PM / platform_bus: Allow runtime PM by default
[firewire-audio.git] / fs / ceph / mds_client.c
blob60a9a4ae47bef2af2190e3bf92114c692d648664
1 #include "ceph_debug.h"
3 #include <linux/wait.h>
4 #include <linux/slab.h>
5 #include <linux/sched.h>
7 #include "mds_client.h"
8 #include "mon_client.h"
9 #include "super.h"
10 #include "messenger.h"
11 #include "decode.h"
12 #include "auth.h"
13 #include "pagelist.h"
16 * A cluster of MDS (metadata server) daemons is responsible for
17 * managing the file system namespace (the directory hierarchy and
18 * inodes) and for coordinating shared access to storage. Metadata is
19 * partitioning hierarchically across a number of servers, and that
20 * partition varies over time as the cluster adjusts the distribution
21 * in order to balance load.
23 * The MDS client is primarily responsible to managing synchronous
24 * metadata requests for operations like open, unlink, and so forth.
25 * If there is a MDS failure, we find out about it when we (possibly
26 * request and) receive a new MDS map, and can resubmit affected
27 * requests.
29 * For the most part, though, we take advantage of a lossless
30 * communications channel to the MDS, and do not need to worry about
31 * timing out or resubmitting requests.
33 * We maintain a stateful "session" with each MDS we interact with.
34 * Within each session, we sent periodic heartbeat messages to ensure
35 * any capabilities or leases we have been issues remain valid. If
36 * the session times out and goes stale, our leases and capabilities
37 * are no longer valid.
40 static void __wake_requests(struct ceph_mds_client *mdsc,
41 struct list_head *head);
43 const static struct ceph_connection_operations mds_con_ops;
47 * mds reply parsing
51 * parse individual inode info
53 static int parse_reply_info_in(void **p, void *end,
54 struct ceph_mds_reply_info_in *info)
56 int err = -EIO;
58 info->in = *p;
59 *p += sizeof(struct ceph_mds_reply_inode) +
60 sizeof(*info->in->fragtree.splits) *
61 le32_to_cpu(info->in->fragtree.nsplits);
63 ceph_decode_32_safe(p, end, info->symlink_len, bad);
64 ceph_decode_need(p, end, info->symlink_len, bad);
65 info->symlink = *p;
66 *p += info->symlink_len;
68 ceph_decode_32_safe(p, end, info->xattr_len, bad);
69 ceph_decode_need(p, end, info->xattr_len, bad);
70 info->xattr_data = *p;
71 *p += info->xattr_len;
72 return 0;
73 bad:
74 return err;
78 * parse a normal reply, which may contain a (dir+)dentry and/or a
79 * target inode.
81 static int parse_reply_info_trace(void **p, void *end,
82 struct ceph_mds_reply_info_parsed *info)
84 int err;
86 if (info->head->is_dentry) {
87 err = parse_reply_info_in(p, end, &info->diri);
88 if (err < 0)
89 goto out_bad;
91 if (unlikely(*p + sizeof(*info->dirfrag) > end))
92 goto bad;
93 info->dirfrag = *p;
94 *p += sizeof(*info->dirfrag) +
95 sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
96 if (unlikely(*p > end))
97 goto bad;
99 ceph_decode_32_safe(p, end, info->dname_len, bad);
100 ceph_decode_need(p, end, info->dname_len, bad);
101 info->dname = *p;
102 *p += info->dname_len;
103 info->dlease = *p;
104 *p += sizeof(*info->dlease);
107 if (info->head->is_target) {
108 err = parse_reply_info_in(p, end, &info->targeti);
109 if (err < 0)
110 goto out_bad;
113 if (unlikely(*p != end))
114 goto bad;
115 return 0;
117 bad:
118 err = -EIO;
119 out_bad:
120 pr_err("problem parsing mds trace %d\n", err);
121 return err;
125 * parse readdir results
127 static int parse_reply_info_dir(void **p, void *end,
128 struct ceph_mds_reply_info_parsed *info)
130 u32 num, i = 0;
131 int err;
133 info->dir_dir = *p;
134 if (*p + sizeof(*info->dir_dir) > end)
135 goto bad;
136 *p += sizeof(*info->dir_dir) +
137 sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
138 if (*p > end)
139 goto bad;
141 ceph_decode_need(p, end, sizeof(num) + 2, bad);
142 num = ceph_decode_32(p);
143 info->dir_end = ceph_decode_8(p);
144 info->dir_complete = ceph_decode_8(p);
145 if (num == 0)
146 goto done;
148 /* alloc large array */
149 info->dir_nr = num;
150 info->dir_in = kcalloc(num, sizeof(*info->dir_in) +
151 sizeof(*info->dir_dname) +
152 sizeof(*info->dir_dname_len) +
153 sizeof(*info->dir_dlease),
154 GFP_NOFS);
155 if (info->dir_in == NULL) {
156 err = -ENOMEM;
157 goto out_bad;
159 info->dir_dname = (void *)(info->dir_in + num);
160 info->dir_dname_len = (void *)(info->dir_dname + num);
161 info->dir_dlease = (void *)(info->dir_dname_len + num);
163 while (num) {
164 /* dentry */
165 ceph_decode_need(p, end, sizeof(u32)*2, bad);
166 info->dir_dname_len[i] = ceph_decode_32(p);
167 ceph_decode_need(p, end, info->dir_dname_len[i], bad);
168 info->dir_dname[i] = *p;
169 *p += info->dir_dname_len[i];
170 dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i],
171 info->dir_dname[i]);
172 info->dir_dlease[i] = *p;
173 *p += sizeof(struct ceph_mds_reply_lease);
175 /* inode */
176 err = parse_reply_info_in(p, end, &info->dir_in[i]);
177 if (err < 0)
178 goto out_bad;
179 i++;
180 num--;
183 done:
184 if (*p != end)
185 goto bad;
186 return 0;
188 bad:
189 err = -EIO;
190 out_bad:
191 pr_err("problem parsing dir contents %d\n", err);
192 return err;
