4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/security.h>
28 #include <linux/backing-dev.h>
29 #include <linux/mutex.h>
30 #include <linux/capability.h>
31 #include <linux/syscalls.h>
32 #include <linux/memcontrol.h>
34 #include <asm/pgtable.h>
35 #include <asm/tlbflush.h>
36 #include <linux/swapops.h>
37 #include <linux/page_cgroup.h>
39 static bool swap_count_continued(struct swap_info_struct
*, pgoff_t
,
41 static void free_swap_count_continuations(struct swap_info_struct
*);
42 static sector_t
map_swap_entry(swp_entry_t
, struct block_device
**);
44 static DEFINE_SPINLOCK(swap_lock
);
45 static unsigned int nr_swapfiles
;
47 long total_swap_pages
;
48 static int least_priority
;
50 static bool swap_for_hibernation
;
52 static const char Bad_file
[] = "Bad swap file entry ";
53 static const char Unused_file
[] = "Unused swap file entry ";
54 static const char Bad_offset
[] = "Bad swap offset entry ";
55 static const char Unused_offset
[] = "Unused swap offset entry ";
57 static struct swap_list_t swap_list
= {-1, -1};
59 static struct swap_info_struct
*swap_info
[MAX_SWAPFILES
];
61 static DEFINE_MUTEX(swapon_mutex
);
63 static inline unsigned char swap_count(unsigned char ent
)
65 return ent
& ~SWAP_HAS_CACHE
; /* may include SWAP_HAS_CONT flag */
68 /* returns 1 if swap entry is freed */
70 __try_to_reclaim_swap(struct swap_info_struct
*si
, unsigned long offset
)
72 swp_entry_t entry
= swp_entry(si
->type
, offset
);
76 page
= find_get_page(&swapper_space
, entry
.val
);
80 * This function is called from scan_swap_map() and it's called
81 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
82 * We have to use trylock for avoiding deadlock. This is a special
83 * case and you should use try_to_free_swap() with explicit lock_page()
84 * in usual operations.
86 if (trylock_page(page
)) {
87 ret
= try_to_free_swap(page
);
90 page_cache_release(page
);
95 * We need this because the bdev->unplug_fn can sleep and we cannot
96 * hold swap_lock while calling the unplug_fn. And swap_lock
97 * cannot be turned into a mutex.
99 static DECLARE_RWSEM(swap_unplug_sem
);
101 void swap_unplug_io_fn(struct backing_dev_info
*unused_bdi
, struct page
*page
)
105 down_read(&swap_unplug_sem
);
106 entry
.val
= page_private(page
);
107 if (PageSwapCache(page
)) {
108 struct block_device
*bdev
= swap_info
[swp_type(entry
)]->bdev
;
109 struct backing_dev_info
*bdi
;
112 * If the page is removed from swapcache from under us (with a
113 * racy try_to_unuse/swapoff) we need an additional reference
114 * count to avoid reading garbage from page_private(page) above.
115 * If the WARN_ON triggers during a swapoff it maybe the race
116 * condition and it's harmless. However if it triggers without
117 * swapoff it signals a problem.
119 WARN_ON(page_count(page
) <= 1);
121 bdi
= bdev
->bd_inode
->i_mapping
->backing_dev_info
;
122 blk_run_backing_dev(bdi
, page
);
124 up_read(&swap_unplug_sem
);
128 * swapon tell device that all the old swap contents can be discarded,
129 * to allow the swap device to optimize its wear-levelling.
131 static int discard_swap(struct swap_info_struct
*si
)
133 struct swap_extent
*se
;
134 sector_t start_block
;
138 /* Do not discard the swap header page! */
139 se
= &si
->first_swap_extent
;
140 start_block
= (se
->start_block
+ 1) << (PAGE_SHIFT
- 9);
141 nr_blocks
= ((sector_t
)se
->nr_pages
- 1) << (PAGE_SHIFT
- 9);
143 err
= blkdev_issue_discard(si
->bdev
, start_block
,
144 nr_blocks
, GFP_KERNEL
,
145 BLKDEV_IFL_WAIT
| BLKDEV_IFL_BARRIER
);
151 list_for_each_entry(se
, &si
->first_swap_extent
.list
, list
) {
152 start_block
= se
->start_block
<< (PAGE_SHIFT
- 9);
153 nr_blocks
= (sector_t
)se
->nr_pages
<< (PAGE_SHIFT
- 9);
155 err
= blkdev_issue_discard(si
->bdev
, start_block
,
156 nr_blocks
, GFP_KERNEL
,
157 BLKDEV_IFL_WAIT
| BLKDEV_IFL_BARRIER
);
163 return err
; /* That will often be -EOPNOTSUPP */
167 * swap allocation tell device that a cluster of swap can now be discarded,
168 * to allow the swap device to optimize its wear-levelling.
170 static void discard_swap_cluster(struct swap_info_struct
*si
,
171 pgoff_t start_page
, pgoff_t nr_pages
)
173 struct swap_extent
*se
= si
->curr_swap_extent
;
174 int found_extent
= 0;
177 struct list_head
*lh
;
179 if (se
->start_page
<= start_page
&&
180 start_page
< se
->start_page
+ se
->nr_pages
) {
181 pgoff_t offset
= start_page
- se
->start_page
;
182 sector_t start_block
= se
->start_block
+ offset
;
183 sector_t nr_blocks
= se
->nr_pages
- offset
;
185 if (nr_blocks
> nr_pages
)
186 nr_blocks
= nr_pages
;
187 start_page
+= nr_blocks
;
188 nr_pages
-= nr_blocks
;
191 si
->curr_swap_extent
= se
;
193 start_block
<<= PAGE_SHIFT
- 9;
194 nr_blocks
<<= PAGE_SHIFT
- 9;
195 if (blkdev_issue_discard(si
->bdev
, start_block
,
196 nr_blocks
, GFP_NOIO
, BLKDEV_IFL_WAIT
|
202 se
= list_entry(lh
, struct swap_extent
, list
);
206 static int wait_for_discard(void *word
)
212 #define SWAPFILE_CLUSTER 256
213 #define LATENCY_LIMIT 256
215 static inline unsigned long scan_swap_map(struct swap_info_struct
*si
,
218 unsigned long offset
;
219 unsigned long scan_base
;
220 unsigned long last_in_cluster
= 0;
221 int latency_ration
= LATENCY_LIMIT
;
222 int found_free_cluster
= 0;
225 * We try to cluster swap pages by allocating them sequentially
226 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
227 * way, however, we resort to first-free allocation, starting
228 * a new cluster. This prevents us from scattering swap pages
229 * all over the entire swap partition, so that we reduce
230 * overall disk seek times between swap pages. -- sct
231 * But we do now try to find an empty cluster. -Andrea
232 * And we let swap pages go all over an SSD partition. Hugh
235 si
->flags
+= SWP_SCANNING
;
236 scan_base
= offset
= si
->cluster_next
;
238 if (unlikely(!si
->cluster_nr
--)) {
239 if (si
->pages
- si
->inuse_pages
< SWAPFILE_CLUSTER
) {
240 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
243 if (si
->flags
& SWP_DISCARDABLE
) {
245 * Start range check on racing allocations, in case
246 * they overlap the cluster we eventually decide on
247 * (we scan without swap_lock to allow preemption).
248 * It's hardly conceivable that cluster_nr could be
249 * wrapped during our scan, but don't depend on it.
251 if (si
->lowest_alloc
)
253 si
->lowest_alloc
= si
->max
;
254 si
->highest_alloc
= 0;
256 spin_unlock(&swap_lock
);
259 * If seek is expensive, start searching for new cluster from
260 * start of partition, to minimize the span of allocated swap.
261 * But if seek is cheap, search from our current position, so
262 * that swap is allocated from all over the partition: if the
263 * Flash Translation Layer only remaps within limited zones,
264 * we don't want to wear out the first zone too quickly.
