lguest: net block unneeded receive queue update notifications
[firewire-audio.git] / Documentation / lguest / lguest.c
blob46f4c5b09e9e9c41ccdfeafcb150407aa6016126
1 /*P:100 This is the Launcher code, a simple program which lays out the
2 * "physical" memory for the new Guest by mapping the kernel image and
3 * the virtual devices, then opens /dev/lguest to tell the kernel
4 * about the Guest and control it. :*/
5 #define _LARGEFILE64_SOURCE
6 #define _GNU_SOURCE
7 #include <stdio.h>
8 #include <string.h>
9 #include <unistd.h>
10 #include <err.h>
11 #include <stdint.h>
12 #include <stdlib.h>
13 #include <elf.h>
14 #include <sys/mman.h>
15 #include <sys/param.h>
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 #include <sys/wait.h>
19 #include <fcntl.h>
20 #include <stdbool.h>
21 #include <errno.h>
22 #include <ctype.h>
23 #include <sys/socket.h>
24 #include <sys/ioctl.h>
25 #include <sys/time.h>
26 #include <time.h>
27 #include <netinet/in.h>
28 #include <net/if.h>
29 #include <linux/sockios.h>
30 #include <linux/if_tun.h>
31 #include <sys/uio.h>
32 #include <termios.h>
33 #include <getopt.h>
34 #include <zlib.h>
35 #include <assert.h>
36 #include <sched.h>
37 #include <limits.h>
38 #include <stddef.h>
39 #include "linux/lguest_launcher.h"
40 #include "linux/virtio_config.h"
41 #include "linux/virtio_net.h"
42 #include "linux/virtio_blk.h"
43 #include "linux/virtio_console.h"
44 #include "linux/virtio_rng.h"
45 #include "linux/virtio_ring.h"
46 #include "asm-x86/bootparam.h"
47 /*L:110 We can ignore the 39 include files we need for this program, but I do
48 * want to draw attention to the use of kernel-style types.
50 * As Linus said, "C is a Spartan language, and so should your naming be." I
51 * like these abbreviations, so we define them here. Note that u64 is always
52 * unsigned long long, which works on all Linux systems: this means that we can
53 * use %llu in printf for any u64. */
54 typedef unsigned long long u64;
55 typedef uint32_t u32;
56 typedef uint16_t u16;
57 typedef uint8_t u8;
58 /*:*/
60 #define PAGE_PRESENT 0x7 /* Present, RW, Execute */
61 #define NET_PEERNUM 1
62 #define BRIDGE_PFX "bridge:"
63 #ifndef SIOCBRADDIF
64 #define SIOCBRADDIF 0x89a2 /* add interface to bridge */
65 #endif
66 /* We can have up to 256 pages for devices. */
67 #define DEVICE_PAGES 256
68 /* This will occupy 2 pages: it must be a power of 2. */
69 #define VIRTQUEUE_NUM 128
71 /*L:120 verbose is both a global flag and a macro. The C preprocessor allows
72 * this, and although I wouldn't recommend it, it works quite nicely here. */
73 static bool verbose;
74 #define verbose(args...) \
75 do { if (verbose) printf(args); } while(0)
76 /*:*/
78 /* The pipe to send commands to the waker process */
79 static int waker_fd;
80 /* The pointer to the start of guest memory. */
81 static void *guest_base;
82 /* The maximum guest physical address allowed, and maximum possible. */
83 static unsigned long guest_limit, guest_max;
85 /* a per-cpu variable indicating whose vcpu is currently running */
86 static unsigned int __thread cpu_id;
88 /* This is our list of devices. */
89 struct device_list
91 /* Summary information about the devices in our list: ready to pass to
92 * select() to ask which need servicing.*/
93 fd_set infds;
94 int max_infd;
96 /* Counter to assign interrupt numbers. */
97 unsigned int next_irq;
99 /* Counter to print out convenient device numbers. */
100 unsigned int device_num;
102 /* The descriptor page for the devices. */
103 u8 *descpage;
105 /* A single linked list of devices. */
106 struct device *dev;
107 /* And a pointer to the last device for easy append and also for
108 * configuration appending. */
109 struct device *lastdev;
112 /* The list of Guest devices, based on command line arguments. */
113 static struct device_list devices;
115 /* The device structure describes a single device. */
116 struct device
118 /* The linked-list pointer. */
119 struct device *next;
121 /* The this device's descriptor, as mapped into the Guest. */
122 struct lguest_device_desc *desc;
124 /* The name of this device, for --verbose. */
125 const char *name;
127 /* If handle_input is set, it wants to be called when this file
128 * descriptor is ready. */
129 int fd;
130 bool (*handle_input)(int fd, struct device *me);
132 /* Any queues attached to this device */
133 struct virtqueue *vq;
135 /* Handle status being finalized (ie. feature bits stable). */
136 void (*ready)(struct device *me);
138 /* Device-specific data. */
139 void *priv;
142 /* The virtqueue structure describes a queue attached to a device. */
143 struct virtqueue
145 struct virtqueue *next;
147 /* Which device owns me. */
148 struct device *dev;
150 /* The configuration for this queue. */
151 struct lguest_vqconfig config;
153 /* The actual ring of buffers. */
154 struct vring vring;
156 /* Last available index we saw. */
157 u16 last_avail_idx;
159 /* The routine to call when the Guest pings us. */
160 void (*handle_output)(int fd, struct virtqueue *me);
162 /* Outstanding buffers */
163 unsigned int inflight;
166 /* Remember the arguments to the program so we can "reboot" */
167 static char **main_args;
169 /* Since guest is UP and we don't run at the same time, we don't need barriers.
170 * But I include them in the code in case others copy it. */
171 #define wmb()
173 /* Convert an iovec element to the given type.
175 * This is a fairly ugly trick: we need to know the size of the type and
176 * alignment requirement to check the pointer is kosher. It's also nice to
177 * have the name of the type in case we report failure.
179 * Typing those three things all the time is cumbersome and error prone, so we
180 * have a macro which sets them all up and passes to the real function. */
181 #define convert(iov, type) \
182 ((type *)_convert((iov), sizeof(type), __alignof__(type), #type))
184 static void *_convert(struct iovec *iov, size_t size, size_t align,
185 const char *name)
187 if (iov->iov_len != size)
188 errx(1, "Bad iovec size %zu for %s", iov->iov_len, name);
189 if ((unsigned long)iov->iov_base % align != 0)
190 errx(1, "Bad alignment %p for %s", iov->iov_base, name);
191 return iov->iov_base;
194 /* Wrapper for the last available index. Makes it easier to change. */
195 #define lg_last_avail(vq) ((vq)->last_avail_idx)
197 /* The virtio configuration space is defined to be little-endian. x86 is
198 * little-endian too, but it's nice to be explicit so we have these helpers. */
199 #define cpu_to_le16(v16) (v16)
200 #define cpu_to_le32(v32) (v32)
201 #define cpu_to_le64(v64) (v64)
202 #define le16_to_cpu(v16) (v16)
203 #define le32_to_cpu(v32) (v32)
204 #define le64_to_cpu(v64) (v64)
206 /* Is this iovec empty? */
207 static bool iov_empty(const struct iovec iov[], unsigned int num_iov)
209 unsigned int i;
211 for (i = 0; i < num_iov; i++)
212 if (iov[i].iov_len)
213 return false;
214 return true;
217 /* Take len bytes from the front of this iovec. */
218 static void iov_consume(struct iovec iov[], unsigned num_iov, unsigned len)
220 unsigned int i;
222 for (i = 0; i < num_iov; i++) {
223 unsigned int used;
225 used = iov[i].iov_len < len ? iov[i].iov_len : len;
226 iov[i].iov_base += used;
227 iov[i].iov_len -= used;
228 len -= used;
230 assert(len == 0);
233 /* The device virtqueue descriptors are followed by feature bitmasks. */
234 static u8 *get_feature_bits(struct device *dev)
236 return (u8 *)(dev->desc + 1)
237 + dev->desc->num_vq * sizeof(struct lguest_vqconfig);
240 /*L:100 The Launcher code itself takes us out into userspace, that scary place
241 * where pointers run wild and free! Unfortunately, like most userspace
242 * programs, it's quite boring (which is why everyone likes to hack on the
243 * kernel!). Perhaps if you make up an Lguest Drinking Game at this point, it
244 * will get you through this section. Or, maybe not.
246 * The Launcher sets up a big chunk of memory to be the Guest's "physical"
247 * memory and stores it in "guest_base". In other words, Guest physical ==
248 * Launcher virtual with an offset.
250 * This can be tough to get your head around, but usually it just means that we
251 * use these trivial conversion functions when the Guest gives us it's
252 * "physical" addresses: */
253 static void *from_guest_phys(unsigned long addr)
255 return guest_base + addr;
258 static unsigned long to_guest_phys(const void *addr)
260 return (addr - guest_base);
263 /*L:130
264 * Loading the Kernel.