196 * parse entire mds reply
198 static int parse_reply_info(struct ceph_msg *msg,
199 struct ceph_mds_reply_info_parsed *info)
201 void *p, *end;
202 u32 len;
203 int err;
205 info->head = msg->front.iov_base;
206 p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
207 end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
209 /* trace */
210 ceph_decode_32_safe(&p, end, len, bad);
211 if (len > 0) {
212 err = parse_reply_info_trace(&p, p+len, info);
213 if (err < 0)
214 goto out_bad;
217 /* dir content */
218 ceph_decode_32_safe(&p, end, len, bad);
219 if (len > 0) {
220 err = parse_reply_info_dir(&p, p+len, info);
221 if (err < 0)
222 goto out_bad;
225 /* snap blob */
226 ceph_decode_32_safe(&p, end, len, bad);
227 info->snapblob_len = len;
228 info->snapblob = p;
229 p += len;
231 if (p != end)
232 goto bad;
233 return 0;
235 bad:
236 err = -EIO;
237 out_bad:
238 pr_err("mds parse_reply err %d\n", err);
239 return err;
242 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
244 kfree(info->dir_in);
249 * sessions
251 static const char *session_state_name(int s)
253 switch (s) {
254 case CEPH_MDS_SESSION_NEW: return "new";
255 case CEPH_MDS_SESSION_OPENING: return "opening";
256 case CEPH_MDS_SESSION_OPEN: return "open";
257 case CEPH_MDS_SESSION_HUNG: return "hung";
258 case CEPH_MDS_SESSION_CLOSING: return "closing";
259 case CEPH_MDS_SESSION_RESTARTING: return "restarting";
260 case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
261 default: return "???";
265 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
267 if (atomic_inc_not_zero(&s->s_ref)) {
268 dout("mdsc get_session %p %d -> %d\n", s,
269 atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref));
270 return s;
271 } else {
272 dout("mdsc get_session %p 0 -- FAIL", s);
273 return NULL;
277 void ceph_put_mds_session(struct ceph_mds_session *s)
279 dout("mdsc put_session %p %d -> %d\n", s,
280 atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1);
281 if (atomic_dec_and_test(&s->s_ref)) {
282 if (s->s_authorizer)
283 s->s_mdsc->client->monc.auth->ops->destroy_authorizer(
284 s->s_mdsc->client->monc.auth, s->s_authorizer);
285 kfree(s);
290 * called under mdsc->mutex
292 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
293 int mds)
295 struct ceph_mds_session *session;
297 if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
298 return NULL;
299 session = mdsc->sessions[mds];
300 dout("lookup_mds_session %p %d\n", session,
301 atomic_read(&session->s_ref));
302 get_session(session);
303 return session;
306 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
308 if (mds >= mdsc->max_sessions)
309 return false;
310 return mdsc->sessions[mds];
313 static int __verify_registered_session(struct ceph_mds_client *mdsc,
314 struct ceph_mds_session *s)
316 if (s->s_mds >= mdsc->max_sessions ||
317 mdsc->sessions[s->s_mds] != s)
318 return -ENOENT;
319 return 0;
323 * create+register a new session for given mds.
324 * called under mdsc->mutex.
326 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
327 int mds)
329 struct ceph_mds_session *s;
331 s = kzalloc(sizeof(*s), GFP_NOFS);
332 if (!s)
333 return ERR_PTR(-ENOMEM);
334 s->s_mdsc = mdsc;
335 s->s_mds = mds;
336 s->s_state = CEPH_MDS_SESSION_NEW;
337 s->s_ttl = 0;
338 s->s_seq = 0;
339 mutex_init(&s->s_mutex);
341 ceph_con_init(mdsc->client->msgr, &s->s_con);
342 s->s_con.private = s;
343 s->s_con.ops = &mds_con_ops;
344 s->s_con.peer_name.type = CEPH_ENTITY_TYPE_MDS;
345 s->s_con.peer_name.num = cpu_to_le64(mds);
347 spin_lock_init(&s->s_cap_lock);
348 s->s_cap_gen = 0;
349 s->s_cap_ttl = 0;
350 s->s_renew_requested = 0;
351 s->s_renew_seq = 0;
352 INIT_LIST_HEAD(&s->s_caps);
353 s->s_nr_caps = 0;
354 s->s_trim_caps = 0;
355 atomic_set(&s->s_ref, 1);
356 INIT_LIST_HEAD(&s->s_waiting);
357 INIT_LIST_HEAD(&s->s_unsafe);
358 s->s_num_cap_releases = 0;
359 s->s_cap_iterator = NULL;
360 INIT_LIST_HEAD(&s->s_cap_releases);
361 INIT_LIST_HEAD(&s->s_cap_releases_done);
362 INIT_LIST_HEAD(&s->s_cap_flushing);
363 INIT_LIST_HEAD(&s->s_cap_snaps_flushing);
365 dout("register_session mds%d\n", mds);
366 if (mds >= mdsc->max_sessions) {
367 int newmax = 1 << get_count_order(mds+1);
368 struct ceph_mds_session **sa;
370 dout("register_session realloc to %d\n", newmax);
371 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
372 if (sa == NULL)
373 goto fail_realloc;
374 if (mdsc->sessions) {
375 memcpy(sa, mdsc->sessions,
376 mdsc->max_sessions * sizeof(void *));
377 kfree(mdsc->sessions);
379 mdsc->sessions = sa;
380 mdsc->max_sessions = newmax;
382 mdsc->sessions[mds] = s;
383 atomic_inc(&s->s_ref); /* one ref to sessions[], one to caller */
385 ceph_con_open(&s->s_con, ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
387 return s;
389 fail_realloc:
390 kfree(s);
391 return ERR_PTR(-ENOMEM);
395 * called under mdsc->mutex
397 static void __unregister_session(struct ceph_mds_client *mdsc,
398 struct ceph_mds_session *s)
400 dout("__unregister_session mds%d %p\n", s->s_mds, s);
401 BUG_ON(mdsc->sessions[s->s_mds] != s);
402 mdsc->sessions[s->s_mds] = NULL;
403 ceph_con_close(&s->s_con);
404 ceph_put_mds_session(s);
408 * drop session refs in request.
