Intel FB: whitespace, bracket and other clean-ups
[firewire-audio.git] / drivers / video / intelfb / intelfbhw.c
blobfe38df8e2b6f9e089defb7307aeecd0e9fc3c8a9
1 /*
2 * intelfb
4 * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
6 * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
7 * 2004 Sylvain Meyer
9 * This driver consists of two parts. The first part (intelfbdrv.c) provides
10 * the basic fbdev interfaces, is derived in part from the radeonfb and
11 * vesafb drivers, and is covered by the GPL. The second part (intelfbhw.c)
12 * provides the code to program the hardware. Most of it is derived from
13 * the i810/i830 XFree86 driver. The HW-specific code is covered here
14 * under a dual license (GPL and MIT/XFree86 license).
16 * Author: David Dawes
20 /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fb.h>
30 #include <linux/ioport.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/interrupt.h>
37 #include <asm/io.h>
39 #include "intelfb.h"
40 #include "intelfbhw.h"
42 struct pll_min_max {
43 int min_m, max_m, min_m1, max_m1;
44 int min_m2, max_m2, min_n, max_n;
45 int min_p, max_p, min_p1, max_p1;
46 int min_vco, max_vco, p_transition_clk, ref_clk;
47 int p_inc_lo, p_inc_hi;
50 #define PLLS_I8xx 0
51 #define PLLS_I9xx 1
52 #define PLLS_MAX 2
54 static struct pll_min_max plls[PLLS_MAX] = {
55 { 108, 140, 18, 26,
56 6, 16, 3, 16,
57 4, 128, 0, 31,
58 930000, 1400000, 165000, 48000,
59 4, 2 }, /* I8xx */
61 { 75, 120, 10, 20,
62 5, 9, 4, 7,
63 5, 80, 1, 8,
64 1400000, 2800000, 200000, 96000,
65 10, 5 } /* I9xx */
68 int intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
70 u32 tmp;
71 if (!pdev || !dinfo)
72 return 1;
74 switch (pdev->device) {
75 case PCI_DEVICE_ID_INTEL_830M:
76 dinfo->name = "Intel(R) 830M";
77 dinfo->chipset = INTEL_830M;
78 dinfo->mobile = 1;
79 dinfo->pll_index = PLLS_I8xx;
80 return 0;
81 case PCI_DEVICE_ID_INTEL_845G:
82 dinfo->name = "Intel(R) 845G";
83 dinfo->chipset = INTEL_845G;
84 dinfo->mobile = 0;
85 dinfo->pll_index = PLLS_I8xx;
86 return 0;
87 case PCI_DEVICE_ID_INTEL_85XGM:
88 tmp = 0;
89 dinfo->mobile = 1;
90 dinfo->pll_index = PLLS_I8xx;
91 pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
92 switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
93 INTEL_85X_VARIANT_MASK) {
94 case INTEL_VAR_855GME:
95 dinfo->name = "Intel(R) 855GME";
96 dinfo->chipset = INTEL_855GME;
97 return 0;
98 case INTEL_VAR_855GM:
99 dinfo->name = "Intel(R) 855GM";
100 dinfo->chipset = INTEL_855GM;
101 return 0;
102 case INTEL_VAR_852GME:
103 dinfo->name = "Intel(R) 852GME";
104 dinfo->chipset = INTEL_852GME;
105 return 0;
106 case INTEL_VAR_852GM:
107 dinfo->name = "Intel(R) 852GM";
108 dinfo->chipset = INTEL_852GM;
109 return 0;
110 default:
111 dinfo->name = "Intel(R) 852GM/855GM";
112 dinfo->chipset = INTEL_85XGM;
113 return 0;
115 break;
116 case PCI_DEVICE_ID_INTEL_865G:
117 dinfo->name = "Intel(R) 865G";
118 dinfo->chipset = INTEL_865G;
119 dinfo->mobile = 0;
120 dinfo->pll_index = PLLS_I8xx;
121 return 0;
122 case PCI_DEVICE_ID_INTEL_915G:
123 dinfo->name = "Intel(R) 915G";
124 dinfo->chipset = INTEL_915G;
125 dinfo->mobile = 0;
126 dinfo->pll_index = PLLS_I9xx;
127 return 0;
128 case PCI_DEVICE_ID_INTEL_915GM:
129 dinfo->name = "Intel(R) 915GM";
130 dinfo->chipset = INTEL_915GM;
131 dinfo->mobile = 1;
132 dinfo->pll_index = PLLS_I9xx;
133 return 0;
134 case PCI_DEVICE_ID_INTEL_945G:
135 dinfo->name = "Intel(R) 945G";
136 dinfo->chipset = INTEL_945G;
137 dinfo->mobile = 0;
138 dinfo->pll_index = PLLS_I9xx;
139 return 0;
140 case PCI_DEVICE_ID_INTEL_945GM:
141 dinfo->name = "Intel(R) 945GM";
142 dinfo->chipset = INTEL_945GM;
143 dinfo->mobile = 1;
144 dinfo->pll_index = PLLS_I9xx;
145 return 0;
146 default:
147 return 1;
151 int intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
152 int *stolen_size)
154 struct pci_dev *bridge_dev;
155 u16 tmp;
156 int stolen_overhead;
158 if (!pdev || !aperture_size || !stolen_size)
159 return 1;
161 /* Find the bridge device. It is always 0:0.0 */
162 if (!(bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0)))) {
163 ERR_MSG("cannot find bridge device\n");
164 return 1;
167 /* Get the fb aperture size and "stolen" memory amount. */
168 tmp = 0;
169 pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
170 pci_dev_put(bridge_dev);
172 switch (pdev->device) {
173 case PCI_DEVICE_ID_INTEL_915G:
174 case PCI_DEVICE_ID_INTEL_915GM:
175 case PCI_DEVICE_ID_INTEL_945G:
176 case PCI_DEVICE_ID_INTEL_945GM:
177 /* 915 and 945 chipsets support a 256MB aperture.
178 Aperture size is determined by inspected the
179 base address of the aperture. */
180 if (pci_resource_start(pdev, 2) & 0x08000000)
181 *aperture_size = MB(128);
182 else
183 *aperture_size = MB(256);
184 break;
185 default:
186 if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
187 *aperture_size = MB(64);
188 else
189 *aperture_size = MB(128);
190 break;
193 /* Stolen memory size is reduced by the GTT and the popup.
