Merge branch 'topic/isa' into topic/misc
[firewire-audio.git] / mm / rmap.c
bloba7d0f5482634d00724d91ebcf42cba4073cab20e
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
40 * (code doesn't rely on that order so it could be switched around)
41 * ->tasklist_lock
42 * anon_vma->lock (memory_failure, collect_procs_anon)
43 * pte map lock
46 #include <linux/mm.h>
47 #include <linux/pagemap.h>
48 #include <linux/swap.h>
49 #include <linux/swapops.h>
50 #include <linux/slab.h>
51 #include <linux/init.h>
52 #include <linux/ksm.h>
53 #include <linux/rmap.h>
54 #include <linux/rcupdate.h>
55 #include <linux/module.h>
56 #include <linux/memcontrol.h>
57 #include <linux/mmu_notifier.h>
58 #include <linux/migrate.h>
60 #include <asm/tlbflush.h>
62 #include "internal.h"
64 static struct kmem_cache *anon_vma_cachep;
65 static struct kmem_cache *anon_vma_chain_cachep;
67 static inline struct anon_vma *anon_vma_alloc(void)
69 return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
72 void anon_vma_free(struct anon_vma *anon_vma)
74 kmem_cache_free(anon_vma_cachep, anon_vma);
77 static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
79 return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
82 void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
84 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
87 /**
88 * anon_vma_prepare - attach an anon_vma to a memory region
89 * @vma: the memory region in question
91 * This makes sure the memory mapping described by 'vma' has
92 * an 'anon_vma' attached to it, so that we can associate the
93 * anonymous pages mapped into it with that anon_vma.
95 * The common case will be that we already have one, but if
96 * if not we either need to find an adjacent mapping that we
97 * can re-use the anon_vma from (very common when the only
98 * reason for splitting a vma has been mprotect()), or we
99 * allocate a new one.
101 * Anon-vma allocations are very subtle, because we may have
102 * optimistically looked up an anon_vma in page_lock_anon_vma()
103 * and that may actually touch the spinlock even in the newly
104 * allocated vma (it depends on RCU to make sure that the
105 * anon_vma isn't actually destroyed).
107 * As a result, we need to do proper anon_vma locking even
108 * for the new allocation. At the same time, we do not want
109 * to do any locking for the common case of already having
110 * an anon_vma.
112 * This must be called with the mmap_sem held for reading.
114 int anon_vma_prepare(struct vm_area_struct *vma)
116 struct anon_vma *anon_vma = vma->anon_vma;
117 struct anon_vma_chain *avc;
119 might_sleep();
120 if (unlikely(!anon_vma)) {
121 struct mm_struct *mm = vma->vm_mm;
122 struct anon_vma *allocated;
124 avc = anon_vma_chain_alloc();
125 if (!avc)
126 goto out_enomem;
128 anon_vma = find_mergeable_anon_vma(vma);
129 allocated = NULL;
130 if (!anon_vma) {
131 anon_vma = anon_vma_alloc();
132 if (unlikely(!anon_vma))
133 goto out_enomem_free_avc;
134 allocated = anon_vma;
136 * This VMA had no anon_vma yet. This anon_vma is
137 * the root of any anon_vma tree that might form.
139 anon_vma->root = anon_vma;
142 anon_vma_lock(anon_vma);
143 /* page_table_lock to protect against threads */
144 spin_lock(&mm->page_table_lock);
145 if (likely(!vma->anon_vma)) {
146 vma->anon_vma = anon_vma;
147 avc->anon_vma = anon_vma;
148 avc->vma = vma;
149 list_add(&avc->same_vma, &vma->anon_vma_chain);
150 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
151 allocated = NULL;
152 avc = NULL;
154 spin_unlock(&mm->page_table_lock);
155 anon_vma_unlock(anon_vma);
157 if (unlikely(allocated))
158 anon_vma_free(allocated);
159 if (unlikely(avc))
160 anon_vma_chain_free(avc);
162 return 0;
164 out_enomem_free_avc:
165 anon_vma_chain_free(avc);
166 out_enomem:
167 return -ENOMEM;
170 static void anon_vma_chain_link(struct vm_area_struct *vma,
171 struct anon_vma_chain *avc,
172 struct anon_vma *anon_vma)
174 avc->vma = vma;
175 avc->anon_vma = anon_vma;
176 list_add(&avc->same_vma, &vma->anon_vma_chain);
178 anon_vma_lock(anon_vma);
179 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
180 anon_vma_unlock(anon_vma);
184 * Attach the anon_vmas from src to dst.
185 * Returns 0 on success, -ENOMEM on failure.
187 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
189 struct anon_vma_chain *avc, *pavc;
191 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
192 avc = anon_vma_chain_alloc();
193 if (!avc)
194 goto enomem_failure;
195 anon_vma_chain_link(dst, avc, pavc->anon_vma);
197 return 0;
199 enomem_failure:
200 unlink_anon_vmas(dst);
201 return -ENOMEM;
205 * Attach vma to its own anon_vma, as well as to the anon_vmas that
206 * the corresponding VMA in the parent process is attached to.
207 * Returns 0 on success, non-zero on failure.
209 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
211 struct anon_vma_chain *avc;
212 struct anon_vma *anon_vma;
214 /* Don't bother if the parent process has no anon_vma here. */
215 if (!pvma->anon_vma)
216 return 0;
219 * First, attach the new VMA to the parent VMA's anon_vmas,
220 * so rmap can find non-COWed pages in child processes.
