per-zone and reclaim enhancements for memory controller: calculate active/inactive...
[firewire-audio.git] / mm / memcontrol.c
blob78a928d902674c9ffe647b4cdda7cc745b54f089
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/page-flags.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bit_spinlock.h>
28 #include <linux/rcupdate.h>
29 #include <linux/swap.h>
30 #include <linux/spinlock.h>
31 #include <linux/fs.h>
32 #include <linux/seq_file.h>
34 #include <asm/uaccess.h>
36 struct cgroup_subsys mem_cgroup_subsys;
37 static const int MEM_CGROUP_RECLAIM_RETRIES = 5;
40 * Statistics for memory cgroup.
42 enum mem_cgroup_stat_index {
44 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
46 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
47 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
49 MEM_CGROUP_STAT_NSTATS,
52 struct mem_cgroup_stat_cpu {
53 s64 count[MEM_CGROUP_STAT_NSTATS];
54 } ____cacheline_aligned_in_smp;
56 struct mem_cgroup_stat {
57 struct mem_cgroup_stat_cpu cpustat[NR_CPUS];
61 * For accounting under irq disable, no need for increment preempt count.
63 static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat *stat,
64 enum mem_cgroup_stat_index idx, int val)
66 int cpu = smp_processor_id();
67 stat->cpustat[cpu].count[idx] += val;
70 static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
71 enum mem_cgroup_stat_index idx)
73 int cpu;
74 s64 ret = 0;
75 for_each_possible_cpu(cpu)
76 ret += stat->cpustat[cpu].count[idx];
77 return ret;
81 * per-zone information in memory controller.
84 enum mem_cgroup_zstat_index {
85 MEM_CGROUP_ZSTAT_ACTIVE,
86 MEM_CGROUP_ZSTAT_INACTIVE,
88 NR_MEM_CGROUP_ZSTAT,
91 struct mem_cgroup_per_zone {
92 unsigned long count[NR_MEM_CGROUP_ZSTAT];
94 /* Macro for accessing counter */
95 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
97 struct mem_cgroup_per_node {
98 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
101 struct mem_cgroup_lru_info {
102 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
106 * The memory controller data structure. The memory controller controls both
107 * page cache and RSS per cgroup. We would eventually like to provide
108 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
109 * to help the administrator determine what knobs to tune.
111 * TODO: Add a water mark for the memory controller. Reclaim will begin when
112 * we hit the water mark. May be even add a low water mark, such that
113 * no reclaim occurs from a cgroup at it's low water mark, this is
114 * a feature that will be implemented much later in the future.
116 struct mem_cgroup {
117 struct cgroup_subsys_state css;
119 * the counter to account for memory usage
121 struct res_counter res;
123 * Per cgroup active and inactive list, similar to the
124 * per zone LRU lists.
125 * TODO: Consider making these lists per zone
127 struct list_head active_list;
128 struct list_head inactive_list;
129 struct mem_cgroup_lru_info info;
131 * spin_lock to protect the per cgroup LRU
133 spinlock_t lru_lock;
134 unsigned long control_type; /* control RSS or RSS+Pagecache */
136 * statistics.
