e1000e: sync change flow control variables with ixgbe
[firewire-audio.git] / drivers / net / e1000e / ethtool.c
blob875d769531fd510172ddbd25853ca7ca04813fce
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 /* ethtool support for e1000 */
31 #include <linux/netdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/delay.h>
36 #include "e1000.h"
38 struct e1000_stats {
39 char stat_string[ETH_GSTRING_LEN];
40 int sizeof_stat;
41 int stat_offset;
44 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
45 offsetof(struct e1000_adapter, m)
46 static const struct e1000_stats e1000_gstrings_stats[] = {
47 { "rx_packets", E1000_STAT(stats.gprc) },
48 { "tx_packets", E1000_STAT(stats.gptc) },
49 { "rx_bytes", E1000_STAT(stats.gorc) },
50 { "tx_bytes", E1000_STAT(stats.gotc) },
51 { "rx_broadcast", E1000_STAT(stats.bprc) },
52 { "tx_broadcast", E1000_STAT(stats.bptc) },
53 { "rx_multicast", E1000_STAT(stats.mprc) },
54 { "tx_multicast", E1000_STAT(stats.mptc) },
55 { "rx_errors", E1000_STAT(net_stats.rx_errors) },
56 { "tx_errors", E1000_STAT(net_stats.tx_errors) },
57 { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
58 { "multicast", E1000_STAT(stats.mprc) },
59 { "collisions", E1000_STAT(stats.colc) },
60 { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
61 { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
62 { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
63 { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
64 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
65 { "rx_missed_errors", E1000_STAT(stats.mpc) },
66 { "tx_aborted_errors", E1000_STAT(stats.ecol) },
67 { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
68 { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
69 { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
70 { "tx_window_errors", E1000_STAT(stats.latecol) },
71 { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
72 { "tx_deferred_ok", E1000_STAT(stats.dc) },
73 { "tx_single_coll_ok", E1000_STAT(stats.scc) },
74 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
75 { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
76 { "tx_restart_queue", E1000_STAT(restart_queue) },
77 { "rx_long_length_errors", E1000_STAT(stats.roc) },
78 { "rx_short_length_errors", E1000_STAT(stats.ruc) },
79 { "rx_align_errors", E1000_STAT(stats.algnerrc) },
80 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
81 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
82 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
83 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
84 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
85 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
86 { "rx_long_byte_count", E1000_STAT(stats.gorc) },
87 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
88 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
89 { "rx_header_split", E1000_STAT(rx_hdr_split) },
90 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
91 { "tx_smbus", E1000_STAT(stats.mgptc) },
92 { "rx_smbus", E1000_STAT(stats.mgprc) },
93 { "dropped_smbus", E1000_STAT(stats.mgpdc) },
94 { "rx_dma_failed", E1000_STAT(rx_dma_failed) },
95 { "tx_dma_failed", E1000_STAT(tx_dma_failed) },
98 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
99 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
100 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
101 "Register test (offline)", "Eeprom test (offline)",
102 "Interrupt test (offline)", "Loopback test (offline)",
103 "Link test (on/offline)"
105 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
107 static int e1000_get_settings(struct net_device *netdev,
108 struct ethtool_cmd *ecmd)
110 struct e1000_adapter *adapter = netdev_priv(netdev);
111 struct e1000_hw *hw = &adapter->hw;
112 u32 status;
114 if (hw->phy.media_type == e1000_media_type_copper) {
116 ecmd->supported = (SUPPORTED_10baseT_Half |
117 SUPPORTED_10baseT_Full |
118 SUPPORTED_100baseT_Half |
119 SUPPORTED_100baseT_Full |
120 SUPPORTED_1000baseT_Full |
121 SUPPORTED_Autoneg |
122 SUPPORTED_TP);
123 if (hw->phy.type == e1000_phy_ife)
124 ecmd->supported &= ~SUPPORTED_1000baseT_Full;
125 ecmd->advertising = ADVERTISED_TP;
127 if (hw->mac.autoneg == 1) {
128 ecmd->advertising |= ADVERTISED_Autoneg;
129 /* the e1000 autoneg seems to match ethtool nicely */
130 ecmd->advertising |= hw->phy.autoneg_advertised;
133 ecmd->port = PORT_TP;
134 ecmd->phy_address = hw->phy.addr;
135 ecmd->transceiver = XCVR_INTERNAL;
137 } else {
138 ecmd->supported = (SUPPORTED_1000baseT_Full |
139 SUPPORTED_FIBRE |
140 SUPPORTED_Autoneg);
142 ecmd->advertising = (ADVERTISED_1000baseT_Full |
143 ADVERTISED_FIBRE |
144 ADVERTISED_Autoneg);
146 ecmd->port = PORT_FIBRE;
147 ecmd->transceiver = XCVR_EXTERNAL;
150 status = er32(STATUS);
151 if (status & E1000_STATUS_LU) {
152 if (status & E1000_STATUS_SPEED_1000)
153 ecmd->speed = 1000;
154 else if (status & E1000_STATUS_SPEED_100)
155 ecmd->speed = 100;
156 else
157 ecmd->speed = 10;
159 if (status & E1000_STATUS_FD)
160 ecmd->duplex = DUPLEX_FULL;
161 else
162 ecmd->duplex = DUPLEX_HALF;
163 } else {
164 ecmd->speed = -1;
165 ecmd->duplex = -1;
168 ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
169 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
170 return 0;
173 static u32 e1000_get_link(struct net_device *netdev)
175 struct e1000_adapter *adapter = netdev_priv(netdev);
176 struct e1000_hw *hw = &adapter->hw;
177 u32 status;
179 status = er32(STATUS);
180 return (status & E1000_STATUS_LU) ? 1 : 0;
183 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
185 struct e1000_mac_info *mac = &adapter->hw.mac;
187 mac->autoneg = 0;
189 /* Fiber NICs only allow 1000 gbps Full duplex */
190 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
191 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
192 e_err("Unsupported Speed/Duplex configuration\n");
193 return -EINVAL;
196 switch (spddplx) {
197 case SPEED_10 + DUPLEX_HALF:
198 mac->forced_speed_duplex = ADVERTISE_10_HALF;
199 break;
200 case SPEED_10 + DUPLEX_FULL:
201 mac->forced_speed_duplex = ADVERTISE_10_FULL;
202 break;
203 case SPEED_100 + DUPLEX_HALF:
204 mac->forced_speed_duplex = ADVERTISE_100_HALF;
205 break;
206 case SPEED_100 + DUPLEX_FULL:
207 mac->forced_speed_duplex = ADVERTISE_100_FULL;
208 break;
209 case SPEED_1000 + DUPLEX_FULL:
210 mac->autoneg = 1;
211 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
212 break;
213 case SPEED_1000 + DUPLEX_HALF: /* not supported */
214 default:
215 e_err("Unsupported Speed/Duplex configuration\n");
216 return -EINVAL;
218 return 0;
221 static int e1000_set_settings(struct net_device *netdev,
222 struct ethtool_cmd *ecmd)
224 struct e1000_adapter *adapter = netdev_priv(netdev);
225 struct e1000_hw *hw = &adapter->hw;
228 * When SoL/IDER sessions are active, autoneg/speed/duplex
229 * cannot be changed
231 if (e1000_check_reset_block(hw)) {
232 e_err("Cannot change link characteristics when SoL/IDER is "
233 "active.\n");
234 return -EINVAL;
237 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
238 msleep(1);
240 if (ecmd->autoneg == AUTONEG_ENABLE) {
241 hw->mac.autoneg = 1;
242 if (hw->phy.media_type == e1000_media_type_fiber)
243 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
244 ADVERTISED_FIBRE |
245 ADVERTISED_Autoneg;
246 else
247 hw->phy.autoneg_advertised = ecmd->advertising |
248 ADVERTISED_TP |
249 ADVERTISED_Autoneg;
250 ecmd->advertising = hw->phy.autoneg_advertised;