194 GTT is 1K per MB of aperture size, and popup is 4K. */
195 stolen_overhead = (*aperture_size / MB(1)) + 4;
196 switch(pdev->device) {
197 case PCI_DEVICE_ID_INTEL_830M:
198 case PCI_DEVICE_ID_INTEL_845G:
199 switch (tmp & INTEL_830_GMCH_GMS_MASK) {
200 case INTEL_830_GMCH_GMS_STOLEN_512:
201 *stolen_size = KB(512) - KB(stolen_overhead);
202 return 0;
203 case INTEL_830_GMCH_GMS_STOLEN_1024:
204 *stolen_size = MB(1) - KB(stolen_overhead);
205 return 0;
206 case INTEL_830_GMCH_GMS_STOLEN_8192:
207 *stolen_size = MB(8) - KB(stolen_overhead);
208 return 0;
209 case INTEL_830_GMCH_GMS_LOCAL:
210 ERR_MSG("only local memory found\n");
211 return 1;
212 case INTEL_830_GMCH_GMS_DISABLED:
213 ERR_MSG("video memory is disabled\n");
214 return 1;
215 default:
216 ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
217 tmp & INTEL_830_GMCH_GMS_MASK);
218 return 1;
220 break;
221 default:
222 switch (tmp & INTEL_855_GMCH_GMS_MASK) {
223 case INTEL_855_GMCH_GMS_STOLEN_1M:
224 *stolen_size = MB(1) - KB(stolen_overhead);
225 return 0;
226 case INTEL_855_GMCH_GMS_STOLEN_4M:
227 *stolen_size = MB(4) - KB(stolen_overhead);
228 return 0;
229 case INTEL_855_GMCH_GMS_STOLEN_8M:
230 *stolen_size = MB(8) - KB(stolen_overhead);
231 return 0;
232 case INTEL_855_GMCH_GMS_STOLEN_16M:
233 *stolen_size = MB(16) - KB(stolen_overhead);
234 return 0;
235 case INTEL_855_GMCH_GMS_STOLEN_32M:
236 *stolen_size = MB(32) - KB(stolen_overhead);
237 return 0;
238 case INTEL_915G_GMCH_GMS_STOLEN_48M:
239 *stolen_size = MB(48) - KB(stolen_overhead);
240 return 0;
241 case INTEL_915G_GMCH_GMS_STOLEN_64M:
242 *stolen_size = MB(64) - KB(stolen_overhead);
243 return 0;
244 case INTEL_855_GMCH_GMS_DISABLED:
245 ERR_MSG("video memory is disabled\n");
246 return 0;
247 default:
248 ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
249 tmp & INTEL_855_GMCH_GMS_MASK);
250 return 1;
255 int intelfbhw_check_non_crt(struct intelfb_info *dinfo)
257 int dvo = 0;
259 if (INREG(LVDS) & PORT_ENABLE)
260 dvo |= LVDS_PORT;
261 if (INREG(DVOA) & PORT_ENABLE)
262 dvo |= DVOA_PORT;
263 if (INREG(DVOB) & PORT_ENABLE)
264 dvo |= DVOB_PORT;
265 if (INREG(DVOC) & PORT_ENABLE)
266 dvo |= DVOC_PORT;
268 return dvo;
271 const char * intelfbhw_dvo_to_string(int dvo)
273 if (dvo & DVOA_PORT)
274 return "DVO port A";
275 else if (dvo & DVOB_PORT)
276 return "DVO port B";
277 else if (dvo & DVOC_PORT)
278 return "DVO port C";
279 else if (dvo & LVDS_PORT)
280 return "LVDS port";
281 else
282 return NULL;
286 int intelfbhw_validate_mode(struct intelfb_info *dinfo,
287 struct fb_var_screeninfo *var)
289 int bytes_per_pixel;
290 int tmp;
292 #if VERBOSE > 0
293 DBG_MSG("intelfbhw_validate_mode\n");
294 #endif
296 bytes_per_pixel = var->bits_per_pixel / 8;
297 if (bytes_per_pixel == 3)
298 bytes_per_pixel = 4;
300 /* Check if enough video memory. */
301 tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
302 if (tmp > dinfo->fb.size) {
303 WRN_MSG("Not enough video ram for mode "
304 "(%d KByte vs %d KByte).\n",
305 BtoKB(tmp), BtoKB(dinfo->fb.size));
306 return 1;
309 /* Check if x/y limits are OK. */
310 if (var->xres - 1 > HACTIVE_MASK) {
311 WRN_MSG("X resolution too large (%d vs %d).\n",
312 var->xres, HACTIVE_MASK + 1);
313 return 1;
315 if (var->yres - 1 > VACTIVE_MASK) {
316 WRN_MSG("Y resolution too large (%d vs %d).\n",
317 var->yres, VACTIVE_MASK + 1);
318 return 1;
321 /* Check for doublescan modes. */
322 if (var->vmode & FB_VMODE_DOUBLE) {
323 WRN_MSG("Mode is double-scan.\n");
324 return 1;
327 /* Check if clock is OK. */
328 tmp = 1000000000 / var->pixclock;
329 if (tmp < MIN_CLOCK) {
330 WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
331 (tmp + 500) / 1000, MIN_CLOCK / 1000);
332 return 1;
334 if (tmp > MAX_CLOCK) {
335 WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
336 (tmp + 500) / 1000, MAX_CLOCK / 1000);
337 return 1;
340 return 0;
343 int intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
345 struct intelfb_info *dinfo = GET_DINFO(info);
346 u32 offset, xoffset, yoffset;
348 #if VERBOSE > 0
349 DBG_MSG("intelfbhw_pan_display\n");
350 #endif
352 xoffset = ROUND_DOWN_TO(var->xoffset, 8);
353 yoffset = var->yoffset;
355 if ((xoffset + var->xres > var->xres_virtual) ||
356 (yoffset + var->yres > var->yres_virtual))
357 return -EINVAL;
359 offset = (yoffset * dinfo->pitch) +
360 (xoffset * var->bits_per_pixel) / 8;
362 offset += dinfo->fb.offset << 12;
364 dinfo->vsync.pan_offset = offset;
365 if ((var->activate & FB_ACTIVATE_VBL) &&
366 !intelfbhw_enable_irq(dinfo, 0))
367 dinfo->vsync.pan_display = 1;
368 else {
369 dinfo->vsync.pan_display = 0;
370 OUTREG(DSPABASE, offset);
373 return 0;
376 /* Blank the screen. */
377 void intelfbhw_do_blank(int blank, struct fb_info *info)
379 struct intelfb_info *dinfo = GET_DINFO(info);
380 u32 tmp;
382 #if VERBOSE > 0
383 DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
384 #endif
386 /* Turn plane A on or off */
387 tmp = INREG(DSPACNTR);
388 if (blank)
389 tmp &= ~DISPPLANE_PLANE_ENABLE;
390 else
391 tmp |= DISPPLANE_PLANE_ENABLE;
392 OUTREG(DSPACNTR, tmp);
393 /* Flush */
394 tmp = INREG(DSPABASE);
395 OUTREG(DSPABASE, tmp);
397 /* Turn off/on the HW cursor */
398 #if VERBOSE > 0
399 DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
400 #endif
401 if (dinfo->cursor_on) {
402 if (blank)
403 intelfbhw_cursor_hide(dinfo);
404 else
405 intelfbhw_cursor_show(dinfo);
406 dinfo->cursor_on = 1;
408 dinfo->cursor_blanked = blank;
410 /* Set DPMS level */
411 tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
412 switch (blank) {
413 case FB_BLANK_UNBLANK:
414 case FB_BLANK_NORMAL:
415 tmp |= ADPA_DPMS_D0;
416 break;
417 case FB_BLANK_VSYNC_SUSPEND:
418 tmp |= ADPA_DPMS_D1;
419 break;
420 case FB_BLANK_HSYNC_SUSPEND:
421 tmp |= ADPA_DPMS_D2;
422 break;
423 case FB_BLANK_POWERDOWN:
424 tmp |= ADPA_DPMS_D3;
425 break;
427 OUTREG(ADPA, tmp);
429 return;
433 void intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
434 unsigned red, unsigned green, unsigned blue,
435 unsigned transp)
437 #if VERBOSE > 0
438 DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
439 regno, red, green, blue);
440 #endif
442 u32 palette_reg = (dinfo->pipe == PIPE_A) ?
