to run 'p', so lets reschedule
776 * to try and push current away:
778 requeue_task_rt(rq
, p
, 1);
779 resched_task(rq
->curr
);
782 #endif /* CONFIG_SMP */
785 * Preempt the current task with a newly woken task if needed:
787 static void check_preempt_curr_rt(struct rq
*rq
, struct task_struct
*p
)
789 if (p
->prio
< rq
->curr
->prio
) {
790 resched_task(rq
->curr
);
798 * - the newly woken task is of equal priority to the current task
799 * - the newly woken task is non-migratable while current is migratable
800 * - current will be preempted on the next reschedule
802 * we should check to see if current can readily move to a different
803 * cpu. If so, we will reschedule to allow the push logic to try
804 * to move current somewhere else, making room for our non-migratable
807 if (p
->prio
== rq
->curr
->prio
&& !need_resched())
808 check_preempt_equal_prio(rq
, p
);
812 static struct sched_rt_entity
*pick_next_rt_entity(struct rq
*rq
,
815 struct rt_prio_array
*array
= &rt_rq
->active
;
816 struct sched_rt_entity
*next
= NULL
;
817 struct list_head
*queue
;
820 idx
= sched_find_first_bit(array
->bitmap
);
821 BUG_ON(idx
>= MAX_RT_PRIO
);
823 queue
= array
->queue
+ idx
;
824 next
= list_entry(queue
->next
, struct sched_rt_entity
, run_list
);
829 static struct task_struct
*pick_next_task_rt(struct rq
*rq
)
831 struct sched_rt_entity
*rt_se
;
832 struct task_struct
*p
;
837 if (unlikely(!rt_rq
->rt_nr_running
))
840 if (rt_rq_throttled(rt_rq
))
844 rt_se
= pick_next_rt_entity(rq
, rt_rq
);
846 rt_rq
= group_rt_rq(rt_se
);
849 p
= rt_task_of(rt_se
);
850 p
->se
.exec_start
= rq
->clock
;
854 static void put_prev_task_rt(struct rq
*rq
, struct task_struct
*p
)
857 p
->se
.exec_start
= 0;
862 /* Only try algorithms three times */
863 #define RT_MAX_TRIES 3
865 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
);
866 static void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
);
868 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
);
870 static int pick_rt_task(struct rq
*rq
, struct task_struct
*p
, int cpu
)
872 if (!task_running(rq
, p
) &&
873 (cpu
< 0 || cpu_isset(cpu
, p
->cpus_allowed
)) &&
874 (p
->rt
.nr_cpus_allowed
> 1))
879 /* Return the second highest RT task, NULL otherwise */
880 static struct task_struct
*pick_next_highest_task_rt(struct rq
*rq
, int cpu
)
882 struct task_struct
*next
= NULL
;
883 struct sched_rt_entity
*rt_se
;
884 struct rt_prio_array
*array
;
888 for_each_leaf_rt_rq(rt_rq
, rq
) {
889 array
= &rt_rq
->active
;
890 idx
= sched_find_first_bit(array
->bitmap
);
892 if (idx
>= MAX_RT_PRIO
)
894 if (next
&& next
->prio
< idx
)
896 list_for_each_entry(rt_se
, array
->queue
+ idx
, run_list
) {
897 struct task_struct
*p
= rt_task_of(rt_se
);
898 if (pick_rt_task(rq
, p
, cpu
)) {
904 idx
= find_next_bit(array
->bitmap
, MAX_RT_PRIO
, idx
+1);
912 static DEFINE_PER_CPU(cpumask_t
, local_cpu_mask
);
914 static inline int pick_optimal_cpu(int this_cpu
, cpumask_t
*mask
)
918 /* "this_cpu" is cheaper to preempt than a remote processor */
919 if ((this_cpu
!= -1) && cpu_isset(this_cpu
, *mask
))
922 first
= first_cpu(*mask
);
923 if (first
!= NR_CPUS
)
929 static int find_lowest_rq(struct task_struct
*task
)
931 struct sched_domain
*sd
;
932 cpumask_t
*lowest_mask
= &__get_cpu_var(local_cpu_mask
);
933 int this_cpu
= smp_processor_id();
934 int cpu
= task_cpu(task
);
936 if (task
->rt
.nr_cpus_allowed
== 1)
937 return -1; /* No other targets possible */
939 if (!cpupri_find(&task_rq(task
)->rd
->cpupri
, task
, lowest_mask
))
940 return -1; /* No targets found */
943 * Only consider CPUs that are usable for migration.