251 if (adapter->fc_autoneg)
252 hw->fc.requested_mode = e1000_fc_default;
253 } else {
254 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
255 clear_bit(__E1000_RESETTING, &adapter->state);
256 return -EINVAL;
260 /* reset the link */
262 if (netif_running(adapter->netdev)) {
263 e1000e_down(adapter);
264 e1000e_up(adapter);
265 } else {
266 e1000e_reset(adapter);
269 clear_bit(__E1000_RESETTING, &adapter->state);
270 return 0;
273 static void e1000_get_pauseparam(struct net_device *netdev,
274 struct ethtool_pauseparam *pause)
276 struct e1000_adapter *adapter = netdev_priv(netdev);
277 struct e1000_hw *hw = &adapter->hw;
279 pause->autoneg =
280 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
282 if (hw->fc.current_mode == e1000_fc_rx_pause) {
283 pause->rx_pause = 1;
284 } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
285 pause->tx_pause = 1;
286 } else if (hw->fc.current_mode == e1000_fc_full) {
287 pause->rx_pause = 1;
288 pause->tx_pause = 1;
292 static int e1000_set_pauseparam(struct net_device *netdev,
293 struct ethtool_pauseparam *pause)
295 struct e1000_adapter *adapter = netdev_priv(netdev);
296 struct e1000_hw *hw = &adapter->hw;
297 int retval = 0;
299 adapter->fc_autoneg = pause->autoneg;
301 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
302 msleep(1);
304 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
305 hw->fc.requested_mode = e1000_fc_default;
306 if (netif_running(adapter->netdev)) {
307 e1000e_down(adapter);
308 e1000e_up(adapter);
309 } else {
310 e1000e_reset(adapter);
312 } else {
313 if (pause->rx_pause && pause->tx_pause)
314 hw->fc.requested_mode = e1000_fc_full;
315 else if (pause->rx_pause && !pause->tx_pause)
316 hw->fc.requested_mode = e1000_fc_rx_pause;
317 else if (!pause->rx_pause && pause->tx_pause)
318 hw->fc.requested_mode = e1000_fc_tx_pause;
319 else if (!pause->rx_pause && !pause->tx_pause)
320 hw->fc.requested_mode = e1000_fc_none;
322 hw->fc.current_mode = hw->fc.requested_mode;
324 retval = ((hw->phy.media_type == e1000_media_type_fiber) ?
325 hw->mac.ops.setup_link(hw) : e1000e_force_mac_fc(hw));
328 clear_bit(__E1000_RESETTING, &adapter->state);
329 return retval;
332 static u32 e1000_get_rx_csum(struct net_device *netdev)
334 struct e1000_adapter *adapter = netdev_priv(netdev);
335 return (adapter->flags & FLAG_RX_CSUM_ENABLED);
338 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
340 struct e1000_adapter *adapter = netdev_priv(netdev);
342 if (data)
343 adapter->flags |= FLAG_RX_CSUM_ENABLED;
344 else
345 adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
347 if (netif_running(netdev))
348 e1000e_reinit_locked(adapter);
349 else
350 e1000e_reset(adapter);
351 return 0;
354 static u32 e1000_get_tx_csum(struct net_device *netdev)
356 return ((netdev->features & NETIF_F_HW_CSUM) != 0);
359 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
361 if (data)
362 netdev->features |= NETIF_F_HW_CSUM;
363 else
364 netdev->features &= ~NETIF_F_HW_CSUM;
366 return 0;
369 static int e1000_set_tso(struct net_device *netdev, u32 data)
371 struct e1000_adapter *adapter = netdev_priv(netdev);
373 if (data) {
374 netdev->features |= NETIF_F_TSO;
375 netdev->features |= NETIF_F_TSO6;
376 } else {
377 netdev->features &= ~NETIF_F_TSO;
378 netdev->features &= ~NETIF_F_TSO6;
381 e_info("TSO is %s\n", data ? "Enabled" : "Disabled");
382 adapter->flags |= FLAG_TSO_FORCE;
383 return 0;
386 static u32 e1000_get_msglevel(struct net_device *netdev)
388 struct e1000_adapter *adapter = netdev_priv(netdev);
389 return adapter->msg_enable;
392 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
394 struct e1000_adapter *adapter = netdev_priv(netdev);
395 adapter->msg_enable = data;
398 static int e1000_get_regs_len(struct net_device *netdev)
400 #define E1000_REGS_LEN 32 /* overestimate */
401 return E1000_REGS_LEN * sizeof(u32);
404 static void e1000_get_regs(struct net_device *netdev,
405 struct ethtool_regs *regs, void *p)
407 struct e1000_adapter *adapter = netdev_priv(netdev);
408 struct e1000_hw *hw = &adapter->hw;
409 u32 *regs_buff = p;
410 u16 phy_data;
411 u8 revision_id;
413 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
415 pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id);
417 regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device;
419 regs_buff[0] = er32(CTRL);
420 regs_buff[1] = er32(STATUS);
422 regs_buff[2] = er32(RCTL);
423 regs_buff[3] = er32(RDLEN);
424 regs_buff[4] = er32(RDH);
425 regs_buff[5] = er32(RDT);
426 regs_buff[6] = er32(RDTR);
428 regs_buff[7] = er32(TCTL);
429 regs_buff[8] = er32(TDLEN);
430 regs_buff[9] = er32(TDH);
431 regs_buff[10] = er32(TDT);
432 regs_buff[11] = er32(TIDV);
434 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */
436 /* ethtool doesn't use anything past this point, so all this
437 * code is likely legacy junk for apps that may or may not
438 * exist */
439 if (hw->phy.type == e1000_phy_m88) {
440 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
441 regs_buff[13] = (u32)phy_data; /* cable length */
442 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
443 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
444 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
445 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
446 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
447 regs_buff[18] = regs_buff[13]; /* cable polarity */
448 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
449 regs_buff[20] = regs_buff[17]; /* polarity correction */
450 /* phy receive errors */
451 regs_buff[22] = adapter->phy_stats.receive_errors;
452 regs_buff[23] = regs_buff[13]; /* mdix mode */
454 regs_buff[21] = 0; /* was idle_errors */
455 e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
456 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
457 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
460 static int e1000_get_eeprom_len(struct net_device *netdev)
462 struct e1000_adapter *adapter = netdev_priv(netdev);
463 return adapter->hw.nvm.word_size * 2;
466 static int e1000_get_eeprom(struct net_device *netdev,
467 struct ethtool_eeprom *eeprom, u8 *bytes)
469 struct e1000_adapter *adapter = netdev_priv(netdev);
470 struct e1000_hw *hw = &adapter->hw;
471 u16 *eeprom_buff;
472 int first_word;
473 int last_word;
474 int ret_val = 0;
475 u16 i;
477 if (eeprom->len == 0)
478 return -EINVAL;
480 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
482 first_word = eeprom->offset >> 1;
483 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
485 eeprom_buff = kmalloc(sizeof(u16) *
486 (last_word - first_word + 1), GFP_KERNEL);
487 if (!eeprom_buff)
488 return -ENOMEM;
490 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
491 ret_val = e1000_read_nvm(hw, first_word,
492 last_word - first_word + 1,
493 eeprom_buff);
494 } else {
495 for (i = 0; i < last_word - first_word + 1; i++) {
496 ret_val = e1000_read_nvm(hw, first_word + i, 1,
497 &eeprom_buff[i]);
498 if (ret_val) {
499 /* a read error occurred, throw away the
500 * result */
501 memset(eeprom_buff, 0xff, sizeof(eeprom_buff));
502 break;
507 /* Device's eeprom is always little-endian, word addressable */
508 for (i = 0; i < last_word - first_word + 1; i++)
509 le16_to_cpus(&eeprom_buff[i]);
511 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
512 kfree(eeprom_buff);
514 return ret_val;
517 static int e1000_set_eeprom(struct net_device *netdev,
518 struct ethtool_eeprom *eeprom, u8 *bytes)