266 * We start with couple of simple helper routines. open_or_die() avoids
267 * error-checking code cluttering the callers: */
268 static int open_or_die(const char *name, int flags)
270 int fd = open(name, flags);
271 if (fd < 0)
272 err(1, "Failed to open %s", name);
273 return fd;
276 /* map_zeroed_pages() takes a number of pages. */
277 static void *map_zeroed_pages(unsigned int num)
279 int fd = open_or_die("/dev/zero", O_RDONLY);
280 void *addr;
282 /* We use a private mapping (ie. if we write to the page, it will be
283 * copied). */
284 addr = mmap(NULL, getpagesize() * num,
285 PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, 0);
286 if (addr == MAP_FAILED)
287 err(1, "Mmaping %u pages of /dev/zero", num);
288 close(fd);
290 return addr;
293 /* Get some more pages for a device. */
294 static void *get_pages(unsigned int num)
296 void *addr = from_guest_phys(guest_limit);
298 guest_limit += num * getpagesize();
299 if (guest_limit > guest_max)
300 errx(1, "Not enough memory for devices");
301 return addr;
304 /* This routine is used to load the kernel or initrd. It tries mmap, but if
305 * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
306 * it falls back to reading the memory in. */
307 static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
309 ssize_t r;
311 /* We map writable even though for some segments are marked read-only.
312 * The kernel really wants to be writable: it patches its own
313 * instructions.
315 * MAP_PRIVATE means that the page won't be copied until a write is
316 * done to it. This allows us to share untouched memory between
317 * Guests. */
318 if (mmap(addr, len, PROT_READ|PROT_WRITE|PROT_EXEC,
319 MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
320 return;
322 /* pread does a seek and a read in one shot: saves a few lines. */
323 r = pread(fd, addr, len, offset);
324 if (r != len)
325 err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
328 /* This routine takes an open vmlinux image, which is in ELF, and maps it into
329 * the Guest memory. ELF = Embedded Linking Format, which is the format used
330 * by all modern binaries on Linux including the kernel.
332 * The ELF headers give *two* addresses: a physical address, and a virtual
333 * address. We use the physical address; the Guest will map itself to the
334 * virtual address.
336 * We return the starting address. */
337 static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
339 Elf32_Phdr phdr[ehdr->e_phnum];
340 unsigned int i;
342 /* Sanity checks on the main ELF header: an x86 executable with a
343 * reasonable number of correctly-sized program headers. */
344 if (ehdr->e_type != ET_EXEC
345 || ehdr->e_machine != EM_386
346 || ehdr->e_phentsize != sizeof(Elf32_Phdr)
347 || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
348 errx(1, "Malformed elf header");
350 /* An ELF executable contains an ELF header and a number of "program"
351 * headers which indicate which parts ("segments") of the program to
352 * load where. */
354 /* We read in all the program headers at once: */
355 if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
356 err(1, "Seeking to program headers");
357 if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
358 err(1, "Reading program headers");
360 /* Try all the headers: there are usually only three. A read-only one,
361 * a read-write one, and a "note" section which we don't load. */
362 for (i = 0; i < ehdr->e_phnum; i++) {
363 /* If this isn't a loadable segment, we ignore it */
364 if (phdr[i].p_type != PT_LOAD)
365 continue;
367 verbose("Section %i: size %i addr %p\n",
368 i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
370 /* We map this section of the file at its physical address. */
371 map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
372 phdr[i].p_offset, phdr[i].p_filesz);
375 /* The entry point is given in the ELF header. */
376 return ehdr->e_entry;
379 /*L:150 A bzImage, unlike an ELF file, is not meant to be loaded. You're
380 * supposed to jump into it and it will unpack itself. We used to have to
381 * perform some hairy magic because the unpacking code scared me.
383 * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
384 * a small patch to jump over the tricky bits in the Guest, so now we just read
385 * the funky header so we know where in the file to load, and away we go! */
386 static unsigned long load_bzimage(int fd)
388 struct boot_params boot;
389 int r;
390 /* Modern bzImages get loaded at 1M. */
391 void *p = from_guest_phys(0x100000);
393 /* Go back to the start of the file and read the header. It should be
394 * a Linux boot header (see Documentation/i386/boot.txt) */
395 lseek(fd, 0, SEEK_SET);
396 read(fd, &boot, sizeof(boot));
398 /* Inside the setup_hdr, we expect the magic "HdrS" */
399 if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
400 errx(1, "This doesn't look like a bzImage to me");
402 /* Skip over the extra sectors of the header. */
403 lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
405 /* Now read everything into memory. in nice big chunks. */
406 while ((r = read(fd, p, 65536)) > 0)
407 p += r;
409 /* Finally, code32_start tells us where to enter the kernel. */
410 return boot.hdr.code32_start;
413 /*L:140 Loading the kernel is easy when it's a "vmlinux", but most kernels
414 * come wrapped up in the self-decompressing "bzImage" format. With a little
415 * work, we can load those, too. */
416 static unsigned long load_kernel(int fd)
418 Elf32_Ehdr hdr;
420 /* Read in the first few bytes. */
421 if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
422 err(1, "Reading kernel");
424 /* If it's an ELF file, it starts with "\177ELF" */
425 if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
426 return map_elf(fd, &hdr);
428 /* Otherwise we assume it's a bzImage, and try to load it. */
429 return load_bzimage(fd);
432 /* This is a trivial little helper to align pages. Andi Kleen hated it because
433 * it calls getpagesize() twice: "it's dumb code."
435 * Kernel guys get really het up about optimization, even when it's not
436 * necessary. I leave this code as a reaction against that. */
437 static inline unsigned long page_align(unsigned long addr)
439 /* Add upwards and truncate downwards. */
440 return ((addr + getpagesize()-1) & ~(getpagesize()-1));
443 /*L:180 An "initial ram disk" is a disk image loaded into memory along with
444 * the kernel which the kernel can use to boot from without needing any
445 * drivers. Most distributions now use this as standard: the initrd contains
446 * the code to load the appropriate driver modules for the current machine.
448 * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
449 * kernels. He sent me this (and tells me when I break it). */
450 static unsigned long load_initrd(const char *name, unsigned long mem)
452 int ifd;
453 struct stat st;
454 unsigned long len;
456 ifd = open_or_die(name, O_RDONLY);
457 /* fstat() is needed to get the file size. */
458 if (fstat(ifd, &st) < 0)
459 err(1, "fstat() on initrd '%s'", name);
461 /* We map the initrd at the top of memory, but mmap wants it to be
462 * page-aligned, so we round the size up for that. */
463 len = page_align(st.st_size);
464 map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
465 /* Once a file is mapped, you can close the file descriptor. It's a
466 * little odd, but quite useful. */
467 close(ifd);
468 verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
470 /* We return the initrd size. */
471 return len;
474 /* Once we know how much memory we have we can construct simple linear page
475 * tables which set virtual == physical which will get the Guest far enough
476 * into the boot to create its own.
478 * We lay them out of the way, just below the initrd (which is why we need to
479 * know its size here). */
480 static unsigned long setup_pagetables(unsigned long mem,
481 unsigned long initrd_size)
483 unsigned long *pgdir, *linear;
484 unsigned int mapped_pages, i, linear_pages;
485 unsigned int ptes_per_page = getpagesize()/sizeof(void *);
487 mapped_pages = mem/getpagesize();
489 /* Each PTE page can map ptes_per_page pages: how many do we need? */
490 linear_pages = (mapped_pages + ptes_per_page-1)/ptes_per_page;
492 /* We put the toplevel page directory page at the top of memory. */
493 pgdir = from_guest_phys(mem) - initrd_size - getpagesize();
495 /* Now we use the next linear_pages pages as pte pages */
496 linear = (void *)pgdir - linear_pages*getpagesize();
498 /* Linear mapping is easy: put every page's address into the mapping in
499 * order. PAGE_PRESENT contains the flags Present, Writable and
500 * Executable. */
501 for (i = 0; i < mapped_pages; i++)
502 linear[i] = ((i * getpagesize()) | PAGE_PRESENT);
504 /* The top level points to the linear page table pages above. */
505 for (i = 0; i < mapped_pages; i += ptes_per_page) {
506 pgdir[i/ptes_per_page]
507 = ((to_guest_phys(linear) + i*sizeof(void *))
508 | PAGE_PRESENT);
511 verbose("Linear mapping of %u pages in %u pte pages at %#lx\n",
512 mapped_pages, linear_pages, to_guest_phys(linear));
514 /* We return the top level (guest-physical) address: the kernel needs
515 * to know where it is. */
516 return to_guest_phys(pgdir);
518 /*:*/
520 /* Simple routine to roll all the commandline arguments together with spaces
521 * between them. */
522 static void concat(char *dst, char *args[])
524 unsigned int i, len = 0;
526 for (i = 0; args[i]; i++) {
527 if (i) {
528 strcat(dst+len, " ");
529 len++;
531 strcpy(dst+len, args[i]);
532 len += strlen(args[i]);
534 /* In case it's empty. */
535 dst[len] = '\0';
538 /*L:185 This is where we actually tell the kernel to initialize the Guest. We
539 * saw the arguments it expects when we looked at initialize() in lguest_user.c:
540 * the base of Guest "physical" memory, the top physical page to allow, the
541 * top level pagetable and the entry point for the Guest. */
542 static int tell_kernel(unsigned long pgdir, unsigned long start)
544 unsigned long args[] = { LHREQ_INITIALIZE,
545 (unsigned long)guest_base,
546 guest_limit / getpagesize(), pgdir, start };
547 int fd;
549 verbose("Guest: %p - %p (%#lx)\n",
550 guest_base, guest_base + guest_limit, guest_limit);
551 fd = open_or_die("/dev/lguest", O_RDWR);
552 if (write(fd, args, sizeof(args)) < 0)
553 err(1, "Writing to /dev/lguest");
555 /* We return the /dev/lguest file descriptor to control this Guest */
556 return fd;
558 /*:*/
560 static void add_device_fd(int fd)
562 FD_SET(fd, &devices.infds);
563 if (fd > devices.max_infd)
564 devices.max_infd = fd;
567 /*L:200
568 * The Waker.