443 PALETTE_A : PALETTE_B;
445 OUTREG(palette_reg + (regno << 2),
446 (red << PALETTE_8_RED_SHIFT) |
447 (green << PALETTE_8_GREEN_SHIFT) |
448 (blue << PALETTE_8_BLUE_SHIFT));
452 int intelfbhw_read_hw_state(struct intelfb_info *dinfo,
453 struct intelfb_hwstate *hw, int flag)
455 int i;
457 #if VERBOSE > 0
458 DBG_MSG("intelfbhw_read_hw_state\n");
459 #endif
461 if (!hw || !dinfo)
462 return -1;
464 /* Read in as much of the HW state as possible. */
465 hw->vga0_divisor = INREG(VGA0_DIVISOR);
466 hw->vga1_divisor = INREG(VGA1_DIVISOR);
467 hw->vga_pd = INREG(VGAPD);
468 hw->dpll_a = INREG(DPLL_A);
469 hw->dpll_b = INREG(DPLL_B);
470 hw->fpa0 = INREG(FPA0);
471 hw->fpa1 = INREG(FPA1);
472 hw->fpb0 = INREG(FPB0);
473 hw->fpb1 = INREG(FPB1);
475 if (flag == 1)
476 return flag;
478 #if 0
479 /* This seems to be a problem with the 852GM/855GM */
480 for (i = 0; i < PALETTE_8_ENTRIES; i++) {
481 hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
482 hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
484 #endif
486 if (flag == 2)
487 return flag;
489 hw->htotal_a = INREG(HTOTAL_A);
490 hw->hblank_a = INREG(HBLANK_A);
491 hw->hsync_a = INREG(HSYNC_A);
492 hw->vtotal_a = INREG(VTOTAL_A);
493 hw->vblank_a = INREG(VBLANK_A);
494 hw->vsync_a = INREG(VSYNC_A);
495 hw->src_size_a = INREG(SRC_SIZE_A);
496 hw->bclrpat_a = INREG(BCLRPAT_A);
497 hw->htotal_b = INREG(HTOTAL_B);
498 hw->hblank_b = INREG(HBLANK_B);
499 hw->hsync_b = INREG(HSYNC_B);
500 hw->vtotal_b = INREG(VTOTAL_B);
501 hw->vblank_b = INREG(VBLANK_B);
502 hw->vsync_b = INREG(VSYNC_B);
503 hw->src_size_b = INREG(SRC_SIZE_B);
504 hw->bclrpat_b = INREG(BCLRPAT_B);
506 if (flag == 3)
507 return flag;
509 hw->adpa = INREG(ADPA);
510 hw->dvoa = INREG(DVOA);
511 hw->dvob = INREG(DVOB);
512 hw->dvoc = INREG(DVOC);
513 hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
514 hw->dvob_srcdim = INREG(DVOB_SRCDIM);
515 hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
516 hw->lvds = INREG(LVDS);
518 if (flag == 4)
519 return flag;
521 hw->pipe_a_conf = INREG(PIPEACONF);
522 hw->pipe_b_conf = INREG(PIPEBCONF);
523 hw->disp_arb = INREG(DISPARB);
525 if (flag == 5)
526 return flag;
528 hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
529 hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
530 hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
531 hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
533 if (flag == 6)
534 return flag;
536 for (i = 0; i < 4; i++) {
537 hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
538 hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
541 if (flag == 7)
542 return flag;
544 hw->cursor_size = INREG(CURSOR_SIZE);
546 if (flag == 8)
547 return flag;
549 hw->disp_a_ctrl = INREG(DSPACNTR);
550 hw->disp_b_ctrl = INREG(DSPBCNTR);
551 hw->disp_a_base = INREG(DSPABASE);
552 hw->disp_b_base = INREG(DSPBBASE);
553 hw->disp_a_stride = INREG(DSPASTRIDE);
554 hw->disp_b_stride = INREG(DSPBSTRIDE);
556 if (flag == 9)
557 return flag;
559 hw->vgacntrl = INREG(VGACNTRL);
561 if (flag == 10)
562 return flag;
564 hw->add_id = INREG(ADD_ID);
566 if (flag == 11)
567 return flag;
569 for (i = 0; i < 7; i++) {
570 hw->swf0x[i] = INREG(SWF00 + (i << 2));
571 hw->swf1x[i] = INREG(SWF10 + (i << 2));
572 if (i < 3)
573 hw->swf3x[i] = INREG(SWF30 + (i << 2));
576 for (i = 0; i < 8; i++)
577 hw->fence[i] = INREG(FENCE + (i << 2));
579 hw->instpm = INREG(INSTPM);
580 hw->mem_mode = INREG(MEM_MODE);
581 hw->fw_blc_0 = INREG(FW_BLC_0);
582 hw->fw_blc_1 = INREG(FW_BLC_1);
584 hw->hwstam = INREG16(HWSTAM);
585 hw->ier = INREG16(IER);
586 hw->iir = INREG16(IIR);
587 hw->imr = INREG16(IMR);
589 return 0;
593 static int calc_vclock3(int index, int m, int n, int p)
595 if (p == 0 || n == 0)
596 return 0;
597 return plls[index].ref_clk * m / n / p;
600 static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2,
601 int lvds)
603 struct pll_min_max *pll = &plls[index];
604 u32 m, vco, p;
606 m = (5 * (m1 + 2)) + (m2 + 2);
607 n += 2;
608 vco = pll->ref_clk * m / n;
610 if (index == PLLS_I8xx)
611 p = ((p1 + 2) * (1 << (p2 + 1)));
612 else
613 p = ((p1) * (p2 ? 5 : 10));
614 return vco / p;
617 #if REGDUMP
618 static void intelfbhw_get_p1p2(struct intelfb_info *dinfo, int dpll,
619 int *o_p1, int *o_p2)
621 int p1, p2;
623 if (IS_I9XX(dinfo)) {
624 if (dpll & DPLL_P1_FORCE_DIV2)
625 p1 = 1;
626 else
627 p1 = (dpll >> DPLL_P1_SHIFT) & 0xff;
629 p1 = ffs(p1);
631 p2 = (dpll >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK;
632 } else {
633 if (dpll & DPLL_P1_FORCE_DIV2)
634 p1 = 0;
635 else
636 p1 = (dpll >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
637 p2 = (dpll >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
640 *o_p1 = p1;
641 *o_p2 = p2;
643 #endif
646 void intelfbhw_print_hw_state(struct intelfb_info *dinfo,
647 struct intelfb_hwstate *hw)
649 #if REGDUMP
650 int i, m1, m2, n, p1, p2;
651 int index = dinfo->pll_index;
652 DBG_MSG("intelfbhw_print_hw_state\n");
654 if (!hw)
655 return;
656 /* Read in as much of the HW state as possible. */
657 printk("hw state dump start\n");
658 printk(" VGA0_DIVISOR: 0x%08x\n", hw->vga0_divisor);
659 printk(" VGA1_DIVISOR: 0x%08x\n", hw->vga1_divisor);
660 printk(" VGAPD: 0x%08x\n", hw->vga_pd);
661 n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
662 m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
663 m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
665 intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
667 printk(" VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
668 m1, m2, n, p1, p2);
669 printk(" VGA0: clock is %d\n",
670 calc_vclock(index, m1, m2, n, p1, p2, 0));
672 n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
673 m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
674 m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
676 intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
677 printk(" VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
678 m1, m2, n, p1, p2);
679 printk(" VGA1: clock is %d\n",
680 calc_vclock(index, m1, m2, n, p1, p2, 0));
682 printk(" DPLL_A: 0x%08x\n", hw->dpll_a);
683 printk(" DPLL_B: 0x%08x\n", hw->dpll_b);
684 printk(" FPA0: 0x%08x\n", hw->fpa0);
685 printk(" FPA1: 0x%08x\n", hw->fpa1);
686 printk(" FPB0: 0x%08x\n", hw->fpb0);
687 printk(" FPB1: 0x%08x\n", hw->fpb1);
689 n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
690 m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
691 m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
693 intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
695 printk(" PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
696 m1, m2, n, p1, p2);
697 printk(" PLLA0: clock is %d\n",
698 calc_vclock(index, m1, m2, n, p1, p2, 0));
700 n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
701 m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
702 m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
704 intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
706 printk(" PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
707 m1, m2, n, p1, p2);
708 printk(" PLLA1: clock is %d\n",
709 calc_vclock(index, m1, m2, n, p1, p2, 0));
711 #if 0
712 printk(" PALETTE_A:\n");
713 for (i = 0; i < PALETTE_8_ENTRIES)
714 printk(" %3d: 0x%08x\n", i, hw->palette_a[i]);
715 printk(" PALETTE_B:\n");
716 for (i = 0; i < PALETTE_8_ENTRIES)