520 struct e1000_adapter *adapter = netdev_priv(netdev);
521 struct e1000_hw *hw = &adapter->hw;
522 u16 *eeprom_buff;
523 void *ptr;
524 int max_len;
525 int first_word;
526 int last_word;
527 int ret_val = 0;
528 u16 i;
530 if (eeprom->len == 0)
531 return -EOPNOTSUPP;
533 if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
534 return -EFAULT;
536 if (adapter->flags & FLAG_READ_ONLY_NVM)
537 return -EINVAL;
539 max_len = hw->nvm.word_size * 2;
541 first_word = eeprom->offset >> 1;
542 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
543 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
544 if (!eeprom_buff)
545 return -ENOMEM;
547 ptr = (void *)eeprom_buff;
549 if (eeprom->offset & 1) {
550 /* need read/modify/write of first changed EEPROM word */
551 /* only the second byte of the word is being modified */
552 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
553 ptr++;
555 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
556 /* need read/modify/write of last changed EEPROM word */
557 /* only the first byte of the word is being modified */
558 ret_val = e1000_read_nvm(hw, last_word, 1,
559 &eeprom_buff[last_word - first_word]);
561 /* Device's eeprom is always little-endian, word addressable */
562 for (i = 0; i < last_word - first_word + 1; i++)
563 le16_to_cpus(&eeprom_buff[i]);
565 memcpy(ptr, bytes, eeprom->len);
567 for (i = 0; i < last_word - first_word + 1; i++)
568 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
570 ret_val = e1000_write_nvm(hw, first_word,
571 last_word - first_word + 1, eeprom_buff);
574 * Update the checksum over the first part of the EEPROM if needed
575 * and flush shadow RAM for 82573 controllers
577 if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG) ||
578 (hw->mac.type == e1000_82574) ||
579 (hw->mac.type == e1000_82573)))
580 e1000e_update_nvm_checksum(hw);
582 kfree(eeprom_buff);
583 return ret_val;
586 static void e1000_get_drvinfo(struct net_device *netdev,
587 struct ethtool_drvinfo *drvinfo)
589 struct e1000_adapter *adapter = netdev_priv(netdev);
590 char firmware_version[32];
591 u16 eeprom_data;
593 strncpy(drvinfo->driver, e1000e_driver_name, 32);
594 strncpy(drvinfo->version, e1000e_driver_version, 32);
597 * EEPROM image version # is reported as firmware version # for
598 * PCI-E controllers
600 e1000_read_nvm(&adapter->hw, 5, 1, &eeprom_data);
601 sprintf(firmware_version, "%d.%d-%d",
602 (eeprom_data & 0xF000) >> 12,
603 (eeprom_data & 0x0FF0) >> 4,
604 eeprom_data & 0x000F);
606 strncpy(drvinfo->fw_version, firmware_version, 32);
607 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
608 drvinfo->regdump_len = e1000_get_regs_len(netdev);
609 drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
612 static void e1000_get_ringparam(struct net_device *netdev,
613 struct ethtool_ringparam *ring)
615 struct e1000_adapter *adapter = netdev_priv(netdev);
616 struct e1000_ring *tx_ring = adapter->tx_ring;
617 struct e1000_ring *rx_ring = adapter->rx_ring;
619 ring->rx_max_pending = E1000_MAX_RXD;
620 ring->tx_max_pending = E1000_MAX_TXD;
621 ring->rx_mini_max_pending = 0;
622 ring->rx_jumbo_max_pending = 0;
623 ring->rx_pending = rx_ring->count;
624 ring->tx_pending = tx_ring->count;
625 ring->rx_mini_pending = 0;
626 ring->rx_jumbo_pending = 0;
629 static int e1000_set_ringparam(struct net_device *netdev,
630 struct ethtool_ringparam *ring)
632 struct e1000_adapter *adapter = netdev_priv(netdev);
633 struct e1000_ring *tx_ring, *tx_old;
634 struct e1000_ring *rx_ring, *rx_old;
635 int err;
637 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
638 return -EINVAL;
640 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
641 msleep(1);
643 if (netif_running(adapter->netdev))
644 e1000e_down(adapter);
646 tx_old = adapter->tx_ring;
647 rx_old = adapter->rx_ring;
649 err = -ENOMEM;
650 tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
651 if (!tx_ring)
652 goto err_alloc_tx;
654 * use a memcpy to save any previously configured
655 * items like napi structs from having to be
656 * reinitialized
658 memcpy(tx_ring, tx_old, sizeof(struct e1000_ring));
660 rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
661 if (!rx_ring)
662 goto err_alloc_rx;
663 memcpy(rx_ring, rx_old, sizeof(struct e1000_ring));
665 adapter->tx_ring = tx_ring;
666 adapter->rx_ring = rx_ring;
668 rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
669 rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
670 rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
672 tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
673 tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
674 tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
676 if (netif_running(adapter->netdev)) {
677 /* Try to get new resources before deleting old */
678 err = e1000e_setup_rx_resources(adapter);
679 if (err)
680 goto err_setup_rx;
681 err = e1000e_setup_tx_resources(adapter);
682 if (err)
683 goto err_setup_tx;
686 * restore the old in order to free it,
687 * then add in the new
689 adapter->rx_ring = rx_old;
690 adapter->tx_ring = tx_old;
691 e1000e_free_rx_resources(adapter);
692 e1000e_free_tx_resources(adapter);
693 kfree(tx_old);
694 kfree(rx_old);
695 adapter->rx_ring = rx_ring;
696 adapter->tx_ring = tx_ring;
697 err = e1000e_up(adapter);
698 if (err)
699 goto err_setup;
702 clear_bit(__E1000_RESETTING, &adapter->state);
703 return 0;
704 err_setup_tx:
705 e1000e_free_rx_resources(adapter);
706 err_setup_rx:
707 adapter->rx_ring = rx_old;
708 adapter->tx_ring = tx_old;
709 kfree(rx_ring);
710 err_alloc_rx:
711 kfree(tx_ring);
712 err_alloc_tx:
713 e1000e_up(adapter);
714 err_setup:
715 clear_bit(__E1000_RESETTING, &adapter->state);
716 return err;
719 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
720 int reg, int offset, u32 mask, u32 write)
722 u32 pat, val;
723 static const u32 test[] =
724 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
725 for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
726 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
727 (test[pat] & write));
728 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
729 if (val != (test[pat] & write & mask)) {
730 e_err("pattern test reg %04X failed: got 0x%08X "
731 "expected 0x%08X\n", reg + offset, val,
732 (test[pat] & write & mask));
733 *data = reg;
734 return 1;
737 return 0;
740 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
741 int reg, u32 mask, u32 write)
743 u32 val;
744 __ew32(&adapter->hw, reg, write & mask);
745 val = __er32(&adapter->hw, reg);
746 if ((write & mask) != (val & mask)) {
747 e_err("set/check reg %04X test failed: got 0x%08X "
748 "expected 0x%08X\n", reg, (val & mask), (write & mask));
749 *data = reg;
750 return 1;
752 return 0;
754 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \
755 do { \
756 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
757 return 1; \
758 } while (0)
759 #define REG_PATTERN_TEST(reg, mask, write) \
760 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
762 #define REG_SET_AND_CHECK(reg, mask, write) \
763 do { \
764 if (reg_set_and_check(adapter, data, reg, mask, write)) \
765 return 1; \
766 } while (0)
768 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
770 struct e1000_hw *hw = &adapter->hw;
771 struct e1000_mac_info *mac = &adapter->hw.mac;
772 u32 value;
773 u32 before;
774 u32 after;
775 u32 i;
776 u32 toggle;
779 * The status register is Read Only, so a write should fail.