410 * should be last request ref, or hold mdsc->mutex
412 static void put_request_session(struct ceph_mds_request *req)
414 if (req->r_session) {
415 ceph_put_mds_session(req->r_session);
416 req->r_session = NULL;
420 void ceph_mdsc_release_request(struct kref *kref)
422 struct ceph_mds_request *req = container_of(kref,
423 struct ceph_mds_request,
424 r_kref);
425 if (req->r_request)
426 ceph_msg_put(req->r_request);
427 if (req->r_reply) {
428 ceph_msg_put(req->r_reply);
429 destroy_reply_info(&req->r_reply_info);
431 if (req->r_inode) {
432 ceph_put_cap_refs(ceph_inode(req->r_inode),
433 CEPH_CAP_PIN);
434 iput(req->r_inode);
436 if (req->r_locked_dir)
437 ceph_put_cap_refs(ceph_inode(req->r_locked_dir),
438 CEPH_CAP_PIN);
439 if (req->r_target_inode)
440 iput(req->r_target_inode);
441 if (req->r_dentry)
442 dput(req->r_dentry);
443 if (req->r_old_dentry) {
444 ceph_put_cap_refs(
445 ceph_inode(req->r_old_dentry->d_parent->d_inode),
446 CEPH_CAP_PIN);
447 dput(req->r_old_dentry);
449 kfree(req->r_path1);
450 kfree(req->r_path2);
451 put_request_session(req);
452 ceph_unreserve_caps(&req->r_caps_reservation);
453 kfree(req);
457 * lookup session, bump ref if found.
459 * called under mdsc->mutex.
461 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc,
462 u64 tid)
464 struct ceph_mds_request *req;
465 struct rb_node *n = mdsc->request_tree.rb_node;
467 while (n) {
468 req = rb_entry(n, struct ceph_mds_request, r_node);
469 if (tid < req->r_tid)
470 n = n->rb_left;
471 else if (tid > req->r_tid)
472 n = n->rb_right;
473 else {
474 ceph_mdsc_get_request(req);
475 return req;
478 return NULL;
481 static void __insert_request(struct ceph_mds_client *mdsc,
482 struct ceph_mds_request *new)
484 struct rb_node **p = &mdsc->request_tree.rb_node;
485 struct rb_node *parent = NULL;
486 struct ceph_mds_request *req = NULL;
488 while (*p) {
489 parent = *p;
490 req = rb_entry(parent, struct ceph_mds_request, r_node);
491 if (new->r_tid < req->r_tid)
492 p = &(*p)->rb_left;
493 else if (new->r_tid > req->r_tid)
494 p = &(*p)->rb_right;
495 else
496 BUG();
499 rb_link_node(&new->r_node, parent, p);
500 rb_insert_color(&new->r_node, &mdsc->request_tree);
504 * Register an in-flight request, and assign a tid. Link to directory
505 * are modifying (if any).
507 * Called under mdsc->mutex.
509 static void __register_request(struct ceph_mds_client *mdsc,
510 struct ceph_mds_request *req,
511 struct inode *dir)
513 req->r_tid = ++mdsc->last_tid;
514 if (req->r_num_caps)
515 ceph_reserve_caps(&req->r_caps_reservation, req->r_num_caps);
516 dout("__register_request %p tid %lld\n", req, req->r_tid);
517 ceph_mdsc_get_request(req);
518 __insert_request(mdsc, req);
520 if (dir) {
521 struct ceph_inode_info *ci = ceph_inode(dir);
523 spin_lock(&ci->i_unsafe_lock);
524 req->r_unsafe_dir = dir;
525 list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops);
526 spin_unlock(&ci->i_unsafe_lock);
530 static void __unregister_request(struct ceph_mds_client *mdsc,
531 struct ceph_mds_request *req)
533 dout("__unregister_request %p tid %lld\n", req, req->r_tid);
534 rb_erase(&req->r_node, &mdsc->request_tree);
535 RB_CLEAR_NODE(&req->r_node);
537 if (req->r_unsafe_dir) {
538 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
540 spin_lock(&ci->i_unsafe_lock);
541 list_del_init(&req->r_unsafe_dir_item);
542 spin_unlock(&ci->i_unsafe_lock);
545 ceph_mdsc_put_request(req);
549 * Choose mds to send request to next. If there is a hint set in the
550 * request (e.g., due to a prior forward hint from the mds), use that.
551 * Otherwise, consult frag tree and/or caps to identify the
552 * appropriate mds. If all else fails, choose randomly.
554 * Called under mdsc->mutex.
556 static int __choose_mds(struct ceph_mds_client *mdsc,
557 struct ceph_mds_request *req)
559 struct inode *inode;
560 struct ceph_inode_info *ci;
561 struct ceph_cap *cap;
562 int mode = req->r_direct_mode;
563 int mds = -1;
564 u32 hash = req->r_direct_hash;
565 bool is_hash = req->r_direct_is_hash;
568 * is there a specific mds we should try? ignore hint if we have
569 * no session and the mds is not up (active or recovering).
571 if (req->r_resend_mds >= 0 &&
572 (__have_session(mdsc, req->r_resend_mds) ||
573 ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
574 dout("choose_mds using resend_mds mds%d\n",
575 req->r_resend_mds);
576 return req->r_resend_mds;
579 if (mode == USE_RANDOM_MDS)
580 goto random;
582 inode = NULL;
583 if (req->r_inode) {
584 inode = req->r_inode;
585 } else if (req->r_dentry) {
586 if (req->r_dentry->d_inode) {
587 inode = req->r_dentry->d_inode;
588 } else {
589 inode = req->r_dentry->d_parent->d_inode;
590 hash = req->r_dentry->d_name.hash;
591 is_hash = true;
594 dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
595 (int)hash, mode);
596 if (!inode)
597 goto random;
598 ci = ceph_inode(inode);
600 if (is_hash && S_ISDIR(inode->i_mode)) {
601 struct ceph_inode_frag frag;
602 int found;
604 ceph_choose_frag(ci, hash, &frag, &found);
605 if (found) {
606 if (mode == USE_ANY_MDS && frag.ndist > 0) {
607 u8 r;
609 /* choose a random replica */
610 get_random_bytes(&r, 1);
611 r %= frag.ndist;
612 mds = frag.dist[r];
613 dout("choose_mds %p %llx.%llx "
614 "frag %u mds%d (%d/%d)\n",
615 inode, ceph_vinop(inode),
616 frag.frag, frag.mds,
617 (int)r, frag.ndist);
618 return mds;
621 /* since this file/dir wasn't known to be
622 * replicated, then we want to look for the
623 * authoritative mds. */
624 mode = USE_AUTH_MDS;
625 if (frag.mds >= 0) {
626 /* choose auth mds */
627 mds = frag.mds;
628 dout("choose_mds %p %llx.%llx "
629 "frag %u mds%d (auth)\n",
630 inode, ceph_vinop(inode), frag.frag, mds);
631 return mds;
636 spin_lock(&inode->i_lock);
637 cap = NULL;
638 if (mode == USE_AUTH_MDS)
639 cap = ci->i_auth_cap;
640 if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
641 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
642 if (!cap) {
643 spin_unlock(&inode->i_lock);
644 goto random;
646 mds = cap->session->s_mds;
647 dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
648 inode, ceph_vinop(inode), mds,
649 cap == ci->i_auth_cap ? "auth " : "", cap);
650 spin_unlock(&inode->i_lock);
651 return mds;
653 random:
654 mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
655 dout("choose_mds chose random mds%d\n", mds);
656 return mds;
661 * session messages
663 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
665 struct ceph_msg *msg;
666 struct ceph_mds_session_head *h;
668 msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), 0, 0, NULL);
669 if (IS_ERR(msg)) {
670 pr_err("create_session_msg ENOMEM creating msg\n");
671 return ERR_PTR(PTR_ERR(msg));
673 h = msg->front.iov_base;
674 h->op = cpu_to_le32(op);
675 h->seq = cpu_to_le64(seq);
676 return msg;
680 * send session open request.