944 * I guess we might want to change cpupri_find() to ignore those
945 * in the first place.
947 cpus_and(*lowest_mask
, *lowest_mask
, cpu_active_map
);
950 * At this point we have built a mask of cpus representing the
951 * lowest priority tasks in the system. Now we want to elect
952 * the best one based on our affinity and topology.
954 * We prioritize the last cpu that the task executed on since
955 * it is most likely cache-hot in that location.
957 if (cpu_isset(cpu
, *lowest_mask
))
961 * Otherwise, we consult the sched_domains span maps to figure
962 * out which cpu is logically closest to our hot cache data.
965 this_cpu
= -1; /* Skip this_cpu opt if the same */
967 for_each_domain(cpu
, sd
) {
968 if (sd
->flags
& SD_WAKE_AFFINE
) {
969 cpumask_t domain_mask
;
972 cpus_and(domain_mask
, sd
->span
, *lowest_mask
);
974 best_cpu
= pick_optimal_cpu(this_cpu
,
982 * And finally, if there were no matches within the domains
983 * just give the caller *something* to work with from the compatible
986 return pick_optimal_cpu(this_cpu
, lowest_mask
);
989 /* Will lock the rq it finds */
990 static struct rq
*find_lock_lowest_rq(struct task_struct
*task
, struct rq
*rq
)
992 struct rq
*lowest_rq
= NULL
;
996 for (tries
= 0; tries
< RT_MAX_TRIES
; tries
++) {
997 cpu
= find_lowest_rq(task
);
999 if ((cpu
== -1) || (cpu
== rq
->cpu
))
1002 lowest_rq
= cpu_rq(cpu
);
1004 /* if the prio of this runqueue changed, try again */
1005 if (double_lock_balance(rq
, lowest_rq
)) {
1007 * We had to unlock the run queue. In
1008 * the mean time, task could have
1009 * migrated already or had its affinity changed.
1010 * Also make sure that it wasn't scheduled on its rq.
1012 if (unlikely(task_rq(task
) != rq
||
1013 !cpu_isset(lowest_rq
->cpu
,
1014 task
->cpus_allowed
) ||
1015 task_running(rq
, task
) ||
1018 spin_unlock(&lowest_rq
->lock
);
1024 /* If this rq is still suitable use it. */
1025 if (lowest_rq
->rt
.highest_prio
> task
->prio
)
1029 double_unlock_balance(rq
, lowest_rq
);
1037 * If the current CPU has more than one RT task, see if the non
1038 * running task can migrate over to a CPU that is running a task
1039 * of lesser priority.
1041 static int push_rt_task(struct rq
*rq
)
1043 struct task_struct
*next_task
;
1044 struct rq
*lowest_rq
;
1046 int paranoid
= RT_MAX_TRIES
;
1048 if (!rq
->rt
.overloaded
)
1051 next_task
= pick_next_highest_task_rt(rq
, -1);
1056 if (unlikely(next_task
== rq
->curr
)) {
1062 * It's possible that the next_task slipped in of
1063 * higher priority than current. If that's the case
1064 * just reschedule current.
1066 if (unlikely(next_task
->prio
< rq
->curr
->prio
)) {
1067 resched_task(rq
->curr
);
1071 /* We might release rq lock */
1072 get_task_struct(next_task
);
1074 /* find_lock_lowest_rq locks the rq if found */
1075 lowest_rq
= find_lock_lowest_rq(next_task
, rq
);
1077 struct task_struct
*task
;
1079 * find lock_lowest_rq releases rq->lock
1080 * so it is possible that next_task has changed.
1081 * If it has, then try again.