780 * Some bits that get toggled are ignored.
782 switch (mac->type) {
783 /* there are several bits on newer hardware that are r/w */
784 case e1000_82571:
785 case e1000_82572:
786 case e1000_80003es2lan:
787 toggle = 0x7FFFF3FF;
788 break;
789 case e1000_82573:
790 case e1000_82574:
791 case e1000_ich8lan:
792 case e1000_ich9lan:
793 case e1000_ich10lan:
794 toggle = 0x7FFFF033;
795 break;
796 default:
797 toggle = 0xFFFFF833;
798 break;
801 before = er32(STATUS);
802 value = (er32(STATUS) & toggle);
803 ew32(STATUS, toggle);
804 after = er32(STATUS) & toggle;
805 if (value != after) {
806 e_err("failed STATUS register test got: 0x%08X expected: "
807 "0x%08X\n", after, value);
808 *data = 1;
809 return 1;
811 /* restore previous status */
812 ew32(STATUS, before);
814 if (!(adapter->flags & FLAG_IS_ICH)) {
815 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
816 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
817 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
818 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
821 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
822 REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
823 REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
824 REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
825 REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
826 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
827 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
828 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
829 REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
830 REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
832 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
834 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
835 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
836 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
838 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
839 REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
840 if (!(adapter->flags & FLAG_IS_ICH))
841 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
842 REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
843 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
844 for (i = 0; i < mac->rar_entry_count; i++)
845 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
846 ((mac->type == e1000_ich10lan) ?
847 0x8007FFFF : 0x8003FFFF),
848 0xFFFFFFFF);
850 for (i = 0; i < mac->mta_reg_count; i++)
851 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
853 *data = 0;
854 return 0;
857 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
859 u16 temp;
860 u16 checksum = 0;
861 u16 i;
863 *data = 0;
864 /* Read and add up the contents of the EEPROM */
865 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
866 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
867 *data = 1;
868 break;
870 checksum += temp;
873 /* If Checksum is not Correct return error else test passed */
874 if ((checksum != (u16) NVM_SUM) && !(*data))
875 *data = 2;
877 return *data;
880 static irqreturn_t e1000_test_intr(int irq, void *data)
882 struct net_device *netdev = (struct net_device *) data;
883 struct e1000_adapter *adapter = netdev_priv(netdev);
884 struct e1000_hw *hw = &adapter->hw;
886 adapter->test_icr |= er32(ICR);
888 return IRQ_HANDLED;
891 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
893 struct net_device *netdev = adapter->netdev;
894 struct e1000_hw *hw = &adapter->hw;
895 u32 mask;
896 u32 shared_int = 1;
897 u32 irq = adapter->pdev->irq;
898 int i;
899 int ret_val = 0;
900 int int_mode = E1000E_INT_MODE_LEGACY;
902 *data = 0;
904 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
905 if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
906 int_mode = adapter->int_mode;
907 e1000e_reset_interrupt_capability(adapter);
908 adapter->int_mode = E1000E_INT_MODE_LEGACY;
909 e1000e_set_interrupt_capability(adapter);
911 /* Hook up test interrupt handler just for this test */
912 if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
913 netdev)) {
914 shared_int = 0;
915 } else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
916 netdev->name, netdev)) {
917 *data = 1;
918 ret_val = -1;
919 goto out;
921 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
923 /* Disable all the interrupts */
924 ew32(IMC, 0xFFFFFFFF);
925 msleep(10);
927 /* Test each interrupt */
928 for (i = 0; i < 10; i++) {
929 /* Interrupt to test */
930 mask = 1 << i;
932 if (adapter->flags & FLAG_IS_ICH) {
933 switch (mask) {
934 case E1000_ICR_RXSEQ:
935 continue;
936 case 0x00000100:
937 if (adapter->hw.mac.type == e1000_ich8lan ||
938 adapter->hw.mac.type == e1000_ich9lan)
939 continue;
940 break;
941 default:
942 break;
946 if (!shared_int) {
948 * Disable the interrupt to be reported in
949 * the cause register and then force the same
950 * interrupt and see if one gets posted. If
951 * an interrupt was posted to the bus, the
952 * test failed.
954 adapter->test_icr = 0;
955 ew32(IMC, mask);
956 ew32(ICS, mask);
957 msleep(10);
959 if (adapter->test_icr & mask) {
960 *data = 3;
961 break;
966 * Enable the interrupt to be reported in
967 * the cause register and then force the same
968 * interrupt and see if one gets posted. If
969 * an interrupt was not posted to the bus, the
970 * test failed.
972 adapter->test_icr = 0;
973 ew32(IMS, mask);
974 ew32(ICS, mask);
975 msleep(10);
977 if (!(adapter->test_icr & mask)) {
978 *data = 4;
979 break;
982 if (!shared_int) {
984 * Disable the other interrupts to be reported in
985 * the cause register and then force the other
986 * interrupts and see if any get posted. If
987 * an interrupt was posted to the bus, the
988 * test failed.