222 if (anon_vma_clone(vma, pvma))
223 return -ENOMEM;
225 /* Then add our own anon_vma. */
226 anon_vma = anon_vma_alloc();
227 if (!anon_vma)
228 goto out_error;
229 avc = anon_vma_chain_alloc();
230 if (!avc)
231 goto out_error_free_anon_vma;
234 * The root anon_vma's spinlock is the lock actually used when we
235 * lock any of the anon_vmas in this anon_vma tree.
237 anon_vma->root = pvma->anon_vma->root;
239 * With KSM refcounts, an anon_vma can stay around longer than the
240 * process it belongs to. The root anon_vma needs to be pinned
241 * until this anon_vma is freed, because the lock lives in the root.
243 get_anon_vma(anon_vma->root);
244 /* Mark this anon_vma as the one where our new (COWed) pages go. */
245 vma->anon_vma = anon_vma;
246 anon_vma_chain_link(vma, avc, anon_vma);
248 return 0;
250 out_error_free_anon_vma:
251 anon_vma_free(anon_vma);
252 out_error:
253 unlink_anon_vmas(vma);
254 return -ENOMEM;
257 static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
259 struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
260 int empty;
262 /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
263 if (!anon_vma)
264 return;
266 anon_vma_lock(anon_vma);
267 list_del(&anon_vma_chain->same_anon_vma);
269 /* We must garbage collect the anon_vma if it's empty */
270 empty = list_empty(&anon_vma->head) && !anonvma_external_refcount(anon_vma);
271 anon_vma_unlock(anon_vma);
273 if (empty) {
274 /* We no longer need the root anon_vma */
275 if (anon_vma->root != anon_vma)
276 drop_anon_vma(anon_vma->root);
277 anon_vma_free(anon_vma);
281 void unlink_anon_vmas(struct vm_area_struct *vma)
283 struct anon_vma_chain *avc, *next;
286 * Unlink each anon_vma chained to the VMA. This list is ordered
287 * from newest to oldest, ensuring the root anon_vma gets freed last.
289 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
290 anon_vma_unlink(avc);
291 list_del(&avc->same_vma);
292 anon_vma_chain_free(avc);
296 static void anon_vma_ctor(void *data)
298 struct anon_vma *anon_vma = data;
300 spin_lock_init(&anon_vma->lock);
301 anonvma_external_refcount_init(anon_vma);
302 INIT_LIST_HEAD(&anon_vma->head);
305 void __init anon_vma_init(void)
307 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
308 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
309 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
313 * Getting a lock on a stable anon_vma from a page off the LRU is
314 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
316 struct anon_vma *page_lock_anon_vma(struct page *page)
318 struct anon_vma *anon_vma;
319 unsigned long anon_mapping;
321 rcu_read_lock();
322 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
323 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
324 goto out;
325 if (!page_mapped(page))
326 goto out;
328 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
329 anon_vma_lock(anon_vma);
330 return anon_vma;
331 out:
332 rcu_read_unlock();
333 return NULL;
336 void page_unlock_anon_vma(struct anon_vma *anon_vma)
338 anon_vma_unlock(anon_vma);
339 rcu_read_unlock();
343 * At what user virtual address is page expected in @vma?
344 * Returns virtual address or -EFAULT if page's index/offset is not
345 * within the range mapped the @vma.
347 static inline unsigned long
348 vma_address(struct page *page, struct vm_area_struct *vma)
350 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
351 unsigned long address;
353 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
354 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
355 /* page should be within @vma mapping range */
356 return -EFAULT;
358 return address;
362 * At what user virtual address is page expected in vma?
363 * Caller should check the page is actually part of the vma.
365 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
367 if (PageAnon(page)) {
368 if (vma->anon_vma->root != page_anon_vma(page)->root)
369 return -EFAULT;
370 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
371 if (!vma->vm_file ||
372 vma->vm_file->f_mapping != page->mapping)
373 return -EFAULT;
374 } else
375 return -EFAULT;
376 return vma_address(page, vma);
380 * Check that @page is mapped at @address into @mm.
382 * If @sync is false, page_check_address may perform a racy check to avoid
383 * the page table lock when the pte is not present (helpful when reclaiming
384 * highly shared pages).
386 * On success returns with pte mapped and locked.
388 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
389 unsigned long address, spinlock_t **ptlp, int sync)
391 pgd_t *pgd;
392 pud_t *pud;
393 pmd_t *pmd;
394 pte_t *pte;
395 spinlock_t *ptl;
397 pgd = pgd_offset(mm, address);
398 if (!pgd_present(*pgd))
399 return NULL;
401 pud = pud_offset(pgd, address);
402 if (!pud_present(*pud))
403 return NULL;
405 pmd = pmd_offset(pud, address);
406 if (!pmd_present(*pmd))
407 return NULL;
409 pte = pte_offset_map(pmd, address);
410 /* Make a quick check before getting the lock */
411 if (!sync && !pte_present(*pte)) {
412 pte_unmap(pte);
413 return NULL;
416 ptl = pte_lockptr(mm, pmd);
417 spin_lock(ptl);
418 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
419 *ptlp = ptl;
420 return pte;
422 pte_unmap_unlock(pte, ptl);
423 return NULL;
427 * page_mapped_in_vma - check whether a page is really mapped in a VMA
428 * @page: the page to test
429 * @vma: the VMA to test
431 * Returns 1 if the page is mapped into the page tables of the VMA, 0
432 * if the page is not mapped into the page tables of this VMA. Only
433 * valid for normal file or anonymous VMAs.