138 struct mem_cgroup_stat stat;
142 * We use the lower bit of the page->page_cgroup pointer as a bit spin
143 * lock. We need to ensure that page->page_cgroup is atleast two
144 * byte aligned (based on comments from Nick Piggin)
146 #define PAGE_CGROUP_LOCK_BIT 0x0
147 #define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT)
150 * A page_cgroup page is associated with every page descriptor. The
151 * page_cgroup helps us identify information about the cgroup
153 struct page_cgroup {
154 struct list_head lru; /* per cgroup LRU list */
155 struct page *page;
156 struct mem_cgroup *mem_cgroup;
157 atomic_t ref_cnt; /* Helpful when pages move b/w */
158 /* mapped and cached states */
159 int flags;
161 #define PAGE_CGROUP_FLAG_CACHE (0x1) /* charged as cache */
162 #define PAGE_CGROUP_FLAG_ACTIVE (0x2) /* page is active in this cgroup */
164 static inline int page_cgroup_nid(struct page_cgroup *pc)
166 return page_to_nid(pc->page);
169 static inline enum zone_type page_cgroup_zid(struct page_cgroup *pc)
171 return page_zonenum(pc->page);
174 enum {
175 MEM_CGROUP_TYPE_UNSPEC = 0,
176 MEM_CGROUP_TYPE_MAPPED,
177 MEM_CGROUP_TYPE_CACHED,
178 MEM_CGROUP_TYPE_ALL,
179 MEM_CGROUP_TYPE_MAX,
182 enum charge_type {
183 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
184 MEM_CGROUP_CHARGE_TYPE_MAPPED,
189 * Always modified under lru lock. Then, not necessary to preempt_disable()
191 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, int flags,
192 bool charge)
194 int val = (charge)? 1 : -1;
195 struct mem_cgroup_stat *stat = &mem->stat;
196 VM_BUG_ON(!irqs_disabled());
198 if (flags & PAGE_CGROUP_FLAG_CACHE)
199 __mem_cgroup_stat_add_safe(stat,
200 MEM_CGROUP_STAT_CACHE, val);
201 else
202 __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_RSS, val);
205 static inline struct mem_cgroup_per_zone *
206 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
208 BUG_ON(!mem->info.nodeinfo[nid]);
209 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
212 static inline struct mem_cgroup_per_zone *
213 page_cgroup_zoneinfo(struct page_cgroup *pc)
215 struct mem_cgroup *mem = pc->mem_cgroup;
216 int nid = page_cgroup_nid(pc);
217 int zid = page_cgroup_zid(pc);
219 return mem_cgroup_zoneinfo(mem, nid, zid);
222 static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
223 enum mem_cgroup_zstat_index idx)
225 int nid, zid;
226 struct mem_cgroup_per_zone *mz;
227 u64 total = 0;
229 for_each_online_node(nid)
230 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
231 mz = mem_cgroup_zoneinfo(mem, nid, zid);
232 total += MEM_CGROUP_ZSTAT(mz, idx);
234 return total;
237 static struct mem_cgroup init_mem_cgroup;
239 static inline
240 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
242 return container_of(cgroup_subsys_state(cont,
243 mem_cgroup_subsys_id), struct mem_cgroup,
244 css);
247 static inline
248 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
250 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
251 struct mem_cgroup, css);
254 void mm_init_cgroup(struct mm_struct *mm, struct task_struct *p)
256 struct mem_cgroup *mem;
258 mem = mem_cgroup_from_task(p);
259 css_get(&mem->css);
260 mm->mem_cgroup = mem;
263 void mm_free_cgroup(struct mm_struct *mm)
265 css_put(&mm->mem_cgroup->css);
268 static inline int page_cgroup_locked(struct page *page)
270 return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT,
271 &page->page_cgroup);
274 void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
276 int locked;
279 * While resetting the page_cgroup we might not hold the
280 * page_cgroup lock. free_hot_cold_page() is an example
281 * of such a scenario
283 if (pc)
284 VM_BUG_ON(!page_cgroup_locked(page));
285 locked = (page->page_cgroup & PAGE_CGROUP_LOCK);
286 page->page_cgroup = ((unsigned long)pc | locked);
289 struct page_cgroup *page_get_page_cgroup(struct page *page)
291 return (struct page_cgroup *)
292 (page->page_cgroup & ~PAGE_CGROUP_LOCK);
295 static void __always_inline lock_page_cgroup(struct page *page)
297 bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
298 VM_BUG_ON(!page_cgroup_locked(page));
301 static void __always_inline unlock_page_cgroup(struct page *page)
303 bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
307 * Tie new page_cgroup to struct page under lock_page_cgroup()
308 * This can fail if the page has been tied to a page_cgroup.