266 if (!(si
->flags
& SWP_SOLIDSTATE
))
267 scan_base
= offset
= si
->lowest_bit
;
268 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
- 1;
270 /* Locate the first empty (unaligned) cluster */
271 for (; last_in_cluster
<= si
->highest_bit
; offset
++) {
272 if (si
->swap_map
[offset
])
273 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
;
274 else if (offset
== last_in_cluster
) {
275 spin_lock(&swap_lock
);
276 offset
-= SWAPFILE_CLUSTER
- 1;
277 si
->cluster_next
= offset
;
278 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
279 found_free_cluster
= 1;
282 if (unlikely(--latency_ration
< 0)) {
284 latency_ration
= LATENCY_LIMIT
;
288 offset
= si
->lowest_bit
;
289 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
- 1;
291 /* Locate the first empty (unaligned) cluster */
292 for (; last_in_cluster
< scan_base
; offset
++) {
293 if (si
->swap_map
[offset
])
294 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
;
295 else if (offset
== last_in_cluster
) {
296 spin_lock(&swap_lock
);
297 offset
-= SWAPFILE_CLUSTER
- 1;
298 si
->cluster_next
= offset
;
299 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
300 found_free_cluster
= 1;
303 if (unlikely(--latency_ration
< 0)) {
305 latency_ration
= LATENCY_LIMIT
;
310 spin_lock(&swap_lock
);
311 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
312 si
->lowest_alloc
= 0;
316 if (!(si
->flags
& SWP_WRITEOK
))
318 if (!si
->highest_bit
)
320 if (offset
> si
->highest_bit
)
321 scan_base
= offset
= si
->lowest_bit
;
323 /* reuse swap entry of cache-only swap if not hibernation. */
325 && usage
== SWAP_HAS_CACHE
326 && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
328 spin_unlock(&swap_lock
);
329 swap_was_freed
= __try_to_reclaim_swap(si
, offset
);
330 spin_lock(&swap_lock
);
331 /* entry was freed successfully, try to use this again */
334 goto scan
; /* check next one */
337 if (si
->swap_map
[offset
])
340 if (offset
== si
->lowest_bit
)
342 if (offset
== si
->highest_bit
)
345 if (si
->inuse_pages
== si
->pages
) {
346 si
->lowest_bit
= si
->max
;
349 si
->swap_map
[offset
] = usage
;
350 si
->cluster_next
= offset
+ 1;
351 si
->flags
-= SWP_SCANNING
;
353 if (si
->lowest_alloc
) {
355 * Only set when SWP_DISCARDABLE, and there's a scan
356 * for a free cluster in progress or just completed.
358 if (found_free_cluster
) {
360 * To optimize wear-levelling, discard the
361 * old data of the cluster, taking care not to
362 * discard any of its pages that have already
363 * been allocated by racing tasks (offset has
364 * already stepped over any at the beginning).
366 if (offset
< si
->highest_alloc
&&
367 si
->lowest_alloc
<= last_in_cluster
)
368 last_in_cluster
= si
->lowest_alloc
- 1;
369 si
->flags
|= SWP_DISCARDING
;
370 spin_unlock(&swap_lock
);
372 if (offset
< last_in_cluster
)
373 discard_swap_cluster(si
, offset
,
374 last_in_cluster
- offset
+ 1);
376 spin_lock(&swap_lock
);
377 si
->lowest_alloc
= 0;
378 si
->flags
&= ~SWP_DISCARDING
;
380 smp_mb(); /* wake_up_bit advises this */
381 wake_up_bit(&si
->flags
, ilog2(SWP_DISCARDING
));
383 } else if (si
->flags
& SWP_DISCARDING
) {
385 * Delay using pages allocated by racing tasks
386 * until the whole discard has been issued. We
387 * could defer that delay until swap_writepage,
388 * but it's easier to keep this self-contained.
390 spin_unlock(&swap_lock
);
391 wait_on_bit(&si
->flags
, ilog2(SWP_DISCARDING
),
392 wait_for_discard
, TASK_UNINTERRUPTIBLE
);
393 spin_lock(&swap_lock
);
396 * Note pages allocated by racing tasks while
397 * scan for a free cluster is in progress, so
398 * that its final discard can exclude them.
400 if (offset
< si
->lowest_alloc
)
401 si
->lowest_alloc
= offset
;
402 if (offset
> si
->highest_alloc
)
403 si
->highest_alloc
= offset
;
409 spin_unlock(&swap_lock
);
410 while (++offset
<= si
->highest_bit
) {
411 if (!si
->swap_map
[offset
]) {
412 spin_lock(&swap_lock
);
415 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
416 spin_lock(&swap_lock
);
419 if (unlikely(--latency_ration
< 0)) {
421 latency_ration
= LATENCY_LIMIT
;
424 offset
= si
->lowest_bit
;
425 while (++offset
< scan_base
) {
426 if (!si
->swap_map
[offset
]) {
427 spin_lock(&swap_lock
);
430 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
431 spin_lock(&swap_lock
);
434 if (unlikely(--latency_ration
< 0)) {
436 latency_ration
= LATENCY_LIMIT
;
439 spin_lock(&swap_lock
);
442 si
->flags
-= SWP_SCANNING
;
446 swp_entry_t
get_swap_page(void)
448 struct swap_info_struct
*si
;
453 spin_lock(&swap_lock
);
454 if (nr_swap_pages
<= 0)
456 if (swap_for_hibernation
)
460 for (type
= swap_list
.next
; type
>= 0 && wrapped
< 2; type
= next
) {
461 si
= swap_info
[type
];
464 (!wrapped
&& si
->prio
!= swap_info
[next
]->prio
)) {
465 next
= swap_list
.head
;
469 if (!si
->highest_bit
)
471 if (!(si
->flags
& SWP_WRITEOK
))
474 swap_list
.next
= next
;
475 /* This is called for allocating swap entry for cache */
476 offset
= scan_swap_map(si
, SWAP_HAS_CACHE
);
478 spin_unlock(&swap_lock
);
479 return swp_entry(type
, offset
);
481 next
= swap_list
.next
;
486 spin_unlock(&swap_lock
);
487 return (swp_entry_t
) {0};
490 static struct swap_info_struct
*swap_info_get(swp_entry_t entry
)
492 struct swap_info_struct
*p
;
493 unsigned long offset
, type
;
497 type
= swp_type(entry
);
498 if (type
>= nr_swapfiles
)
501 if (!(p
->flags
& SWP_USED
))
503 offset
= swp_offset(entry
);
504 if (offset
>= p
->max
)
506 if (!p
->swap_map
[offset
])
508 spin_lock(&swap_lock
);
512 printk(KERN_ERR
"swap_free: %s%08lx\n", Unused_offset
, entry
.val
);
515 printk(KERN_ERR
"swap_free: %s%08lx\n", Bad_offset
, entry
.val
);
518 printk(KERN_ERR
"swap_free: %s%08lx\n", Unused_file
, entry
.val
);
521 printk(KERN_ERR
"swap_free: %s%08lx\n", Bad_file
, entry
.val
);
526 static unsigned char swap_entry_free(struct swap_info_struct
*p
,
527 swp_entry_t entry
, unsigned char usage
)
529 unsigned long offset
= swp_offset(entry
);
531 unsigned char has_cache
;
533 count
= p
->swap_map
[offset
];
534 has_cache
= count
& SWAP_HAS_CACHE
;
535 count
&= ~SWAP_HAS_CACHE
;
537 if (usage
== SWAP_HAS_CACHE
) {
538 VM_BUG_ON(!has_cache
);
540 } else if (count
== SWAP_MAP_SHMEM
) {
542 * Or we could insist on shmem.c using a special
543 * swap_shmem_free() and free_shmem_swap_and_cache()...
546 } else if ((count
& ~COUNT_CONTINUED
) <= SWAP_MAP_MAX
) {
547 if (count
== COUNT_CONTINUED
) {
548 if (swap_count_continued(p
, offset
, count
))
549 count
= SWAP_MAP_MAX
| COUNT_CONTINUED
;
551 count
= SWAP_MAP_MAX
;
557 mem_cgroup_uncharge_swap(entry
);
559 usage
= count
| has_cache
;
560 p
->swap_map
[offset
] = usage
;
562 /* free if no reference */
564 struct gendisk
*disk
= p
->bdev
->bd_disk
;
565 if (offset
< p
->lowest_bit
)
566 p
->lowest_bit
= offset
;
567 if (offset
> p
->highest_bit
)
568 p
->highest_bit
= offset
;
569 if (swap_list
.next
>= 0 &&
570 p
->prio
> swap_info
[swap_list
.next
]->prio
)
571 swap_list
.next
= p
->type
;
574 if ((p
->flags
& SWP_BLKDEV
) &&
575 disk
->fops
->swap_slot_free_notify
)
576 disk
->fops
->swap_slot_free_notify(p
->bdev
, offset
);
583 * Caller has made sure that the swapdevice corresponding to entry
584 * is still around or has not been recycled.
586 void swap_free(swp_entry_t entry
)
588 struct swap_info_struct
*p
;
590 p
= swap_info_get(entry
);
592 swap_entry_free(p
, entry
, 1);
593 spin_unlock(&swap_lock
);
598 * Called after dropping swapcache to decrease refcnt to swap entries.
600 void swapcache_free(swp_entry_t entry
, struct page
*page
)
602 struct swap_info_struct
*p
;
605 p
= swap_info_get(entry
);
607 count
= swap_entry_free(p
, entry
, SWAP_HAS_CACHE
);
609 mem_cgroup_uncharge_swapcache(page
, entry
, count
!= 0);
610 spin_unlock(&swap_lock
);
615 * How many references to page are currently swapped out?
616 * This does not give an exact answer when swap count is continued,
617 * but does include the high COUNT_CONTINUED flag to allow for that.