435 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
437 unsigned long address;
438 pte_t *pte;
439 spinlock_t *ptl;
441 address = vma_address(page, vma);
442 if (address == -EFAULT) /* out of vma range */
443 return 0;
444 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
445 if (!pte) /* the page is not in this mm */
446 return 0;
447 pte_unmap_unlock(pte, ptl);
449 return 1;
453 * Subfunctions of page_referenced: page_referenced_one called
454 * repeatedly from either page_referenced_anon or page_referenced_file.
456 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
457 unsigned long address, unsigned int *mapcount,
458 unsigned long *vm_flags)
460 struct mm_struct *mm = vma->vm_mm;
461 pte_t *pte;
462 spinlock_t *ptl;
463 int referenced = 0;
465 pte = page_check_address(page, mm, address, &ptl, 0);
466 if (!pte)
467 goto out;
470 * Don't want to elevate referenced for mlocked page that gets this far,
471 * in order that it progresses to try_to_unmap and is moved to the
472 * unevictable list.
474 if (vma->vm_flags & VM_LOCKED) {
475 *mapcount = 1; /* break early from loop */
476 *vm_flags |= VM_LOCKED;
477 goto out_unmap;
480 if (ptep_clear_flush_young_notify(vma, address, pte)) {
482 * Don't treat a reference through a sequentially read
483 * mapping as such. If the page has been used in
484 * another mapping, we will catch it; if this other
485 * mapping is already gone, the unmap path will have
486 * set PG_referenced or activated the page.
488 if (likely(!VM_SequentialReadHint(vma)))
489 referenced++;
492 /* Pretend the page is referenced if the task has the
493 swap token and is in the middle of a page fault. */
494 if (mm != current->mm && has_swap_token(mm) &&
495 rwsem_is_locked(&mm->mmap_sem))
496 referenced++;
498 out_unmap:
499 (*mapcount)--;
500 pte_unmap_unlock(pte, ptl);
502 if (referenced)
503 *vm_flags |= vma->vm_flags;
504 out:
505 return referenced;
508 static int page_referenced_anon(struct page *page,
509 struct mem_cgroup *mem_cont,
510 unsigned long *vm_flags)
512 unsigned int mapcount;
513 struct anon_vma *anon_vma;
514 struct anon_vma_chain *avc;
515 int referenced = 0;
517 anon_vma = page_lock_anon_vma(page);
518 if (!anon_vma)
519 return referenced;
521 mapcount = page_mapcount(page);
522 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
523 struct vm_area_struct *vma = avc->vma;
524 unsigned long address = vma_address(page, vma);
525 if (address == -EFAULT)
526 continue;
528 * If we are reclaiming on behalf of a cgroup, skip
529 * counting on behalf of references from different
530 * cgroups
532 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
533 continue;
534 referenced += page_referenced_one(page, vma, address,
535 &mapcount, vm_flags);
536 if (!mapcount)
537 break;
540 page_unlock_anon_vma(anon_vma);
541 return referenced;
545 * page_referenced_file - referenced check for object-based rmap
546 * @page: the page we're checking references on.
547 * @mem_cont: target memory controller
548 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
550 * For an object-based mapped page, find all the places it is mapped and
551 * check/clear the referenced flag. This is done by following the page->mapping
552 * pointer, then walking the chain of vmas it holds. It returns the number
553 * of references it found.
555 * This function is only called from page_referenced for object-based pages.
557 static int page_referenced_file(struct page *page,
558 struct mem_cgroup *mem_cont,
559 unsigned long *vm_flags)
561 unsigned int mapcount;
562 struct address_space *mapping = page->mapping;
563 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
564 struct vm_area_struct *vma;
565 struct prio_tree_iter iter;
566 int referenced = 0;
569 * The caller's checks on page->mapping and !PageAnon have made
570 * sure that this is a file page: the check for page->mapping
571 * excludes the case just before it gets set on an anon page.
573 BUG_ON(PageAnon(page));
576 * The page lock not only makes sure that page->mapping cannot
577 * suddenly be NULLified by truncation, it makes sure that the
578 * structure at mapping cannot be freed and reused yet,
579 * so we can safely take mapping->i_mmap_lock.
581 BUG_ON(!PageLocked(page));
583 spin_lock(&mapping->i_mmap_lock);
586 * i_mmap_lock does not stabilize mapcount at all, but mapcount
587 * is more likely to be accurate if we note it after spinning.
589 mapcount = page_mapcount(page);
591 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
592 unsigned long address = vma_address(page, vma);
593 if (address == -EFAULT)
594 continue;
596 * If we are reclaiming on behalf of a cgroup, skip
597 * counting on behalf of references from different
598 * cgroups
600 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
601 continue;
602 referenced += page_referenced_one(page, vma, address,
603 &mapcount, vm_flags);
604 if (!mapcount)
605 break;
608 spin_unlock(&mapping->i_mmap_lock);
609 return referenced;
613 * page_referenced - test if the page was referenced
614 * @page: the page to test
615 * @is_locked: caller holds lock on the page
616 * @mem_cont: target memory controller
617 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
619 * Quick test_and_clear_referenced for all mappings to a page,
620 * returns the number of ptes which referenced the page.