309 * If success, returns 0.
311 static int page_cgroup_assign_new_page_cgroup(struct page *page,
312 struct page_cgroup *pc)
314 int ret = 0;
316 lock_page_cgroup(page);
317 if (!page_get_page_cgroup(page))
318 page_assign_page_cgroup(page, pc);
319 else /* A page is tied to other pc. */
320 ret = 1;
321 unlock_page_cgroup(page);
322 return ret;
326 * Clear page->page_cgroup member under lock_page_cgroup().
327 * If given "pc" value is different from one page->page_cgroup,
328 * page->cgroup is not cleared.
329 * Returns a value of page->page_cgroup at lock taken.
330 * A can can detect failure of clearing by following
331 * clear_page_cgroup(page, pc) == pc
334 static struct page_cgroup *clear_page_cgroup(struct page *page,
335 struct page_cgroup *pc)
337 struct page_cgroup *ret;
338 /* lock and clear */
339 lock_page_cgroup(page);
340 ret = page_get_page_cgroup(page);
341 if (likely(ret == pc))
342 page_assign_page_cgroup(page, NULL);
343 unlock_page_cgroup(page);
344 return ret;
347 static void __mem_cgroup_remove_list(struct page_cgroup *pc)
349 int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
350 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
352 if (from)
353 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
354 else
355 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
357 mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, false);
358 list_del_init(&pc->lru);
361 static void __mem_cgroup_add_list(struct page_cgroup *pc)
363 int to = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
364 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
366 if (!to) {
367 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
368 list_add(&pc->lru, &pc->mem_cgroup->inactive_list);
369 } else {
370 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
371 list_add(&pc->lru, &pc->mem_cgroup->active_list);
373 mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, true);
376 static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
378 int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
379 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
381 if (from)
382 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
383 else
384 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
386 if (active) {
387 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
388 pc->flags |= PAGE_CGROUP_FLAG_ACTIVE;
389 list_move(&pc->lru, &pc->mem_cgroup->active_list);
390 } else {
391 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
392 pc->flags &= ~PAGE_CGROUP_FLAG_ACTIVE;
393 list_move(&pc->lru, &pc->mem_cgroup->inactive_list);
397 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
399 int ret;
401 task_lock(task);
402 ret = task->mm && mm_cgroup(task->mm) == mem;
403 task_unlock(task);
404 return ret;
408 * This routine assumes that the appropriate zone's lru lock is already held
410 void mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
412 struct mem_cgroup *mem;
413 if (!pc)
414 return;
416 mem = pc->mem_cgroup;
418 spin_lock(&mem->lru_lock);
419 __mem_cgroup_move_lists(pc, active);
420 spin_unlock(&mem->lru_lock);
424 * Calculate mapped_ratio under memory controller. This will be used in
425 * vmscan.c for deteremining we have to reclaim mapped pages.
427 int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
429 long total, rss;
432 * usage is recorded in bytes. But, here, we assume the number of
433 * physical pages can be represented by "long" on any arch.
435 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
436 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
437 return (int)((rss * 100L) / total);
440 * This function is called from vmscan.c. In page reclaiming loop. balance
441 * between active and inactive list is calculated. For memory controller
442 * page reclaiming, we should use using mem_cgroup's imbalance rather than
443 * zone's global lru imbalance.