619 static inline int page_swapcount(struct page
*page
)
622 struct swap_info_struct
*p
;
625 entry
.val
= page_private(page
);
626 p
= swap_info_get(entry
);
628 count
= swap_count(p
->swap_map
[swp_offset(entry
)]);
629 spin_unlock(&swap_lock
);
635 * We can write to an anon page without COW if there are no other references
636 * to it. And as a side-effect, free up its swap: because the old content
637 * on disk will never be read, and seeking back there to write new content
638 * later would only waste time away from clustering.
640 int reuse_swap_page(struct page
*page
)
644 VM_BUG_ON(!PageLocked(page
));
645 if (unlikely(PageKsm(page
)))
647 count
= page_mapcount(page
);
648 if (count
<= 1 && PageSwapCache(page
)) {
649 count
+= page_swapcount(page
);
650 if (count
== 1 && !PageWriteback(page
)) {
651 delete_from_swap_cache(page
);
659 * If swap is getting full, or if there are no more mappings of this page,
660 * then try_to_free_swap is called to free its swap space.
662 int try_to_free_swap(struct page
*page
)
664 VM_BUG_ON(!PageLocked(page
));
666 if (!PageSwapCache(page
))
668 if (PageWriteback(page
))
670 if (page_swapcount(page
))
673 delete_from_swap_cache(page
);
679 * Free the swap entry like above, but also try to
680 * free the page cache entry if it is the last user.
682 int free_swap_and_cache(swp_entry_t entry
)
684 struct swap_info_struct
*p
;
685 struct page
*page
= NULL
;
687 if (non_swap_entry(entry
))
690 p
= swap_info_get(entry
);
692 if (swap_entry_free(p
, entry
, 1) == SWAP_HAS_CACHE
) {
693 page
= find_get_page(&swapper_space
, entry
.val
);
694 if (page
&& !trylock_page(page
)) {
695 page_cache_release(page
);
699 spin_unlock(&swap_lock
);
703 * Not mapped elsewhere, or swap space full? Free it!
704 * Also recheck PageSwapCache now page is locked (above).
706 if (PageSwapCache(page
) && !PageWriteback(page
) &&
707 (!page_mapped(page
) || vm_swap_full())) {
708 delete_from_swap_cache(page
);
712 page_cache_release(page
);
717 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
719 * mem_cgroup_count_swap_user - count the user of a swap entry
720 * @ent: the swap entry to be checked
721 * @pagep: the pointer for the swap cache page of the entry to be stored
723 * Returns the number of the user of the swap entry. The number is valid only
724 * for swaps of anonymous pages.
725 * If the entry is found on swap cache, the page is stored to pagep with
726 * refcount of it being incremented.
728 int mem_cgroup_count_swap_user(swp_entry_t ent
, struct page
**pagep
)
731 struct swap_info_struct
*p
;
734 page
= find_get_page(&swapper_space
, ent
.val
);
736 count
+= page_mapcount(page
);
737 p
= swap_info_get(ent
);
739 count
+= swap_count(p
->swap_map
[swp_offset(ent
)]);
740 spin_unlock(&swap_lock
);
748 #ifdef CONFIG_HIBERNATION
750 static pgoff_t hibernation_offset
[MAX_SWAPFILES
];
752 * Once hibernation starts to use swap, we freeze swap_map[]. Otherwise,
753 * saved swap_map[] image to the disk will be an incomplete because it's
754 * changing without synchronization with hibernation snap shot.
755 * At resume, we just make swap_for_hibernation=false. We can forget
758 void hibernation_freeze_swap(void)
762 spin_lock(&swap_lock
);
764 printk(KERN_INFO
"PM: Freeze Swap\n");
765 swap_for_hibernation
= true;
766 for (i
= 0; i
< MAX_SWAPFILES
; i
++)
767 hibernation_offset
[i
] = 1;
768 spin_unlock(&swap_lock
);
771 void hibernation_thaw_swap(void)
773 spin_lock(&swap_lock
);
774 if (swap_for_hibernation
) {
775 printk(KERN_INFO
"PM: Thaw Swap\n");
776 swap_for_hibernation
= false;
778 spin_unlock(&swap_lock
);
782 * Because updateing swap_map[] can make not-saved-status-change,
783 * we use our own easy allocator.
784 * Please see kernel/power/swap.c, Used swaps are recorded into
787 swp_entry_t
get_swap_for_hibernation(int type
)
790 swp_entry_t val
= {0};
791 struct swap_info_struct
*si
;
793 spin_lock(&swap_lock
);
795 si
= swap_info
[type
];
796 if (!si
|| !(si
->flags
& SWP_WRITEOK
))
799 for (off
= hibernation_offset
[type
]; off
< si
->max
; ++off
) {
800 if (!si
->swap_map
[off
])
804 val
= swp_entry(type
, off
);
805 hibernation_offset
[type
] = off
+ 1;
808 spin_unlock(&swap_lock
);
812 void swap_free_for_hibernation(swp_entry_t ent
)
818 * Find the swap type that corresponds to given device (if any).
820 * @offset - number of the PAGE_SIZE-sized block of the device, starting
821 * from 0, in which the swap header is expected to be located.
823 * This is needed for the suspend to disk (aka swsusp).
825 int swap_type_of(dev_t device
, sector_t offset
, struct block_device
**bdev_p
)
827 struct block_device
*bdev
= NULL
;
831 bdev
= bdget(device
);
833 spin_lock(&swap_lock
);
834 for (type
= 0; type
< nr_swapfiles
; type
++) {
835 struct swap_info_struct
*sis
= swap_info
[type
];
837 if (!(sis
->flags
& SWP_WRITEOK
))
842 *bdev_p
= bdgrab(sis
->bdev
);
844 spin_unlock(&swap_lock
);
847 if (bdev
== sis
->bdev
) {
848 struct swap_extent
*se
= &sis
->first_swap_extent
;
850 if (se
->start_block
== offset
) {
852 *bdev_p
= bdgrab(sis
->bdev
);
854 spin_unlock(&swap_lock
);
860 spin_unlock(&swap_lock
);
868 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
869 * corresponding to given index in swap_info (swap type).
871 sector_t
swapdev_block(int type
, pgoff_t offset
)
873 struct block_device
*bdev
;
875 if ((unsigned int)type
>= nr_swapfiles
)
877 if (!(swap_info
[type
]->flags
& SWP_WRITEOK
))
879 return map_swap_entry(swp_entry(type
, offset
), &bdev
);
883 * Return either the total number of swap pages of given type, or the number
884 * of free pages of that type (depending on @free)
886 * This is needed for software suspend
888 unsigned int count_swap_pages(int type
, int free
)
892 spin_lock(&swap_lock
);
893 if ((unsigned int)type
< nr_swapfiles
) {
894 struct swap_info_struct
*sis
= swap_info
[type
];
896 if (sis
->flags
& SWP_WRITEOK
) {
899 n
-= sis
->inuse_pages
;
902 spin_unlock(&swap_lock
);
905 #endif /* CONFIG_HIBERNATION */
908 * No need to decide whether this PTE shares the swap entry with others,
909 * just let do_wp_page work it out if a write is requested later - to
910 * force COW, vm_page_prot omits write permission from any private vma.
912 static int unuse_pte(struct vm_area_struct
*vma
, pmd_t
*pmd
,
913 unsigned long addr
, swp_entry_t entry
, struct page
*page
)
915 struct mem_cgroup
*ptr
= NULL
;
920 if (mem_cgroup_try_charge_swapin(vma
->vm_mm
, page
, GFP_KERNEL
, &ptr
)) {
925 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
926 if (unlikely(!pte_same(*pte
, swp_entry_to_pte(entry
)))) {
928 mem_cgroup_cancel_charge_swapin(ptr
);
933 dec_mm_counter(vma
->vm_mm
, MM_SWAPENTS
);
934 inc_mm_counter(vma
->vm_mm
, MM_ANONPAGES
);
936 set_pte_at(vma
->vm_mm
, addr
, pte
,
937 pte_mkold(mk_pte(page
, vma
->vm_page_prot
)));
938 page_add_anon_rmap(page
, vma
, addr
);
939 mem_cgroup_commit_charge_swapin(page
, ptr
);
942 * Move the page to the active list so it is not
943 * immediately swapped out again after swapon.
947 pte_unmap_unlock(pte
, ptl
);
952 static int unuse_pte_range(struct vm_area_struct
*vma
, pmd_t
*pmd
,
953 unsigned long addr
, unsigned long end
,
954 swp_entry_t entry
, struct page
*page
)
956 pte_t swp_pte
= swp_entry_to_pte(entry
);
961 * We don't actually need pte lock while scanning for swp_pte: since
962 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
963 * page table while we're scanning; though it could get zapped, and on
964 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
965 * of unmatched parts which look like swp_pte, so unuse_pte must
966 * recheck under pte lock. Scanning without pte lock lets it be
967 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
969 pte
= pte_offset_map(pmd
, addr
);
972 * swapoff spends a _lot_ of time in this loop!