622 int page_referenced(struct page *page,
623 int is_locked,
624 struct mem_cgroup *mem_cont,
625 unsigned long *vm_flags)
627 int referenced = 0;
628 int we_locked = 0;
630 *vm_flags = 0;
631 if (page_mapped(page) && page_rmapping(page)) {
632 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
633 we_locked = trylock_page(page);
634 if (!we_locked) {
635 referenced++;
636 goto out;
639 if (unlikely(PageKsm(page)))
640 referenced += page_referenced_ksm(page, mem_cont,
641 vm_flags);
642 else if (PageAnon(page))
643 referenced += page_referenced_anon(page, mem_cont,
644 vm_flags);
645 else if (page->mapping)
646 referenced += page_referenced_file(page, mem_cont,
647 vm_flags);
648 if (we_locked)
649 unlock_page(page);
651 out:
652 if (page_test_and_clear_young(page))
653 referenced++;
655 return referenced;
658 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
659 unsigned long address)
661 struct mm_struct *mm = vma->vm_mm;
662 pte_t *pte;
663 spinlock_t *ptl;
664 int ret = 0;
666 pte = page_check_address(page, mm, address, &ptl, 1);
667 if (!pte)
668 goto out;
670 if (pte_dirty(*pte) || pte_write(*pte)) {
671 pte_t entry;
673 flush_cache_page(vma, address, pte_pfn(*pte));
674 entry = ptep_clear_flush_notify(vma, address, pte);
675 entry = pte_wrprotect(entry);
676 entry = pte_mkclean(entry);
677 set_pte_at(mm, address, pte, entry);
678 ret = 1;
681 pte_unmap_unlock(pte, ptl);
682 out:
683 return ret;
686 static int page_mkclean_file(struct address_space *mapping, struct page *page)
688 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
689 struct vm_area_struct *vma;
690 struct prio_tree_iter iter;
691 int ret = 0;
693 BUG_ON(PageAnon(page));
695 spin_lock(&mapping->i_mmap_lock);
696 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
697 if (vma->vm_flags & VM_SHARED) {
698 unsigned long address = vma_address(page, vma);
699 if (address == -EFAULT)
700 continue;
701 ret += page_mkclean_one(page, vma, address);
704 spin_unlock(&mapping->i_mmap_lock);
705 return ret;
708 int page_mkclean(struct page *page)
710 int ret = 0;
712 BUG_ON(!PageLocked(page));
714 if (page_mapped(page)) {
715 struct address_space *mapping = page_mapping(page);
716 if (mapping) {
717 ret = page_mkclean_file(mapping, page);
718 if (page_test_dirty(page)) {
719 page_clear_dirty(page);
720 ret = 1;
725 return ret;
727 EXPORT_SYMBOL_GPL(page_mkclean);
730 * page_move_anon_rmap - move a page to our anon_vma
731 * @page: the page to move to our anon_vma
732 * @vma: the vma the page belongs to
733 * @address: the user virtual address mapped
735 * When a page belongs exclusively to one process after a COW event,
736 * that page can be moved into the anon_vma that belongs to just that
737 * process, so the rmap code will not search the parent or sibling
738 * processes.
740 void page_move_anon_rmap(struct page *page,
741 struct vm_area_struct *vma, unsigned long address)
743 struct anon_vma *anon_vma = vma->anon_vma;
745 VM_BUG_ON(!PageLocked(page));
746 VM_BUG_ON(!anon_vma);
747 VM_BUG_ON(page->index != linear_page_index(vma, address));
749 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
750 page->mapping = (struct address_space *) anon_vma;
754 * __page_set_anon_rmap - setup new anonymous rmap
755 * @page: the page to add the mapping to
756 * @vma: the vm area in which the mapping is added
757 * @address: the user virtual address mapped
758 * @exclusive: the page is exclusively owned by the current process
760 static void __page_set_anon_rmap(struct page *page,
761 struct vm_area_struct *vma, unsigned long address, int exclusive)
763 struct anon_vma *anon_vma = vma->anon_vma;
765 BUG_ON(!anon_vma);
768 * If the page isn't exclusively mapped into this vma,
769 * we must use the _oldest_ possible anon_vma for the
770 * page mapping!
772 if (!exclusive) {
773 if (PageAnon(page))
774 return;
775 anon_vma = anon_vma->root;
776 } else {
778 * In this case, swapped-out-but-not-discarded swap-cache
779 * is remapped. So, no need to update page->mapping here.
780 * We convice anon_vma poitned by page->mapping is not obsolete
781 * because vma->anon_vma is necessary to be a family of it.
783 if (PageAnon(page))
784 return;
787 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
788 page->mapping = (struct address_space *) anon_vma;
789 page->index = linear_page_index(vma, address);
793 * __page_check_anon_rmap - sanity check anonymous rmap addition
794 * @page: the page to add the mapping to
795 * @vma: the vm area in which the mapping is added
796 * @address: the user virtual address mapped
798 static void __page_check_anon_rmap(struct page *page,
799 struct vm_area_struct *vma, unsigned long address)
801 #ifdef CONFIG_DEBUG_VM
803 * The page's anon-rmap details (mapping and index) are guaranteed to
804 * be set up correctly at this point.
806 * We have exclusion against page_add_anon_rmap because the caller
807 * always holds the page locked, except if called from page_dup_rmap,
808 * in which case the page is already known to be setup.
810 * We have exclusion against page_add_new_anon_rmap because those pages
811 * are initially only visible via the pagetables, and the pte is locked
812 * over the call to page_add_new_anon_rmap.
814 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
815 BUG_ON(page->index != linear_page_index(vma, address));
816 #endif
820 * page_add_anon_rmap - add pte mapping to an anonymous page
821 * @page: the page to add the mapping to
822 * @vma: the vm area in which the mapping is added
823 * @address: the user virtual address mapped
825 * The caller needs to hold the pte lock, and the page must be locked in
826 * the anon_vma case: to serialize mapping,index checking after setting,
827 * and to ensure that PageAnon is not being upgraded racily to PageKsm
828 * (but PageKsm is never downgraded to PageAnon).