445 long mem_cgroup_reclaim_imbalance(struct mem_cgroup *mem)
447 unsigned long active, inactive;
448 /* active and inactive are the number of pages. 'long' is ok.*/
449 active = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_ACTIVE);
450 inactive = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_INACTIVE);
451 return (long) (active / (inactive + 1));
454 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
455 struct list_head *dst,
456 unsigned long *scanned, int order,
457 int mode, struct zone *z,
458 struct mem_cgroup *mem_cont,
459 int active)
461 unsigned long nr_taken = 0;
462 struct page *page;
463 unsigned long scan;
464 LIST_HEAD(pc_list);
465 struct list_head *src;
466 struct page_cgroup *pc, *tmp;
468 if (active)
469 src = &mem_cont->active_list;
470 else
471 src = &mem_cont->inactive_list;
473 spin_lock(&mem_cont->lru_lock);
474 scan = 0;
475 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
476 if (scan >= nr_to_scan)
477 break;
478 page = pc->page;
479 VM_BUG_ON(!pc);
481 if (unlikely(!PageLRU(page)))
482 continue;
484 if (PageActive(page) && !active) {
485 __mem_cgroup_move_lists(pc, true);
486 continue;
488 if (!PageActive(page) && active) {
489 __mem_cgroup_move_lists(pc, false);
490 continue;
494 * Reclaim, per zone
495 * TODO: make the active/inactive lists per zone
497 if (page_zone(page) != z)
498 continue;
500 scan++;
501 list_move(&pc->lru, &pc_list);
503 if (__isolate_lru_page(page, mode) == 0) {
504 list_move(&page->lru, dst);
505 nr_taken++;
509 list_splice(&pc_list, src);
510 spin_unlock(&mem_cont->lru_lock);
512 *scanned = scan;
513 return nr_taken;
517 * Charge the memory controller for page usage.
518 * Return
519 * 0 if the charge was successful
520 * < 0 if the cgroup is over its limit
522 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
523 gfp_t gfp_mask, enum charge_type ctype)
525 struct mem_cgroup *mem;
526 struct page_cgroup *pc;
527 unsigned long flags;
528 unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
531 * Should page_cgroup's go to their own slab?
532 * One could optimize the performance of the charging routine
533 * by saving a bit in the page_flags and using it as a lock
534 * to see if the cgroup page already has a page_cgroup associated
535 * with it
537 retry:
538 if (page) {
539 lock_page_cgroup(page);
540 pc = page_get_page_cgroup(page);
542 * The page_cgroup exists and
543 * the page has already been accounted.
545 if (pc) {
546 if (unlikely(!atomic_inc_not_zero(&pc->ref_cnt))) {
547 /* this page is under being uncharged ? */
548 unlock_page_cgroup(page);
549 cpu_relax();
550 goto retry;
551 } else {
552 unlock_page_cgroup(page);
553 goto done;
556 unlock_page_cgroup(page);
559 pc = kzalloc(sizeof(struct page_cgroup), gfp_mask);
560 if (pc == NULL)
561 goto err;
564 * We always charge the cgroup the mm_struct belongs to.
565 * The mm_struct's mem_cgroup changes on task migration if the
566 * thread group leader migrates. It's possible that mm is not
567 * set, if so charge the init_mm (happens for pagecache usage).
569 if (!mm)
570 mm = &init_mm;
572 rcu_read_lock();
573 mem = rcu_dereference(mm->mem_cgroup);
575 * For every charge from the cgroup, increment reference
576 * count
578 css_get(&mem->css);
579 rcu_read_unlock();
582 * If we created the page_cgroup, we should free it on exceeding
583 * the cgroup limit.
585 while (res_counter_charge(&mem->res, PAGE_SIZE)) {
586 if (!(gfp_mask & __GFP_WAIT))
587 goto out;
589 if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
590 continue;
593 * try_to_free_mem_cgroup_pages() might not give us a full
594 * picture of reclaim. Some pages are reclaimed and might be
595 * moved to swap cache or just unmapped from the cgroup.
596 * Check the limit again to see if the reclaim reduced the
597 * current usage of the cgroup before giving up
599 if (res_counter_check_under_limit(&mem->res))
600 continue;
602 if (!nr_retries--) {
603 mem_cgroup_out_of_memory(mem, gfp_mask);
604 goto out;
606 congestion_wait(WRITE, HZ/10);
609 atomic_set(&pc->ref_cnt, 1);
610 pc->mem_cgroup = mem;
611 pc->page = page;
612 pc->flags = PAGE_CGROUP_FLAG_ACTIVE;
613 if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE)
614 pc->flags |= PAGE_CGROUP_FLAG_CACHE;
616 if (!page || page_cgroup_assign_new_page_cgroup(page, pc)) {
618 * Another charge has been added to this page already.