682 * called under mdsc->mutex
684 static int __open_session(struct ceph_mds_client *mdsc,
685 struct ceph_mds_session *session)
687 struct ceph_msg *msg;
688 int mstate;
689 int mds = session->s_mds;
690 int err = 0;
692 /* wait for mds to go active? */
693 mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
694 dout("open_session to mds%d (%s)\n", mds,
695 ceph_mds_state_name(mstate));
696 session->s_state = CEPH_MDS_SESSION_OPENING;
697 session->s_renew_requested = jiffies;
699 /* send connect message */
700 msg = create_session_msg(CEPH_SESSION_REQUEST_OPEN, session->s_seq);
701 if (IS_ERR(msg)) {
702 err = PTR_ERR(msg);
703 goto out;
705 ceph_con_send(&session->s_con, msg);
707 out:
708 return 0;
712 * session caps
716 * Free preallocated cap messages assigned to this session
718 static void cleanup_cap_releases(struct ceph_mds_session *session)
720 struct ceph_msg *msg;
722 spin_lock(&session->s_cap_lock);
723 while (!list_empty(&session->s_cap_releases)) {
724 msg = list_first_entry(&session->s_cap_releases,
725 struct ceph_msg, list_head);
726 list_del_init(&msg->list_head);
727 ceph_msg_put(msg);
729 while (!list_empty(&session->s_cap_releases_done)) {
730 msg = list_first_entry(&session->s_cap_releases_done,
731 struct ceph_msg, list_head);
732 list_del_init(&msg->list_head);
733 ceph_msg_put(msg);
735 spin_unlock(&session->s_cap_lock);
739 * Helper to safely iterate over all caps associated with a session.
741 * caller must hold session s_mutex
743 static int iterate_session_caps(struct ceph_mds_session *session,
744 int (*cb)(struct inode *, struct ceph_cap *,
745 void *), void *arg)
747 struct list_head *p;
748 struct ceph_cap *cap;
749 struct inode *inode, *last_inode = NULL;
750 struct ceph_cap *old_cap = NULL;
751 int ret;
753 dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
754 spin_lock(&session->s_cap_lock);
755 p = session->s_caps.next;
756 while (p != &session->s_caps) {
757 cap = list_entry(p, struct ceph_cap, session_caps);
758 inode = igrab(&cap->ci->vfs_inode);
759 if (!inode) {
760 p = p->next;
761 continue;
763 session->s_cap_iterator = cap;
764 spin_unlock(&session->s_cap_lock);
766 if (last_inode) {
767 iput(last_inode);
768 last_inode = NULL;
770 if (old_cap) {
771 ceph_put_cap(old_cap);
772 old_cap = NULL;
775 ret = cb(inode, cap, arg);
776 last_inode = inode;
778 spin_lock(&session->s_cap_lock);
779 p = p->next;
780 if (cap->ci == NULL) {
781 dout("iterate_session_caps finishing cap %p removal\n",
782 cap);
783 BUG_ON(cap->session != session);
784 list_del_init(&cap->session_caps);
785 session->s_nr_caps--;
786 cap->session = NULL;
787 old_cap = cap; /* put_cap it w/o locks held */
789 if (ret < 0)
790 goto out;
792 ret = 0;
793 out:
794 session->s_cap_iterator = NULL;
795 spin_unlock(&session->s_cap_lock);
797 if (last_inode)
798 iput(last_inode);
799 if (old_cap)
800 ceph_put_cap(old_cap);
802 return ret;
805 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
806 void *arg)
808 struct ceph_inode_info *ci = ceph_inode(inode);
809 dout("removing cap %p, ci is %p, inode is %p\n",
810 cap, ci, &ci->vfs_inode);
811 ceph_remove_cap(cap);
812 return 0;
816 * caller must hold session s_mutex
818 static void remove_session_caps(struct ceph_mds_session *session)
820 dout("remove_session_caps on %p\n", session);
821 iterate_session_caps(session, remove_session_caps_cb, NULL);
822 BUG_ON(session->s_nr_caps > 0);
823 cleanup_cap_releases(session);
827 * wake up any threads waiting on this session's caps. if the cap is
828 * old (didn't get renewed on the client reconnect), remove it now.
830 * caller must hold s_mutex.
832 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
833 void *arg)
835 struct ceph_inode_info *ci = ceph_inode(inode);
837 wake_up(&ci->i_cap_wq);
838 if (arg) {
839 spin_lock(&inode->i_lock);
840 ci->i_wanted_max_size = 0;
841 ci->i_requested_max_size = 0;
842 spin_unlock(&inode->i_lock);
844 return 0;
847 static void wake_up_session_caps(struct ceph_mds_session *session,
848 int reconnect)
850 dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
851 iterate_session_caps(session, wake_up_session_cb,
852 (void *)(unsigned long)reconnect);
856 * Send periodic message to MDS renewing all currently held caps. The
857 * ack will reset the expiration for all caps from this session.