1083 task
= pick_next_highest_task_rt(rq
, -1);
1084 if (unlikely(task
!= next_task
) && task
&& paranoid
--) {
1085 put_task_struct(next_task
);
1092 deactivate_task(rq
, next_task
, 0);
1093 set_task_cpu(next_task
, lowest_rq
->cpu
);
1094 activate_task(lowest_rq
, next_task
, 0);
1096 resched_task(lowest_rq
->curr
);
1098 double_unlock_balance(rq
, lowest_rq
);
1102 put_task_struct(next_task
);
1108 * TODO: Currently we just use the second highest prio task on
1109 * the queue, and stop when it can't migrate (or there's
1110 * no more RT tasks). There may be a case where a lower
1111 * priority RT task has a different affinity than the
1112 * higher RT task. In this case the lower RT task could
1113 * possibly be able to migrate where as the higher priority
1114 * RT task could not. We currently ignore this issue.
1115 * Enhancements are welcome!
1117 static void push_rt_tasks(struct rq
*rq
)
1119 /* push_rt_task will return true if it moved an RT */
1120 while (push_rt_task(rq
))
1124 static int pull_rt_task(struct rq
*this_rq
)
1126 int this_cpu
= this_rq
->cpu
, ret
= 0, cpu
;
1127 struct task_struct
*p
, *next
;
1130 if (likely(!rt_overloaded(this_rq
)))
1133 next
= pick_next_task_rt(this_rq
);
1135 for_each_cpu_mask_nr(cpu
, this_rq
->rd
->rto_mask
) {
1136 if (this_cpu
== cpu
)
1139 src_rq
= cpu_rq(cpu
);
1141 * We can potentially drop this_rq's lock in
1142 * double_lock_balance, and another CPU could
1143 * steal our next task - hence we must cause
1144 * the caller to recalculate the next task
1147 if (double_lock_balance(this_rq
, src_rq
)) {
1148 struct task_struct
*old_next
= next
;
1150 next
= pick_next_task_rt(this_rq
);
1151 if (next
!= old_next
)
1156 * Are there still pullable RT tasks?
1158 if (src_rq
->rt
.rt_nr_running
<= 1)
1161 p
= pick_next_highest_task_rt(src_rq
, this_cpu
);
1164 * Do we have an RT task that preempts
1165 * the to-be-scheduled task?
1167 if (p
&& (!next
|| (p
->prio
< next
->prio
))) {
1168 WARN_ON(p
== src_rq
->curr
);
1169 WARN_ON(!p
->se
.on_rq
);
1172 * There's a chance that p is higher in priority
1173 * than what's currently running on its cpu.
1174 * This is just that p is wakeing up and hasn't
1175 * had a chance to schedule. We only pull
1176 * p if it is lower in priority than the
1177 * current task on the run queue or
1178 * this_rq next task is lower in prio than
1179 * the current task on that rq.
1181 if (p
->prio
< src_rq
->curr
->prio
||
1182 (next
&& next
->prio
< src_rq
->curr
->prio
))
1187 deactivate_task(src_rq
, p
, 0);
1188 set_task_cpu(p
, this_cpu
);
1189 activate_task(this_rq
, p
, 0);
1191 * We continue with the search, just in
1192 * case there's an even higher prio task
1193 * in another runqueue. (low likelyhood
1196 * Update next so that we won't pick a task
1197 * on another cpu with a priority lower (or equal)
1198 * than the one we just picked.
1204 double_unlock_balance(this_rq
, src_rq
);
1210 static void pre_schedule_rt(struct rq
*rq
, struct task_struct
*prev
)
1212 /* Try to pull RT tasks here if we lower this rq's prio */
1213 if (unlikely(rt_task(prev
)) && rq
->rt
.highest_prio
> prev
->prio
)
1217 static void post_schedule_rt(struct rq
*rq
)
1220 * If we have more than one rt_task queued, then
1221 * see if we can push the other rt_tasks off to other CPUS.
1222 * Note we may release the rq lock, and since
1223 * the lock was owned by prev, we need to release it
1224 * first via finish_lock_switch and then reaquire it here.