990 adapter->test_icr = 0;
991 ew32(IMC, ~mask & 0x00007FFF);
992 ew32(ICS, ~mask & 0x00007FFF);
993 msleep(10);
995 if (adapter->test_icr) {
996 *data = 5;
997 break;
1002 /* Disable all the interrupts */
1003 ew32(IMC, 0xFFFFFFFF);
1004 msleep(10);
1006 /* Unhook test interrupt handler */
1007 free_irq(irq, netdev);
1009 out:
1010 if (int_mode == E1000E_INT_MODE_MSIX) {
1011 e1000e_reset_interrupt_capability(adapter);
1012 adapter->int_mode = int_mode;
1013 e1000e_set_interrupt_capability(adapter);
1016 return ret_val;
1019 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1021 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1022 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1023 struct pci_dev *pdev = adapter->pdev;
1024 int i;
1026 if (tx_ring->desc && tx_ring->buffer_info) {
1027 for (i = 0; i < tx_ring->count; i++) {
1028 if (tx_ring->buffer_info[i].dma)
1029 pci_unmap_single(pdev,
1030 tx_ring->buffer_info[i].dma,
1031 tx_ring->buffer_info[i].length,
1032 PCI_DMA_TODEVICE);
1033 if (tx_ring->buffer_info[i].skb)
1034 dev_kfree_skb(tx_ring->buffer_info[i].skb);
1038 if (rx_ring->desc && rx_ring->buffer_info) {
1039 for (i = 0; i < rx_ring->count; i++) {
1040 if (rx_ring->buffer_info[i].dma)
1041 pci_unmap_single(pdev,
1042 rx_ring->buffer_info[i].dma,
1043 2048, PCI_DMA_FROMDEVICE);
1044 if (rx_ring->buffer_info[i].skb)
1045 dev_kfree_skb(rx_ring->buffer_info[i].skb);
1049 if (tx_ring->desc) {
1050 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1051 tx_ring->dma);
1052 tx_ring->desc = NULL;
1054 if (rx_ring->desc) {
1055 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1056 rx_ring->dma);
1057 rx_ring->desc = NULL;
1060 kfree(tx_ring->buffer_info);
1061 tx_ring->buffer_info = NULL;
1062 kfree(rx_ring->buffer_info);
1063 rx_ring->buffer_info = NULL;
1066 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1068 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1069 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1070 struct pci_dev *pdev = adapter->pdev;
1071 struct e1000_hw *hw = &adapter->hw;
1072 u32 rctl;
1073 int i;
1074 int ret_val;
1076 /* Setup Tx descriptor ring and Tx buffers */
1078 if (!tx_ring->count)
1079 tx_ring->count = E1000_DEFAULT_TXD;
1081 tx_ring->buffer_info = kcalloc(tx_ring->count,
1082 sizeof(struct e1000_buffer),
1083 GFP_KERNEL);
1084 if (!(tx_ring->buffer_info)) {
1085 ret_val = 1;
1086 goto err_nomem;
1089 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1090 tx_ring->size = ALIGN(tx_ring->size, 4096);
1091 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1092 &tx_ring->dma, GFP_KERNEL);
1093 if (!tx_ring->desc) {
1094 ret_val = 2;
1095 goto err_nomem;
1097 tx_ring->next_to_use = 0;
1098 tx_ring->next_to_clean = 0;
1100 ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1101 ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1102 ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc));
1103 ew32(TDH, 0);
1104 ew32(TDT, 0);
1105 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1106 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1107 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1109 for (i = 0; i < tx_ring->count; i++) {
1110 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1111 struct sk_buff *skb;
1112 unsigned int skb_size = 1024;
1114 skb = alloc_skb(skb_size, GFP_KERNEL);
1115 if (!skb) {
1116 ret_val = 3;
1117 goto err_nomem;
1119 skb_put(skb, skb_size);
1120 tx_ring->buffer_info[i].skb = skb;
1121 tx_ring->buffer_info[i].length = skb->len;
1122 tx_ring->buffer_info[i].dma =
1123 pci_map_single(pdev, skb->data, skb->len,
1124 PCI_DMA_TODEVICE);
1125 if (pci_dma_mapping_error(pdev, tx_ring->buffer_info[i].dma)) {
1126 ret_val = 4;
1127 goto err_nomem;
1129 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1130 tx_desc->lower.data = cpu_to_le32(skb->len);
1131 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1132 E1000_TXD_CMD_IFCS |
1133 E1000_TXD_CMD_RS);
1134 tx_desc->upper.data = 0;
1137 /* Setup Rx descriptor ring and Rx buffers */
1139 if (!rx_ring->count)
1140 rx_ring->count = E1000_DEFAULT_RXD;
1142 rx_ring->buffer_info = kcalloc(rx_ring->count,
1143 sizeof(struct e1000_buffer),
1144 GFP_KERNEL);
1145 if (!(rx_ring->buffer_info)) {
1146 ret_val = 5;
1147 goto err_nomem;
1150 rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1151 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1152 &rx_ring->dma, GFP_KERNEL);
1153 if (!rx_ring->desc) {
1154 ret_val = 6;
1155 goto err_nomem;
1157 rx_ring->next_to_use = 0;
1158 rx_ring->next_to_clean = 0;
1160 rctl = er32(RCTL);
1161 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1162 ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
1163 ew32(RDBAH, ((u64) rx_ring->dma >> 32));
1164 ew32(RDLEN, rx_ring->size);
1165 ew32(RDH, 0);
1166 ew32(RDT, 0);
1167 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1168 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1169 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1170 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1171 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1172 ew32(RCTL, rctl);
1174 for (i = 0; i < rx_ring->count; i++) {
1175 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1176 struct sk_buff *skb;
1178 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1179 if (!skb) {
1180 ret_val = 7;
1181 goto err_nomem;
1183 skb_reserve(skb, NET_IP_ALIGN);
1184 rx_ring->buffer_info[i].skb = skb;
1185 rx_ring->buffer_info[i].dma =
1186 pci_map_single(pdev, skb->data, 2048,
1187 PCI_DMA_FROMDEVICE);
1188 if (pci_dma_mapping_error(pdev, rx_ring->buffer_info[i].dma)) {
1189 ret_val = 8;
1190 goto err_nomem;
1192 rx_desc->buffer_addr =
1193 cpu_to_le64(rx_ring->buffer_info[i].dma);
1194 memset(skb->data, 0x00, skb->len);
1197 return 0;
1199 err_nomem:
1200 e1000_free_desc_rings(adapter);
1201 return ret_val;
1204 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1206 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1207 e1e_wphy(&adapter->hw, 29, 0x001F);
1208 e1e_wphy(&adapter->hw, 30, 0x8FFC);
1209 e1e_wphy(&adapter->hw, 29, 0x001A);
1210 e1e_wphy(&adapter->hw, 30, 0x8FF0);
1213 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1215 struct e1000_hw *hw = &adapter->hw;
1216 u32 ctrl_reg = 0;
1217 u32 stat_reg = 0;
1218 u16 phy_reg = 0;
1220 hw->mac.autoneg = 0;
1222 if (hw->phy.type == e1000_phy_m88) {
1223 /* Auto-MDI/MDIX Off */
1224 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1225 /* reset to update Auto-MDI/MDIX */
1226 e1e_wphy(hw, PHY_CONTROL, 0x9140);
1227 /* autoneg off */
1228 e1e_wphy(hw, PHY_CONTROL, 0x8140);
1229 } else if (hw->phy.type == e1000_phy_gg82563)
1230 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1232 ctrl_reg = er32(CTRL);
1234 switch (hw->phy.type) {
1235 case e1000_phy_ife:
1236 /* force 100, set loopback */
1237 e1e_wphy(hw, PHY_CONTROL, 0x6100);
1239 /* Now set up the MAC to the same speed/duplex as the PHY. */
1240 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1241 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1242 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1243 E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1244 E1000_CTRL_FD); /* Force Duplex to FULL */
1245 break;
1246 case e1000_phy_bm:
1247 /* Set Default MAC Interface speed to 1GB */
1248 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1249 phy_reg &= ~0x0007;
1250 phy_reg |= 0x006;
1251 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1252 /* Assert SW reset for above settings to take effect */
1253 e1000e_commit_phy(hw);
1254 mdelay(1);
1255 /* Force Full Duplex */
1256 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1257 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1258 /* Set Link Up (in force link) */
1259 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1260 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1261 /* Force Link */
1262 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1263 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1264 /* Set Early Link Enable */
1265 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1266 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1267 /* fall through */
1268 default:
1269 /* force 1000, set loopback */
1270 e1e_wphy(hw, PHY_CONTROL, 0x4140);
1271 mdelay(250);
1273 /* Now set up the MAC to the same speed/duplex as the PHY. */
1274 ctrl_reg = er32(CTRL);
1275 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1276 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1277 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1278 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1279 E1000_CTRL_FD); /* Force Duplex to FULL */
1281 if (adapter->flags & FLAG_IS_ICH)
1282 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */
1285 if (hw->phy.media_type == e1000_media_type_copper &&
1286 hw->phy.type == e1000_phy_m88) {
1287 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1288 } else {
1290 * Set the ILOS bit on the fiber Nic if half duplex link is
1291 * detected.