830 void page_add_anon_rmap(struct page *page,
831 struct vm_area_struct *vma, unsigned long address)
833 do_page_add_anon_rmap(page, vma, address, 0);
837 * Special version of the above for do_swap_page, which often runs
838 * into pages that are exclusively owned by the current process.
839 * Everybody else should continue to use page_add_anon_rmap above.
841 void do_page_add_anon_rmap(struct page *page,
842 struct vm_area_struct *vma, unsigned long address, int exclusive)
844 int first = atomic_inc_and_test(&page->_mapcount);
845 if (first)
846 __inc_zone_page_state(page, NR_ANON_PAGES);
847 if (unlikely(PageKsm(page)))
848 return;
850 VM_BUG_ON(!PageLocked(page));
851 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
852 if (first)
853 __page_set_anon_rmap(page, vma, address, exclusive);
854 else
855 __page_check_anon_rmap(page, vma, address);
859 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
860 * @page: the page to add the mapping to
861 * @vma: the vm area in which the mapping is added
862 * @address: the user virtual address mapped
864 * Same as page_add_anon_rmap but must only be called on *new* pages.
865 * This means the inc-and-test can be bypassed.
866 * Page does not have to be locked.
868 void page_add_new_anon_rmap(struct page *page,
869 struct vm_area_struct *vma, unsigned long address)
871 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
872 SetPageSwapBacked(page);
873 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
874 __inc_zone_page_state(page, NR_ANON_PAGES);
875 __page_set_anon_rmap(page, vma, address, 1);
876 if (page_evictable(page, vma))
877 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
878 else
879 add_page_to_unevictable_list(page);
883 * page_add_file_rmap - add pte mapping to a file page
884 * @page: the page to add the mapping to
886 * The caller needs to hold the pte lock.
888 void page_add_file_rmap(struct page *page)
890 if (atomic_inc_and_test(&page->_mapcount)) {
891 __inc_zone_page_state(page, NR_FILE_MAPPED);
892 mem_cgroup_update_file_mapped(page, 1);
897 * page_remove_rmap - take down pte mapping from a page
898 * @page: page to remove mapping from
900 * The caller needs to hold the pte lock.
902 void page_remove_rmap(struct page *page)
904 /* page still mapped by someone else? */
905 if (!atomic_add_negative(-1, &page->_mapcount))
906 return;
909 * Now that the last pte has gone, s390 must transfer dirty
910 * flag from storage key to struct page. We can usually skip
911 * this if the page is anon, so about to be freed; but perhaps
912 * not if it's in swapcache - there might be another pte slot
913 * containing the swap entry, but page not yet written to swap.
915 if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
916 page_clear_dirty(page);
917 set_page_dirty(page);
919 if (PageAnon(page)) {
920 mem_cgroup_uncharge_page(page);
921 __dec_zone_page_state(page, NR_ANON_PAGES);
922 } else {
923 __dec_zone_page_state(page, NR_FILE_MAPPED);
924 mem_cgroup_update_file_mapped(page, -1);
927 * It would be tidy to reset the PageAnon mapping here,
928 * but that might overwrite a racing page_add_anon_rmap
929 * which increments mapcount after us but sets mapping
930 * before us: so leave the reset to free_hot_cold_page,
931 * and remember that it's only reliable while mapped.
932 * Leaving it set also helps swapoff to reinstate ptes
933 * faster for those pages still in swapcache.
938 * Subfunctions of try_to_unmap: try_to_unmap_one called
939 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
941 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
942 unsigned long address, enum ttu_flags flags)
944 struct mm_struct *mm = vma->vm_mm;
945 pte_t *pte;
946 pte_t pteval;
947 spinlock_t *ptl;
948 int ret = SWAP_AGAIN;
950 pte = page_check_address(page, mm, address, &ptl, 0);
951 if (!pte)
952 goto out;
955 * If the page is mlock()d, we cannot swap it out.
956 * If it's recently referenced (perhaps page_referenced
957 * skipped over this mm) then we should reactivate it.
959 if (!(flags & TTU_IGNORE_MLOCK)) {
960 if (vma->vm_flags & VM_LOCKED)
961 goto out_mlock;
963 if (TTU_ACTION(flags) == TTU_MUNLOCK)
964 goto out_unmap;
966 if (!(flags & TTU_IGNORE_ACCESS)) {
967 if (ptep_clear_flush_young_notify(vma, address, pte)) {
968 ret = SWAP_FAIL;
969 goto out_unmap;
973 /* Nuke the page table entry. */
974 flush_cache_page(vma, address, page_to_pfn(page));
975 pteval = ptep_clear_flush_notify(vma, address, pte);
977 /* Move the dirty bit to the physical page now the pte is gone. */
978 if (pte_dirty(pteval))
979 set_page_dirty(page);
981 /* Update high watermark before we lower rss */
982 update_hiwater_rss(mm);
984 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
985 if (PageAnon(page))
986 dec_mm_counter(mm, MM_ANONPAGES);
987 else
988 dec_mm_counter(mm, MM_FILEPAGES);
989 set_pte_at(mm, address, pte,
990 swp_entry_to_pte(make_hwpoison_entry(page)));
991 } else if (PageAnon(page)) {
992 swp_entry_t entry = { .val = page_private(page) };
994 if (PageSwapCache(page)) {
996 * Store the swap location in the pte.