973 * Test inline before going to call unuse_pte.
975 if (unlikely(pte_same(*pte
, swp_pte
))) {
977 ret
= unuse_pte(vma
, pmd
, addr
, entry
, page
);
980 pte
= pte_offset_map(pmd
, addr
);
982 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
988 static inline int unuse_pmd_range(struct vm_area_struct
*vma
, pud_t
*pud
,
989 unsigned long addr
, unsigned long end
,
990 swp_entry_t entry
, struct page
*page
)
996 pmd
= pmd_offset(pud
, addr
);
998 next
= pmd_addr_end(addr
, end
);
999 if (pmd_none_or_clear_bad(pmd
))
1001 ret
= unuse_pte_range(vma
, pmd
, addr
, next
, entry
, page
);
1004 } while (pmd
++, addr
= next
, addr
!= end
);
1008 static inline int unuse_pud_range(struct vm_area_struct
*vma
, pgd_t
*pgd
,
1009 unsigned long addr
, unsigned long end
,
1010 swp_entry_t entry
, struct page
*page
)
1016 pud
= pud_offset(pgd
, addr
);
1018 next
= pud_addr_end(addr
, end
);
1019 if (pud_none_or_clear_bad(pud
))
1021 ret
= unuse_pmd_range(vma
, pud
, addr
, next
, entry
, page
);
1024 } while (pud
++, addr
= next
, addr
!= end
);
1028 static int unuse_vma(struct vm_area_struct
*vma
,
1029 swp_entry_t entry
, struct page
*page
)
1032 unsigned long addr
, end
, next
;
1035 if (page_anon_vma(page
)) {
1036 addr
= page_address_in_vma(page
, vma
);
1037 if (addr
== -EFAULT
)
1040 end
= addr
+ PAGE_SIZE
;
1042 addr
= vma
->vm_start
;
1046 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1048 next
= pgd_addr_end(addr
, end
);
1049 if (pgd_none_or_clear_bad(pgd
))
1051 ret
= unuse_pud_range(vma
, pgd
, addr
, next
, entry
, page
);
1054 } while (pgd
++, addr
= next
, addr
!= end
);
1058 static int unuse_mm(struct mm_struct
*mm
,
1059 swp_entry_t entry
, struct page
*page
)
1061 struct vm_area_struct
*vma
;
1064 if (!down_read_trylock(&mm
->mmap_sem
)) {
1066 * Activate page so shrink_inactive_list is unlikely to unmap
1067 * its ptes while lock is dropped, so swapoff can make progress.
1069 activate_page(page
);
1071 down_read(&mm
->mmap_sem
);
1074 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
1075 if (vma
->anon_vma
&& (ret
= unuse_vma(vma
, entry
, page
)))
1078 up_read(&mm
->mmap_sem
);
1079 return (ret
< 0)? ret
: 0;
1083 * Scan swap_map from current position to next entry still in use.
1084 * Recycle to start on reaching the end, returning 0 when empty.
1086 static unsigned int find_next_to_unuse(struct swap_info_struct
*si
,
1089 unsigned int max
= si
->max
;
1090 unsigned int i
= prev
;
1091 unsigned char count
;
1094 * No need for swap_lock here: we're just looking
1095 * for whether an entry is in use, not modifying it; false
1096 * hits are okay, and sys_swapoff() has already prevented new
1097 * allocations from this area (while holding swap_lock).
1106 * No entries in use at top of swap_map,
1107 * loop back to start and recheck there.
1113 count
= si
->swap_map
[i
];
1114 if (count
&& swap_count(count
) != SWAP_MAP_BAD
)
1121 * We completely avoid races by reading each swap page in advance,
1122 * and then search for the process using it. All the necessary
1123 * page table adjustments can then be made atomically.
1125 static int try_to_unuse(unsigned int type
)
1127 struct swap_info_struct
*si
= swap_info
[type
];
1128 struct mm_struct
*start_mm
;
1129 unsigned char *swap_map
;
1130 unsigned char swcount
;
1137 * When searching mms for an entry, a good strategy is to
1138 * start at the first mm we freed the previous entry from
1139 * (though actually we don't notice whether we or coincidence
1140 * freed the entry). Initialize this start_mm with a hold.
1142 * A simpler strategy would be to start at the last mm we
1143 * freed the previous entry from; but that would take less
1144 * advantage of mmlist ordering, which clusters forked mms
1145 * together, child after parent. If we race with dup_mmap(), we
1146 * prefer to resolve parent before child, lest we miss entries
1147 * duplicated after we scanned child: using last mm would invert
1150 start_mm
= &init_mm
;
1151 atomic_inc(&init_mm
.mm_users
);
1154 * Keep on scanning until all entries have gone. Usually,
1155 * one pass through swap_map is enough, but not necessarily:
1156 * there are races when an instance of an entry might be missed.
1158 while ((i
= find_next_to_unuse(si
, i
)) != 0) {
1159 if (signal_pending(current
)) {
1165 * Get a page for the entry, using the existing swap
1166 * cache page if there is one. Otherwise, get a clean
1167 * page and read the swap into it.
1169 swap_map
= &si
->swap_map
[i
];
1170 entry
= swp_entry(type
, i
);
1171 page
= read_swap_cache_async(entry
,
1172 GFP_HIGHUSER_MOVABLE
, NULL
, 0);
1175 * Either swap_duplicate() failed because entry
1176 * has been freed independently, and will not be
1177 * reused since sys_swapoff() already disabled
1178 * allocation from here, or alloc_page() failed.
1187 * Don't hold on to start_mm if it looks like exiting.
1189 if (atomic_read(&start_mm
->mm_users
) == 1) {
1191 start_mm
= &init_mm
;
1192 atomic_inc(&init_mm
.mm_users
);
1196 * Wait for and lock page. When do_swap_page races with
1197 * try_to_unuse, do_swap_page can handle the fault much
1198 * faster than try_to_unuse can locate the entry. This
1199 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1200 * defer to do_swap_page in such a case - in some tests,
1201 * do_swap_page and try_to_unuse repeatedly compete.
1203 wait_on_page_locked(page
);
1204 wait_on_page_writeback(page
);
1206 wait_on_page_writeback(page
);
1209 * Remove all references to entry.
1211 swcount
= *swap_map
;
1212 if (swap_count(swcount
) == SWAP_MAP_SHMEM
) {
1213 retval
= shmem_unuse(entry
, page
);
1214 /* page has already been unlocked and released */
1219 if (swap_count(swcount
) && start_mm
!= &init_mm
)
1220 retval
= unuse_mm(start_mm
, entry
, page
);
1222 if (swap_count(*swap_map
)) {
1223 int set_start_mm
= (*swap_map
>= swcount
);
1224 struct list_head
*p
= &start_mm
->mmlist
;
1225 struct mm_struct
*new_start_mm
= start_mm
;
1226 struct mm_struct
*prev_mm
= start_mm
;
1227 struct mm_struct
*mm
;
1229 atomic_inc(&new_start_mm
->mm_users
);
1230 atomic_inc(&prev_mm
->mm_users
);
1231 spin_lock(&mmlist_lock
);
1232 while (swap_count(*swap_map
) && !retval
&&
1233 (p
= p
->next
) != &start_mm
->mmlist
) {
1234 mm
= list_entry(p
, struct mm_struct
, mmlist
);
1235 if (!atomic_inc_not_zero(&mm
->mm_users
))
1237 spin_unlock(&mmlist_lock
);
1243 swcount
= *swap_map
;
1244 if (!swap_count(swcount
)) /* any usage ? */
1246 else if (mm
== &init_mm
)
1249 retval
= unuse_mm(mm
, entry
, page
);
1251 if (set_start_mm
&& *swap_map
< swcount
) {
1252 mmput(new_start_mm
);
1253 atomic_inc(&mm
->mm_users
);
1257 spin_lock(&mmlist_lock
);
1259 spin_unlock(&mmlist_lock
);
1262 start_mm
= new_start_mm
;
1266 page_cache_release(page
);
1271 * If a reference remains (rare), we would like to leave
1272 * the page in the swap cache; but try_to_unmap could
1273 * then re-duplicate the entry once we drop page lock,
1274 * so we might loop indefinitely; also, that page could
1275 * not be swapped out to other storage meanwhile. So:
1276 * delete from cache even if there's another reference,
1277 * after ensuring that the data has been saved to disk -
1278 * since if the reference remains (rarer), it will be
1279 * read from disk into another page. Splitting into two
1280 * pages would be incorrect if swap supported "shared
1281 * private" pages, but they are handled by tmpfs files.