1293 stat_reg = er32(STATUS);
1294 if ((stat_reg & E1000_STATUS_FD) == 0)
1295 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1298 ew32(CTRL, ctrl_reg);
1301 * Disable the receiver on the PHY so when a cable is plugged in, the
1302 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1304 if (hw->phy.type == e1000_phy_m88)
1305 e1000_phy_disable_receiver(adapter);
1307 udelay(500);
1309 return 0;
1312 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1314 struct e1000_hw *hw = &adapter->hw;
1315 u32 ctrl = er32(CTRL);
1316 int link = 0;
1318 /* special requirements for 82571/82572 fiber adapters */
1321 * jump through hoops to make sure link is up because serdes
1322 * link is hardwired up
1324 ctrl |= E1000_CTRL_SLU;
1325 ew32(CTRL, ctrl);
1327 /* disable autoneg */
1328 ctrl = er32(TXCW);
1329 ctrl &= ~(1 << 31);
1330 ew32(TXCW, ctrl);
1332 link = (er32(STATUS) & E1000_STATUS_LU);
1334 if (!link) {
1335 /* set invert loss of signal */
1336 ctrl = er32(CTRL);
1337 ctrl |= E1000_CTRL_ILOS;
1338 ew32(CTRL, ctrl);
1342 * special write to serdes control register to enable SerDes analog
1343 * loopback
1345 #define E1000_SERDES_LB_ON 0x410
1346 ew32(SCTL, E1000_SERDES_LB_ON);
1347 msleep(10);
1349 return 0;
1352 /* only call this for fiber/serdes connections to es2lan */
1353 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1355 struct e1000_hw *hw = &adapter->hw;
1356 u32 ctrlext = er32(CTRL_EXT);
1357 u32 ctrl = er32(CTRL);
1360 * save CTRL_EXT to restore later, reuse an empty variable (unused
1361 * on mac_type 80003es2lan)
1363 adapter->tx_fifo_head = ctrlext;
1365 /* clear the serdes mode bits, putting the device into mac loopback */
1366 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1367 ew32(CTRL_EXT, ctrlext);
1369 /* force speed to 1000/FD, link up */
1370 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1371 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1372 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1373 ew32(CTRL, ctrl);
1375 /* set mac loopback */
1376 ctrl = er32(RCTL);
1377 ctrl |= E1000_RCTL_LBM_MAC;
1378 ew32(RCTL, ctrl);
1380 /* set testing mode parameters (no need to reset later) */
1381 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1382 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1383 ew32(KMRNCTRLSTA,
1384 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1386 return 0;
1389 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1391 struct e1000_hw *hw = &adapter->hw;
1392 u32 rctl;
1394 if (hw->phy.media_type == e1000_media_type_fiber ||
1395 hw->phy.media_type == e1000_media_type_internal_serdes) {
1396 switch (hw->mac.type) {
1397 case e1000_80003es2lan:
1398 return e1000_set_es2lan_mac_loopback(adapter);
1399 break;
1400 case e1000_82571:
1401 case e1000_82572:
1402 return e1000_set_82571_fiber_loopback(adapter);
1403 break;
1404 default:
1405 rctl = er32(RCTL);
1406 rctl |= E1000_RCTL_LBM_TCVR;
1407 ew32(RCTL, rctl);
1408 return 0;
1410 } else if (hw->phy.media_type == e1000_media_type_copper) {
1411 return e1000_integrated_phy_loopback(adapter);
1414 return 7;
1417 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1419 struct e1000_hw *hw = &adapter->hw;
1420 u32 rctl;
1421 u16 phy_reg;
1423 rctl = er32(RCTL);
1424 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1425 ew32(RCTL, rctl);
1427 switch (hw->mac.type) {
1428 case e1000_80003es2lan:
1429 if (hw->phy.media_type == e1000_media_type_fiber ||
1430 hw->phy.media_type == e1000_media_type_internal_serdes) {
1431 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1432 ew32(CTRL_EXT, adapter->tx_fifo_head);
1433 adapter->tx_fifo_head = 0;
1435 /* fall through */
1436 case e1000_82571:
1437 case e1000_82572:
1438 if (hw->phy.media_type == e1000_media_type_fiber ||
1439 hw->phy.media_type == e1000_media_type_internal_serdes) {
1440 #define E1000_SERDES_LB_OFF 0x400
1441 ew32(SCTL, E1000_SERDES_LB_OFF);
1442 msleep(10);
1443 break;
1445 /* Fall Through */
1446 default:
1447 hw->mac.autoneg = 1;
1448 if (hw->phy.type == e1000_phy_gg82563)
1449 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1450 e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1451 if (phy_reg & MII_CR_LOOPBACK) {
1452 phy_reg &= ~MII_CR_LOOPBACK;
1453 e1e_wphy(hw, PHY_CONTROL, phy_reg);
1454 e1000e_commit_phy(hw);
1456 break;
1460 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1461 unsigned int frame_size)
1463 memset(skb->data, 0xFF, frame_size);
1464 frame_size &= ~1;
1465 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1466 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1467 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1470 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1471 unsigned int frame_size)
1473 frame_size &= ~1;
1474 if (*(skb->data + 3) == 0xFF)
1475 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1476 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1477 return 0;
1478 return 13;
1481 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1483 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1484 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1485 struct pci_dev *pdev = adapter->pdev;
1486 struct e1000_hw *hw = &adapter->hw;
1487 int i, j, k, l;
1488 int lc;
1489 int good_cnt;
1490 int ret_val = 0;
1491 unsigned long time;
1493 ew32(RDT, rx_ring->count - 1);
1496 * Calculate the loop count based on the largest descriptor ring
1497 * The idea is to wrap the largest ring a number of times using 64
1498 * send/receive pairs during each loop
1501 if (rx_ring->count <= tx_ring->count)
1502 lc = ((tx_ring->count / 64) * 2) + 1;
1503 else
1504 lc = ((rx_ring->count / 64) * 2) + 1;
1506 k = 0;
1507 l = 0;
1508 for (j = 0; j <= lc; j++) { /* loop count loop */
1509 for (i = 0; i < 64; i++) { /* send the packets */
1510 e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1511 1024);
1512 pci_dma_sync_single_for_device(pdev,
1513 tx_ring->buffer_info[k].dma,
1514 tx_ring->buffer_info[k].length,
1515 PCI_DMA_TODEVICE);