717 printk(" %3d: 0x%08x\n", i, hw->palette_b[i]);
718 #endif
720 printk(" HTOTAL_A: 0x%08x\n", hw->htotal_a);
721 printk(" HBLANK_A: 0x%08x\n", hw->hblank_a);
722 printk(" HSYNC_A: 0x%08x\n", hw->hsync_a);
723 printk(" VTOTAL_A: 0x%08x\n", hw->vtotal_a);
724 printk(" VBLANK_A: 0x%08x\n", hw->vblank_a);
725 printk(" VSYNC_A: 0x%08x\n", hw->vsync_a);
726 printk(" SRC_SIZE_A: 0x%08x\n", hw->src_size_a);
727 printk(" BCLRPAT_A: 0x%08x\n", hw->bclrpat_a);
728 printk(" HTOTAL_B: 0x%08x\n", hw->htotal_b);
729 printk(" HBLANK_B: 0x%08x\n", hw->hblank_b);
730 printk(" HSYNC_B: 0x%08x\n", hw->hsync_b);
731 printk(" VTOTAL_B: 0x%08x\n", hw->vtotal_b);
732 printk(" VBLANK_B: 0x%08x\n", hw->vblank_b);
733 printk(" VSYNC_B: 0x%08x\n", hw->vsync_b);
734 printk(" SRC_SIZE_B: 0x%08x\n", hw->src_size_b);
735 printk(" BCLRPAT_B: 0x%08x\n", hw->bclrpat_b);
737 printk(" ADPA: 0x%08x\n", hw->adpa);
738 printk(" DVOA: 0x%08x\n", hw->dvoa);
739 printk(" DVOB: 0x%08x\n", hw->dvob);
740 printk(" DVOC: 0x%08x\n", hw->dvoc);
741 printk(" DVOA_SRCDIM: 0x%08x\n", hw->dvoa_srcdim);
742 printk(" DVOB_SRCDIM: 0x%08x\n", hw->dvob_srcdim);
743 printk(" DVOC_SRCDIM: 0x%08x\n", hw->dvoc_srcdim);
744 printk(" LVDS: 0x%08x\n", hw->lvds);
746 printk(" PIPEACONF: 0x%08x\n", hw->pipe_a_conf);
747 printk(" PIPEBCONF: 0x%08x\n", hw->pipe_b_conf);
748 printk(" DISPARB: 0x%08x\n", hw->disp_arb);
750 printk(" CURSOR_A_CONTROL: 0x%08x\n", hw->cursor_a_control);
751 printk(" CURSOR_B_CONTROL: 0x%08x\n", hw->cursor_b_control);
752 printk(" CURSOR_A_BASEADDR: 0x%08x\n", hw->cursor_a_base);
753 printk(" CURSOR_B_BASEADDR: 0x%08x\n", hw->cursor_b_base);
755 printk(" CURSOR_A_PALETTE: ");
756 for (i = 0; i < 4; i++) {
757 printk("0x%08x", hw->cursor_a_palette[i]);
758 if (i < 3)
759 printk(", ");
761 printk("\n");
762 printk(" CURSOR_B_PALETTE: ");
763 for (i = 0; i < 4; i++) {
764 printk("0x%08x", hw->cursor_b_palette[i]);
765 if (i < 3)
766 printk(", ");
768 printk("\n");
770 printk(" CURSOR_SIZE: 0x%08x\n", hw->cursor_size);
772 printk(" DSPACNTR: 0x%08x\n", hw->disp_a_ctrl);
773 printk(" DSPBCNTR: 0x%08x\n", hw->disp_b_ctrl);
774 printk(" DSPABASE: 0x%08x\n", hw->disp_a_base);
775 printk(" DSPBBASE: 0x%08x\n", hw->disp_b_base);
776 printk(" DSPASTRIDE: 0x%08x\n", hw->disp_a_stride);
777 printk(" DSPBSTRIDE: 0x%08x\n", hw->disp_b_stride);
779 printk(" VGACNTRL: 0x%08x\n", hw->vgacntrl);
780 printk(" ADD_ID: 0x%08x\n", hw->add_id);
782 for (i = 0; i < 7; i++) {
783 printk(" SWF0%d 0x%08x\n", i,
784 hw->swf0x[i]);
786 for (i = 0; i < 7; i++) {
787 printk(" SWF1%d 0x%08x\n", i,
788 hw->swf1x[i]);
790 for (i = 0; i < 3; i++) {
791 printk(" SWF3%d 0x%08x\n", i,
792 hw->swf3x[i]);
794 for (i = 0; i < 8; i++)
795 printk(" FENCE%d 0x%08x\n", i,
796 hw->fence[i]);
798 printk(" INSTPM 0x%08x\n", hw->instpm);
799 printk(" MEM_MODE 0x%08x\n", hw->mem_mode);
800 printk(" FW_BLC_0 0x%08x\n", hw->fw_blc_0);
801 printk(" FW_BLC_1 0x%08x\n", hw->fw_blc_1);
803 printk(" HWSTAM 0x%04x\n", hw->hwstam);
804 printk(" IER 0x%04x\n", hw->ier);
805 printk(" IIR 0x%04x\n", hw->iir);
806 printk(" IMR 0x%04x\n", hw->imr);
807 printk("hw state dump end\n");
808 #endif
813 /* Split the M parameter into M1 and M2. */
814 static int splitm(int index, unsigned int m, unsigned int *retm1,
815 unsigned int *retm2)
817 int m1, m2;
818 int testm;
819 struct pll_min_max *pll = &plls[index];
821 /* no point optimising too much - brute force m */
822 for (m1 = pll->min_m1; m1 < pll->max_m1 + 1; m1++) {
823 for (m2 = pll->min_m2; m2 < pll->max_m2 + 1; m2++) {
824 testm = (5 * (m1 + 2)) + (m2 + 2);
825 if (testm == m) {
826 *retm1 = (unsigned int)m1;
827 *retm2 = (unsigned int)m2;
828 return 0;
832 return 1;
835 /* Split the P parameter into P1 and P2. */
836 static int splitp(int index, unsigned int p, unsigned int *retp1,
837 unsigned int *retp2)
839 int p1, p2;
840 struct pll_min_max *pll = &plls[index];
842 if (index == PLLS_I9xx) {
843 p2 = (p % 10) ? 1 : 0;
845 p1 = p / (p2 ? 5 : 10);
847 *retp1 = (unsigned int)p1;
848 *retp2 = (unsigned int)p2;
849 return 0;
852 if (p % 4 == 0)
853 p2 = 1;
854 else
855 p2 = 0;
856 p1 = (p / (1 << (p2 + 1))) - 2;
857 if (p % 4 == 0 && p1 < pll->min_p1) {
858 p2 = 0;
859 p1 = (p / (1 << (p2 + 1))) - 2;
861 if (p1 < pll->min_p1 || p1 > pll->max_p1 ||
862 (p1 + 2) * (1 << (p2 + 1)) != p) {
863 return 1;
864 } else {
865 *retp1 = (unsigned int)p1;
866 *retp2 = (unsigned int)p2;
867 return 0;
871 static int calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2,
872 u32 *retn, u32 *retp1, u32 *retp2, u32 *retclock)
874 u32 m1, m2, n, p1, p2, n1, testm;
875 u32 f_vco, p, p_best = 0, m, f_out = 0;
876 u32 err_max, err_target, err_best = 10000000;
877 u32 n_best = 0, m_best = 0, f_best, f_err;
878 u32 p_min, p_max, p_inc, div_max;
879 struct pll_min_max *pll = &plls[index];
881 /* Accept 0.5% difference, but aim for 0.1% */
882 err_max = 5 * clock / 1000;
883 err_target = clock / 1000;
885 DBG_MSG("Clock is %d\n", clock);
887 div_max = pll->max_vco / clock;
889 p_inc = (clock <= pll->p_transition_clk) ? pll->p_inc_lo : pll->p_inc_hi;
890 p_min = p_inc;
891 p_max = ROUND_DOWN_TO(div_max, p_inc);
892 if (p_min < pll->min_p)
893 p_min = pll->min_p;
894 if (p_max > pll->max_p)
895 p_max = pll->max_p;
897 DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
899 p = p_min;
900 do {
901 if (splitp(index, p, &p1, &p2)) {
902 WRN_MSG("cannot split p = %d\n", p);
903 p += p_inc;
904 continue;
906 n = pll->min_n;
907 f_vco = clock * p;
909 do {
910 m = ROUND_UP_TO(f_vco * n, pll->ref_clk) / pll->ref_clk;
911 if (m < pll->min_m)
912 m = pll->min_m + 1;
913 if (m > pll->max_m)
914 m = pll->max_m - 1;
915 for (testm = m - 1; testm <= m; testm++) {
916 f_out = calc_vclock3(index, testm, n, p);
917 if (splitm(index, testm, &m1, &m2)) {
918 WRN_MSG("cannot split m = %d\n",
919 testm);
920 continue;
922 if (clock > f_out)
923 f_err = clock - f_out;
924 else/* slightly bias the error for bigger clocks */
925 f_err = f_out - clock + 1;
927 if (f_err < err_best) {
928 m_best = testm;
929 n_best = n;
930 p_best = p;
931 f_best = f_out;
932 err_best = f_err;
935 n++;
936 } while ((n <= pll->max_n) && (f_out >= clock));
937 p += p_inc;
938 } while ((p <= p_max));
940 if (!m_best) {
941 WRN_MSG("cannot find parameters for clock %d\n", clock);
942 return 1;
944 m = m_best;
945 n = n_best;
946 p = p_best;
947 splitm(index, m, &m1, &m2);
948 splitp(index, p, &p1, &p2);
949 n1 = n - 2;
951 DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
952 "f: %d (%d), VCO: %d\n",
953 m, m1, m2, n, n1, p, p1, p2,
954 calc_vclock3(index, m, n, p),
955 calc_vclock(index, m1, m2, n1, p1, p2, 0),
956 calc_vclock3(index, m, n, p) * p);
957 *retm1 = m1;
958 *retm2 = m2;
959 *retn = n1;
960 *retp1 = p1;
961 *retp2 = p2;
962 *retclock = calc_vclock(index, m1, m2, n1, p1, p2, 0);
964 return 0;
967 static __inline__ int check_overflow(u32 value, u32 limit,
968 const char *description)
970 if (value > limit) {
971 WRN_MSG("%s value %d exceeds limit %d\n",
972 description, value, limit);
973 return 1;
975 return 0;
978 /* It is assumed that hw is filled in with the initial state information. */
979 int intelfbhw_mode_to_hw(struct intelfb_info *dinfo,
980 struct intelfb_hwstate *hw,
981 struct fb_var_screeninfo *var)
983 int pipe = PIPE_A;
984 u32 *dpll, *fp0, *fp1;