1226 if (unlikely(rq
->rt
.overloaded
)) {
1227 spin_lock_irq(&rq
->lock
);
1229 spin_unlock_irq(&rq
->lock
);
1234 * If we are not running and we are not going to reschedule soon, we should
1235 * try to push tasks away now
1237 static void task_wake_up_rt(struct rq
*rq
, struct task_struct
*p
)
1239 if (!task_running(rq
, p
) &&
1240 !test_tsk_need_resched(rq
->curr
) &&
1245 static unsigned long
1246 load_balance_rt(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1247 unsigned long max_load_move
,
1248 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1249 int *all_pinned
, int *this_best_prio
)
1251 /* don't touch RT tasks */
1256 move_one_task_rt(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1257 struct sched_domain
*sd
, enum cpu_idle_type idle
)
1259 /* don't touch RT tasks */
1263 static void set_cpus_allowed_rt(struct task_struct
*p
,
1264 const cpumask_t
*new_mask
)
1266 int weight
= cpus_weight(*new_mask
);
1268 BUG_ON(!rt_task(p
));
1271 * Update the migration status of the RQ if we have an RT task
1272 * which is running AND changing its weight value.
1274 if (p
->se
.on_rq
&& (weight
!= p
->rt
.nr_cpus_allowed
)) {
1275 struct rq
*rq
= task_rq(p
);
1277 if ((p
->rt
.nr_cpus_allowed
<= 1) && (weight
> 1)) {
1278 rq
->rt
.rt_nr_migratory
++;
1279 } else if ((p
->rt
.nr_cpus_allowed
> 1) && (weight
<= 1)) {
1280 BUG_ON(!rq
->rt
.rt_nr_migratory
);
1281 rq
->rt
.rt_nr_migratory
--;
1284 update_rt_migration(rq
);
1287 p
->cpus_allowed
= *new_mask
;
1288 p
->rt
.nr_cpus_allowed
= weight
;
1291 /* Assumes rq->lock is held */
1292 static void rq_online_rt(struct rq
*rq
)
1294 if (rq
->rt
.overloaded
)
1295 rt_set_overload(rq
);
1297 __enable_runtime(rq
);
1299 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, rq
->rt
.highest_prio
);
1302 /* Assumes rq->lock is held */
1303 static void rq_offline_rt(struct rq
*rq
)
1305 if (rq
->rt
.overloaded
)
1306 rt_clear_overload(rq
);
1308 __disable_runtime(rq
);
1310 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, CPUPRI_INVALID
);
1314 * When switch from the rt queue, we bring ourselves to a position
1315 * that we might want to pull RT tasks from other runqueues.
1317 static void switched_from_rt(struct rq
*rq
, struct task_struct
*p
,
1321 * If there are other RT tasks then we will reschedule
1322 * and the scheduling of the other RT tasks will handle
1323 * the balancing. But if we are the last RT task
1324 * we may need to handle the pulling of RT tasks
1327 if (!rq
->rt
.rt_nr_running
)
1330 #endif /* CONFIG_SMP */
1333 * When switching a task to RT, we may overload the runqueue
1334 * with RT tasks. In this case we try to push them off to
1337 static void switched_to_rt(struct rq
*rq
, struct task_struct
*p
,
1340 int check_resched
= 1;
1343 * If we are already running, then there's nothing
1344 * that needs to be done. But if we are not running
1345 * we may need to preempt the current running task.
1346 * If that current running task is also an RT task
1347 * then see if we can move to another run queue.
1351 if (rq
->rt
.overloaded
&& push_rt_task(rq
) &&
1352 /* Don't resched if we changed runqueues */
1355 #endif /* CONFIG_SMP */
1356 if (check_resched
&& p
->prio
< rq
->curr
->prio
)
1357 resched_task(rq
->curr
);
1362 * Priority of the task has changed. This may cause
1363 * us to initiate a push or pull.
1365 static void prio_changed_rt(struct rq
*rq
, struct task_struct
*p
,
1366 int oldprio
, int running
)
1371 * If our priority decreases while running, we
1372 * may need to pull tasks to this runqueue.