570 * With console, block and network devices, we can have lots of input which we
571 * need to process. We could try to tell the kernel what file descriptors to
572 * watch, but handing a file descriptor mask through to the kernel is fairly
573 * icky.
575 * Instead, we fork off a process which watches the file descriptors and writes
576 * the LHREQ_BREAK command to the /dev/lguest file descriptor to tell the Host
577 * stop running the Guest. This causes the Launcher to return from the
578 * /dev/lguest read with -EAGAIN, where it will write to /dev/lguest to reset
579 * the LHREQ_BREAK and wake us up again.
581 * This, of course, is merely a different *kind* of icky.
583 static void wake_parent(int pipefd, int lguest_fd)
585 /* Add the pipe from the Launcher to the fdset in the device_list, so
586 * we watch it, too. */
587 add_device_fd(pipefd);
589 for (;;) {
590 fd_set rfds = devices.infds;
591 unsigned long args[] = { LHREQ_BREAK, 1 };
593 /* Wait until input is ready from one of the devices. */
594 select(devices.max_infd+1, &rfds, NULL, NULL, NULL);
595 /* Is it a message from the Launcher? */
596 if (FD_ISSET(pipefd, &rfds)) {
597 int fd;
598 /* If read() returns 0, it means the Launcher has
599 * exited. We silently follow. */
600 if (read(pipefd, &fd, sizeof(fd)) == 0)
601 exit(0);
602 /* Otherwise it's telling us to change what file
603 * descriptors we're to listen to. Positive means
604 * listen to a new one, negative means stop
605 * listening. */
606 if (fd >= 0)
607 FD_SET(fd, &devices.infds);
608 else
609 FD_CLR(-fd - 1, &devices.infds);
610 } else /* Send LHREQ_BREAK command. */
611 pwrite(lguest_fd, args, sizeof(args), cpu_id);
615 /* This routine just sets up a pipe to the Waker process. */
616 static int setup_waker(int lguest_fd)
618 int pipefd[2], child;
620 /* We create a pipe to talk to the Waker, and also so it knows when the
621 * Launcher dies (and closes pipe). */
622 pipe(pipefd);
623 child = fork();
624 if (child == -1)
625 err(1, "forking");
627 if (child == 0) {
628 /* We are the Waker: close the "writing" end of our copy of the
629 * pipe and start waiting for input. */
630 close(pipefd[1]);
631 wake_parent(pipefd[0], lguest_fd);
633 /* Close the reading end of our copy of the pipe. */
634 close(pipefd[0]);
636 /* Here is the fd used to talk to the waker. */
637 return pipefd[1];
641 * Device Handling.
643 * When the Guest gives us a buffer, it sends an array of addresses and sizes.
644 * We need to make sure it's not trying to reach into the Launcher itself, so
645 * we have a convenient routine which checks it and exits with an error message
646 * if something funny is going on:
648 static void *_check_pointer(unsigned long addr, unsigned int size,
649 unsigned int line)
651 /* We have to separately check addr and addr+size, because size could
652 * be huge and addr + size might wrap around. */
653 if (addr >= guest_limit || addr + size >= guest_limit)
654 errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
655 /* We return a pointer for the caller's convenience, now we know it's
656 * safe to use. */
657 return from_guest_phys(addr);
659 /* A macro which transparently hands the line number to the real function. */
660 #define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
662 /* Each buffer in the virtqueues is actually a chain of descriptors. This
663 * function returns the next descriptor in the chain, or vq->vring.num if we're
664 * at the end. */
665 static unsigned next_desc(struct virtqueue *vq, unsigned int i)
667 unsigned int next;
669 /* If this descriptor says it doesn't chain, we're done. */
670 if (!(vq->vring.desc[i].flags & VRING_DESC_F_NEXT))
671 return vq->vring.num;
673 /* Check they're not leading us off end of descriptors. */
674 next = vq->vring.desc[i].next;
675 /* Make sure compiler knows to grab that: we don't want it changing! */
676 wmb();
678 if (next >= vq->vring.num)
679 errx(1, "Desc next is %u", next);
681 return next;
684 /* This looks in the virtqueue and for the first available buffer, and converts
685 * it to an iovec for convenient access. Since descriptors consist of some
686 * number of output then some number of input descriptors, it's actually two
687 * iovecs, but we pack them into one and note how many of each there were.
689 * This function returns the descriptor number found, or vq->vring.num (which
690 * is never a valid descriptor number) if none was found. */
691 static unsigned get_vq_desc(struct virtqueue *vq,
692 struct iovec iov[],
693 unsigned int *out_num, unsigned int *in_num)
695 unsigned int i, head;
696 u16 last_avail;
698 /* Check it isn't doing very strange things with descriptor numbers. */
699 last_avail = lg_last_avail(vq);
700 if ((u16)(vq->vring.avail->idx - last_avail) > vq->vring.num)
701 errx(1, "Guest moved used index from %u to %u",
702 last_avail, vq->vring.avail->idx);
704 /* If there's nothing new since last we looked, return invalid. */
705 if (vq->vring.avail->idx == last_avail)
706 return vq->vring.num;
708 /* Grab the next descriptor number they're advertising, and increment
709 * the index we've seen. */
710 head = vq->vring.avail->ring[last_avail % vq->vring.num];
711 lg_last_avail(vq)++;
713 /* If their number is silly, that's a fatal mistake. */
714 if (head >= vq->vring.num)
715 errx(1, "Guest says index %u is available", head);
717 /* When we start there are none of either input nor output. */
718 *out_num = *in_num = 0;
720 i = head;
721 do {
722 /* Grab the first descriptor, and check it's OK. */
723 iov[*out_num + *in_num].iov_len = vq->vring.desc[i].len;
724 iov[*out_num + *in_num].iov_base
725 = check_pointer(vq->vring.desc[i].addr,
726 vq->vring.desc[i].len);
727 /* If this is an input descriptor, increment that count. */
728 if (vq->vring.desc[i].flags & VRING_DESC_F_WRITE)
729 (*in_num)++;
730 else {
731 /* If it's an output descriptor, they're all supposed
732 * to come before any input descriptors. */
733 if (*in_num)
734 errx(1, "Descriptor has out after in");
735 (*out_num)++;
738 /* If we've got too many, that implies a descriptor loop. */
739 if (*out_num + *in_num > vq->vring.num)
740 errx(1, "Looped descriptor");
741 } while ((i = next_desc(vq, i)) != vq->vring.num);
743 vq->inflight++;
744 return head;
747 /* After we've used one of their buffers, we tell them about it. We'll then
748 * want to send them an interrupt, using trigger_irq(). */
749 static void add_used(struct virtqueue *vq, unsigned int head, int len)
751 struct vring_used_elem *used;
753 /* The virtqueue contains a ring of used buffers. Get a pointer to the
754 * next entry in that used ring. */
755 used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
756 used->id = head;
757 used->len = len;
758 /* Make sure buffer is written before we update index. */
759 wmb();
760 vq->vring.used->idx++;
761 vq->inflight--;
764 /* This actually sends the interrupt for this virtqueue */
765 static void trigger_irq(int fd, struct virtqueue *vq)
767 unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
769 /* If they don't want an interrupt, don't send one, unless empty. */
770 if ((vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
771 && vq->inflight)
772 return;
774 /* Send the Guest an interrupt tell them we used something up. */
775 if (write(fd, buf, sizeof(buf)) != 0)
776 err(1, "Triggering irq %i", vq->config.irq);
779 /* And here's the combo meal deal. Supersize me! */
780 static void add_used_and_trigger(int fd, struct virtqueue *vq,
781 unsigned int head, int len)
783 add_used(vq, head, len);
784 trigger_irq(fd, vq);
788 * The Console
790 * Here is the input terminal setting we save, and the routine to restore them
791 * on exit so the user gets their terminal back. */
792 static struct termios orig_term;
793 static void restore_term(void)
795 tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
798 /* We associate some data with the console for our exit hack. */
799 struct console_abort
801 /* How many times have they hit ^C? */
802 int count;
803 /* When did they start? */
804 struct timeval start;
807 /* This is the routine which handles console input (ie. stdin). */
808 static bool handle_console_input(int fd, struct device *dev)
810 int len;
811 unsigned int head, in_num, out_num;
812 struct iovec iov[dev->vq->vring.num];
813 struct console_abort *abort = dev->priv;
815 /* First we need a console buffer from the Guests's input virtqueue. */
816 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
818 /* If they're not ready for input, stop listening to this file
819 * descriptor. We'll start again once they add an input buffer. */
820 if (head == dev->vq->vring.num)
821 return false;
823 if (out_num)
824 errx(1, "Output buffers in console in queue?");
826 /* This is why we convert to iovecs: the readv() call uses them, and so
827 * it reads straight into the Guest's buffer. */
828 len = readv(dev->fd, iov, in_num);
829 if (len <= 0) {
830 /* This implies that the console is closed, is /dev/null, or
831 * something went terribly wrong. */
832 warnx("Failed to get console input, ignoring console.");
833 /* Put the input terminal back. */
834 restore_term();
835 /* Remove callback from input vq, so it doesn't restart us. */
836 dev->vq->handle_output = NULL;
837 /* Stop listening to this fd: don't call us again. */
838 return false;
841 /* Tell the Guest about the new input. */
842 add_used_and_trigger(fd, dev->vq, head, len);
844 /* Three ^C within one second? Exit.