619 * We take lock_page_cgroup(page) again and read
620 * page->cgroup, increment refcnt.... just retry is OK.
622 res_counter_uncharge(&mem->res, PAGE_SIZE);
623 css_put(&mem->css);
624 kfree(pc);
625 if (!page)
626 goto done;
627 goto retry;
630 spin_lock_irqsave(&mem->lru_lock, flags);
631 /* Update statistics vector */
632 __mem_cgroup_add_list(pc);
633 spin_unlock_irqrestore(&mem->lru_lock, flags);
635 done:
636 return 0;
637 out:
638 css_put(&mem->css);
639 kfree(pc);
640 err:
641 return -ENOMEM;
644 int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
645 gfp_t gfp_mask)
647 return mem_cgroup_charge_common(page, mm, gfp_mask,
648 MEM_CGROUP_CHARGE_TYPE_MAPPED);
652 * See if the cached pages should be charged at all?
654 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
655 gfp_t gfp_mask)
657 int ret = 0;
658 struct mem_cgroup *mem;
659 if (!mm)
660 mm = &init_mm;
662 rcu_read_lock();
663 mem = rcu_dereference(mm->mem_cgroup);
664 css_get(&mem->css);
665 rcu_read_unlock();
666 if (mem->control_type == MEM_CGROUP_TYPE_ALL)
667 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
668 MEM_CGROUP_CHARGE_TYPE_CACHE);
669 css_put(&mem->css);
670 return ret;
674 * Uncharging is always a welcome operation, we never complain, simply
675 * uncharge.
677 void mem_cgroup_uncharge(struct page_cgroup *pc)
679 struct mem_cgroup *mem;
680 struct page *page;
681 unsigned long flags;
684 * This can handle cases when a page is not charged at all and we
685 * are switching between handling the control_type.
687 if (!pc)
688 return;
690 if (atomic_dec_and_test(&pc->ref_cnt)) {
691 page = pc->page;
693 * get page->cgroup and clear it under lock.
694 * force_empty can drop page->cgroup without checking refcnt.
696 if (clear_page_cgroup(page, pc) == pc) {
697 mem = pc->mem_cgroup;
698 css_put(&mem->css);
699 res_counter_uncharge(&mem->res, PAGE_SIZE);
700 spin_lock_irqsave(&mem->lru_lock, flags);
701 __mem_cgroup_remove_list(pc);
702 spin_unlock_irqrestore(&mem->lru_lock, flags);
703 kfree(pc);
709 * Returns non-zero if a page (under migration) has valid page_cgroup member.
710 * Refcnt of page_cgroup is incremented.
713 int mem_cgroup_prepare_migration(struct page *page)
715 struct page_cgroup *pc;
716 int ret = 0;
717 lock_page_cgroup(page);
718 pc = page_get_page_cgroup(page);
719 if (pc && atomic_inc_not_zero(&pc->ref_cnt))
720 ret = 1;
721 unlock_page_cgroup(page);
722 return ret;
725 void mem_cgroup_end_migration(struct page *page)
727 struct page_cgroup *pc = page_get_page_cgroup(page);
728 mem_cgroup_uncharge(pc);
731 * We know both *page* and *newpage* are now not-on-LRU and Pg_locked.
732 * And no race with uncharge() routines because page_cgroup for *page*
733 * has extra one reference by mem_cgroup_prepare_migration.