985 u32 m1, m2, n, p1, p2, clock_target, clock;
986 u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
987 u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
988 u32 vsync_pol, hsync_pol;
989 u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
990 u32 stride_alignment;
992 DBG_MSG("intelfbhw_mode_to_hw\n");
994 /* Disable VGA */
995 hw->vgacntrl |= VGA_DISABLE;
997 /* Check whether pipe A or pipe B is enabled. */
998 if (hw->pipe_a_conf & PIPECONF_ENABLE)
999 pipe = PIPE_A;
1000 else if (hw->pipe_b_conf & PIPECONF_ENABLE)
1001 pipe = PIPE_B;
1003 /* Set which pipe's registers will be set. */
1004 if (pipe == PIPE_B) {
1005 dpll = &hw->dpll_b;
1006 fp0 = &hw->fpb0;
1007 fp1 = &hw->fpb1;
1008 hs = &hw->hsync_b;
1009 hb = &hw->hblank_b;
1010 ht = &hw->htotal_b;
1011 vs = &hw->vsync_b;
1012 vb = &hw->vblank_b;
1013 vt = &hw->vtotal_b;
1014 ss = &hw->src_size_b;
1015 pipe_conf = &hw->pipe_b_conf;
1016 } else {
1017 dpll = &hw->dpll_a;
1018 fp0 = &hw->fpa0;
1019 fp1 = &hw->fpa1;
1020 hs = &hw->hsync_a;
1021 hb = &hw->hblank_a;
1022 ht = &hw->htotal_a;
1023 vs = &hw->vsync_a;
1024 vb = &hw->vblank_a;
1025 vt = &hw->vtotal_a;
1026 ss = &hw->src_size_a;
1027 pipe_conf = &hw->pipe_a_conf;
1030 /* Use ADPA register for sync control. */
1031 hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
1033 /* sync polarity */
1034 hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
1035 ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1036 vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
1037 ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1038 hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
1039 (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
1040 hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
1041 (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
1043 /* Connect correct pipe to the analog port DAC */
1044 hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
1045 hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
1047 /* Set DPMS state to D0 (on) */
1048 hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
1049 hw->adpa |= ADPA_DPMS_D0;
1051 hw->adpa |= ADPA_DAC_ENABLE;
1053 *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
1054 *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
1055 *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
1057 /* Desired clock in kHz */
1058 clock_target = 1000000000 / var->pixclock;
1060 if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2,
1061 &n, &p1, &p2, &clock)) {
1062 WRN_MSG("calc_pll_params failed\n");
1063 return 1;
1066 /* Check for overflow. */
1067 if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
1068 return 1;
1069 if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
1070 return 1;
1071 if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
1072 return 1;
1073 if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
1074 return 1;
1075 if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
1076 return 1;
1078 *dpll &= ~DPLL_P1_FORCE_DIV2;
1079 *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
1080 (DPLL_P1_MASK << DPLL_P1_SHIFT));
1082 if (IS_I9XX(dinfo)) {
1083 *dpll |= (p2 << DPLL_I9XX_P2_SHIFT);
1084 *dpll |= (1 << (p1 - 1)) << DPLL_P1_SHIFT;
1085 } else
1086 *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
1088 *fp0 = (n << FP_N_DIVISOR_SHIFT) |
1089 (m1 << FP_M1_DIVISOR_SHIFT) |
1090 (m2 << FP_M2_DIVISOR_SHIFT);
1091 *fp1 = *fp0;
1093 hw->dvob &= ~PORT_ENABLE;
1094 hw->dvoc &= ~PORT_ENABLE;
1096 /* Use display plane A. */
1097 hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
1098 hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
1099 hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
1100 switch (intelfb_var_to_depth(var)) {
1101 case 8:
1102 hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
1103 break;
1104 case 15:
1105 hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
1106 break;
1107 case 16:
1108 hw->disp_a_ctrl |= DISPPLANE_16BPP;
1109 break;
1110 case 24:
1111 hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
1112 break;
1114 hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
1115 hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
1117 /* Set CRTC registers. */
1118 hactive = var->xres;
1119 hsync_start = hactive + var->right_margin;
1120 hsync_end = hsync_start + var->hsync_len;
1121 htotal = hsync_end + var->left_margin;
1122 hblank_start = hactive;
1123 hblank_end = htotal;
1125 DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1126 hactive, hsync_start, hsync_end, htotal, hblank_start,
1127 hblank_end);
1129 vactive = var->yres;
1130 vsync_start = vactive + var->lower_margin;
1131 vsync_end = vsync_start + var->vsync_len;
1132 vtotal = vsync_end + var->upper_margin;
1133 vblank_start = vactive;
1134 vblank_end = vtotal;
1135 vblank_end = vsync_end + 1;
1137 DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1138 vactive, vsync_start, vsync_end, vtotal, vblank_start,
1139 vblank_end);
1141 /* Adjust for register values, and check for overflow. */
1142 hactive--;
1143 if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
1144 return 1;
1145 hsync_start--;
1146 if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
1147 return 1;
1148 hsync_end--;
1149 if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
1150 return 1;
1151 htotal--;
1152 if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
1153 return 1;
1154 hblank_start--;
1155 if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
1156 return 1;
1157 hblank_end--;
1158 if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
1159 return 1;
1161 vactive--;
1162 if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
1163 return 1;
1164 vsync_start--;
1165 if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
1166 return 1;
1167 vsync_end--;
1168 if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
1169 return 1;
1170 vtotal--;
1171 if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
1172 return 1;
1173 vblank_start--;
1174 if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
1175 return 1;
1176 vblank_end--;
1177 if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
1178 return 1;
1180 *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
1181 *hb = (hblank_start << HBLANKSTART_SHIFT) |
1182 (hblank_end << HSYNCEND_SHIFT);
1183 *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
1185 *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
1186 *vb = (vblank_start << VBLANKSTART_SHIFT) |
1187 (vblank_end << VSYNCEND_SHIFT);
1188 *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
1189 *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
1190 (vactive << SRC_SIZE_VERT_SHIFT);
1192 hw->disp_a_stride = dinfo->pitch;
1193 DBG_MSG("pitch is %d\n", hw->disp_a_stride);
1195 hw->disp_a_base = hw->disp_a_stride * var->yoffset +
1196 var->xoffset * var->bits_per_pixel / 8;
1198 hw->disp_a_base += dinfo->fb.offset << 12;
1200 /* Check stride alignment. */
1201 stride_alignment = IS_I9XX(dinfo) ? STRIDE_ALIGNMENT_I9XX :
1202 STRIDE_ALIGNMENT;
1203 if (hw->disp_a_stride % stride_alignment != 0) {
1204 WRN_MSG("display stride %d has bad alignment %d\n",
1205 hw->disp_a_stride, stride_alignment);
1206 return 1;
1209 /* Set the palette to 8-bit mode. */
1210 *pipe_conf &= ~PIPECONF_GAMMA;
1212 if (var->vmode & FB_VMODE_INTERLACED)