1374 if (oldprio
< p
->prio
)
1377 * If there's a higher priority task waiting to run
1378 * then reschedule. Note, the above pull_rt_task
1379 * can release the rq lock and p could migrate.
1380 * Only reschedule if p is still on the same runqueue.
1382 if (p
->prio
> rq
->rt
.highest_prio
&& rq
->curr
== p
)
1385 /* For UP simply resched on drop of prio */
1386 if (oldprio
< p
->prio
)
1388 #endif /* CONFIG_SMP */
1391 * This task is not running, but if it is
1392 * greater than the current running task
1395 if (p
->prio
< rq
->curr
->prio
)
1396 resched_task(rq
->curr
);
1400 static void watchdog(struct rq
*rq
, struct task_struct
*p
)
1402 unsigned long soft
, hard
;
1407 soft
= p
->signal
->rlim
[RLIMIT_RTTIME
].rlim_cur
;
1408 hard
= p
->signal
->rlim
[RLIMIT_RTTIME
].rlim_max
;
1410 if (soft
!= RLIM_INFINITY
) {
1414 next
= DIV_ROUND_UP(min(soft
, hard
), USEC_PER_SEC
/HZ
);
1415 if (p
->rt
.timeout
> next
)
1416 p
->it_sched_expires
= p
->se
.sum_exec_runtime
;
1420 static void task_tick_rt(struct rq
*rq
, struct task_struct
*p
, int queued
)
1427 * RR tasks need a special form of timeslice management.
1428 * FIFO tasks have no timeslices.
1430 if (p
->policy
!= SCHED_RR
)
1433 if (--p
->rt
.time_slice
)
1436 p
->rt
.time_slice
= DEF_TIMESLICE
;
1439 * Requeue to the end of queue if we are not the only element
1442 if (p
->rt
.run_list
.prev
!= p
->rt
.run_list
.next
) {
1443 requeue_task_rt(rq
, p
, 0);
1444 set_tsk_need_resched(p
);
1448 static void set_curr_task_rt(struct rq
*rq
)
1450 struct task_struct
*p
= rq
->curr
;
1452 p
->se
.exec_start
= rq
->clock
;
1455 static const struct sched_class rt_sched_class
= {
1456 .next
= &fair_sched_class
,
1457 .enqueue_task
= enqueue_task_rt
,
1458 .dequeue_task
= dequeue_task_rt
,
1459 .yield_task
= yield_task_rt
,
1461 .select_task_rq
= select_task_rq_rt
,
1462 #endif /* CONFIG_SMP */
1464 .check_preempt_curr
= check_preempt_curr_rt
,
1466 .pick_next_task
= pick_next_task_rt
,
1467 .put_prev_task
= put_prev_task_rt
,
1470 .load_balance
= load_balance_rt
,
1471 .move_one_task
= move_one_task_rt
,
1472 .set_cpus_allowed
= set_cpus_allowed_rt
,
1473 .rq_online
= rq_online_rt
,
1474 .rq_offline
= rq_offline_rt
,
1475 .pre_schedule
= pre_schedule_rt
,
1476 .post_schedule
= post_schedule_rt
,
1477 .task_wake_up
= task_wake_up_rt
,
1478 .switched_from
= switched_from_rt
,
1481 .set_curr_task
= set_curr_task_rt
,
1482 .task_tick
= task_tick_rt
,
1484 .prio_changed
= prio_changed_rt
,
1485 .switched_to
= switched_to_rt
,
1488 #ifdef CONFIG_SCHED_DEBUG
1489 extern void print_rt_rq(struct seq_file
*m
, int cpu
, struct rt_rq
*rt_rq
);
1491 static void print_rt_stats(struct seq_file
*m
, int cpu
)
1493 struct rt_rq
*rt_rq
;
1496 for_each_leaf_rt_rq(rt_rq
, cpu_rq(cpu
))
1497 print_rt_rq(m
, cpu
, rt_rq
);
1500 #endif /* CONFIG_SCHED_DEBUG */