1283 * Given how unuse_vma() targets one particular offset
1284 * in an anon_vma, once the anon_vma has been determined,
1285 * this splitting happens to be just what is needed to
1286 * handle where KSM pages have been swapped out: re-reading
1287 * is unnecessarily slow, but we can fix that later on.
1289 if (swap_count(*swap_map
) &&
1290 PageDirty(page
) && PageSwapCache(page
)) {
1291 struct writeback_control wbc
= {
1292 .sync_mode
= WB_SYNC_NONE
,
1295 swap_writepage(page
, &wbc
);
1297 wait_on_page_writeback(page
);
1301 * It is conceivable that a racing task removed this page from
1302 * swap cache just before we acquired the page lock at the top,
1303 * or while we dropped it in unuse_mm(). The page might even
1304 * be back in swap cache on another swap area: that we must not
1305 * delete, since it may not have been written out to swap yet.
1307 if (PageSwapCache(page
) &&
1308 likely(page_private(page
) == entry
.val
))
1309 delete_from_swap_cache(page
);
1312 * So we could skip searching mms once swap count went
1313 * to 1, we did not mark any present ptes as dirty: must
1314 * mark page dirty so shrink_page_list will preserve it.
1318 page_cache_release(page
);
1321 * Make sure that we aren't completely killing
1322 * interactive performance.
1332 * After a successful try_to_unuse, if no swap is now in use, we know
1333 * we can empty the mmlist. swap_lock must be held on entry and exit.
1334 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1335 * added to the mmlist just after page_duplicate - before would be racy.
1337 static void drain_mmlist(void)
1339 struct list_head
*p
, *next
;
1342 for (type
= 0; type
< nr_swapfiles
; type
++)
1343 if (swap_info
[type
]->inuse_pages
)
1345 spin_lock(&mmlist_lock
);
1346 list_for_each_safe(p
, next
, &init_mm
.mmlist
)
1348 spin_unlock(&mmlist_lock
);
1352 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1353 * corresponds to page offset for the specified swap entry.
1354 * Note that the type of this function is sector_t, but it returns page offset
1355 * into the bdev, not sector offset.
1357 static sector_t
map_swap_entry(swp_entry_t entry
, struct block_device
**bdev
)
1359 struct swap_info_struct
*sis
;
1360 struct swap_extent
*start_se
;
1361 struct swap_extent
*se
;
1364 sis
= swap_info
[swp_type(entry
)];
1367 offset
= swp_offset(entry
);
1368 start_se
= sis
->curr_swap_extent
;
1372 struct list_head
*lh
;
1374 if (se
->start_page
<= offset
&&
1375 offset
< (se
->start_page
+ se
->nr_pages
)) {
1376 return se
->start_block
+ (offset
- se
->start_page
);
1379 se
= list_entry(lh
, struct swap_extent
, list
);
1380 sis
->curr_swap_extent
= se
;
1381 BUG_ON(se
== start_se
); /* It *must* be present */
1386 * Returns the page offset into bdev for the specified page's swap entry.
1388 sector_t
map_swap_page(struct page
*page
, struct block_device
**bdev
)
1391 entry
.val
= page_private(page
);
1392 return map_swap_entry(entry
, bdev
);
1396 * Free all of a swapdev's extent information
1398 static void destroy_swap_extents(struct swap_info_struct
*sis
)
1400 while (!list_empty(&sis
->first_swap_extent
.list
)) {
1401 struct swap_extent
*se
;
1403 se
= list_entry(sis
->first_swap_extent
.list
.next
,
1404 struct swap_extent
, list
);
1405 list_del(&se
->list
);
1411 * Add a block range (and the corresponding page range) into this swapdev's
1412 * extent list. The extent list is kept sorted in page order.
1414 * This function rather assumes that it is called in ascending page order.
1417 add_swap_extent(struct swap_info_struct
*sis
, unsigned long start_page
,
1418 unsigned long nr_pages
, sector_t start_block
)
1420 struct swap_extent
*se
;
1421 struct swap_extent
*new_se
;
1422 struct list_head
*lh
;
1424 if (start_page
== 0) {
1425 se
= &sis
->first_swap_extent
;
1426 sis
->curr_swap_extent
= se
;
1428 se
->nr_pages
= nr_pages
;
1429 se
->start_block
= start_block
;
1432 lh
= sis
->first_swap_extent
.list
.prev
; /* Highest extent */
1433 se
= list_entry(lh
, struct swap_extent
, list
);
1434 BUG_ON(se
->start_page
+ se
->nr_pages
!= start_page
);
1435 if (se
->start_block
+ se
->nr_pages
== start_block
) {
1437 se
->nr_pages
+= nr_pages
;
1443 * No merge. Insert a new extent, preserving ordering.
1445 new_se
= kmalloc(sizeof(*se
), GFP_KERNEL
);
1448 new_se
->start_page
= start_page
;
1449 new_se
->nr_pages
= nr_pages
;
1450 new_se
->start_block
= start_block
;
1452 list_add_tail(&new_se
->list
, &sis
->first_swap_extent
.list
);
1457 * A `swap extent' is a simple thing which maps a contiguous range of pages
1458 * onto a contiguous range of disk blocks. An ordered list of swap extents
1459 * is built at swapon time and is then used at swap_writepage/swap_readpage
1460 * time for locating where on disk a page belongs.
1462 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1463 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1464 * swap files identically.
1466 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1467 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1468 * swapfiles are handled *identically* after swapon time.
1470 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1471 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1472 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1473 * requirements, they are simply tossed out - we will never use those blocks
1476 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1477 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1478 * which will scribble on the fs.
1480 * The amount of disk space which a single swap extent represents varies.
1481 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1482 * extents in the list. To avoid much list walking, we cache the previous
1483 * search location in `curr_swap_extent', and start new searches from there.
1484 * This is extremely effective. The average number of iterations in
1485 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1487 static int setup_swap_extents(struct swap_info_struct
*sis
, sector_t
*span
)
1489 struct inode
*inode
;
1490 unsigned blocks_per_page
;
1491 unsigned long page_no
;
1493 sector_t probe_block
;
1494 sector_t last_block
;
1495 sector_t lowest_block
= -1;
1496 sector_t highest_block
= 0;
1500 inode
= sis
->swap_file
->f_mapping
->host
;
1501 if (S_ISBLK(inode
->i_mode
)) {
1502 ret
= add_swap_extent(sis
, 0, sis
->max
, 0);
1507 blkbits
= inode
->i_blkbits
;
1508 blocks_per_page
= PAGE_SIZE
>> blkbits
;
1511 * Map all the blocks into the extent list. This code doesn't try
1516 last_block
= i_size_read(inode
) >> blkbits
;
1517 while ((probe_block
+ blocks_per_page
) <= last_block
&&
1518 page_no
< sis
->max
) {
1519 unsigned block_in_page
;
1520 sector_t first_block
;
1522 first_block
= bmap(inode
, probe_block
);
1523 if (first_block
== 0)
1527 * It must be PAGE_SIZE aligned on-disk
1529 if (first_block
& (blocks_per_page
- 1)) {
1534 for (block_in_page
= 1; block_in_page
< blocks_per_page
;
1538 block
= bmap(inode
, probe_block
+ block_in_page
);
1541 if (block
!= first_block
+ block_in_page
) {
1548 first_block
>>= (PAGE_SHIFT
- blkbits
);
1549 if (page_no
) { /* exclude the header page */
1550 if (first_block
< lowest_block
)
1551 lowest_block
= first_block
;
1552 if (first_block
> highest_block
)
1553 highest_block
= first_block
;
1557 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1559 ret
= add_swap_extent(sis
, page_no
, 1, first_block
);
1564 probe_block
+= blocks_per_page
;
1569 *span
= 1 + highest_block