846 * This is such a hack, but works surprisingly well. Each ^C has to be
847 * in a buffer by itself, so they can't be too fast. But we check that
848 * we get three within about a second, so they can't be too slow. */
849 if (len == 1 && ((char *)iov[0].iov_base)[0] == 3) {
850 if (!abort->count++)
851 gettimeofday(&abort->start, NULL);
852 else if (abort->count == 3) {
853 struct timeval now;
854 gettimeofday(&now, NULL);
855 if (now.tv_sec <= abort->start.tv_sec+1) {
856 unsigned long args[] = { LHREQ_BREAK, 0 };
857 /* Close the fd so Waker will know it has to
858 * exit. */
859 close(waker_fd);
860 /* Just in case waker is blocked in BREAK, send
861 * unbreak now. */
862 write(fd, args, sizeof(args));
863 exit(2);
865 abort->count = 0;
867 } else
868 /* Any other key resets the abort counter. */
869 abort->count = 0;
871 /* Everything went OK! */
872 return true;
875 /* Handling output for console is simple: we just get all the output buffers
876 * and write them to stdout. */
877 static void handle_console_output(int fd, struct virtqueue *vq)
879 unsigned int head, out, in;
880 int len;
881 struct iovec iov[vq->vring.num];
883 /* Keep getting output buffers from the Guest until we run out. */
884 while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
885 if (in)
886 errx(1, "Input buffers in output queue?");
887 len = writev(STDOUT_FILENO, iov, out);
888 add_used_and_trigger(fd, vq, head, len);
893 * The Network
895 * Handling output for network is also simple: we get all the output buffers
896 * and write them (ignoring the first element) to this device's file descriptor
897 * (/dev/net/tun).
899 static void handle_net_output(int fd, struct virtqueue *vq)
901 unsigned int head, out, in;
902 int len;
903 struct iovec iov[vq->vring.num];
905 /* Keep getting output buffers from the Guest until we run out. */
906 while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
907 if (in)
908 errx(1, "Input buffers in output queue?");
909 /* Check header, but otherwise ignore it (we told the Guest we
910 * supported no features, so it shouldn't have anything
911 * interesting). */
912 (void)convert(&iov[0], struct virtio_net_hdr);
913 len = writev(vq->dev->fd, iov+1, out-1);
914 add_used_and_trigger(fd, vq, head, len);
918 /* This is where we handle a packet coming in from the tun device to our
919 * Guest. */
920 static bool handle_tun_input(int fd, struct device *dev)
922 unsigned int head, in_num, out_num;
923 int len;
924 struct iovec iov[dev->vq->vring.num];
925 struct virtio_net_hdr *hdr;
927 /* First we need a network buffer from the Guests's recv virtqueue. */
928 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
929 if (head == dev->vq->vring.num) {
930 /* Now, it's expected that if we try to send a packet too
931 * early, the Guest won't be ready yet. Wait until the device
932 * status says it's ready. */
933 /* FIXME: Actually want DRIVER_ACTIVE here. */
934 if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK)
935 warn("network: no dma buffer!");
937 /* Now tell it we want to know if new things appear. */
938 dev->vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
939 wmb();
941 /* We'll turn this back on if input buffers are registered. */
942 return false;
943 } else if (out_num)
944 errx(1, "Output buffers in network recv queue?");
946 /* First element is the header: we set it to 0 (no features). */
947 hdr = convert(&iov[0], struct virtio_net_hdr);
948 hdr->flags = 0;
949 hdr->gso_type = VIRTIO_NET_HDR_GSO_NONE;
951 /* Read the packet from the device directly into the Guest's buffer. */
952 len = readv(dev->fd, iov+1, in_num-1);
953 if (len <= 0)
954 err(1, "reading network");
956 /* Tell the Guest about the new packet. */
957 add_used_and_trigger(fd, dev->vq, head, sizeof(*hdr) + len);
959 verbose("tun input packet len %i [%02x %02x] (%s)\n", len,
960 ((u8 *)iov[1].iov_base)[0], ((u8 *)iov[1].iov_base)[1],
961 head != dev->vq->vring.num ? "sent" : "discarded");
963 /* All good. */
964 return true;
967 /*L:215 This is the callback attached to the network and console input
968 * virtqueues: it ensures we try again, in case we stopped console or net
969 * delivery because Guest didn't have any buffers. */
970 static void enable_fd(int fd, struct virtqueue *vq)
972 add_device_fd(vq->dev->fd);
973 /* Tell waker to listen to it again */
974 write(waker_fd, &vq->dev->fd, sizeof(vq->dev->fd));
977 static void net_enable_fd(int fd, struct virtqueue *vq)
979 /* We don't need to know again when Guest refills receive buffer. */
980 vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
981 enable_fd(fd, vq);
984 /* When the Guest tells us they updated the status field, we handle it. */
985 static void update_device_status(struct device *dev)
987 struct virtqueue *vq;
989 /* This is a reset. */
990 if (dev->desc->status == 0) {
991 verbose("Resetting device %s\n", dev->name);
993 /* Clear any features they've acked. */
994 memset(get_feature_bits(dev) + dev->desc->feature_len, 0,
995 dev->desc->feature_len);
997 /* Zero out the virtqueues. */
998 for (vq = dev->vq; vq; vq = vq->next) {
999 memset(vq->vring.desc, 0,
1000 vring_size(vq->config.num, getpagesize()));
1001 lg_last_avail(vq) = 0;
1003 } else if (dev->desc->status & VIRTIO_CONFIG_S_FAILED) {
1004 warnx("Device %s configuration FAILED", dev->name);
1005 } else if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK) {
1006 unsigned int i;
1008 verbose("Device %s OK: offered", dev->name);
1009 for (i = 0; i < dev->desc->feature_len; i++)
1010 verbose(" %02x", get_feature_bits(dev)[i]);
1011 verbose(", accepted");
1012 for (i = 0; i < dev->desc->feature_len; i++)
1013 verbose(" %02x", get_feature_bits(dev)
1014 [dev->desc->feature_len+i]);
1016 if (dev->ready)
1017 dev->ready(dev);
1021 /* This is the generic routine we call when the Guest uses LHCALL_NOTIFY. */
1022 static void handle_output(int fd, unsigned long addr)
1024 struct device *i;
1025 struct virtqueue *vq;
1027 /* Check each device and virtqueue. */
1028 for (i = devices.dev; i; i = i->next) {
1029 /* Notifications to device descriptors update device status. */
1030 if (from_guest_phys(addr) == i->desc) {
1031 update_device_status(i);
1032 return;
1035 /* Notifications to virtqueues mean output has occurred. */
1036 for (vq = i->vq; vq; vq = vq->next) {
1037 if (vq->config.pfn != addr/getpagesize())
1038 continue;
1040 /* Guest should acknowledge (and set features!) before
1041 * using the device. */
1042 if (i->desc->status == 0) {
1043 warnx("%s gave early output", i->name);
1044 return;
1047 if (strcmp(vq->dev->name, "console") != 0)
1048 verbose("Output to %s\n", vq->dev->name);
1049 if (vq->handle_output)
1050 vq->handle_output(fd, vq);
1051 return;
1055 /* Early console write is done using notify on a nul-terminated string
1056 * in Guest memory. */
1057 if (addr >= guest_limit)
1058 errx(1, "Bad NOTIFY %#lx", addr);
1060 write(STDOUT_FILENO, from_guest_phys(addr),
1061 strnlen(from_guest_phys(addr), guest_limit - addr));
1064 /* This is called when the Waker wakes us up: check for incoming file
1065 * descriptors. */
1066 static void handle_input(int fd)
1068 /* select() wants a zeroed timeval to mean "don't wait". */
1069 struct timeval poll = { .tv_sec = 0, .tv_usec = 0 };
1071 for (;;) {
1072 struct device *i;
1073 fd_set fds = devices.infds;
1075 /* If nothing is ready, we're done. */
1076 if (select(devices.max_infd+1, &fds, NULL, NULL, &poll) == 0)
1077 break;
1079 /* Otherwise, call the device(s) which have readable file
1080 * descriptors and a method of handling them. */
1081 for (i = devices.dev; i; i = i->next) {
1082 if (i->handle_input && FD_ISSET(i->fd, &fds)) {
1083 int dev_fd;
1084 if (i->handle_input(fd, i))
1085 continue;
1087 /* If handle_input() returns false, it means we
1088 * should no longer service it. Networking and
1089 * console do this when there's no input
1090 * buffers to deliver into. Console also uses
1091 * it when it discovers that stdin is closed. */
1092 FD_CLR(i->fd, &devices.infds);
1093 /* Tell waker to ignore it too, by sending a
1094 * negative fd number (-1, since 0 is a valid
1095 * FD number). */
1096 dev_fd = -i->fd - 1;
1097 write(waker_fd, &dev_fd, sizeof(dev_fd));
1103 /*L:190
1104 * Device Setup
1106 * All devices need a descriptor so the Guest knows it exists, and a "struct
1107 * device" so the Launcher can keep track of it. We have common helper
1108 * routines to allocate and manage them.