859 * caller holds s_mutex
861 static int send_renew_caps(struct ceph_mds_client *mdsc,
862 struct ceph_mds_session *session)
864 struct ceph_msg *msg;
865 int state;
867 if (time_after_eq(jiffies, session->s_cap_ttl) &&
868 time_after_eq(session->s_cap_ttl, session->s_renew_requested))
869 pr_info("mds%d caps stale\n", session->s_mds);
870 session->s_renew_requested = jiffies;
872 /* do not try to renew caps until a recovering mds has reconnected
873 * with its clients. */
874 state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
875 if (state < CEPH_MDS_STATE_RECONNECT) {
876 dout("send_renew_caps ignoring mds%d (%s)\n",
877 session->s_mds, ceph_mds_state_name(state));
878 return 0;
881 dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
882 ceph_mds_state_name(state));
883 msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
884 ++session->s_renew_seq);
885 if (IS_ERR(msg))
886 return PTR_ERR(msg);
887 ceph_con_send(&session->s_con, msg);
888 return 0;
892 * Note new cap ttl, and any transition from stale -> not stale (fresh?).
894 * Called under session->s_mutex
896 static void renewed_caps(struct ceph_mds_client *mdsc,
897 struct ceph_mds_session *session, int is_renew)
899 int was_stale;
900 int wake = 0;
902 spin_lock(&session->s_cap_lock);
903 was_stale = is_renew && (session->s_cap_ttl == 0 ||
904 time_after_eq(jiffies, session->s_cap_ttl));
906 session->s_cap_ttl = session->s_renew_requested +
907 mdsc->mdsmap->m_session_timeout*HZ;
909 if (was_stale) {
910 if (time_before(jiffies, session->s_cap_ttl)) {
911 pr_info("mds%d caps renewed\n", session->s_mds);
912 wake = 1;
913 } else {
914 pr_info("mds%d caps still stale\n", session->s_mds);
917 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
918 session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
919 time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
920 spin_unlock(&session->s_cap_lock);
922 if (wake)
923 wake_up_session_caps(session, 0);
927 * send a session close request
929 static int request_close_session(struct ceph_mds_client *mdsc,
930 struct ceph_mds_session *session)
932 struct ceph_msg *msg;
933 int err = 0;
935 dout("request_close_session mds%d state %s seq %lld\n",
936 session->s_mds, session_state_name(session->s_state),
937 session->s_seq);
938 msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
939 if (IS_ERR(msg))
940 err = PTR_ERR(msg);
941 else
942 ceph_con_send(&session->s_con, msg);
943 return err;
947 * Called with s_mutex held.
949 static int __close_session(struct ceph_mds_client *mdsc,
950 struct ceph_mds_session *session)
952 if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
953 return 0;
954 session->s_state = CEPH_MDS_SESSION_CLOSING;
955 return request_close_session(mdsc, session);
959 * Trim old(er) caps.
961 * Because we can't cache an inode without one or more caps, we do
962 * this indirectly: if a cap is unused, we prune its aliases, at which
963 * point the inode will hopefully get dropped to.
965 * Yes, this is a bit sloppy. Our only real goal here is to respond to
966 * memory pressure from the MDS, though, so it needn't be perfect.
968 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
970 struct ceph_mds_session *session = arg;
971 struct ceph_inode_info *ci = ceph_inode(inode);
972 int used, oissued, mine;
974 if (session->s_trim_caps <= 0)
975 return -1;
977 spin_lock(&inode->i_lock);
978 mine = cap->issued | cap->implemented;
979 used = __ceph_caps_used(ci);
980 oissued = __ceph_caps_issued_other(ci, cap);
982 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s\n",
983 inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
984 ceph_cap_string(used));
985 if (ci->i_dirty_caps)
986 goto out; /* dirty caps */
987 if ((used & ~oissued) & mine)
988 goto out; /* we need these caps */
990 session->s_trim_caps--;
991 if (oissued) {
992 /* we aren't the only cap.. just remove us */
993 __ceph_remove_cap(cap);
994 } else {
995 /* try to drop referring dentries */
996 spin_unlock(&inode->i_lock);
997 d_prune_aliases(inode);
998 dout("trim_caps_cb %p cap %p pruned, count now %d\n",
999 inode, cap, atomic_read(&inode->i_count));
1000 return 0;
1003 out:
1004 spin_unlock(&inode->i_lock);
1005 return 0;
1009 * Trim session cap count down to some max number.
1011 static int trim_caps(struct ceph_mds_client *mdsc,
1012 struct ceph_mds_session *session,
1013 int max_caps)
1015 int trim_caps = session->s_nr_caps - max_caps;
1017 dout("trim_caps mds%d start: %d / %d, trim %d\n",
1018 session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1019 if (trim_caps > 0) {
1020 session->s_trim_caps = trim_caps;
1021 iterate_session_caps(session, trim_caps_cb, session);
1022 dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1023 session->s_mds, session->s_nr_caps, max_caps,
1024 trim_caps - session->s_trim_caps);
1025 session->s_trim_caps = 0;
1027 return 0;
1031 * Allocate cap_release messages. If there is a partially full message
1032 * in the queue, try to allocate enough to cover it's remainder, so that
1033 * we can send it immediately.
1035 * Called under s_mutex.