997 * See handle_pte_fault() ...
999 if (swap_duplicate(entry) < 0) {
1000 set_pte_at(mm, address, pte, pteval);
1001 ret = SWAP_FAIL;
1002 goto out_unmap;
1004 if (list_empty(&mm->mmlist)) {
1005 spin_lock(&mmlist_lock);
1006 if (list_empty(&mm->mmlist))
1007 list_add(&mm->mmlist, &init_mm.mmlist);
1008 spin_unlock(&mmlist_lock);
1010 dec_mm_counter(mm, MM_ANONPAGES);
1011 inc_mm_counter(mm, MM_SWAPENTS);
1012 } else if (PAGE_MIGRATION) {
1014 * Store the pfn of the page in a special migration
1015 * pte. do_swap_page() will wait until the migration
1016 * pte is removed and then restart fault handling.
1018 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1019 entry = make_migration_entry(page, pte_write(pteval));
1021 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1022 BUG_ON(pte_file(*pte));
1023 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
1024 /* Establish migration entry for a file page */
1025 swp_entry_t entry;
1026 entry = make_migration_entry(page, pte_write(pteval));
1027 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1028 } else
1029 dec_mm_counter(mm, MM_FILEPAGES);
1031 page_remove_rmap(page);
1032 page_cache_release(page);
1034 out_unmap:
1035 pte_unmap_unlock(pte, ptl);
1036 out:
1037 return ret;
1039 out_mlock:
1040 pte_unmap_unlock(pte, ptl);
1044 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1045 * unstable result and race. Plus, We can't wait here because
1046 * we now hold anon_vma->lock or mapping->i_mmap_lock.
1047 * if trylock failed, the page remain in evictable lru and later
1048 * vmscan could retry to move the page to unevictable lru if the
1049 * page is actually mlocked.
1051 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1052 if (vma->vm_flags & VM_LOCKED) {
1053 mlock_vma_page(page);
1054 ret = SWAP_MLOCK;
1056 up_read(&vma->vm_mm->mmap_sem);
1058 return ret;
1062 * objrmap doesn't work for nonlinear VMAs because the assumption that
1063 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1064 * Consequently, given a particular page and its ->index, we cannot locate the
1065 * ptes which are mapping that page without an exhaustive linear search.
1067 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1068 * maps the file to which the target page belongs. The ->vm_private_data field
1069 * holds the current cursor into that scan. Successive searches will circulate
1070 * around the vma's virtual address space.
1072 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1073 * more scanning pressure is placed against them as well. Eventually pages
1074 * will become fully unmapped and are eligible for eviction.
1076 * For very sparsely populated VMAs this is a little inefficient - chances are
1077 * there there won't be many ptes located within the scan cluster. In this case
1078 * maybe we could scan further - to the end of the pte page, perhaps.
1080 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1081 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1082 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1083 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1085 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1086 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1088 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1089 struct vm_area_struct *vma, struct page *check_page)
1091 struct mm_struct *mm = vma->vm_mm;
1092 pgd_t *pgd;
1093 pud_t *pud;
1094 pmd_t *pmd;
1095 pte_t *pte;
1096 pte_t pteval;
1097 spinlock_t *ptl;
1098 struct page *page;
1099 unsigned long address;
1100 unsigned long end;
1101 int ret = SWAP_AGAIN;
1102 int locked_vma = 0;
1104 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1105 end = address + CLUSTER_SIZE;
1106 if (address < vma->vm_start)
1107 address = vma->vm_start;
1108 if (end > vma->vm_end)
1109 end = vma->vm_end;
1111 pgd = pgd_offset(mm, address);
1112 if (!pgd_present(*pgd))
1113 return ret;
1115 pud = pud_offset(pgd, address);
1116 if (!pud_present(*pud))
1117 return ret;
1119 pmd = pmd_offset(pud, address);
1120 if (!pmd_present(*pmd))
1121 return ret;
1124 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1125 * keep the sem while scanning the cluster for mlocking pages.
1127 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1128 locked_vma = (vma->vm_flags & VM_LOCKED);
1129 if (!locked_vma)
1130 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1133 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1135 /* Update high watermark before we lower rss */
1136 update_hiwater_rss(mm);
1138 for (; address < end; pte++, address += PAGE_SIZE) {
1139 if (!pte_present(*pte))
1140 continue;
1141 page = vm_normal_page(vma, address, *pte);
1142 BUG_ON(!page || PageAnon(page));
1144 if (locked_vma) {
1145 mlock_vma_page(page); /* no-op if already mlocked */
1146 if (page == check_page)
1147 ret = SWAP_MLOCK;
1148 continue; /* don't unmap */
1151 if (ptep_clear_flush_young_notify(vma, address, pte))
1152 continue;
1154 /* Nuke the page table entry. */
1155 flush_cache_page(vma, address, pte_pfn(*pte));
1156 pteval = ptep_clear_flush_notify(vma, address, pte);
1158 /* If nonlinear, store the file page offset in the pte. */
1159 if (page->index != linear_page_index(vma, address))
1160 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1162 /* Move the dirty bit to the physical page now the pte is gone. */
1163 if (pte_dirty(pteval))
1164 set_page_dirty(page);
1166 page_remove_rmap(page);
1167 page_cache_release(page);
1168 dec_mm_counter(mm, MM_FILEPAGES);
1169 (*mapcount)--;
1171 pte_unmap_unlock(pte - 1, ptl);
1172 if (locked_vma)
1173 up_read(&vma->vm_mm->mmap_sem);
1174 return ret;
1177 static bool is_vma_temporary_stack(struct vm_area_struct *vma)
1179 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1181 if (!maybe_stack)
1182 return false;
1184 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1185 VM_STACK_INCOMPLETE_SETUP)
1186 return true;
1188 return false;
1192 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1193 * rmap method
1194 * @page: the page to unmap/unlock
1195 * @flags: action and flags
1197 * Find all the mappings of a page using the mapping pointer and the vma chains
1198 * contained in the anon_vma struct it points to.