736 void mem_cgroup_page_migration(struct page *page, struct page *newpage)
738 struct page_cgroup *pc;
739 struct mem_cgroup *mem;
740 unsigned long flags;
741 retry:
742 pc = page_get_page_cgroup(page);
743 if (!pc)
744 return;
745 mem = pc->mem_cgroup;
746 if (clear_page_cgroup(page, pc) != pc)
747 goto retry;
749 spin_lock_irqsave(&mem->lru_lock, flags);
751 __mem_cgroup_remove_list(pc);
752 pc->page = newpage;
753 lock_page_cgroup(newpage);
754 page_assign_page_cgroup(newpage, pc);
755 unlock_page_cgroup(newpage);
756 __mem_cgroup_add_list(pc);
758 spin_unlock_irqrestore(&mem->lru_lock, flags);
759 return;
763 * This routine traverse page_cgroup in given list and drop them all.
764 * This routine ignores page_cgroup->ref_cnt.
765 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
767 #define FORCE_UNCHARGE_BATCH (128)
768 static void
769 mem_cgroup_force_empty_list(struct mem_cgroup *mem, struct list_head *list)
771 struct page_cgroup *pc;
772 struct page *page;
773 int count;
774 unsigned long flags;
776 retry:
777 count = FORCE_UNCHARGE_BATCH;
778 spin_lock_irqsave(&mem->lru_lock, flags);
780 while (--count && !list_empty(list)) {
781 pc = list_entry(list->prev, struct page_cgroup, lru);
782 page = pc->page;
783 /* Avoid race with charge */
784 atomic_set(&pc->ref_cnt, 0);
785 if (clear_page_cgroup(page, pc) == pc) {
786 css_put(&mem->css);
787 res_counter_uncharge(&mem->res, PAGE_SIZE);
788 __mem_cgroup_remove_list(pc);
789 kfree(pc);
790 } else /* being uncharged ? ...do relax */
791 break;
793 spin_unlock_irqrestore(&mem->lru_lock, flags);
794 if (!list_empty(list)) {
795 cond_resched();
796 goto retry;
798 return;
802 * make mem_cgroup's charge to be 0 if there is no task.
803 * This enables deleting this mem_cgroup.
806 int mem_cgroup_force_empty(struct mem_cgroup *mem)
808 int ret = -EBUSY;
809 css_get(&mem->css);
811 * page reclaim code (kswapd etc..) will move pages between
812 ` * active_list <-> inactive_list while we don't take a lock.
813 * So, we have to do loop here until all lists are empty.
815 while (!(list_empty(&mem->active_list) &&
816 list_empty(&mem->inactive_list))) {
817 if (atomic_read(&mem->css.cgroup->count) > 0)
818 goto out;
819 /* drop all page_cgroup in active_list */
820 mem_cgroup_force_empty_list(mem, &mem->active_list);
821 /* drop all page_cgroup in inactive_list */
822 mem_cgroup_force_empty_list(mem, &mem->inactive_list);
824 ret = 0;
825 out:
826 css_put(&mem->css);
827 return ret;
832 int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp)
834 *tmp = memparse(buf, &buf);
835 if (*buf != '\0')
836 return -EINVAL;
839 * Round up the value to the closest page size
841 *tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT;
842 return 0;
845 static ssize_t mem_cgroup_read(struct cgroup *cont,
846 struct cftype *cft, struct file *file,
847 char __user *userbuf, size_t nbytes, loff_t *ppos)
849 return res_counter_read(&mem_cgroup_from_cont(cont)->res,
850 cft->private, userbuf, nbytes, ppos,
851 NULL);
854 static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
855 struct file *file, const char __user *userbuf,
856 size_t nbytes, loff_t *ppos)
858 return res_counter_write(&mem_cgroup_from_cont(cont)->res,
859 cft->private, userbuf, nbytes, ppos,
860 mem_cgroup_write_strategy);
863 static ssize_t mem_control_type_write(struct cgroup *cont,