1037 static int add_cap_releases(struct ceph_mds_client *mdsc,
1038 struct ceph_mds_session *session,
1039 int extra)
1041 struct ceph_msg *msg;
1042 struct ceph_mds_cap_release *head;
1043 int err = -ENOMEM;
1045 if (extra < 0)
1046 extra = mdsc->client->mount_args->cap_release_safety;
1048 spin_lock(&session->s_cap_lock);
1050 if (!list_empty(&session->s_cap_releases)) {
1051 msg = list_first_entry(&session->s_cap_releases,
1052 struct ceph_msg,
1053 list_head);
1054 head = msg->front.iov_base;
1055 extra += CEPH_CAPS_PER_RELEASE - le32_to_cpu(head->num);
1058 while (session->s_num_cap_releases < session->s_nr_caps + extra) {
1059 spin_unlock(&session->s_cap_lock);
1060 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE,
1061 0, 0, NULL);
1062 if (!msg)
1063 goto out_unlocked;
1064 dout("add_cap_releases %p msg %p now %d\n", session, msg,
1065 (int)msg->front.iov_len);
1066 head = msg->front.iov_base;
1067 head->num = cpu_to_le32(0);
1068 msg->front.iov_len = sizeof(*head);
1069 spin_lock(&session->s_cap_lock);
1070 list_add(&msg->list_head, &session->s_cap_releases);
1071 session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE;
1074 if (!list_empty(&session->s_cap_releases)) {
1075 msg = list_first_entry(&session->s_cap_releases,
1076 struct ceph_msg,
1077 list_head);
1078 head = msg->front.iov_base;
1079 if (head->num) {
1080 dout(" queueing non-full %p (%d)\n", msg,
1081 le32_to_cpu(head->num));
1082 list_move_tail(&msg->list_head,
1083 &session->s_cap_releases_done);
1084 session->s_num_cap_releases -=
1085 CEPH_CAPS_PER_RELEASE - le32_to_cpu(head->num);
1088 err = 0;
1089 spin_unlock(&session->s_cap_lock);
1090 out_unlocked:
1091 return err;
1095 * flush all dirty inode data to disk.
1097 * returns true if we've flushed through want_flush_seq
1099 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq)
1101 int mds, ret = 1;
1103 dout("check_cap_flush want %lld\n", want_flush_seq);
1104 mutex_lock(&mdsc->mutex);
1105 for (mds = 0; ret && mds < mdsc->max_sessions; mds++) {
1106 struct ceph_mds_session *session = mdsc->sessions[mds];
1108 if (!session)
1109 continue;
1110 get_session(session);
1111 mutex_unlock(&mdsc->mutex);
1113 mutex_lock(&session->s_mutex);
1114 if (!list_empty(&session->s_cap_flushing)) {
1115 struct ceph_inode_info *ci =
1116 list_entry(session->s_cap_flushing.next,
1117 struct ceph_inode_info,
1118 i_flushing_item);
1119 struct inode *inode = &ci->vfs_inode;
1121 spin_lock(&inode->i_lock);
1122 if (ci->i_cap_flush_seq <= want_flush_seq) {
1123 dout("check_cap_flush still flushing %p "
1124 "seq %lld <= %lld to mds%d\n", inode,
1125 ci->i_cap_flush_seq, want_flush_seq,
1126 session->s_mds);
1127 ret = 0;
1129 spin_unlock(&inode->i_lock);
1131 mutex_unlock(&session->s_mutex);
1132 ceph_put_mds_session(session);
1134 if (!ret)
1135 return ret;
1136 mutex_lock(&mdsc->mutex);
1139 mutex_unlock(&mdsc->mutex);
1140 dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq);
1141 return ret;
1145 * called under s_mutex
1147 static void send_cap_releases(struct ceph_mds_client *mdsc,
1148 struct ceph_mds_session *session)
1150 struct ceph_msg *msg;
1152 dout("send_cap_releases mds%d\n", session->s_mds);
1153 while (1) {
1154 spin_lock(&session->s_cap_lock);
1155 if (list_empty(&session->s_cap_releases_done))
1156 break;
1157 msg = list_first_entry(&session->s_cap_releases_done,
1158 struct ceph_msg, list_head);
1159 list_del_init(&msg->list_head);
1160 spin_unlock(&session->s_cap_lock);
1161 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1162 dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1163 ceph_con_send(&session->s_con, msg);
1165 spin_unlock(&session->s_cap_lock);
1169 * requests
1173 * Create an mds request.
1175 struct ceph_mds_request *
1176 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1178 struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1180 if (!req)
1181 return ERR_PTR(-ENOMEM);
1183 req->r_started = jiffies;
1184 req->r_resend_mds = -1;
1185 INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1186 req->r_fmode = -1;
1187 kref_init(&req->r_kref);
1188 INIT_LIST_HEAD(&req->r_wait);
1189 init_completion(&req->r_completion);
1190 init_completion(&req->r_safe_completion);
1191 INIT_LIST_HEAD(&req->r_unsafe_item);
1193 req->r_op = op;
1194 req->r_direct_mode = mode;
1195 return req;
1199 * return oldest (lowest) request, tid in request tree, 0 if none.
1201 * called under mdsc->mutex.
1203 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1205 if (RB_EMPTY_ROOT(&mdsc->request_tree))
1206 return NULL;
1207 return rb_entry(rb_first(&mdsc->request_tree),
1208 struct ceph_mds_request, r_node);
1211 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1213 struct ceph_mds_request *req = __get_oldest_req(mdsc);
1215 if (req)
1216 return req->r_tid;
1217 return 0;
1221 * Build a dentry's path. Allocate on heap; caller must kfree. Based
1222 * on build_path_from_dentry in fs/cifs/dir.c.
1224 * If @stop_on_nosnap, generate path relative to the first non-snapped
1225 * inode.
1227 * Encode hidden .snap dirs as a double /, i.e.