- lowest_block
;
1571 page_no
= 1; /* force Empty message */
1573 sis
->pages
= page_no
- 1;
1574 sis
->highest_bit
= page_no
- 1;
1578 printk(KERN_ERR
"swapon: swapfile has holes\n");
1583 SYSCALL_DEFINE1(swapoff
, const char __user
*, specialfile
)
1585 struct swap_info_struct
*p
= NULL
;
1586 unsigned char *swap_map
;
1587 struct file
*swap_file
, *victim
;
1588 struct address_space
*mapping
;
1589 struct inode
*inode
;
1594 if (!capable(CAP_SYS_ADMIN
))
1597 pathname
= getname(specialfile
);
1598 err
= PTR_ERR(pathname
);
1599 if (IS_ERR(pathname
))
1602 victim
= filp_open(pathname
, O_RDWR
|O_LARGEFILE
, 0);
1604 err
= PTR_ERR(victim
);
1608 mapping
= victim
->f_mapping
;
1610 spin_lock(&swap_lock
);
1611 for (type
= swap_list
.head
; type
>= 0; type
= swap_info
[type
]->next
) {
1612 p
= swap_info
[type
];
1613 if (p
->flags
& SWP_WRITEOK
) {
1614 if (p
->swap_file
->f_mapping
== mapping
)
1621 spin_unlock(&swap_lock
);
1624 if (!security_vm_enough_memory(p
->pages
))
1625 vm_unacct_memory(p
->pages
);
1628 spin_unlock(&swap_lock
);
1632 swap_list
.head
= p
->next
;
1634 swap_info
[prev
]->next
= p
->next
;
1635 if (type
== swap_list
.next
) {
1636 /* just pick something that's safe... */
1637 swap_list
.next
= swap_list
.head
;
1640 for (i
= p
->next
; i
>= 0; i
= swap_info
[i
]->next
)
1641 swap_info
[i
]->prio
= p
->prio
--;
1644 nr_swap_pages
-= p
->pages
;
1645 total_swap_pages
-= p
->pages
;
1646 p
->flags
&= ~SWP_WRITEOK
;
1647 spin_unlock(&swap_lock
);
1649 current
->flags
|= PF_OOM_ORIGIN
;
1650 err
= try_to_unuse(type
);
1651 current
->flags
&= ~PF_OOM_ORIGIN
;
1654 /* re-insert swap space back into swap_list */
1655 spin_lock(&swap_lock
);
1657 p
->prio
= --least_priority
;
1659 for (i
= swap_list
.head
; i
>= 0; i
= swap_info
[i
]->next
) {
1660 if (p
->prio
>= swap_info
[i
]->prio
)
1666 swap_list
.head
= swap_list
.next
= type
;
1668 swap_info
[prev
]->next
= type
;
1669 nr_swap_pages
+= p
->pages
;
1670 total_swap_pages
+= p
->pages
;
1671 p
->flags
|= SWP_WRITEOK
;
1672 spin_unlock(&swap_lock
);
1676 /* wait for any unplug function to finish */
1677 down_write(&swap_unplug_sem
);
1678 up_write(&swap_unplug_sem
);
1680 destroy_swap_extents(p
);
1681 if (p
->flags
& SWP_CONTINUED
)
1682 free_swap_count_continuations(p
);
1684 mutex_lock(&swapon_mutex
);
1685 spin_lock(&swap_lock
);
1688 /* wait for anyone still in scan_swap_map */
1689 p
->highest_bit
= 0; /* cuts scans short */
1690 while (p
->flags
>= SWP_SCANNING
) {
1691 spin_unlock(&swap_lock
);
1692 schedule_timeout_uninterruptible(1);
1693 spin_lock(&swap_lock
);
1696 swap_file
= p
->swap_file
;
1697 p
->swap_file
= NULL
;
1699 swap_map
= p
->swap_map
;
1702 spin_unlock(&swap_lock
);
1703 mutex_unlock(&swapon_mutex
);
1705 /* Destroy swap account informatin */
1706 swap_cgroup_swapoff(type
);
1708 inode
= mapping
->host
;
1709 if (S_ISBLK(inode
->i_mode
)) {
1710 struct block_device
*bdev
= I_BDEV(inode
);
1711 set_blocksize(bdev
, p
->old_block_size
);
1714 mutex_lock(&inode
->i_mutex
);
1715 inode
->i_flags
&= ~S_SWAPFILE
;
1716 mutex_unlock(&inode
->i_mutex
);
1718 filp_close(swap_file
, NULL
);
1722 filp_close(victim
, NULL
);
1727 #ifdef CONFIG_PROC_FS
1729 static void *swap_start(struct seq_file
*swap
, loff_t
*pos
)
1731 struct swap_info_struct
*si
;
1735 mutex_lock(&swapon_mutex
);
1738 return SEQ_START_TOKEN
;
1740 for (type
= 0; type
< nr_swapfiles
; type
++) {
1741 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1742 si
= swap_info
[type
];
1743 if (!(si
->flags
& SWP_USED
) || !si
->swap_map
)
1752 static void *swap_next(struct seq_file
*swap
, void *v
, loff_t
*pos
)
1754 struct swap_info_struct
*si
= v
;
1757 if (v
== SEQ_START_TOKEN
)
1760 type
= si
->type
+ 1;
1762 for (; type
< nr_swapfiles
; type
++) {
1763 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1764 si
= swap_info
[type
];
1765 if (!(si
->flags
& SWP_USED
) || !si
->swap_map
)
1774 static void swap_stop(struct seq_file
*swap
, void *v
)
1776 mutex_unlock(&swapon_mutex
);
1779 static int swap_show(struct seq_file
*swap
, void *v
)
1781 struct swap_info_struct
*si
= v
;
1785 if (si
== SEQ_START_TOKEN
) {
1786 seq_puts(swap
,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1790 file
= si
->swap_file
;
1791 len
= seq_path(swap
, &file
->f_path
, " \t\n\\");
1792 seq_printf(swap
, "%*s%s\t%u\t%u\t%d\n",
1793 len
< 40 ? 40 - len
: 1, " ",
1794 S_ISBLK(file
->f_path
.dentry
->d_inode
->i_mode
) ?
1795 "partition" : "file\t",
1796 si
->pages
<< (PAGE_SHIFT
- 10),
1797 si
->inuse_pages
<< (PAGE_SHIFT
- 10),
1802 static const struct seq_operations swaps_op
= {
1803 .start
= swap_start
,
1809 static int swaps_open(struct inode
*inode
, struct file
*file
)
1811 return seq_open(file
, &swaps_op
);
1814 static const struct file_operations proc_swaps_operations
= {
1817 .llseek
= seq_lseek
,
1818 .release
= seq_release
,
1821 static int __init
procswaps_init(void)
1823 proc_create("swaps", 0, NULL
, &proc_swaps_operations
);
1826 __initcall(procswaps_init
);
1827 #endif /* CONFIG_PROC_FS */
1829 #ifdef MAX_SWAPFILES_CHECK
1830 static int __init
max_swapfiles_check(void)
1832 MAX_SWAPFILES_CHECK();
1835 late_initcall(max_swapfiles_check
);
1839 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1841 * The swapon system call
1843 SYSCALL_DEFINE2(swapon
, const char __user
*, specialfile
, int, swap_flags
)
1845 struct swap_info_struct
*p
;
1847 struct block_device
*bdev
= NULL
;
1848 struct file
*swap_file
= NULL
;
1849 struct address_space
*mapping
;
1853 union swap_header
*swap_header
;
1854 unsigned int nr_good_pages
;
1857 unsigned long maxpages
;
1858 unsigned long swapfilepages
;
1859 unsigned char *swap_map
= NULL
;
1860 struct page
*page
= NULL
;
1861 struct inode
*inode
= NULL
;
1864 if (!capable(CAP_SYS_ADMIN
))
1867 p
= kzalloc(sizeof(*p
), GFP_KERNEL
);
1871 spin_lock(&swap_lock
);
1872 for (type
= 0; type
< nr_swapfiles
; type
++) {
1873 if (!(swap_info
[type
]->flags
& SWP_USED
))
1877 if (type
>= MAX_SWAPFILES
) {
1878 spin_unlock(&swap_lock
);
1882 if (type
>= nr_swapfiles
) {
1884 swap_info
[type
] = p
;
1886 * Write swap_info[type] before nr_swapfiles, in case a
1887 * racing procfs swap_start() or swap_next() is reading them.
1888 * (We never shrink nr_swapfiles, we never free this entry.)
1894 p
= swap_info
[type
];
1896 * Do not memset this entry: a racing procfs swap_next()
1897 * would be relying on p->type to remain valid.
1900 INIT_LIST_HEAD(&p
->first_swap_extent
.list
);
1901 p
->flags
= SWP_USED
;
1903 spin_unlock(&swap_lock
);
1905 name
= getname(specialfile
);
1906 error
= PTR_ERR(name
);
1911 swap_file
= filp_open(name
, O_RDWR
|O_LARGEFILE
, 0);
1912 error
= PTR_ERR(swap_file
);
1913 if (IS_ERR(swap_file
)) {
1918 p
->swap_file
= swap_file
;
1919 mapping
= swap_file
->f_mapping
;
1920 inode
= mapping
->host
;
1923 for (i
= 0; i
< nr_swapfiles
; i
++) {
1924 struct swap_info_struct
*q
= swap_info
[i
];
1926 if (i
== type
|| !q
->swap_file
)
1928 if (mapping
== q
->swap_file
->f_mapping
)
1933 if (S_ISBLK(inode
->i_mode
)) {
1934 bdev
= I_BDEV(inode
);
1935 error
= bd_claim(bdev
, sys_swapon
);
1941 p
->old_block_size
= block_size(bdev
);
1942 error
= set_blocksize(bdev
, PAGE_SIZE
);
1946 p
->flags
|= SWP_BLKDEV
;
1947 } else if (S_ISREG(inode
->i_mode
)) {
1948 p
->bdev
= inode
->i_sb
->s_bdev
;
1949 mutex_lock(&inode
->i_mutex
);
1951 if (IS_SWAPFILE(inode
)) {
1959 swapfilepages
= i_size_read(inode
) >> PAGE_SHIFT
;
1962 * Read the swap header.