1516 k++;
1517 if (k == tx_ring->count)
1518 k = 0;
1520 ew32(TDT, k);
1521 msleep(200);
1522 time = jiffies; /* set the start time for the receive */
1523 good_cnt = 0;
1524 do { /* receive the sent packets */
1525 pci_dma_sync_single_for_cpu(pdev,
1526 rx_ring->buffer_info[l].dma, 2048,
1527 PCI_DMA_FROMDEVICE);
1529 ret_val = e1000_check_lbtest_frame(
1530 rx_ring->buffer_info[l].skb, 1024);
1531 if (!ret_val)
1532 good_cnt++;
1533 l++;
1534 if (l == rx_ring->count)
1535 l = 0;
1537 * time + 20 msecs (200 msecs on 2.4) is more than
1538 * enough time to complete the receives, if it's
1539 * exceeded, break and error off
1541 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1542 if (good_cnt != 64) {
1543 ret_val = 13; /* ret_val is the same as mis-compare */
1544 break;
1546 if (jiffies >= (time + 20)) {
1547 ret_val = 14; /* error code for time out error */
1548 break;
1550 } /* end loop count loop */
1551 return ret_val;
1554 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1557 * PHY loopback cannot be performed if SoL/IDER
1558 * sessions are active
1560 if (e1000_check_reset_block(&adapter->hw)) {
1561 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1562 *data = 0;
1563 goto out;
1566 *data = e1000_setup_desc_rings(adapter);
1567 if (*data)
1568 goto out;
1570 *data = e1000_setup_loopback_test(adapter);
1571 if (*data)
1572 goto err_loopback;
1574 *data = e1000_run_loopback_test(adapter);
1575 e1000_loopback_cleanup(adapter);
1577 err_loopback:
1578 e1000_free_desc_rings(adapter);
1579 out:
1580 return *data;
1583 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1585 struct e1000_hw *hw = &adapter->hw;
1587 *data = 0;
1588 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1589 int i = 0;
1590 hw->mac.serdes_has_link = 0;
1593 * On some blade server designs, link establishment
1594 * could take as long as 2-3 minutes
1596 do {
1597 hw->mac.ops.check_for_link(hw);
1598 if (hw->mac.serdes_has_link)
1599 return *data;
1600 msleep(20);
1601 } while (i++ < 3750);
1603 *data = 1;
1604 } else {
1605 hw->mac.ops.check_for_link(hw);
1606 if (hw->mac.autoneg)
1607 msleep(4000);
1609 if (!(er32(STATUS) &
1610 E1000_STATUS_LU))
1611 *data = 1;
1613 return *data;
1616 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1618 switch (sset) {
1619 case ETH_SS_TEST:
1620 return E1000_TEST_LEN;
1621 case ETH_SS_STATS:
1622 return E1000_STATS_LEN;
1623 default:
1624 return -EOPNOTSUPP;
1628 static void e1000_diag_test(struct net_device *netdev,
1629 struct ethtool_test *eth_test, u64 *data)
1631 struct e1000_adapter *adapter = netdev_priv(netdev);
1632 u16 autoneg_advertised;
1633 u8 forced_speed_duplex;
1634 u8 autoneg;
1635 bool if_running = netif_running(netdev);
1637 set_bit(__E1000_TESTING, &adapter->state);
1638 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1639 /* Offline tests */
1641 /* save speed, duplex, autoneg settings */
1642 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1643 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1644 autoneg = adapter->hw.mac.autoneg;
1646 e_info("offline testing starting\n");
1649 * Link test performed before hardware reset so autoneg doesn't
1650 * interfere with test result
1652 if (e1000_link_test(adapter, &data[4]))
1653 eth_test->flags |= ETH_TEST_FL_FAILED;
1655 if (if_running)
1656 /* indicate we're in test mode */
1657 dev_close(netdev);
1658 else
1659 e1000e_reset(adapter);
1661 if (e1000_reg_test(adapter, &data[0]))
1662 eth_test->flags |= ETH_TEST_FL_FAILED;
1664 e1000e_reset(adapter);
1665 if (e1000_eeprom_test(adapter, &data[1]))
1666 eth_test->flags |= ETH_TEST_FL_FAILED;
1668 e1000e_reset(adapter);
1669 if (e1000_intr_test(adapter, &data[2]))
1670 eth_test->flags |= ETH_TEST_FL_FAILED;
1672 e1000e_reset(adapter);
1673 /* make sure the phy is powered up */
1674 e1000e_power_up_phy(adapter);
1675 if (e1000_loopback_test(adapter, &data[3]))
1676 eth_test->flags |= ETH_TEST_FL_FAILED;
1678 /* restore speed, duplex, autoneg settings */
1679 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1680 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1681 adapter->hw.mac.autoneg = autoneg;
1683 /* force this routine to wait until autoneg complete/timeout */
1684 adapter->hw.phy.autoneg_wait_to_complete = 1;
1685 e1000e_reset(adapter);
1686 adapter->hw.phy.autoneg_wait_to_complete = 0;
1688 clear_bit(__E1000_TESTING, &adapter->state);
1689 if (if_running)
1690 dev_open(netdev);
1691 } else {
1692 e_info("online testing starting\n");
1693 /* Online tests */
1694 if (e1000_link_test(adapter, &data[4]))
1695 eth_test->flags |= ETH_TEST_FL_FAILED;
1697 /* Online tests aren't run; pass by default */
1698 data[0] = 0;
1699 data[1] = 0;
1700 data[2] = 0;
1701 data[3] = 0;
1703 clear_bit(__E1000_TESTING, &adapter->state);
1705 msleep_interruptible(4 * 1000);
1708 static void e1000_get_wol(struct net_device *netdev,
1709 struct ethtool_wolinfo *wol)
1711 struct e1000_adapter *adapter = netdev_priv(netdev);
1713 wol->supported = 0;
1714 wol->wolopts = 0;
1716 if (!(adapter->flags & FLAG_HAS_WOL) ||
1717 !device_can_wakeup(&adapter->pdev->dev))
1718 return;
1720 wol->supported = WAKE_UCAST | WAKE_MCAST |
1721 WAKE_BCAST | WAKE_MAGIC |
1722 WAKE_PHY | WAKE_ARP;
1724 /* apply any specific unsupported masks here */
1725 if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1726 wol->supported &= ~WAKE_UCAST;
1728 if (adapter->wol & E1000_WUFC_EX)
1729 e_err("Interface does not support directed (unicast) "
1730 "frame wake-up packets\n");
1733 if (adapter->wol & E1000_WUFC_EX)
1734 wol->wolopts |= WAKE_UCAST;
1735 if (adapter->wol & E1000_WUFC_MC)
1736 wol->wolopts |= WAKE_MCAST;
1737 if (adapter->wol & E1000_WUFC_BC)
1738 wol->wolopts |= WAKE_BCAST;
1739 if (adapter->wol & E1000_WUFC_MAG)
1740 wol->wolopts |= WAKE_MAGIC;
1741 if (adapter->wol & E1000_WUFC_LNKC)
1742 wol->wolopts |= WAKE_PHY;
1743 if (adapter->wol & E1000_WUFC_ARP)
1744 wol->wolopts |= WAKE_ARP;
1747 static int e1000_set_wol(struct net_device *netdev,