1228 * foo/.snap/bar -> foo//bar
1230 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1231 int stop_on_nosnap)
1233 struct dentry *temp;
1234 char *path;
1235 int len, pos;
1237 if (dentry == NULL)
1238 return ERR_PTR(-EINVAL);
1240 retry:
1241 len = 0;
1242 for (temp = dentry; !IS_ROOT(temp);) {
1243 struct inode *inode = temp->d_inode;
1244 if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1245 len++; /* slash only */
1246 else if (stop_on_nosnap && inode &&
1247 ceph_snap(inode) == CEPH_NOSNAP)
1248 break;
1249 else
1250 len += 1 + temp->d_name.len;
1251 temp = temp->d_parent;
1252 if (temp == NULL) {
1253 pr_err("build_path_dentry corrupt dentry %p\n", dentry);
1254 return ERR_PTR(-EINVAL);
1257 if (len)
1258 len--; /* no leading '/' */
1260 path = kmalloc(len+1, GFP_NOFS);
1261 if (path == NULL)
1262 return ERR_PTR(-ENOMEM);
1263 pos = len;
1264 path[pos] = 0; /* trailing null */
1265 for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1266 struct inode *inode = temp->d_inode;
1268 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1269 dout("build_path_dentry path+%d: %p SNAPDIR\n",
1270 pos, temp);
1271 } else if (stop_on_nosnap && inode &&
1272 ceph_snap(inode) == CEPH_NOSNAP) {
1273 break;
1274 } else {
1275 pos -= temp->d_name.len;
1276 if (pos < 0)
1277 break;
1278 strncpy(path + pos, temp->d_name.name,
1279 temp->d_name.len);
1280 dout("build_path_dentry path+%d: %p '%.*s'\n",
1281 pos, temp, temp->d_name.len, path + pos);
1283 if (pos)
1284 path[--pos] = '/';
1285 temp = temp->d_parent;
1286 if (temp == NULL) {
1287 pr_err("build_path_dentry corrupt dentry\n");
1288 kfree(path);
1289 return ERR_PTR(-EINVAL);
1292 if (pos != 0) {
1293 pr_err("build_path_dentry did not end path lookup where "
1294 "expected, namelen is %d, pos is %d\n", len, pos);
1295 /* presumably this is only possible if racing with a
1296 rename of one of the parent directories (we can not
1297 lock the dentries above us to prevent this, but
1298 retrying should be harmless) */
1299 kfree(path);
1300 goto retry;
1303 *base = ceph_ino(temp->d_inode);
1304 *plen = len;
1305 dout("build_path_dentry on %p %d built %llx '%.*s'\n",
1306 dentry, atomic_read(&dentry->d_count), *base, len, path);
1307 return path;
1310 static int build_dentry_path(struct dentry *dentry,
1311 const char **ppath, int *ppathlen, u64 *pino,
1312 int *pfreepath)
1314 char *path;
1316 if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) {
1317 *pino = ceph_ino(dentry->d_parent->d_inode);
1318 *ppath = dentry->d_name.name;
1319 *ppathlen = dentry->d_name.len;
1320 return 0;
1322 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1323 if (IS_ERR(path))
1324 return PTR_ERR(path);
1325 *ppath = path;
1326 *pfreepath = 1;
1327 return 0;
1330 static int build_inode_path(struct inode *inode,
1331 const char **ppath, int *ppathlen, u64 *pino,
1332 int *pfreepath)
1334 struct dentry *dentry;
1335 char *path;
1337 if (ceph_snap(inode) == CEPH_NOSNAP) {
1338 *pino = ceph_ino(inode);
1339 *ppathlen = 0;
1340 return 0;
1342 dentry = d_find_alias(inode);
1343 path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1344 dput(dentry);
1345 if (IS_ERR(path))
1346 return PTR_ERR(path);
1347 *ppath = path;
1348 *pfreepath = 1;
1349 return 0;
1353 * request arguments may be specified via an inode *, a dentry *, or
1354 * an explicit ino+path.
1356 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1357 const char *rpath, u64 rino,
1358 const char **ppath, int *pathlen,
1359 u64 *ino, int *freepath)
1361 int r = 0;
1363 if (rinode) {
1364 r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
1365 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
1366 ceph_snap(rinode));
1367 } else if (rdentry) {
1368 r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath);
1369 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
1370 *ppath);
1371 } else if (rpath) {
1372 *ino = rino;
1373 *ppath = rpath;
1374 *pathlen = strlen(rpath);
1375 dout(" path %.*s\n", *pathlen, rpath);
1378 return r;
1382 * called under mdsc->mutex
1384 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
1385 struct ceph_mds_request *req,
1386 int mds)
1388 struct ceph_msg *msg;
1389 struct ceph_mds_request_head *head;
1390 const char *path1 = NULL;
1391 const char *path2 = NULL;
1392 u64 ino1 = 0, ino2 = 0;
1393 int pathlen1 = 0, pathlen2 = 0;
1394 int freepath1 = 0, freepath2 = 0;
1395 int len;
1396 u16 releases;
1397 void *p, *end;
1398 int ret;
1400 ret = set_request_path_attr(req->r_inode, req->r_dentry,
1401 req->r_path1, req->r_ino1.ino,
1402 &path1, &pathlen1, &ino1, &freepath1);
1403 if (ret < 0) {
1404 msg = ERR_PTR(ret);
1405 goto out;
1408 ret = set_request_path_attr(NULL, req->r_old_dentry,
1409 req->r_path2, req->r_ino2.ino,
1410 &path2, &pathlen2, &ino2, &freepath2);
1411 if (ret < 0) {
1412 msg = ERR_PTR(ret);
1413 goto out_free1;
1416 len = sizeof(*head) +
1417 pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64));
1419 /* calculate (max) length for cap releases */
1420 len += sizeof(struct ceph_mds_request_release) *
1421 (!!req->r_inode_drop + !!req->r_dentry_drop +
1422 !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
1423 if (req->r_dentry_drop)
1424 len += req->r_dentry->d_name.len;
1425 if (req->r_old_dentry_drop)
1426 len += req->r_old_dentry->d_name.len;
1428 msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, 0, 0, NULL);
1429 if (IS_ERR(msg))
1430 goto out_free2;
1432 msg->hdr.tid = cpu_to_le64(req->r_tid);
1434 head = msg->front.iov_base;
1435 p = msg->front.iov_base + sizeof(*head);
1436 end = msg->front.iov_base + msg->front.iov_len;
1438 head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
1439 head->op = cpu_to_le32(req->r_op);
1440 head->caller_uid = cpu_to_le32(current_fsuid());
1441 head->caller_gid = cpu_to_le32(current_fsgid());
1442 head->args = req->r_args;
1444 ceph_encode_filepath(&p, end, ino1, path1);
1445 ceph_encode_filepath(&p, end, ino2, path2);
1447 /* cap releases */
1448 releases = 0;
1449 if (req->r_inode_drop)
1450 releases += ceph_encode_inode_release(&p,
1451 req->r_inode ? req->r_inode : req->r_dentry->d_inode,
1452 mds, req->r_inode_drop, req->r_inode_unless, 0);
1453 if (req->r_dentry_drop)
1454 releases += ceph_encode_dentry_release(&p, req->r_dentry,
1455 mds, req->r_dentry_drop, req->r_dentry_unless);
1456 if (req->r_old_dentry_drop)
1457 releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
1458 mds, req->r_old_dentry_drop, req->r_old_dentry_unless);
1459 if (req->r_old_inode_drop)
1460 releases += ceph_encode_inode_release(&p,
1461 req->r_old_dentry->d_inode,
1462 mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
1463 head->num_releases = cpu_to_le16(releases);
1465 BUG_ON(p > end);
1466 msg->front.iov_len = p - msg->front.iov_base;
1467 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1469 msg->pages = req->r_pages;
1470 msg->nr_pages = req->r_num_pages;
1471 msg->hdr.data_len = cpu_to_le32(req->r_data_len);
1472 msg->hdr.data_off = cpu_to_le16(0);
1474 out_free2:
1475 if (freepath2)
1476 kfree((char *)path2);
1477 out_free1:
1478 if (freepath1)
1479 kfree((char *)path1);
1480 out:
1481 return msg;
1485 * called under mdsc->mutex if error, under no mutex if
1486 * success.