1964 if (!mapping
->a_ops
->readpage
) {
1968 page
= read_mapping_page(mapping
, 0, swap_file
);
1970 error
= PTR_ERR(page
);
1973 swap_header
= kmap(page
);
1975 if (memcmp("SWAPSPACE2", swap_header
->magic
.magic
, 10)) {
1976 printk(KERN_ERR
"Unable to find swap-space signature\n");
1981 /* swap partition endianess hack... */
1982 if (swab32(swap_header
->info
.version
) == 1) {
1983 swab32s(&swap_header
->info
.version
);
1984 swab32s(&swap_header
->info
.last_page
);
1985 swab32s(&swap_header
->info
.nr_badpages
);
1986 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++)
1987 swab32s(&swap_header
->info
.badpages
[i
]);
1989 /* Check the swap header's sub-version */
1990 if (swap_header
->info
.version
!= 1) {
1992 "Unable to handle swap header version %d\n",
1993 swap_header
->info
.version
);
1999 p
->cluster_next
= 1;
2003 * Find out how many pages are allowed for a single swap
2004 * device. There are two limiting factors: 1) the number of
2005 * bits for the swap offset in the swp_entry_t type and
2006 * 2) the number of bits in the a swap pte as defined by
2007 * the different architectures. In order to find the
2008 * largest possible bit mask a swap entry with swap type 0
2009 * and swap offset ~0UL is created, encoded to a swap pte,
2010 * decoded to a swp_entry_t again and finally the swap
2011 * offset is extracted. This will mask all the bits from
2012 * the initial ~0UL mask that can't be encoded in either
2013 * the swp_entry_t or the architecture definition of a
2016 maxpages
= swp_offset(pte_to_swp_entry(
2017 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2018 if (maxpages
> swap_header
->info
.last_page
) {
2019 maxpages
= swap_header
->info
.last_page
+ 1;
2020 /* p->max is an unsigned int: don't overflow it */
2021 if ((unsigned int)maxpages
== 0)
2022 maxpages
= UINT_MAX
;
2024 p
->highest_bit
= maxpages
- 1;
2029 if (swapfilepages
&& maxpages
> swapfilepages
) {
2031 "Swap area shorter than signature indicates\n");
2034 if (swap_header
->info
.nr_badpages
&& S_ISREG(inode
->i_mode
))
2036 if (swap_header
->info
.nr_badpages
> MAX_SWAP_BADPAGES
)
2039 /* OK, set up the swap map and apply the bad block list */
2040 swap_map
= vmalloc(maxpages
);
2046 memset(swap_map
, 0, maxpages
);
2047 nr_good_pages
= maxpages
- 1; /* omit header page */
2049 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++) {
2050 unsigned int page_nr
= swap_header
->info
.badpages
[i
];
2051 if (page_nr
== 0 || page_nr
> swap_header
->info
.last_page
) {
2055 if (page_nr
< maxpages
) {
2056 swap_map
[page_nr
] = SWAP_MAP_BAD
;
2061 error
= swap_cgroup_swapon(type
, maxpages
);
2065 if (nr_good_pages
) {
2066 swap_map
[0] = SWAP_MAP_BAD
;
2068 p
->pages
= nr_good_pages
;
2069 nr_extents
= setup_swap_extents(p
, &span
);
2070 if (nr_extents
< 0) {
2074 nr_good_pages
= p
->pages
;
2076 if (!nr_good_pages
) {
2077 printk(KERN_WARNING
"Empty swap-file\n");
2083 if (blk_queue_nonrot(bdev_get_queue(p
->bdev
))) {
2084 p
->flags
|= SWP_SOLIDSTATE
;
2085 p
->cluster_next
= 1 + (random32() % p
->highest_bit
);
2087 if (discard_swap(p
) == 0)
2088 p
->flags
|= SWP_DISCARDABLE
;
2091 mutex_lock(&swapon_mutex
);
2092 spin_lock(&swap_lock
);
2093 if (swap_flags
& SWAP_FLAG_PREFER
)
2095 (swap_flags
& SWAP_FLAG_PRIO_MASK
) >> SWAP_FLAG_PRIO_SHIFT
;
2097 p
->prio
= --least_priority
;
2098 p
->swap_map
= swap_map
;
2099 p
->flags
|= SWP_WRITEOK
;
2100 nr_swap_pages
+= nr_good_pages
;
2101 total_swap_pages
+= nr_good_pages
;
2103 printk(KERN_INFO
"Adding %uk swap on %s. "
2104 "Priority:%d extents:%d across:%lluk %s%s\n",
2105 nr_good_pages
<<(PAGE_SHIFT
-10), name
, p
->prio
,
2106 nr_extents
, (unsigned long long)span
<<(PAGE_SHIFT
-10),
2107 (p
->flags
& SWP_SOLIDSTATE
) ? "SS" : "",
2108 (p
->flags
& SWP_DISCARDABLE
) ? "D" : "");
2110 /* insert swap space into swap_list: */
2112 for (i
= swap_list
.head
; i
>= 0; i
= swap_info
[i
]->next
) {
2113 if (p
->prio
>= swap_info
[i
]->prio
)
2119 swap_list
.head
= swap_list
.next
= type
;
2121 swap_info
[prev
]->next
= type
;
2122 spin_unlock(&swap_lock
);
2123 mutex_unlock(&swapon_mutex
);
2128 set_blocksize(bdev
, p
->old_block_size
);
2131 destroy_swap_extents(p
);
2132 swap_cgroup_swapoff(type
);
2134 spin_lock(&swap_lock
);
2135 p
->swap_file
= NULL
;
2137 spin_unlock(&swap_lock
);
2140 filp_close(swap_file
, NULL
);
2142 if (page
&& !IS_ERR(page
)) {
2144 page_cache_release(page
);
2150 inode
->i_flags
|= S_SWAPFILE
;
2151 mutex_unlock(&inode
->i_mutex
);
2156 void si_swapinfo(struct sysinfo
*val
)
2159 unsigned long nr_to_be_unused
= 0;
2161 spin_lock(&swap_lock
);
2162 for (type
= 0; type
< nr_swapfiles
; type
++) {
2163 struct swap_info_struct
*si
= swap_info
[type
];
2165 if ((si
->flags
& SWP_USED
) && !(si
->flags
& SWP_WRITEOK
))
2166 nr_to_be_unused
+= si
->inuse_pages
;
2168 val
->freeswap
= nr_swap_pages
+ nr_to_be_unused
;
2169 val
->totalswap
= total_swap_pages
+ nr_to_be_unused
;
2170 spin_unlock(&swap_lock
);
2174 * Verify that a swap entry is valid and increment its swap map count.
2176 * Returns error code in following case.
2178 * - swp_entry is invalid -> EINVAL
2179 * - swp_entry is migration entry -> EINVAL
2180 * - swap-cache reference is requested but there is already one. -> EEXIST
2181 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2182 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2184 static int __swap_duplicate(swp_entry_t entry
, unsigned char usage
)
2186 struct swap_info_struct
*p
;
2187 unsigned long offset
, type
;
2188 unsigned char count
;
2189 unsigned char has_cache
;
2192 if (non_swap_entry(entry
))
2195 type
= swp_type(entry
);
2196 if (type
>= nr_swapfiles
)
2198 p
= swap_info
[type
];
2199 offset
= swp_offset(entry
);
2201 spin_lock(&swap_lock
);
2202 if (unlikely(offset
>= p
->max
))
2205 count
= p
->swap_map
[offset
];
2206 has_cache
= count
& SWAP_HAS_CACHE
;
2207 count
&= ~SWAP_HAS_CACHE
;
2210 if (usage
== SWAP_HAS_CACHE
) {
2212 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2213 if (!has_cache
&& count
)
2214 has_cache
= SWAP_HAS_CACHE
;
2215 else if (has_cache
) /* someone else added cache */
2217 else /* no users remaining */
2220 } else if (count
|| has_cache
) {
2222 if ((count
& ~COUNT_CONTINUED
) < SWAP_MAP_MAX
)
2224 else if ((count
& ~COUNT_CONTINUED
) > SWAP_MAP_MAX
)
2226 else if (swap_count_continued(p
, offset
, count
))
2227 count
= COUNT_CONTINUED
;
2231 err
= -ENOENT
; /* unused swap entry */
2233 p
->swap_map
[offset
] = count
| has_cache
;
2236 spin_unlock(&swap_lock
);
2241 printk(KERN_ERR
"swap_dup: %s%08lx\n", Bad_file
, entry
.val
);
2246 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2247 * (in which case its reference count is never incremented).