1748 struct ethtool_wolinfo *wol)
1750 struct e1000_adapter *adapter = netdev_priv(netdev);
1752 if (wol->wolopts & WAKE_MAGICSECURE)
1753 return -EOPNOTSUPP;
1755 if (!(adapter->flags & FLAG_HAS_WOL) ||
1756 !device_can_wakeup(&adapter->pdev->dev))
1757 return wol->wolopts ? -EOPNOTSUPP : 0;
1759 /* these settings will always override what we currently have */
1760 adapter->wol = 0;
1762 if (wol->wolopts & WAKE_UCAST)
1763 adapter->wol |= E1000_WUFC_EX;
1764 if (wol->wolopts & WAKE_MCAST)
1765 adapter->wol |= E1000_WUFC_MC;
1766 if (wol->wolopts & WAKE_BCAST)
1767 adapter->wol |= E1000_WUFC_BC;
1768 if (wol->wolopts & WAKE_MAGIC)
1769 adapter->wol |= E1000_WUFC_MAG;
1770 if (wol->wolopts & WAKE_PHY)
1771 adapter->wol |= E1000_WUFC_LNKC;
1772 if (wol->wolopts & WAKE_ARP)
1773 adapter->wol |= E1000_WUFC_ARP;
1775 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1777 return 0;
1780 /* toggle LED 4 times per second = 2 "blinks" per second */
1781 #define E1000_ID_INTERVAL (HZ/4)
1783 /* bit defines for adapter->led_status */
1784 #define E1000_LED_ON 0
1786 static void e1000_led_blink_callback(unsigned long data)
1788 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1790 if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1791 adapter->hw.mac.ops.led_off(&adapter->hw);
1792 else
1793 adapter->hw.mac.ops.led_on(&adapter->hw);
1795 mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1798 static int e1000_phys_id(struct net_device *netdev, u32 data)
1800 struct e1000_adapter *adapter = netdev_priv(netdev);
1801 struct e1000_hw *hw = &adapter->hw;
1803 if (!data)
1804 data = INT_MAX;
1806 if ((hw->phy.type == e1000_phy_ife) ||
1807 (hw->mac.type == e1000_82574)) {
1808 if (!adapter->blink_timer.function) {
1809 init_timer(&adapter->blink_timer);
1810 adapter->blink_timer.function =
1811 e1000_led_blink_callback;
1812 adapter->blink_timer.data = (unsigned long) adapter;
1814 mod_timer(&adapter->blink_timer, jiffies);
1815 msleep_interruptible(data * 1000);
1816 del_timer_sync(&adapter->blink_timer);
1817 if (hw->phy.type == e1000_phy_ife)
1818 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1819 } else {
1820 e1000e_blink_led(hw);
1821 msleep_interruptible(data * 1000);
1824 hw->mac.ops.led_off(hw);
1825 clear_bit(E1000_LED_ON, &adapter->led_status);
1826 hw->mac.ops.cleanup_led(hw);
1828 return 0;
1831 static int e1000_get_coalesce(struct net_device *netdev,
1832 struct ethtool_coalesce *ec)
1834 struct e1000_adapter *adapter = netdev_priv(netdev);
1836 if (adapter->itr_setting <= 3)
1837 ec->rx_coalesce_usecs = adapter->itr_setting;
1838 else
1839 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1841 return 0;
1844 static int e1000_set_coalesce(struct net_device *netdev,
1845 struct ethtool_coalesce *ec)
1847 struct e1000_adapter *adapter = netdev_priv(netdev);
1848 struct e1000_hw *hw = &adapter->hw;
1850 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1851 ((ec->rx_coalesce_usecs > 3) &&
1852 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1853 (ec->rx_coalesce_usecs == 2))
1854 return -EINVAL;
1856 if (ec->rx_coalesce_usecs <= 3) {
1857 adapter->itr = 20000;
1858 adapter->itr_setting = ec->rx_coalesce_usecs;
1859 } else {
1860 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1861 adapter->itr_setting = adapter->itr & ~3;
1864 if (adapter->itr_setting != 0)
1865 ew32(ITR, 1000000000 / (adapter->itr * 256));
1866 else
1867 ew32(ITR, 0);
1869 return 0;
1872 static int e1000_nway_reset(struct net_device *netdev)
1874 struct e1000_adapter *adapter = netdev_priv(netdev);
1875 if (netif_running(netdev))
1876 e1000e_reinit_locked(adapter);
1877 return 0;
1880 static void e1000_get_ethtool_stats(struct net_device *netdev,
1881 struct ethtool_stats *stats,
1882 u64 *data)
1884 struct e1000_adapter *adapter = netdev_priv(netdev);
1885 int i;
1887 e1000e_update_stats(adapter);
1888 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1889 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1890 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1891 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1895 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1896 u8 *data)
1898 u8 *p = data;
1899 int i;
1901 switch (stringset) {
1902 case ETH_SS_TEST:
1903 memcpy(data, *e1000_gstrings_test, sizeof(e1000_gstrings_test));
1904 break;
1905 case ETH_SS_STATS:
1906 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1907 memcpy(p, e1000_gstrings_stats[i].stat_string,
1908 ETH_GSTRING_LEN);
1909 p += ETH_GSTRING_LEN;
1911 break;
1915 static const struct ethtool_ops e1000_ethtool_ops = {
1916 .get_settings = e1000_get_settings,
1917 .set_settings = e1000_set_settings,
1918 .get_drvinfo = e1000_get_drvinfo,
1919 .get_regs_len = e1000_get_regs_len,
1920 .get_regs = e1000_get_regs,
1921 .get_wol = e1000_get_wol,
1922 .set_wol = e1000_set_wol,
1923 .get_msglevel = e1000_get_msglevel,
1924 .set_msglevel = e1000_set_msglevel,
1925 .nway_reset = e1000_nway_reset,
1926 .get_link = e1000_get_link,
1927 .get_eeprom_len = e1000_get_eeprom_len,
1928 .get_eeprom = e1000_get_eeprom,
1929 .set_eeprom = e1000_set_eeprom,
1930 .get_ringparam = e1000_get_ringparam,
1931 .set_ringparam = e1000_set_ringparam,
1932 .get_pauseparam = e1000_get_pauseparam,
1933 .set_pauseparam = e1000_set_pauseparam,
1934 .get_rx_csum = e1000_get_rx_csum,
1935 .set_rx_csum = e1000_set_rx_csum,
1936 .get_tx_csum = e1000_get_tx_csum,
1937 .set_tx_csum = e1000_set_tx_csum,
1938 .get_sg = ethtool_op_get_sg,
1939 .set_sg = ethtool_op_set_sg,
1940 .get_tso = ethtool_op_get_tso,
1941 .set_tso = e1000_set_tso,
1942 .self_test = e1000_diag_test,
1943 .get_strings = e1000_get_strings,
1944 .phys_id = e1000_phys_id,
1945 .get_ethtool_stats = e1000_get_ethtool_stats,
1946 .get_sset_count = e1000e_get_sset_count,
1947 .get_coalesce = e1000_get_coalesce,
1948 .set_coalesce = e1000_set_coalesce,
1951 void e1000e_set_ethtool_ops(struct net_device *netdev)
1953 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);