1213 *pipe_conf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
1214 else
1215 *pipe_conf &= ~PIPECONF_INTERLACE_MASK;
1217 return 0;
1220 /* Program a (non-VGA) video mode. */
1221 int intelfbhw_program_mode(struct intelfb_info *dinfo,
1222 const struct intelfb_hwstate *hw, int blank)
1224 int pipe = PIPE_A;
1225 u32 tmp;
1226 const u32 *dpll, *fp0, *fp1, *pipe_conf;
1227 const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
1228 u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg;
1229 u32 hsync_reg, htotal_reg, hblank_reg;
1230 u32 vsync_reg, vtotal_reg, vblank_reg;
1231 u32 src_size_reg;
1232 u32 count, tmp_val[3];
1234 /* Assume single pipe, display plane A, analog CRT. */
1236 #if VERBOSE > 0
1237 DBG_MSG("intelfbhw_program_mode\n");
1238 #endif
1240 /* Disable VGA */
1241 tmp = INREG(VGACNTRL);
1242 tmp |= VGA_DISABLE;
1243 OUTREG(VGACNTRL, tmp);
1245 /* Check whether pipe A or pipe B is enabled. */
1246 if (hw->pipe_a_conf & PIPECONF_ENABLE)
1247 pipe = PIPE_A;
1248 else if (hw->pipe_b_conf & PIPECONF_ENABLE)
1249 pipe = PIPE_B;
1251 dinfo->pipe = pipe;
1253 if (pipe == PIPE_B) {
1254 dpll = &hw->dpll_b;
1255 fp0 = &hw->fpb0;
1256 fp1 = &hw->fpb1;
1257 pipe_conf = &hw->pipe_b_conf;
1258 hs = &hw->hsync_b;
1259 hb = &hw->hblank_b;
1260 ht = &hw->htotal_b;
1261 vs = &hw->vsync_b;
1262 vb = &hw->vblank_b;
1263 vt = &hw->vtotal_b;
1264 ss = &hw->src_size_b;
1265 dpll_reg = DPLL_B;
1266 fp0_reg = FPB0;
1267 fp1_reg = FPB1;
1268 pipe_conf_reg = PIPEBCONF;
1269 hsync_reg = HSYNC_B;
1270 htotal_reg = HTOTAL_B;
1271 hblank_reg = HBLANK_B;
1272 vsync_reg = VSYNC_B;
1273 vtotal_reg = VTOTAL_B;
1274 vblank_reg = VBLANK_B;
1275 src_size_reg = SRC_SIZE_B;
1276 } else {
1277 dpll = &hw->dpll_a;
1278 fp0 = &hw->fpa0;
1279 fp1 = &hw->fpa1;
1280 pipe_conf = &hw->pipe_a_conf;
1281 hs = &hw->hsync_a;
1282 hb = &hw->hblank_a;
1283 ht = &hw->htotal_a;
1284 vs = &hw->vsync_a;
1285 vb = &hw->vblank_a;
1286 vt = &hw->vtotal_a;
1287 ss = &hw->src_size_a;
1288 dpll_reg = DPLL_A;
1289 fp0_reg = FPA0;
1290 fp1_reg = FPA1;
1291 pipe_conf_reg = PIPEACONF;
1292 hsync_reg = HSYNC_A;
1293 htotal_reg = HTOTAL_A;
1294 hblank_reg = HBLANK_A;
1295 vsync_reg = VSYNC_A;
1296 vtotal_reg = VTOTAL_A;
1297 vblank_reg = VBLANK_A;
1298 src_size_reg = SRC_SIZE_A;
1301 /* turn off pipe */
1302 tmp = INREG(pipe_conf_reg);
1303 tmp &= ~PIPECONF_ENABLE;
1304 OUTREG(pipe_conf_reg, tmp);
1306 count = 0;
1307 do {
1308 tmp_val[count%3] = INREG(0x70000);
1309 if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1]==tmp_val[2]))
1310 break;
1311 count++;
1312 udelay(1);
1313 if (count % 200 == 0) {
1314 tmp = INREG(pipe_conf_reg);
1315 tmp &= ~PIPECONF_ENABLE;
1316 OUTREG(pipe_conf_reg, tmp);
1318 } while (count < 2000);
1320 OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1322 /* Disable planes A and B. */
1323 tmp = INREG(DSPACNTR);
1324 tmp &= ~DISPPLANE_PLANE_ENABLE;
1325 OUTREG(DSPACNTR, tmp);
1326 tmp = INREG(DSPBCNTR);
1327 tmp &= ~DISPPLANE_PLANE_ENABLE;
1328 OUTREG(DSPBCNTR, tmp);
1330 /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
1331 mdelay(20);
1333 OUTREG(DVOB, INREG(DVOB) & ~PORT_ENABLE);
1334 OUTREG(DVOC, INREG(DVOC) & ~PORT_ENABLE);
1335 OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1337 /* Disable Sync */
1338 tmp = INREG(ADPA);
1339 tmp &= ~ADPA_DPMS_CONTROL_MASK;
1340 tmp |= ADPA_DPMS_D3;
1341 OUTREG(ADPA, tmp);
1343 /* do some funky magic - xyzzy */
1344 OUTREG(0x61204, 0xabcd0000);
1346 /* turn off PLL */
1347 tmp = INREG(dpll_reg);
1348 tmp &= ~DPLL_VCO_ENABLE;
1349 OUTREG(dpll_reg, tmp);
1351 /* Set PLL parameters */
1352 OUTREG(fp0_reg, *fp0);
1353 OUTREG(fp1_reg, *fp1);
1355 /* Enable PLL */
1356 OUTREG(dpll_reg, *dpll);
1358 /* Set DVOs B/C */
1359 OUTREG(DVOB, hw->dvob);
1360 OUTREG(DVOC, hw->dvoc);
1362 /* undo funky magic */
1363 OUTREG(0x61204, 0x00000000);
1365 /* Set ADPA */
1366 OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE);
1367 OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
1369 /* Set pipe parameters */
1370 OUTREG(hsync_reg, *hs);
1371 OUTREG(hblank_reg, *hb);
1372 OUTREG(htotal_reg, *ht);
1373 OUTREG(vsync_reg, *vs);
1374 OUTREG(vblank_reg, *vb);
1375 OUTREG(vtotal_reg, *vt);
1376 OUTREG(src_size_reg, *ss);
1378 /* Enable pipe */
1379 OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
1381 /* Enable sync */
1382 tmp = INREG(ADPA);
1383 tmp &= ~ADPA_DPMS_CONTROL_MASK;
1384 tmp |= ADPA_DPMS_D0;
1385 OUTREG(ADPA, tmp);
1387 /* setup display plane */
1388 if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
1390 * i830M errata: the display plane must be enabled
1391 * to allow writes to the other bits in the plane
1392 * control register.
1394 tmp = INREG(DSPACNTR);
1395 if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
1396 tmp |= DISPPLANE_PLANE_ENABLE;
1397 OUTREG(DSPACNTR, tmp);
1398 OUTREG(DSPACNTR,
1399 hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
1400 mdelay(1);
1404 OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
1405 OUTREG(DSPASTRIDE, hw->disp_a_stride);
1406 OUTREG(DSPABASE, hw->disp_a_base);
1408 /* Enable plane */
1409 if (!blank) {
1410 tmp = INREG(DSPACNTR);
1411 tmp |= DISPPLANE_PLANE_ENABLE;
1412 OUTREG(DSPACNTR, tmp);
1413 OUTREG(DSPABASE, hw->disp_a_base);
1416 return 0;
1419 /* forward declarations */
1420 static void refresh_ring(struct intelfb_info *dinfo);
1421 static void reset_state(struct intelfb_info *dinfo);
1422 static void do_flush(struct intelfb_info *dinfo);
1424 static u32 get_ring_space(struct intelfb_info *dinfo)
1426 u32 ring_space;
1428 if (dinfo->ring_tail >= dinfo->ring_head)
1429 ring_space = dinfo->ring.size -
1430 (dinfo->ring_tail - dinfo->ring_head);
1431 else
1432 ring_space = dinfo->ring_head - dinfo->ring_tail;
1434 if (ring_space > RING_MIN_FREE)
1435 ring_space -= RING_MIN_FREE;
1436 else
1437 ring_space = 0;
1439 return ring_space;
1442 static int wait_ring(struct intelfb_info *dinfo, int n)
1444 int i = 0;
1445 unsigned long end;
1446 u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1448 #if VERBOSE > 0
1449 DBG_MSG("wait_ring: %d\n", n);
1450 #endif
1452 end = jiffies + (HZ * 3);
1453 while (dinfo->ring_space < n) {
1454 dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1455 dinfo->ring_space = get_ring_space(dinfo);
1457 if (dinfo->ring_head != last_head) {
1458 end = jiffies + (HZ * 3);
1459 last_head = dinfo->ring_head;
1461 i++;
1462 if (time_before(end, jiffies)) {
1463 if (!i) {
1464 /* Try again */
1465 reset_state(dinfo);
1466 refresh_ring(dinfo);
1467 do_flush(dinfo);
1468 end = jiffies + (HZ * 3);
1469 i = 1;
1470 } else {
1471 WRN_MSG("ring buffer : space: %d wanted %d\n",
1472 dinfo->ring_space, n);
1473 WRN_MSG("lockup - turning off hardware "
1474 "acceleration\n");
1475 dinfo->ring_lockup = 1;
1476 break;
1479 udelay(1);
1481 return i;
1484 static void do_flush(struct intelfb_info *dinfo)
1486 START_RING(2);
1487 OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
1488 OUT_RING(MI_NOOP);
1489 ADVANCE_RING();
1492 void intelfbhw_do_sync(struct intelfb_info *dinfo)
1494 #if VERBOSE > 0
1495 DBG_MSG("intelfbhw_do_sync\n");
1496 #endif
1498 if (!dinfo->accel)
1499 return;
1502 * Send a flush, then wait until the ring is empty. This is what
1503 * the XFree86 driver does, and actually it doesn't seem a lot worse
1504 * than the recommended method (both have problems).