864 struct cftype *cft, struct file *file,
865 const char __user *userbuf,
866 size_t nbytes, loff_t *pos)
868 int ret;
869 char *buf, *end;
870 unsigned long tmp;
871 struct mem_cgroup *mem;
873 mem = mem_cgroup_from_cont(cont);
874 buf = kmalloc(nbytes + 1, GFP_KERNEL);
875 ret = -ENOMEM;
876 if (buf == NULL)
877 goto out;
879 buf[nbytes] = 0;
880 ret = -EFAULT;
881 if (copy_from_user(buf, userbuf, nbytes))
882 goto out_free;
884 ret = -EINVAL;
885 tmp = simple_strtoul(buf, &end, 10);
886 if (*end != '\0')
887 goto out_free;
889 if (tmp <= MEM_CGROUP_TYPE_UNSPEC || tmp >= MEM_CGROUP_TYPE_MAX)
890 goto out_free;
892 mem->control_type = tmp;
893 ret = nbytes;
894 out_free:
895 kfree(buf);
896 out:
897 return ret;
900 static ssize_t mem_control_type_read(struct cgroup *cont,
901 struct cftype *cft,
902 struct file *file, char __user *userbuf,
903 size_t nbytes, loff_t *ppos)
905 unsigned long val;
906 char buf[64], *s;
907 struct mem_cgroup *mem;
909 mem = mem_cgroup_from_cont(cont);
910 s = buf;
911 val = mem->control_type;
912 s += sprintf(s, "%lu\n", val);
913 return simple_read_from_buffer((void __user *)userbuf, nbytes,
914 ppos, buf, s - buf);
918 static ssize_t mem_force_empty_write(struct cgroup *cont,
919 struct cftype *cft, struct file *file,
920 const char __user *userbuf,
921 size_t nbytes, loff_t *ppos)
923 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
924 int ret;
925 ret = mem_cgroup_force_empty(mem);
926 if (!ret)
927 ret = nbytes;
928 return ret;
932 * Note: This should be removed if cgroup supports write-only file.
935 static ssize_t mem_force_empty_read(struct cgroup *cont,
936 struct cftype *cft,
937 struct file *file, char __user *userbuf,
938 size_t nbytes, loff_t *ppos)
940 return -EINVAL;
944 static const struct mem_cgroup_stat_desc {
945 const char *msg;
946 u64 unit;
947 } mem_cgroup_stat_desc[] = {
948 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
949 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
952 static int mem_control_stat_show(struct seq_file *m, void *arg)
954 struct cgroup *cont = m->private;
955 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
956 struct mem_cgroup_stat *stat = &mem_cont->stat;
957 int i;
959 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
960 s64 val;
962 val = mem_cgroup_read_stat(stat, i);
963 val *= mem_cgroup_stat_desc[i].unit;
964 seq_printf(m, "%s %lld\n", mem_cgroup_stat_desc[i].msg,
965 (long long)val);
967 /* showing # of active pages */
969 unsigned long active, inactive;
971 inactive = mem_cgroup_get_all_zonestat(mem_cont,
972 MEM_CGROUP_ZSTAT_INACTIVE);
973 active = mem_cgroup_get_all_zonestat(mem_cont,
974 MEM_CGROUP_ZSTAT_ACTIVE);
975 seq_printf(m, "active %ld\n", (active) * PAGE_SIZE);
976 seq_printf(m, "inactive %ld\n", (inactive) * PAGE_SIZE);
978 return 0;
981 static const struct file_operations mem_control_stat_file_operations = {
982 .read = seq_read,
983 .llseek = seq_lseek,
984 .release = single_release,
987 static int mem_control_stat_open(struct inode *unused, struct file *file)
989 /* XXX __d_cont */
990 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
992 file->f_op = &mem_control_stat_file_operations;
993 return single_open(file, mem_control_stat_show, cont);
998 static struct cftype mem_cgroup_files[] = {
1000 .name = "usage_in_bytes",
1001 .private = RES_USAGE,
1002 .read = mem_cgroup_read,