1111 /* The layout of the device page is a "struct lguest_device_desc" followed by a
1112 * number of virtqueue descriptors, then two sets of feature bits, then an
1113 * array of configuration bytes. This routine returns the configuration
1114 * pointer. */
1115 static u8 *device_config(const struct device *dev)
1117 return (void *)(dev->desc + 1)
1118 + dev->desc->num_vq * sizeof(struct lguest_vqconfig)
1119 + dev->desc->feature_len * 2;
1122 /* This routine allocates a new "struct lguest_device_desc" from descriptor
1123 * table page just above the Guest's normal memory. It returns a pointer to
1124 * that descriptor. */
1125 static struct lguest_device_desc *new_dev_desc(u16 type)
1127 struct lguest_device_desc d = { .type = type };
1128 void *p;
1130 /* Figure out where the next device config is, based on the last one. */
1131 if (devices.lastdev)
1132 p = device_config(devices.lastdev)
1133 + devices.lastdev->desc->config_len;
1134 else
1135 p = devices.descpage;
1137 /* We only have one page for all the descriptors. */
1138 if (p + sizeof(d) > (void *)devices.descpage + getpagesize())
1139 errx(1, "Too many devices");
1141 /* p might not be aligned, so we memcpy in. */
1142 return memcpy(p, &d, sizeof(d));
1145 /* Each device descriptor is followed by the description of its virtqueues. We
1146 * specify how many descriptors the virtqueue is to have. */
1147 static void add_virtqueue(struct device *dev, unsigned int num_descs,
1148 void (*handle_output)(int fd, struct virtqueue *me))
1150 unsigned int pages;
1151 struct virtqueue **i, *vq = malloc(sizeof(*vq));
1152 void *p;
1154 /* First we need some memory for this virtqueue. */
1155 pages = (vring_size(num_descs, getpagesize()) + getpagesize() - 1)
1156 / getpagesize();
1157 p = get_pages(pages);
1159 /* Initialize the virtqueue */
1160 vq->next = NULL;
1161 vq->last_avail_idx = 0;
1162 vq->dev = dev;
1163 vq->inflight = 0;
1165 /* Initialize the configuration. */
1166 vq->config.num = num_descs;
1167 vq->config.irq = devices.next_irq++;
1168 vq->config.pfn = to_guest_phys(p) / getpagesize();
1170 /* Initialize the vring. */
1171 vring_init(&vq->vring, num_descs, p, getpagesize());
1173 /* Append virtqueue to this device's descriptor. We use
1174 * device_config() to get the end of the device's current virtqueues;
1175 * we check that we haven't added any config or feature information
1176 * yet, otherwise we'd be overwriting them. */
1177 assert(dev->desc->config_len == 0 && dev->desc->feature_len == 0);
1178 memcpy(device_config(dev), &vq->config, sizeof(vq->config));
1179 dev->desc->num_vq++;
1181 verbose("Virtqueue page %#lx\n", to_guest_phys(p));
1183 /* Add to tail of list, so dev->vq is first vq, dev->vq->next is
1184 * second. */
1185 for (i = &dev->vq; *i; i = &(*i)->next);
1186 *i = vq;
1188 /* Set the routine to call when the Guest does something to this
1189 * virtqueue. */
1190 vq->handle_output = handle_output;
1192 /* As an optimization, set the advisory "Don't Notify Me" flag if we
1193 * don't have a handler */
1194 if (!handle_output)
1195 vq->vring.used->flags = VRING_USED_F_NO_NOTIFY;
1198 /* The first half of the feature bitmask is for us to advertise features. The
1199 * second half is for the Guest to accept features. */
1200 static void add_feature(struct device *dev, unsigned bit)
1202 u8 *features = get_feature_bits(dev);
1204 /* We can't extend the feature bits once we've added config bytes */
1205 if (dev->desc->feature_len <= bit / CHAR_BIT) {
1206 assert(dev->desc->config_len == 0);
1207 dev->desc->feature_len = (bit / CHAR_BIT) + 1;
1210 features[bit / CHAR_BIT] |= (1 << (bit % CHAR_BIT));
1213 /* This routine sets the configuration fields for an existing device's
1214 * descriptor. It only works for the last device, but that's OK because that's
1215 * how we use it. */
1216 static void set_config(struct device *dev, unsigned len, const void *conf)
1218 /* Check we haven't overflowed our single page. */
1219 if (device_config(dev) + len > devices.descpage + getpagesize())
1220 errx(1, "Too many devices");
1222 /* Copy in the config information, and store the length. */
1223 memcpy(device_config(dev), conf, len);
1224 dev->desc->config_len = len;
1227 /* This routine does all the creation and setup of a new device, including
1228 * calling new_dev_desc() to allocate the descriptor and device memory.
1230 * See what I mean about userspace being boring? */
1231 static struct device *new_device(const char *name, u16 type, int fd,
1232 bool (*handle_input)(int, struct device *))
1234 struct device *dev = malloc(sizeof(*dev));
1236 /* Now we populate the fields one at a time. */
1237 dev->fd = fd;
1238 /* If we have an input handler for this file descriptor, then we add it
1239 * to the device_list's fdset and maxfd. */
1240 if (handle_input)
1241 add_device_fd(dev->fd);
1242 dev->desc = new_dev_desc(type);
1243 dev->handle_input = handle_input;
1244 dev->name = name;
1245 dev->vq = NULL;
1246 dev->ready = NULL;
1248 /* Append to device list. Prepending to a single-linked list is
1249 * easier, but the user expects the devices to be arranged on the bus
1250 * in command-line order. The first network device on the command line
1251 * is eth0, the first block device /dev/vda, etc. */
1252 if (devices.lastdev)
1253 devices.lastdev->next = dev;
1254 else
1255 devices.dev = dev;
1256 devices.lastdev = dev;
1258 return dev;
1261 /* Our first setup routine is the console. It's a fairly simple device, but
1262 * UNIX tty handling makes it uglier than it could be. */
1263 static void setup_console(void)
1265 struct device *dev;
1267 /* If we can save the initial standard input settings... */
1268 if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
1269 struct termios term = orig_term;
1270 /* Then we turn off echo, line buffering and ^C etc. We want a
1271 * raw input stream to the Guest. */
1272 term.c_lflag &= ~(ISIG|ICANON|ECHO);
1273 tcsetattr(STDIN_FILENO, TCSANOW, &term);
1274 /* If we exit gracefully, the original settings will be
1275 * restored so the user can see what they're typing. */
1276 atexit(restore_term);
1279 dev = new_device("console", VIRTIO_ID_CONSOLE,
1280 STDIN_FILENO, handle_console_input);
1281 /* We store the console state in dev->priv, and initialize it. */
1282 dev->priv = malloc(sizeof(struct console_abort));
1283 ((struct console_abort *)dev->priv)->count = 0;
1285 /* The console needs two virtqueues: the input then the output. When
1286 * they put something the input queue, we make sure we're listening to
1287 * stdin. When they put something in the output queue, we write it to
1288 * stdout. */
1289 add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
1290 add_virtqueue(dev, VIRTQUEUE_NUM, handle_console_output);
1292 verbose("device %u: console\n", devices.device_num++);
1294 /*:*/
1296 /*M:010 Inter-guest networking is an interesting area. Simplest is to have a
1297 * --sharenet=<name> option which opens or creates a named pipe. This can be
1298 * used to send packets to another guest in a 1:1 manner.