1506 do_flush(dinfo);
1507 wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
1508 dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
1511 static void refresh_ring(struct intelfb_info *dinfo)
1513 #if VERBOSE > 0
1514 DBG_MSG("refresh_ring\n");
1515 #endif
1517 dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1518 dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
1519 dinfo->ring_space = get_ring_space(dinfo);
1522 static void reset_state(struct intelfb_info *dinfo)
1524 int i;
1525 u32 tmp;
1527 #if VERBOSE > 0
1528 DBG_MSG("reset_state\n");
1529 #endif
1531 for (i = 0; i < FENCE_NUM; i++)
1532 OUTREG(FENCE + (i << 2), 0);
1534 /* Flush the ring buffer if it's enabled. */
1535 tmp = INREG(PRI_RING_LENGTH);
1536 if (tmp & RING_ENABLE) {
1537 #if VERBOSE > 0
1538 DBG_MSG("reset_state: ring was enabled\n");
1539 #endif
1540 refresh_ring(dinfo);
1541 intelfbhw_do_sync(dinfo);
1542 DO_RING_IDLE();
1545 OUTREG(PRI_RING_LENGTH, 0);
1546 OUTREG(PRI_RING_HEAD, 0);
1547 OUTREG(PRI_RING_TAIL, 0);
1548 OUTREG(PRI_RING_START, 0);
1551 /* Stop the 2D engine, and turn off the ring buffer. */
1552 void intelfbhw_2d_stop(struct intelfb_info *dinfo)
1554 #if VERBOSE > 0
1555 DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n",
1556 dinfo->accel, dinfo->ring_active);
1557 #endif
1559 if (!dinfo->accel)
1560 return;
1562 dinfo->ring_active = 0;
1563 reset_state(dinfo);
1567 * Enable the ring buffer, and initialise the 2D engine.
1568 * It is assumed that the graphics engine has been stopped by previously
1569 * calling intelfb_2d_stop().
1571 void intelfbhw_2d_start(struct intelfb_info *dinfo)
1573 #if VERBOSE > 0
1574 DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
1575 dinfo->accel, dinfo->ring_active);
1576 #endif
1578 if (!dinfo->accel)
1579 return;
1581 /* Initialise the primary ring buffer. */
1582 OUTREG(PRI_RING_LENGTH, 0);
1583 OUTREG(PRI_RING_TAIL, 0);
1584 OUTREG(PRI_RING_HEAD, 0);
1586 OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
1587 OUTREG(PRI_RING_LENGTH,
1588 ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
1589 RING_NO_REPORT | RING_ENABLE);
1590 refresh_ring(dinfo);
1591 dinfo->ring_active = 1;
1594 /* 2D fillrect (solid fill or invert) */
1595 void intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w,
1596 u32 h, u32 color, u32 pitch, u32 bpp, u32 rop)
1598 u32 br00, br09, br13, br14, br16;
1600 #if VERBOSE > 0
1601 DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
1602 "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
1603 #endif
1605 br00 = COLOR_BLT_CMD;
1606 br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
1607 br13 = (rop << ROP_SHIFT) | pitch;
1608 br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
1609 br16 = color;
1611 switch (bpp) {
1612 case 8:
1613 br13 |= COLOR_DEPTH_8;
1614 break;
1615 case 16:
1616 br13 |= COLOR_DEPTH_16;
1617 break;
1618 case 32:
1619 br13 |= COLOR_DEPTH_32;
1620 br00 |= WRITE_ALPHA | WRITE_RGB;
1621 break;
1624 START_RING(6);
1625 OUT_RING(br00);
1626 OUT_RING(br13);
1627 OUT_RING(br14);
1628 OUT_RING(br09);
1629 OUT_RING(br16);
1630 OUT_RING(MI_NOOP);
1631 ADVANCE_RING();
1633 #if VERBOSE > 0
1634 DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
1635 dinfo->ring_tail, dinfo->ring_space);
1636 #endif
1639 void
1640 intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
1641 u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
1643 u32 br00, br09, br11, br12, br13, br22, br23, br26;
1645 #if VERBOSE > 0
1646 DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
1647 curx, cury, dstx, dsty, w, h, pitch, bpp);
1648 #endif
1650 br00 = XY_SRC_COPY_BLT_CMD;
1651 br09 = dinfo->fb_start;
1652 br11 = (pitch << PITCH_SHIFT);
1653 br12 = dinfo->fb_start;
1654 br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1655 br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
1656 br23 = ((dstx + w) << WIDTH_SHIFT) |
1657 ((dsty + h) << HEIGHT_SHIFT);
1658 br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
1660 switch (bpp) {
1661 case 8:
1662 br13 |= COLOR_DEPTH_8;
1663 break;
1664 case 16:
1665 br13 |= COLOR_DEPTH_16;
1666 break;
1667 case 32:
1668 br13 |= COLOR_DEPTH_32;
1669 br00 |= WRITE_ALPHA | WRITE_RGB;
1670 break;
1673 START_RING(8);
1674 OUT_RING(br00);
1675 OUT_RING(br13);
1676 OUT_RING(br22);
1677 OUT_RING(br23);
1678 OUT_RING(br09);
1679 OUT_RING(br26);
1680 OUT_RING(br11);
1681 OUT_RING(br12);
1682 ADVANCE_RING();
1685 int intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
1686 u32 h, const u8* cdat, u32 x, u32 y, u32 pitch,
1687 u32 bpp)
1689 int nbytes, ndwords, pad, tmp;
1690 u32 br00, br09, br13, br18, br19, br22, br23;
1691 int dat, ix, iy, iw;
1692 int i, j;
1694 #if VERBOSE > 0
1695 DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
1696 #endif
1698 /* size in bytes of a padded scanline */
1699 nbytes = ROUND_UP_TO(w, 16) / 8;
1701 /* Total bytes of padded scanline data to write out. */
1702 nbytes = nbytes * h;
1705 * Check if the glyph data exceeds the immediate mode limit.
1706 * It would take a large font (1K pixels) to hit this limit.