1200 * This function is only called from try_to_unmap/try_to_munlock for
1201 * anonymous pages.
1202 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1203 * where the page was found will be held for write. So, we won't recheck
1204 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1205 * 'LOCKED.
1207 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1209 struct anon_vma *anon_vma;
1210 struct anon_vma_chain *avc;
1211 int ret = SWAP_AGAIN;
1213 anon_vma = page_lock_anon_vma(page);
1214 if (!anon_vma)
1215 return ret;
1217 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1218 struct vm_area_struct *vma = avc->vma;
1219 unsigned long address;
1222 * During exec, a temporary VMA is setup and later moved.
1223 * The VMA is moved under the anon_vma lock but not the
1224 * page tables leading to a race where migration cannot
1225 * find the migration ptes. Rather than increasing the
1226 * locking requirements of exec(), migration skips
1227 * temporary VMAs until after exec() completes.
1229 if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1230 is_vma_temporary_stack(vma))
1231 continue;
1233 address = vma_address(page, vma);
1234 if (address == -EFAULT)
1235 continue;
1236 ret = try_to_unmap_one(page, vma, address, flags);
1237 if (ret != SWAP_AGAIN || !page_mapped(page))
1238 break;
1241 page_unlock_anon_vma(anon_vma);
1242 return ret;
1246 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1247 * @page: the page to unmap/unlock
1248 * @flags: action and flags
1250 * Find all the mappings of a page using the mapping pointer and the vma chains
1251 * contained in the address_space struct it points to.
1253 * This function is only called from try_to_unmap/try_to_munlock for
1254 * object-based pages.
1255 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1256 * where the page was found will be held for write. So, we won't recheck
1257 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1258 * 'LOCKED.
1260 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1262 struct address_space *mapping = page->mapping;
1263 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1264 struct vm_area_struct *vma;
1265 struct prio_tree_iter iter;
1266 int ret = SWAP_AGAIN;
1267 unsigned long cursor;
1268 unsigned long max_nl_cursor = 0;
1269 unsigned long max_nl_size = 0;
1270 unsigned int mapcount;
1272 spin_lock(&mapping->i_mmap_lock);
1273 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1274 unsigned long address = vma_address(page, vma);
1275 if (address == -EFAULT)
1276 continue;
1277 ret = try_to_unmap_one(page, vma, address, flags);
1278 if (ret != SWAP_AGAIN || !page_mapped(page))
1279 goto out;
1282 if (list_empty(&mapping->i_mmap_nonlinear))
1283 goto out;
1286 * We don't bother to try to find the munlocked page in nonlinears.
1287 * It's costly. Instead, later, page reclaim logic may call
1288 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1290 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1291 goto out;
1293 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1294 shared.vm_set.list) {
1295 cursor = (unsigned long) vma->vm_private_data;
1296 if (cursor > max_nl_cursor)
1297 max_nl_cursor = cursor;
1298 cursor = vma->vm_end - vma->vm_start;
1299 if (cursor > max_nl_size)
1300 max_nl_size = cursor;
1303 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1304 ret = SWAP_FAIL;
1305 goto out;
1309 * We don't try to search for this page in the nonlinear vmas,
1310 * and page_referenced wouldn't have found it anyway. Instead
1311 * just walk the nonlinear vmas trying to age and unmap some.
1312 * The mapcount of the page we came in with is irrelevant,
1313 * but even so use it as a guide to how hard we should try?
1315 mapcount = page_mapcount(page);
1316 if (!mapcount)
1317 goto out;
1318 cond_resched_lock(&mapping->i_mmap_lock);
1320 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1321 if (max_nl_cursor == 0)
1322 max_nl_cursor = CLUSTER_SIZE;
1324 do {
1325 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1326 shared.vm_set.list) {
1327 cursor = (unsigned long) vma->vm_private_data;
1328 while ( cursor < max_nl_cursor &&
1329 cursor < vma->vm_end - vma->vm_start) {
1330 if (try_to_unmap_cluster(cursor, &mapcount,
1331 vma, page) == SWAP_MLOCK)
1332 ret = SWAP_MLOCK;
1333 cursor += CLUSTER_SIZE;
1334 vma->vm_private_data = (void *) cursor;
1335 if ((int)mapcount <= 0)
1336 goto out;
1338 vma->vm_private_data = (void *) max_nl_cursor;
1340 cond_resched_lock(&mapping->i_mmap_lock);
1341 max_nl_cursor += CLUSTER_SIZE;
1342 } while (max_nl_cursor <= max_nl_size);
1345 * Don't loop forever (perhaps all the remaining pages are
1346 * in locked vmas). Reset cursor on all unreserved nonlinear
1347 * vmas, now forgetting on which ones it had fallen behind.
1349 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1350 vma->vm_private_data = NULL;
1351 out:
1352 spin_unlock(&mapping->i_mmap_lock);
1353 return ret;
1357 * try_to_unmap - try to remove all page table mappings to a page
1358 * @page: the page to get unmapped
1359 * @flags: action and flags
1361 * Tries to remove all the page table entries which are mapping this
1362 * page, used in the pageout path. Caller must hold the page lock.