2249 void swap_shmem_alloc(swp_entry_t entry
)
2251 __swap_duplicate(entry
, SWAP_MAP_SHMEM
);
2255 * Increase reference count of swap entry by 1.
2256 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2257 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2258 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2259 * might occur if a page table entry has got corrupted.
2261 int swap_duplicate(swp_entry_t entry
)
2265 while (!err
&& __swap_duplicate(entry
, 1) == -ENOMEM
)
2266 err
= add_swap_count_continuation(entry
, GFP_ATOMIC
);
2271 * @entry: swap entry for which we allocate swap cache.
2273 * Called when allocating swap cache for existing swap entry,
2274 * This can return error codes. Returns 0 at success.
2275 * -EBUSY means there is a swap cache.
2276 * Note: return code is different from swap_duplicate().
2278 int swapcache_prepare(swp_entry_t entry
)
2280 return __swap_duplicate(entry
, SWAP_HAS_CACHE
);
2284 * swap_lock prevents swap_map being freed. Don't grab an extra
2285 * reference on the swaphandle, it doesn't matter if it becomes unused.
2287 int valid_swaphandles(swp_entry_t entry
, unsigned long *offset
)
2289 struct swap_info_struct
*si
;
2290 int our_page_cluster
= page_cluster
;
2291 pgoff_t target
, toff
;
2295 if (!our_page_cluster
) /* no readahead */
2298 si
= swap_info
[swp_type(entry
)];
2299 target
= swp_offset(entry
);
2300 base
= (target
>> our_page_cluster
) << our_page_cluster
;
2301 end
= base
+ (1 << our_page_cluster
);
2302 if (!base
) /* first page is swap header */
2305 spin_lock(&swap_lock
);
2306 if (end
> si
->max
) /* don't go beyond end of map */
2309 /* Count contiguous allocated slots above our target */
2310 for (toff
= target
; ++toff
< end
; nr_pages
++) {
2311 /* Don't read in free or bad pages */
2312 if (!si
->swap_map
[toff
])
2314 if (swap_count(si
->swap_map
[toff
]) == SWAP_MAP_BAD
)
2317 /* Count contiguous allocated slots below our target */
2318 for (toff
= target
; --toff
>= base
; nr_pages
++) {
2319 /* Don't read in free or bad pages */
2320 if (!si
->swap_map
[toff
])
2322 if (swap_count(si
->swap_map
[toff
]) == SWAP_MAP_BAD
)
2325 spin_unlock(&swap_lock
);
2328 * Indicate starting offset, and return number of pages to get:
2329 * if only 1, say 0, since there's then no readahead to be done.
2332 return nr_pages
? ++nr_pages
: 0;
2336 * add_swap_count_continuation - called when a swap count is duplicated
2337 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2338 * page of the original vmalloc'ed swap_map, to hold the continuation count
2339 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2340 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2342 * These continuation pages are seldom referenced: the common paths all work
2343 * on the original swap_map, only referring to a continuation page when the
2344 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2346 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2347 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2348 * can be called after dropping locks.
2350 int add_swap_count_continuation(swp_entry_t entry
, gfp_t gfp_mask
)
2352 struct swap_info_struct
*si
;
2355 struct page
*list_page
;
2357 unsigned char count
;
2360 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2361 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2363 page
= alloc_page(gfp_mask
| __GFP_HIGHMEM
);
2365 si
= swap_info_get(entry
);
2368 * An acceptable race has occurred since the failing
2369 * __swap_duplicate(): the swap entry has been freed,
2370 * perhaps even the whole swap_map cleared for swapoff.
2375 offset
= swp_offset(entry
);
2376 count
= si
->swap_map
[offset
] & ~SWAP_HAS_CACHE
;
2378 if ((count
& ~COUNT_CONTINUED
) != SWAP_MAP_MAX
) {
2380 * The higher the swap count, the more likely it is that tasks
2381 * will race to add swap count continuation: we need to avoid
2382 * over-provisioning.
2388 spin_unlock(&swap_lock
);
2393 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2394 * no architecture is using highmem pages for kernel pagetables: so it
2395 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2397 head
= vmalloc_to_page(si
->swap_map
+ offset
);
2398 offset
&= ~PAGE_MASK
;
2401 * Page allocation does not initialize the page's lru field,
2402 * but it does always reset its private field.
2404 if (!page_private(head
)) {
2405 BUG_ON(count
& COUNT_CONTINUED
);
2406 INIT_LIST_HEAD(&head
->lru
);
2407 set_page_private(head
, SWP_CONTINUED
);
2408 si
->flags
|= SWP_CONTINUED
;
2411 list_for_each_entry(list_page
, &head
->lru
, lru
) {
2415 * If the previous map said no continuation, but we've found
2416 * a continuation page, free our allocation and use this one.
2418 if (!(count
& COUNT_CONTINUED
))
2421 map
= kmap_atomic(list_page
, KM_USER0
) + offset
;
2423 kunmap_atomic(map
, KM_USER0
);
2426 * If this continuation count now has some space in it,
2427 * free our allocation and use this one.
2429 if ((count
& ~COUNT_CONTINUED
) != SWAP_CONT_MAX
)
2433 list_add_tail(&page
->lru
, &head
->lru
);
2434 page
= NULL
; /* now it's attached, don't free it */
2436 spin_unlock(&swap_lock
);
2444 * swap_count_continued - when the original swap_map count is incremented
2445 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2446 * into, carry if so, or else fail until a new continuation page is allocated;
2447 * when the original swap_map count is decremented from 0 with continuation,
2448 * borrow from the continuation and report whether it still holds more.
2449 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2451 static bool swap_count_continued(struct swap_info_struct
*si
,
2452 pgoff_t offset
, unsigned char count
)
2458 head
= vmalloc_to_page(si
->swap_map
+ offset
);
2459 if (page_private(head
) != SWP_CONTINUED
) {
2460 BUG_ON(count
& COUNT_CONTINUED
);
2461 return false; /* need to add count continuation */
2464 offset
&= ~PAGE_MASK
;
2465 page
= list_entry(head
->lru
.next
, struct page
, lru
);
2466 map
= kmap_atomic(page
, KM_USER0
) + offset
;
2468 if (count
== SWAP_MAP_MAX
) /* initial increment from swap_map */
2469 goto init_map
; /* jump over SWAP_CONT_MAX checks */
2471 if (count
== (SWAP_MAP_MAX
| COUNT_CONTINUED
)) { /* incrementing */
2473 * Think of how you add 1 to 999
2475 while (*map
== (SWAP_CONT_MAX
| COUNT_CONTINUED
)) {
2476 kunmap_atomic(map
, KM_USER0
);
2477 page
= list_entry(page
->lru
.next
, struct page
, lru
);
2478 BUG_ON(page
== head
);
2479 map
= kmap_atomic(page
, KM_USER0
) + offset
;
2481 if (*map
== SWAP_CONT_MAX
) {
2482 kunmap_atomic(map
, KM_USER0
);
2483 page
= list_entry(page
->lru
.next
, struct page
, lru
);
2485 return false; /* add count continuation */
2486 map
= kmap_atomic(page
, KM_USER0
) + offset
;
2487 init_map
: *map
= 0; /* we didn't zero the page */
2490 kunmap_atomic(map
, KM_USER0
);
2491 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2492 while (page
!= head
) {
2493 map
= kmap_atomic(page
, KM_USER0
) + offset
;
2494 *map
= COUNT_CONTINUED
;
2495 kunmap_atomic(map
, KM_USER0
);
2496 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2498 return true; /* incremented */
2500 } else { /* decrementing */
2502 * Think of how you subtract 1 from 1000
2504 BUG_ON(count
!= COUNT_CONTINUED
);
2505 while (*map
== COUNT_CONTINUED
) {
2506 kunmap_atomic(map
, KM_USER0
);
2507 page
= list_entry(page
->lru
.next
, struct page
, lru
);
2508 BUG_ON(page
== head
);
2509 map
= kmap_atomic(page
, KM_USER0
) + offset
;
2515 kunmap_atomic(map
, KM_USER0
);
2516 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2517 while (page
!= head
) {
2518 map
= kmap_atomic(page
, KM_USER0
) + offset
;
2519 *map
= SWAP_CONT_MAX
| count
;
2520 count
= COUNT_CONTINUED
;
2521 kunmap_atomic(map
, KM_USER0
);
2522 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2524 return count
== COUNT_CONTINUED
;
2529 * free_swap_count_continuations - swapoff free all the continuation pages
2530 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2532 static void free_swap_count_continuations(struct swap_info_struct
*si
)
2536 for (offset
= 0; offset
< si
->max
; offset
+= PAGE_SIZE
) {
2538 head
= vmalloc_to_page(si
->swap_map
+ offset
);
2539 if (page_private(head
)) {
2540 struct list_head
*this, *next
;
2541 list_for_each_safe(this, next
, &head
->lru
) {
2543 page
= list_entry(this, struct page
, lru
);