1708 if (nbytes > MAX_MONO_IMM_SIZE)
1709 return 0;
1711 /* Src data is packaged a dword (32-bit) at a time. */
1712 ndwords = ROUND_UP_TO(nbytes, 4) / 4;
1715 * Ring has to be padded to a quad word. But because the command starts
1716 with 7 bytes, pad only if there is an even number of ndwords
1718 pad = !(ndwords % 2);
1720 tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
1721 br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
1722 br09 = dinfo->fb_start;
1723 br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1724 br18 = bg;
1725 br19 = fg;
1726 br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
1727 br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
1729 switch (bpp) {
1730 case 8:
1731 br13 |= COLOR_DEPTH_8;
1732 break;
1733 case 16:
1734 br13 |= COLOR_DEPTH_16;
1735 break;
1736 case 32:
1737 br13 |= COLOR_DEPTH_32;
1738 br00 |= WRITE_ALPHA | WRITE_RGB;
1739 break;
1742 START_RING(8 + ndwords);
1743 OUT_RING(br00);
1744 OUT_RING(br13);
1745 OUT_RING(br22);
1746 OUT_RING(br23);
1747 OUT_RING(br09);
1748 OUT_RING(br18);
1749 OUT_RING(br19);
1750 ix = iy = 0;
1751 iw = ROUND_UP_TO(w, 8) / 8;
1752 while (ndwords--) {
1753 dat = 0;
1754 for (j = 0; j < 2; ++j) {
1755 for (i = 0; i < 2; ++i) {
1756 if (ix != iw || i == 0)
1757 dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
1759 if (ix == iw && iy != (h-1)) {
1760 ix = 0;
1761 ++iy;
1764 OUT_RING(dat);
1766 if (pad)
1767 OUT_RING(MI_NOOP);
1768 ADVANCE_RING();
1770 return 1;
1773 /* HW cursor functions. */
1774 void intelfbhw_cursor_init(struct intelfb_info *dinfo)
1776 u32 tmp;
1778 #if VERBOSE > 0
1779 DBG_MSG("intelfbhw_cursor_init\n");
1780 #endif
1782 if (dinfo->mobile || IS_I9XX(dinfo)) {
1783 if (!dinfo->cursor.physical)
1784 return;
1785 tmp = INREG(CURSOR_A_CONTROL);
1786 tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
1787 CURSOR_MEM_TYPE_LOCAL |
1788 (1 << CURSOR_PIPE_SELECT_SHIFT));
1789 tmp |= CURSOR_MODE_DISABLE;
1790 OUTREG(CURSOR_A_CONTROL, tmp);
1791 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1792 } else {
1793 tmp = INREG(CURSOR_CONTROL);
1794 tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
1795 CURSOR_ENABLE | CURSOR_STRIDE_MASK);
1796 tmp = CURSOR_FORMAT_3C;
1797 OUTREG(CURSOR_CONTROL, tmp);
1798 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
1799 tmp = (64 << CURSOR_SIZE_H_SHIFT) |
1800 (64 << CURSOR_SIZE_V_SHIFT);
1801 OUTREG(CURSOR_SIZE, tmp);
1805 void intelfbhw_cursor_hide(struct intelfb_info *dinfo)
1807 u32 tmp;
1809 #if VERBOSE > 0
1810 DBG_MSG("intelfbhw_cursor_hide\n");
1811 #endif
1813 dinfo->cursor_on = 0;
1814 if (dinfo->mobile || IS_I9XX(dinfo)) {
1815 if (!dinfo->cursor.physical)
1816 return;
1817 tmp = INREG(CURSOR_A_CONTROL);
1818 tmp &= ~CURSOR_MODE_MASK;
1819 tmp |= CURSOR_MODE_DISABLE;
1820 OUTREG(CURSOR_A_CONTROL, tmp);
1821 /* Flush changes */
1822 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1823 } else {
1824 tmp = INREG(CURSOR_CONTROL);
1825 tmp &= ~CURSOR_ENABLE;
1826 OUTREG(CURSOR_CONTROL, tmp);
1830 void intelfbhw_cursor_show(struct intelfb_info *dinfo)
1832 u32 tmp;
1834 #if VERBOSE > 0
1835 DBG_MSG("intelfbhw_cursor_show\n");
1836 #endif
1838 dinfo->cursor_on = 1;
1840 if (dinfo->cursor_blanked)
1841 return;
1843 if (dinfo->mobile || IS_I9XX(dinfo)) {
1844 if (!dinfo->cursor.physical)
1845 return;
1846 tmp = INREG(CURSOR_A_CONTROL);
1847 tmp &= ~CURSOR_MODE_MASK;
1848 tmp |= CURSOR_MODE_64_4C_AX;
1849 OUTREG(CURSOR_A_CONTROL, tmp);
1850 /* Flush changes */
1851 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1852 } else {
1853 tmp = INREG(CURSOR_CONTROL);
1854 tmp |= CURSOR_ENABLE;
1855 OUTREG(CURSOR_CONTROL, tmp);
1859 void intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
1861 u32 tmp;
1863 #if VERBOSE > 0
1864 DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
1865 #endif
1868 * Sets the position. The coordinates are assumed to already
1869 * have any offset adjusted. Assume that the cursor is never
1870 * completely off-screen, and that x, y are always >= 0.
1873 tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
1874 ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1875 OUTREG(CURSOR_A_POSITION, tmp);
1877 if (IS_I9XX(dinfo))
1878 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1881 void intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
1883 #if VERBOSE > 0
1884 DBG_MSG("intelfbhw_cursor_setcolor\n");
1885 #endif
1887 OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
1888 OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
1889 OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
1890 OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
1893 void intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
1894 u8 *data)
1896 u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1897 int i, j, w = width / 8;
1898 int mod = width % 8, t_mask, d_mask;
1900 #if VERBOSE > 0
1901 DBG_MSG("intelfbhw_cursor_load\n");
1902 #endif
1904 if (!dinfo->cursor.virtual)
1905 return;
1907 t_mask = 0xff >> mod;
1908 d_mask = ~(0xff >> mod);
1909 for (i = height; i--; ) {
1910 for (j = 0; j < w; j++) {
1911 writeb(0x00, addr + j);
1912 writeb(*(data++), addr + j+8);
1914 if (mod) {
1915 writeb(t_mask, addr + j);
1916 writeb(*(data++) & d_mask, addr + j+8);
1918 addr += 16;
1922 void intelfbhw_cursor_reset(struct intelfb_info *dinfo)
1924 u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1925 int i, j;
1927 #if VERBOSE > 0
1928 DBG_MSG("intelfbhw_cursor_reset\n");
1929 #endif
1931 if (!dinfo->cursor.virtual)
1932 return;
1934 for (i = 64; i--; ) {
1935 for (j = 0; j < 8; j++) {
1936 writeb(0xff, addr + j+0);
1937 writeb(0x00, addr + j+8);
1939 addr += 16;
1943 static irqreturn_t
1944 intelfbhw_irq(int irq, void *dev_id) {
1945 int handled = 0;
1946 u16 tmp;
1947 struct intelfb_info *dinfo = (struct intelfb_info *)dev_id;
1949 spin_lock(&dinfo->int_lock);
1951 tmp = INREG16(IIR);
1952 tmp &= VSYNC_PIPE_A_INTERRUPT;
1954 if (tmp == 0) {
1955 spin_unlock(&dinfo->int_lock);
1956 return IRQ_RETVAL(handled);
1959 OUTREG16(IIR, tmp);
1961 if (tmp & VSYNC_PIPE_A_INTERRUPT) {
1962 dinfo->vsync.count++;
1963 if (dinfo->vsync.pan_display) {
1964 dinfo->vsync.pan_display = 0;
1965 OUTREG(DSPABASE, dinfo->vsync.pan_offset);
1967 wake_up_interruptible(&dinfo->vsync.wait);
1968 handled = 1;
1971 spin_unlock(&dinfo->int_lock);
1973 return IRQ_RETVAL(handled);
1977 intelfbhw_enable_irq(struct intelfb_info *dinfo, int reenable) {
1979 if (!test_and_set_bit(0, &dinfo->irq_flags)) {
1980 if (request_irq(dinfo->pdev->irq, intelfbhw_irq, IRQF_SHARED,
1981 "intelfb", dinfo)) {
1982 clear_bit(0, &dinfo->irq_flags);
1983 return -EINVAL;
1986 spin_lock_irq(&dinfo->int_lock);
1987 OUTREG16(HWSTAM, 0xfffe);
1988 OUTREG16(IMR, 0x0);
1989 OUTREG16(IER, VSYNC_PIPE_A_INTERRUPT);
1990 spin_unlock_irq(&dinfo->int_lock);
1991 } else if (reenable) {
1992 u16 ier;
1994 spin_lock_irq(&dinfo->int_lock);
1995 ier = INREG16(IER);
1996 if ((ier & VSYNC_PIPE_A_INTERRUPT)) {
1997 DBG_MSG("someone disabled the IRQ [%08X]\n", ier);
1998 OUTREG(IER, VSYNC_PIPE_A_INTERRUPT);
2000 spin_unlock_irq(&dinfo->int_lock);
2002 return 0;
2005 void
2006 intelfbhw_disable_irq(struct intelfb_info *dinfo) {
2007 u16 tmp;
2009 if (test_and_clear_bit(0, &dinfo->irq_flags)) {
2010 if (dinfo->vsync.pan_display) {
2011 dinfo->vsync.pan_display = 0;
2012 OUTREG(DSPABASE, dinfo->vsync.pan_offset);
2014 spin_lock_irq(&dinfo->int_lock);
2015 OUTREG16(HWSTAM, 0xffff);
2016 OUTREG16(IMR, 0xffff);
2017 OUTREG16(IER, 0x0);
2019 tmp = INREG16(IIR);
2020 OUTREG16(IIR, tmp);
2021 spin_unlock_irq(&dinfo->int_lock);
2023 free_irq(dinfo->pdev->irq, dinfo);
2027 int intelfbhw_wait_for_vsync(struct intelfb_info *dinfo, u32 pipe)
2029 struct intelfb_vsync *vsync;
2030 unsigned int count;
2031 int ret;
2033 switch (pipe) {
2034 case 0:
2035 vsync = &dinfo->vsync;
2036 break;
2037 default:
2038 return -ENODEV;
2041 ret = intelfbhw_enable_irq(dinfo, 0);
2042 if (ret)
2043 return ret;
2045 count = vsync->count;
2046 ret = wait_event_interruptible_timeout(vsync->wait,
2047 count != vsync->count, HZ / 10);
2048 if (ret < 0)
2049 return ret;
2050 if (ret == 0) {
2051 intelfbhw_enable_irq(dinfo, 1);
2052 DBG_MSG("wait_for_vsync timed out!\n");
2053 return -ETIMEDOUT;
2056 return 0;