1363 * Return values are:
1365 * SWAP_SUCCESS - we succeeded in removing all mappings
1366 * SWAP_AGAIN - we missed a mapping, try again later
1367 * SWAP_FAIL - the page is unswappable
1368 * SWAP_MLOCK - page is mlocked.
1370 int try_to_unmap(struct page *page, enum ttu_flags flags)
1372 int ret;
1374 BUG_ON(!PageLocked(page));
1376 if (unlikely(PageKsm(page)))
1377 ret = try_to_unmap_ksm(page, flags);
1378 else if (PageAnon(page))
1379 ret = try_to_unmap_anon(page, flags);
1380 else
1381 ret = try_to_unmap_file(page, flags);
1382 if (ret != SWAP_MLOCK && !page_mapped(page))
1383 ret = SWAP_SUCCESS;
1384 return ret;
1388 * try_to_munlock - try to munlock a page
1389 * @page: the page to be munlocked
1391 * Called from munlock code. Checks all of the VMAs mapping the page
1392 * to make sure nobody else has this page mlocked. The page will be
1393 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1395 * Return values are:
1397 * SWAP_AGAIN - no vma is holding page mlocked, or,
1398 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1399 * SWAP_FAIL - page cannot be located at present
1400 * SWAP_MLOCK - page is now mlocked.
1402 int try_to_munlock(struct page *page)
1404 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1406 if (unlikely(PageKsm(page)))
1407 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1408 else if (PageAnon(page))
1409 return try_to_unmap_anon(page, TTU_MUNLOCK);
1410 else
1411 return try_to_unmap_file(page, TTU_MUNLOCK);
1414 #if defined(CONFIG_KSM) || defined(CONFIG_MIGRATION)
1416 * Drop an anon_vma refcount, freeing the anon_vma and anon_vma->root
1417 * if necessary. Be careful to do all the tests under the lock. Once
1418 * we know we are the last user, nobody else can get a reference and we
1419 * can do the freeing without the lock.
1421 void drop_anon_vma(struct anon_vma *anon_vma)
1423 BUG_ON(atomic_read(&anon_vma->external_refcount) <= 0);
1424 if (atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->root->lock)) {
1425 struct anon_vma *root = anon_vma->root;
1426 int empty = list_empty(&anon_vma->head);
1427 int last_root_user = 0;
1428 int root_empty = 0;
1431 * The refcount on a non-root anon_vma got dropped. Drop
1432 * the refcount on the root and check if we need to free it.
1434 if (empty && anon_vma != root) {
1435 BUG_ON(atomic_read(&root->external_refcount) <= 0);
1436 last_root_user = atomic_dec_and_test(&root->external_refcount);
1437 root_empty = list_empty(&root->head);
1439 anon_vma_unlock(anon_vma);
1441 if (empty) {
1442 anon_vma_free(anon_vma);
1443 if (root_empty && last_root_user)
1444 anon_vma_free(root);
1448 #endif
1450 #ifdef CONFIG_MIGRATION
1452 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1453 * Called by migrate.c to remove migration ptes, but might be used more later.
1455 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1456 struct vm_area_struct *, unsigned long, void *), void *arg)
1458 struct anon_vma *anon_vma;
1459 struct anon_vma_chain *avc;
1460 int ret = SWAP_AGAIN;
1463 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1464 * because that depends on page_mapped(); but not all its usages
1465 * are holding mmap_sem. Users without mmap_sem are required to
1466 * take a reference count to prevent the anon_vma disappearing
1468 anon_vma = page_anon_vma(page);
1469 if (!anon_vma)
1470 return ret;
1471 anon_vma_lock(anon_vma);
1472 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1473 struct vm_area_struct *vma = avc->vma;
1474 unsigned long address = vma_address(page, vma);
1475 if (address == -EFAULT)
1476 continue;
1477 ret = rmap_one(page, vma, address, arg);
1478 if (ret != SWAP_AGAIN)
1479 break;
1481 anon_vma_unlock(anon_vma);
1482 return ret;
1485 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1486 struct vm_area_struct *, unsigned long, void *), void *arg)
1488 struct address_space *mapping = page->mapping;
1489 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1490 struct vm_area_struct *vma;
1491 struct prio_tree_iter iter;
1492 int ret = SWAP_AGAIN;
1494 if (!mapping)
1495 return ret;
1496 spin_lock(&mapping->i_mmap_lock);
1497 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1498 unsigned long address = vma_address(page, vma);
1499 if (address == -EFAULT)
1500 continue;
1501 ret = rmap_one(page, vma, address, arg);
1502 if (ret != SWAP_AGAIN)
1503 break;
1506 * No nonlinear handling: being always shared, nonlinear vmas
1507 * never contain migration ptes. Decide what to do about this
1508 * limitation to linear when we need rmap_walk() on nonlinear.
1510 spin_unlock(&mapping->i_mmap_lock);
1511 return ret;
1514 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1515 struct vm_area_struct *, unsigned long, void *), void *arg)
1517 VM_BUG_ON(!PageLocked(page));
1519 if (unlikely(PageKsm(page)))
1520 return rmap_walk_ksm(page, rmap_one, arg);
1521 else if (PageAnon(page))
1522 return rmap_walk_anon(page, rmap_one, arg);
1523 else
1524 return rmap_walk_file(page, rmap_one, arg);
1526 #endif /* CONFIG_MIGRATION */