1300 * More sopisticated is to use one of the tools developed for project like UML
1301 * to do networking.
1303 * Faster is to do virtio bonding in kernel. Doing this 1:1 would be
1304 * completely generic ("here's my vring, attach to your vring") and would work
1305 * for any traffic. Of course, namespace and permissions issues need to be
1306 * dealt with. A more sophisticated "multi-channel" virtio_net.c could hide
1307 * multiple inter-guest channels behind one interface, although it would
1308 * require some manner of hotplugging new virtio channels.
1310 * Finally, we could implement a virtio network switch in the kernel. :*/
1312 static u32 str2ip(const char *ipaddr)
1314 unsigned int b[4];
1316 if (sscanf(ipaddr, "%u.%u.%u.%u", &b[0], &b[1], &b[2], &b[3]) != 4)
1317 errx(1, "Failed to parse IP address '%s'", ipaddr);
1318 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
1321 static void str2mac(const char *macaddr, unsigned char mac[6])
1323 unsigned int m[6];
1324 if (sscanf(macaddr, "%02x:%02x:%02x:%02x:%02x:%02x",
1325 &m[0], &m[1], &m[2], &m[3], &m[4], &m[5]) != 6)
1326 errx(1, "Failed to parse mac address '%s'", macaddr);
1327 mac[0] = m[0];
1328 mac[1] = m[1];
1329 mac[2] = m[2];
1330 mac[3] = m[3];
1331 mac[4] = m[4];
1332 mac[5] = m[5];
1335 /* This code is "adapted" from libbridge: it attaches the Host end of the
1336 * network device to the bridge device specified by the command line.
1338 * This is yet another James Morris contribution (I'm an IP-level guy, so I
1339 * dislike bridging), and I just try not to break it. */
1340 static void add_to_bridge(int fd, const char *if_name, const char *br_name)
1342 int ifidx;
1343 struct ifreq ifr;
1345 if (!*br_name)
1346 errx(1, "must specify bridge name");
1348 ifidx = if_nametoindex(if_name);
1349 if (!ifidx)
1350 errx(1, "interface %s does not exist!", if_name);
1352 strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
1353 ifr.ifr_name[IFNAMSIZ-1] = '\0';
1354 ifr.ifr_ifindex = ifidx;
1355 if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
1356 err(1, "can't add %s to bridge %s", if_name, br_name);
1359 /* This sets up the Host end of the network device with an IP address, brings
1360 * it up so packets will flow, the copies the MAC address into the hwaddr
1361 * pointer. */
1362 static void configure_device(int fd, const char *tapif, u32 ipaddr)
1364 struct ifreq ifr;
1365 struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr;
1367 memset(&ifr, 0, sizeof(ifr));
1368 strcpy(ifr.ifr_name, tapif);
1370 /* Don't read these incantations. Just cut & paste them like I did! */
1371 sin->sin_family = AF_INET;
1372 sin->sin_addr.s_addr = htonl(ipaddr);
1373 if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
1374 err(1, "Setting %s interface address", tapif);
1375 ifr.ifr_flags = IFF_UP;
1376 if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
1377 err(1, "Bringing interface %s up", tapif);
1380 static void get_mac(int fd, const char *tapif, unsigned char hwaddr[6])
1382 struct ifreq ifr;
1384 memset(&ifr, 0, sizeof(ifr));
1385 strcpy(ifr.ifr_name, tapif);
1387 /* SIOC stands for Socket I/O Control. G means Get (vs S for Set
1388 * above). IF means Interface, and HWADDR is hardware address.
1389 * Simple! */
1390 if (ioctl(fd, SIOCGIFHWADDR, &ifr) != 0)
1391 err(1, "getting hw address for %s", tapif);
1392 memcpy(hwaddr, ifr.ifr_hwaddr.sa_data, 6);
1395 static int get_tun_device(char tapif[IFNAMSIZ])
1397 struct ifreq ifr;
1398 int netfd;
1400 /* Start with this zeroed. Messy but sure. */
1401 memset(&ifr, 0, sizeof(ifr));
1403 /* We open the /dev/net/tun device and tell it we want a tap device. A
1404 * tap device is like a tun device, only somehow different. To tell
1405 * the truth, I completely blundered my way through this code, but it
1406 * works now! */
1407 netfd = open_or_die("/dev/net/tun", O_RDWR);
1408 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
1409 strcpy(ifr.ifr_name, "tap%d");
1410 if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
1411 err(1, "configuring /dev/net/tun");
1413 /* We don't need checksums calculated for packets coming in this
1414 * device: trust us! */
1415 ioctl(netfd, TUNSETNOCSUM, 1);
1417 memcpy(tapif, ifr.ifr_name, IFNAMSIZ);
1418 return netfd;
1421 /*L:195 Our network is a Host<->Guest network. This can either use bridging or
1422 * routing, but the principle is the same: it uses the "tun" device to inject
1423 * packets into the Host as if they came in from a normal network card. We
1424 * just shunt packets between the Guest and the tun device. */
1425 static void setup_tun_net(char *arg)
1427 struct device *dev;
1428 int netfd, ipfd;
1429 u32 ip = INADDR_ANY;
1430 bool bridging = false;
1431 char tapif[IFNAMSIZ], *p;
1432 struct virtio_net_config conf;
1434 netfd = get_tun_device(tapif);
1436 /* First we create a new network device. */
1437 dev = new_device("net", VIRTIO_ID_NET, netfd, handle_tun_input);
1439 /* Network devices need a receive and a send queue, just like
1440 * console. */
1441 add_virtqueue(dev, VIRTQUEUE_NUM, net_enable_fd);
1442 add_virtqueue(dev, VIRTQUEUE_NUM, handle_net_output);
1444 /* We need a socket to perform the magic network ioctls to bring up the
1445 * tap interface, connect to the bridge etc. Any socket will do! */
1446 ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
1447 if (ipfd < 0)
1448 err(1, "opening IP socket");
1450 /* If the command line was --tunnet=bridge:<name> do bridging. */
1451 if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
1452 arg += strlen(BRIDGE_PFX);
1453 bridging = true;
1456 /* A mac address may follow the bridge name or IP address */
1457 p = strchr(arg, ':');
1458 if (p) {
1459 str2mac(p+1, conf.mac);
1460 *p = '\0';
1461 } else {
1462 p = arg + strlen(arg);
1463 /* None supplied; query the randomly assigned mac. */
1464 get_mac(ipfd, tapif, conf.mac);
1467 /* arg is now either an IP address or a bridge name */
1468 if (bridging)
1469 add_to_bridge(ipfd, tapif, arg);
1470 else
1471 ip = str2ip(arg);
1473 /* Set up the tun device. */
1474 configure_device(ipfd, tapif, ip);
1476 /* Tell Guest what MAC address to use. */
1477 add_feature(dev, VIRTIO_NET_F_MAC);
1478 add_feature(dev, VIRTIO_F_NOTIFY_ON_EMPTY);
1479 set_config(dev, sizeof(conf), &conf);
1481 /* We don't need the socket any more; setup is done. */
1482 close(ipfd);
1484 devices.device_num++;
1486 if (bridging)
1487 verbose("device %u: tun %s attached to bridge: %s\n",
1488 devices.device_num, tapif, arg);
1489 else
1490 verbose("device %u: tun %s: %s\n",
1491 devices.device_num, tapif, arg);
1494 /* Our block (disk) device should be really simple: the Guest asks for a block
1495 * number and we read or write that position in the file. Unfortunately, that
1496 * was amazingly slow: the Guest waits until the read is finished before
1497 * running anything else, even if it could have been doing useful work.
1499 * We could use async I/O, except it's reputed to suck so hard that characters
1500 * actually go missing from your code when you try to use it.