1005 .name = "limit_in_bytes",
1006 .private = RES_LIMIT,
1007 .write = mem_cgroup_write,
1008 .read = mem_cgroup_read,
1011 .name = "failcnt",
1012 .private = RES_FAILCNT,
1013 .read = mem_cgroup_read,
1016 .name = "control_type",
1017 .write = mem_control_type_write,
1018 .read = mem_control_type_read,
1021 .name = "force_empty",
1022 .write = mem_force_empty_write,
1023 .read = mem_force_empty_read,
1026 .name = "stat",
1027 .open = mem_control_stat_open,
1031 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1033 struct mem_cgroup_per_node *pn;
1035 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, node);
1036 if (!pn)
1037 return 1;
1038 mem->info.nodeinfo[node] = pn;
1039 memset(pn, 0, sizeof(*pn));
1040 return 0;
1043 static struct mem_cgroup init_mem_cgroup;
1045 static struct cgroup_subsys_state *
1046 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
1048 struct mem_cgroup *mem;
1049 int node;
1051 if (unlikely((cont->parent) == NULL)) {
1052 mem = &init_mem_cgroup;
1053 init_mm.mem_cgroup = mem;
1054 } else
1055 mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);
1057 if (mem == NULL)
1058 return NULL;
1060 res_counter_init(&mem->res);
1061 INIT_LIST_HEAD(&mem->active_list);
1062 INIT_LIST_HEAD(&mem->inactive_list);
1063 spin_lock_init(&mem->lru_lock);
1064 mem->control_type = MEM_CGROUP_TYPE_ALL;
1065 memset(&mem->info, 0, sizeof(mem->info));
1067 for_each_node_state(node, N_POSSIBLE)
1068 if (alloc_mem_cgroup_per_zone_info(mem, node))
1069 goto free_out;
1071 return &mem->css;
1072 free_out:
1073 for_each_node_state(node, N_POSSIBLE)
1074 kfree(mem->info.nodeinfo[node]);
1075 if (cont->parent != NULL)
1076 kfree(mem);
1077 return NULL;
1080 static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
1081 struct cgroup *cont)
1083 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1084 mem_cgroup_force_empty(mem);
1087 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
1088 struct cgroup *cont)
1090 int node;
1091 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1093 for_each_node_state(node, N_POSSIBLE)
1094 kfree(mem->info.nodeinfo[node]);
1096 kfree(mem_cgroup_from_cont(cont));
1099 static int mem_cgroup_populate(struct cgroup_subsys *ss,
1100 struct cgroup *cont)
1102 return cgroup_add_files(cont, ss, mem_cgroup_files,
1103 ARRAY_SIZE(mem_cgroup_files));
1106 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
1107 struct cgroup *cont,
1108 struct cgroup *old_cont,
1109 struct task_struct *p)
1111 struct mm_struct *mm;
1112 struct mem_cgroup *mem, *old_mem;
1114 mm = get_task_mm(p);
1115 if (mm == NULL)
1116 return;
1118 mem = mem_cgroup_from_cont(cont);
1119 old_mem = mem_cgroup_from_cont(old_cont);
1121 if (mem == old_mem)
1122 goto out;
1125 * Only thread group leaders are allowed to migrate, the mm_struct is
1126 * in effect owned by the leader
1128 if (p->tgid != p->pid)
1129 goto out;
1131 css_get(&mem->css);
1132 rcu_assign_pointer(mm->mem_cgroup, mem);
1133 css_put(&old_mem->css);
1135 out:
1136 mmput(mm);
1137 return;
1140 struct cgroup_subsys mem_cgroup_subsys = {
1141 .name = "memory",
1142 .subsys_id = mem_cgroup_subsys_id,
1143 .create = mem_cgroup_create,
1144 .pre_destroy = mem_cgroup_pre_destroy,
1145 .destroy = mem_cgroup_destroy,
1146 .populate = mem_cgroup_populate,
1147 .attach = mem_cgroup_move_task,
1148 .early_init = 0,