1502 * So we farm the I/O out to thread, and communicate with it via a pipe. */
1504 /* This hangs off device->priv. */
1505 struct vblk_info
1507 /* The size of the file. */
1508 off64_t len;
1510 /* The file descriptor for the file. */
1511 int fd;
1513 /* IO thread listens on this file descriptor [0]. */
1514 int workpipe[2];
1516 /* IO thread writes to this file descriptor to mark it done, then
1517 * Launcher triggers interrupt to Guest. */
1518 int done_fd;
1521 /*L:210
1522 * The Disk
1524 * Remember that the block device is handled by a separate I/O thread. We head
1525 * straight into the core of that thread here:
1527 static bool service_io(struct device *dev)
1529 struct vblk_info *vblk = dev->priv;
1530 unsigned int head, out_num, in_num, wlen;
1531 int ret;
1532 u8 *in;
1533 struct virtio_blk_outhdr *out;
1534 struct iovec iov[dev->vq->vring.num];
1535 off64_t off;
1537 /* See if there's a request waiting. If not, nothing to do. */
1538 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
1539 if (head == dev->vq->vring.num)
1540 return false;
1542 /* Every block request should contain at least one output buffer
1543 * (detailing the location on disk and the type of request) and one
1544 * input buffer (to hold the result). */
1545 if (out_num == 0 || in_num == 0)
1546 errx(1, "Bad virtblk cmd %u out=%u in=%u",
1547 head, out_num, in_num);
1549 out = convert(&iov[0], struct virtio_blk_outhdr);
1550 in = convert(&iov[out_num+in_num-1], u8);
1551 off = out->sector * 512;
1553 /* The block device implements "barriers", where the Guest indicates
1554 * that it wants all previous writes to occur before this write. We
1555 * don't have a way of asking our kernel to do a barrier, so we just
1556 * synchronize all the data in the file. Pretty poor, no? */
1557 if (out->type & VIRTIO_BLK_T_BARRIER)
1558 fdatasync(vblk->fd);
1560 /* In general the virtio block driver is allowed to try SCSI commands.
1561 * It'd be nice if we supported eject, for example, but we don't. */
1562 if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
1563 fprintf(stderr, "Scsi commands unsupported\n");
1564 *in = VIRTIO_BLK_S_UNSUPP;
1565 wlen = sizeof(*in);
1566 } else if (out->type & VIRTIO_BLK_T_OUT) {
1567 /* Write */
1569 /* Move to the right location in the block file. This can fail
1570 * if they try to write past end. */
1571 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1572 err(1, "Bad seek to sector %llu", out->sector);
1574 ret = writev(vblk->fd, iov+1, out_num-1);
1575 verbose("WRITE to sector %llu: %i\n", out->sector, ret);
1577 /* Grr... Now we know how long the descriptor they sent was, we
1578 * make sure they didn't try to write over the end of the block
1579 * file (possibly extending it). */
1580 if (ret > 0 && off + ret > vblk->len) {
1581 /* Trim it back to the correct length */
1582 ftruncate64(vblk->fd, vblk->len);
1583 /* Die, bad Guest, die. */
1584 errx(1, "Write past end %llu+%u", off, ret);
1586 wlen = sizeof(*in);
1587 *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
1588 } else {
1589 /* Read */
1591 /* Move to the right location in the block file. This can fail
1592 * if they try to read past end. */
1593 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1594 err(1, "Bad seek to sector %llu", out->sector);
1596 ret = readv(vblk->fd, iov+1, in_num-1);
1597 verbose("READ from sector %llu: %i\n", out->sector, ret);
1598 if (ret >= 0) {
1599 wlen = sizeof(*in) + ret;
1600 *in = VIRTIO_BLK_S_OK;
1601 } else {
1602 wlen = sizeof(*in);
1603 *in = VIRTIO_BLK_S_IOERR;
1607 /* We can't trigger an IRQ, because we're not the Launcher. It does
1608 * that when we tell it we're done. */
1609 add_used(dev->vq, head, wlen);
1610 return true;
1613 /* This is the thread which actually services the I/O. */
1614 static int io_thread(void *_dev)
1616 struct device *dev = _dev;
1617 struct vblk_info *vblk = dev->priv;
1618 char c;
1620 /* Close other side of workpipe so we get 0 read when main dies. */
1621 close(vblk->workpipe[1]);
1622 /* Close the other side of the done_fd pipe. */
1623 close(dev->fd);
1625 /* When this read fails, it means Launcher died, so we follow. */
1626 while (read(vblk->workpipe[0], &c, 1) == 1) {
1627 /* We acknowledge each request immediately to reduce latency,
1628 * rather than waiting until we've done them all. I haven't
1629 * measured to see if it makes any difference.
1631 * That would be an interesting test, wouldn't it? You could
1632 * also try having more than one I/O thread. */
1633 while (service_io(dev))
1634 write(vblk->done_fd, &c, 1);
1636 return 0;
1639 /* Now we've seen the I/O thread, we return to the Launcher to see what happens
1640 * when that thread tells us it's completed some I/O. */
1641 static bool handle_io_finish(int fd, struct device *dev)
1643 char c;
1645 /* If the I/O thread died, presumably it printed the error, so we
1646 * simply exit. */
1647 if (read(dev->fd, &c, 1) != 1)
1648 exit(1);
1650 /* It did some work, so trigger the irq. */
1651 trigger_irq(fd, dev->vq);
1652 return true;
1655 /* When the Guest submits some I/O, we just need to wake the I/O thread. */
1656 static void handle_virtblk_output(int fd, struct virtqueue *vq)
1658 struct vblk_info *vblk = vq->dev->priv;
1659 char c = 0;
1661 /* Wake up I/O thread and tell it to go to work! */
1662 if (write(vblk->workpipe[1], &c, 1) != 1)
1663 /* Presumably it indicated why it died. */
1664 exit(1);
1667 /*L:198 This actually sets up a virtual block device. */
1668 static void setup_block_file(const char *filename)
1670 int p[2];
1671 struct device *dev;
1672 struct vblk_info *vblk;
1673 void *stack;
1674 struct virtio_blk_config conf;
1676 /* This is the pipe the I/O thread will use to tell us I/O is done. */
1677 pipe(p);
1679 /* The device responds to return from I/O thread. */
1680 dev = new_device("block", VIRTIO_ID_BLOCK, p[0], handle_io_finish);
1682 /* The device has one virtqueue, where the Guest places requests. */
1683 add_virtqueue(dev, VIRTQUEUE_NUM, handle_virtblk_output);
1685 /* Allocate the room for our own bookkeeping */
1686 vblk = dev->priv = malloc(sizeof(*vblk));
1688 /* First we open the file and store the length. */
1689 vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
1690 vblk->len = lseek64(vblk->fd, 0, SEEK_END);
1692 /* We support barriers. */
1693 add_feature(dev, VIRTIO_BLK_F_BARRIER);
1695 /* Tell Guest how many sectors this device has. */
1696 conf.capacity = cpu_to_le64(vblk->len / 512);
1698 /* Tell Guest not to put in too many descriptors at once: two are used
1699 * for the in and out elements. */
1700 add_feature(dev, VIRTIO_BLK_F_SEG_MAX);
1701 conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2);
1703 set_config(dev, sizeof(conf), &conf);
1705 /* The I/O thread writes to this end of the pipe when done. */
1706 vblk->done_fd = p[1];
1708 /* This is the second pipe, which is how we tell the I/O thread about
1709 * more work. */
1710 pipe(vblk->workpipe);
1712 /* Create stack for thread and run it. Since stack grows upwards, we
1713 * point the stack pointer to the end of this region. */
1714 stack = malloc(32768);
1715 /* SIGCHLD - We dont "wait" for our cloned thread, so prevent it from
1716 * becoming a zombie. */
1717 if (clone(io_thread, stack + 32768, CLONE_VM | SIGCHLD, dev) == -1)
1718 err(1, "Creating clone");
1720 /* We don't need to keep the I/O thread's end of the pipes open. */
1721 close(vblk->done_fd);
1722 close(vblk->workpipe[0]);
1724 verbose("device %u: virtblock %llu sectors\n",
1725 devices.device_num, le64_to_cpu(conf.capacity));
1728 /* Our random number generator device reads from /dev/random into the Guest's
1729 * input buffers. The usual case is that the Guest doesn't want random numbers
1730 * and so has no buffers although /dev/random is still readable, whereas
1731 * console is the reverse.
1733 * The same logic applies, however. */
1734 static bool handle_rng_input(int fd, struct device *dev)
1736 int len;
1737 unsigned int head, in_num, out_num, totlen = 0;
1738 struct iovec iov[dev->vq->vring.num];
1740 /* First we need a buffer from the Guests's virtqueue. */
1741 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
1743 /* If they're not ready for input, stop listening to this file
1744 * descriptor. We'll start again once they add an input buffer. */
1745 if (head == dev->vq->vring.num)
1746 return false;
1748 if (out_num)
1749 errx(1, "Output buffers in rng?");
1751 /* This is why we convert to iovecs: the readv() call uses them, and so
1752 * it reads straight into the Guest's buffer. We loop to make sure we
1753 * fill it. */
1754 while (!iov_empty(iov, in_num)) {
1755 len = readv(dev->fd, iov, in_num);
1756 if (len <= 0)
1757 err(1, "Read from /dev/random gave %i", len);
1758 iov_consume(iov, in_num, len);
1759 totlen += len;
1762 /* Tell the Guest about the new input. */
1763 add_used_and_trigger(fd, dev->vq, head, totlen);
1765 /* Everything went OK! */
1766 return true;
1769 /* And this creates a "hardware" random number device for the Guest. */
1770 static void setup_rng(void)
1772 struct device *dev;
1773 int fd;
1775 fd = open_or_die("/dev/random", O_RDONLY);
1777 /* The device responds to return from I/O thread. */
1778 dev = new_device("rng", VIRTIO_ID_RNG, fd, handle_rng_input);
1780 /* The device has one virtqueue, where the Guest places inbufs. */
1781 add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
1783 verbose("device %u: rng\n", devices.device_num++);
1785 /* That's the end of device setup. */
1787 /*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
1788 static void __attribute__((noreturn)) restart_guest(void)
1790 unsigned int i;
1792 /* Closing pipes causes the Waker thread and io_threads to die, and
1793 * closing /dev/lguest cleans up the Guest. Since we don't track all
1794 * open fds, we simply close everything beyond stderr. */
1795 for (i = 3; i < FD_SETSIZE; i++)
1796 close(i);
1797 execv(main_args[0], main_args);
1798 err(1, "Could not exec %s", main_args[0]);
1801 /*L:220 Finally we reach the core of the Launcher which runs the Guest, serves
1802 * its input and output, and finally, lays it to rest. */
1803 static void __attribute__((noreturn)) run_guest(int lguest_fd)
1805 for (;;) {
1806 unsigned long args[] = { LHREQ_BREAK, 0 };
1807 unsigned long notify_addr;
1808 int readval;
1810 /* We read from the /dev/lguest device to run the Guest. */
1811 readval = pread(lguest_fd, &notify_addr,
1812 sizeof(notify_addr), cpu_id);
1814 /* One unsigned long means the Guest did HCALL_NOTIFY */
1815 if (readval == sizeof(notify_addr)) {
1816 verbose("Notify on address %#lx\n", notify_addr);
1817 handle_output(lguest_fd, notify_addr);
1818 continue;
1819 /* ENOENT means the Guest died. Reading tells us why. */
1820 } else if (errno == ENOENT) {
1821 char reason[1024] = { 0 };
1822 pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
1823 errx(1, "%s", reason);
1824 /* ERESTART means that we need to reboot the guest */
1825 } else if (errno == ERESTART) {
1826 restart_guest();
1827 /* EAGAIN means the Waker wanted us to look at some input.
1828 * Anything else means a bug or incompatible change. */
1829 } else if (errno != EAGAIN)
1830 err(1, "Running guest failed");
1832 /* Only service input on thread for CPU 0. */
1833 if (cpu_id != 0)
1834 continue;
1836 /* Service input, then unset the BREAK to release the Waker. */
1837 handle_input(lguest_fd);
1838 if (pwrite(lguest_fd, args, sizeof(args), cpu_id) < 0)
1839 err(1, "Resetting break");
1842 /*L:240
1843 * This is the end of the Launcher. The good news: we are over halfway
1844 * through! The bad news: the most fiendish part of the code still lies ahead
1845 * of us.
1847 * Are you ready? Take a deep breath and join me in the core of the Host, in
1848 * "make Host".
1851 static struct option opts[] = {
1852 { "verbose", 0, NULL, 'v' },
1853 { "tunnet", 1, NULL, 't' },
1854 { "block", 1, NULL, 'b' },
1855 { "rng", 0, NULL, 'r' },
1856 { "initrd", 1, NULL, 'i' },
1857 { NULL },
1859 static void usage(void)
1861 errx(1, "Usage: lguest [--verbose] "
1862 "[--tunnet=(<ipaddr>:<macaddr>|bridge:<bridgename>:<macaddr>)\n"
1863 "|--block=<filename>|--initrd=<filename>]...\n"
1864 "<mem-in-mb> vmlinux [args...]");
1867 /*L:105 The main routine is where the real work begins: */
1868 int main(int argc, char *argv[])
1870 /* Memory, top-level pagetable, code startpoint and size of the
1871 * (optional) initrd. */
1872 unsigned long mem = 0, pgdir, start, initrd_size = 0;
1873 /* Two temporaries and the /dev/lguest file descriptor. */
1874 int i, c, lguest_fd;
1875 /* The boot information for the Guest. */
1876 struct boot_params *boot;
1877 /* If they specify an initrd file to load. */
1878 const char *initrd_name = NULL;
1880 /* Save the args: we "reboot" by execing ourselves again. */
1881 main_args = argv;
1882 /* We don't "wait" for the children, so prevent them from becoming
1883 * zombies. */
1884 signal(SIGCHLD, SIG_IGN);
1886 /* First we initialize the device list. Since console and network
1887 * device receive input from a file descriptor, we keep an fdset
1888 * (infds) and the maximum fd number (max_infd) with the head of the
1889 * list. We also keep a pointer to the last device. Finally, we keep
1890 * the next interrupt number to use for devices (1: remember that 0 is
1891 * used by the timer). */
1892 FD_ZERO(&devices.infds);
1893 devices.max_infd = -1;
1894 devices.lastdev = NULL;
1895 devices.next_irq = 1;
1897 cpu_id = 0;
1898 /* We need to know how much memory so we can set up the device
1899 * descriptor and memory pages for the devices as we parse the command
1900 * line. So we quickly look through the arguments to find the amount
1901 * of memory now. */
1902 for (i = 1; i < argc; i++) {
1903 if (argv[i][0] != '-') {
1904 mem = atoi(argv[i]) * 1024 * 1024;
1905 /* We start by mapping anonymous pages over all of
1906 * guest-physical memory range. This fills it with 0,
1907 * and ensures that the Guest won't be killed when it
1908 * tries to access it. */
1909 guest_base = map_zeroed_pages(mem / getpagesize()
1910 + DEVICE_PAGES);
1911 guest_limit = mem;
1912 guest_max = mem + DEVICE_PAGES*getpagesize();
1913 devices.descpage = get_pages(1);
1914 break;
1918 /* The options are fairly straight-forward */
1919 while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
1920 switch (c) {
1921 case 'v':
1922 verbose = true;
1923 break;
1924 case 't':
1925 setup_tun_net(optarg);
1926 break;
1927 case 'b':
1928 setup_block_file(optarg);
1929 break;
1930 case 'r':
1931 setup_rng();
1932 break;
1933 case 'i':
1934 initrd_name = optarg;
1935 break;
1936 default:
1937 warnx("Unknown argument %s", argv[optind]);
1938 usage();
1941 /* After the other arguments we expect memory and kernel image name,
1942 * followed by command line arguments for the kernel. */
1943 if (optind + 2 > argc)
1944 usage();
1946 verbose("Guest base is at %p\n", guest_base);
1948 /* We always have a console device */
1949 setup_console();
1951 /* Now we load the kernel */
1952 start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
1954 /* Boot information is stashed at physical address 0 */
1955 boot = from_guest_phys(0);
1957 /* Map the initrd image if requested (at top of physical memory) */
1958 if (initrd_name) {
1959 initrd_size = load_initrd(initrd_name, mem);
1960 /* These are the location in the Linux boot header where the
1961 * start and size of the initrd are expected to be found. */
1962 boot->hdr.ramdisk_image = mem - initrd_size;
1963 boot->hdr.ramdisk_size = initrd_size;
1964 /* The bootloader type 0xFF means "unknown"; that's OK. */
1965 boot->hdr.type_of_loader = 0xFF;
1968 /* Set up the initial linear pagetables, starting below the initrd. */
1969 pgdir = setup_pagetables(mem, initrd_size);
1971 /* The Linux boot header contains an "E820" memory map: ours is a
1972 * simple, single region. */
1973 boot->e820_entries = 1;
1974 boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
1975 /* The boot header contains a command line pointer: we put the command
1976 * line after the boot header. */
1977 boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
1978 /* We use a simple helper to copy the arguments separated by spaces. */
1979 concat((char *)(boot + 1), argv+optind+2);
1981 /* Boot protocol version: 2.07 supports the fields for lguest. */
1982 boot->hdr.version = 0x207;
1984 /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
1985 boot->hdr.hardware_subarch = 1;
1987 /* Tell the entry path not to try to reload segment registers. */
1988 boot->hdr.loadflags |= KEEP_SEGMENTS;
1990 /* We tell the kernel to initialize the Guest: this returns the open
1991 * /dev/lguest file descriptor. */
1992 lguest_fd = tell_kernel(pgdir, start);
1994 /* We fork off a child process, which wakes the Launcher whenever one
1995 * of the input file descriptors needs attention. We call this the
1996 * Waker, and we'll cover it in a moment. */
1997 waker_fd = setup_waker(lguest_fd);
1999 /* Finally, run the Guest. This doesn't return. */
2000 run_guest(lguest_fd);
2002 /*:*/
2004 /*M:999
2005 * Mastery is done: you now know everything I do.
2007 * But surely you have seen code, features and bugs in your wanderings which
2008 * you now yearn to attack? That is the real game, and I look forward to you
2009 * patching and forking lguest into the Your-Name-Here-visor.
2011 * Farewell, and good coding!
2012 * Rusty Russell.