1488 static void complete_request(struct ceph_mds_client *mdsc,
1489 struct ceph_mds_request *req)
1491 if (req->r_callback)
1492 req->r_callback(mdsc, req);
1493 else
1494 complete(&req->r_completion);
1498 * called under mdsc->mutex
1500 static int __prepare_send_request(struct ceph_mds_client *mdsc,
1501 struct ceph_mds_request *req,
1502 int mds)
1504 struct ceph_mds_request_head *rhead;
1505 struct ceph_msg *msg;
1506 int flags = 0;
1508 req->r_mds = mds;
1509 req->r_attempts++;
1510 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
1511 req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
1513 if (req->r_request) {
1514 ceph_msg_put(req->r_request);
1515 req->r_request = NULL;
1517 msg = create_request_message(mdsc, req, mds);
1518 if (IS_ERR(msg)) {
1519 req->r_reply = ERR_PTR(PTR_ERR(msg));
1520 complete_request(mdsc, req);
1521 return -PTR_ERR(msg);
1523 req->r_request = msg;
1525 rhead = msg->front.iov_base;
1526 rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
1527 if (req->r_got_unsafe)
1528 flags |= CEPH_MDS_FLAG_REPLAY;
1529 if (req->r_locked_dir)
1530 flags |= CEPH_MDS_FLAG_WANT_DENTRY;
1531 rhead->flags = cpu_to_le32(flags);
1532 rhead->num_fwd = req->r_num_fwd;
1533 rhead->num_retry = req->r_attempts - 1;
1535 dout(" r_locked_dir = %p\n", req->r_locked_dir);
1537 if (req->r_target_inode && req->r_got_unsafe)
1538 rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
1539 else
1540 rhead->ino = 0;
1541 return 0;
1545 * send request, or put it on the appropriate wait list.
1547 static int __do_request(struct ceph_mds_client *mdsc,
1548 struct ceph_mds_request *req)
1550 struct ceph_mds_session *session = NULL;
1551 int mds = -1;
1552 int err = -EAGAIN;
1554 if (req->r_reply)
1555 goto out;
1557 if (req->r_timeout &&
1558 time_after_eq(jiffies, req->r_started + req->r_timeout)) {
1559 dout("do_request timed out\n");
1560 err = -EIO;
1561 goto finish;
1564 mds = __choose_mds(mdsc, req);
1565 if (mds < 0 ||
1566 ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
1567 dout("do_request no mds or not active, waiting for map\n");
1568 list_add(&req->r_wait, &mdsc->waiting_for_map);
1569 goto out;
1572 /* get, open session */
1573 session = __ceph_lookup_mds_session(mdsc, mds);
1574 if (!session) {
1575 session = register_session(mdsc, mds);
1576 if (IS_ERR(session)) {
1577 err = PTR_ERR(session);
1578 goto finish;
1581 dout("do_request mds%d session %p state %s\n", mds, session,
1582 session_state_name(session->s_state));
1583 if (session->s_state != CEPH_MDS_SESSION_OPEN &&
1584 session->s_state != CEPH_MDS_SESSION_HUNG) {
1585 if (session->s_state == CEPH_MDS_SESSION_NEW ||
1586 session->s_state == CEPH_MDS_SESSION_CLOSING)
1587 __open_session(mdsc, session);
1588 list_add(&req->r_wait, &session->s_waiting);
1589 goto out_session;
1592 /* send request */
1593 req->r_session = get_session(session);
1594 req->r_resend_mds = -1; /* forget any previous mds hint */
1596 if (req->r_request_started == 0) /* note request start time */
1597 req->r_request_started = jiffies;
1599 err = __prepare_send_request(mdsc, req, mds);
1600 if (!err) {
1601 ceph_msg_get(req->r_request);
1602 ceph_con_send(&session->s_con, req->r_request);
1605 out_session:
1606 ceph_put_mds_session(session);
1607 out:
1608 return err;
1610 finish:
1611 req->r_reply = ERR_PTR(err);
1612 complete_request(mdsc, req);
1613 goto out;
1617 * called under mdsc->mutex
1619 static void __wake_requests(struct ceph_mds_client *mdsc,
1620 struct list_head *head)
1622 struct ceph_mds_request *req, *nreq;
1624 list_for_each_entry_safe(req, nreq, head, r_wait) {
1625 list_del_init(&req->r_wait);
1626 __do_request(mdsc, req);
1631 * Wake up threads with requests pending for @mds, so that they can
1632 * resubmit their requests to a possibly different mds. If @all is set,
1633 * wake up if their requests has been forwarded to @mds, too.
1635 static void kick_requests(struct ceph_mds_client *mdsc, int mds, int all)
1637 struct ceph_mds_request *req;
1638 struct rb_node *p;
1640 dout("kick_requests mds%d\n", mds);
1641 for (p = rb_first(&mdsc->request_tree); p; p = rb_next(p)) {
1642 req = rb_entry(p, struct ceph_mds_request, r_node);
1643 if (req->r_got_unsafe)
1644 continue;
1645 if (req->r_session &&
1646 req->r_session->s_mds == mds) {
1647 dout(" kicking tid %llu\n", req->r_tid);
1648 put_request_session(req);
1649 __do_request(mdsc, req);
1654 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
1655 struct ceph_mds_request *req)
1657 dout("submit_request on %p\n", req);
1658 mutex_lock(&mdsc->mutex);
1659 __register_request(mdsc, req, NULL);
1660 __do_request(mdsc, req);
1661 mutex_unlock(&mdsc->mutex);
1665 * Synchrously perform an mds request. Take care of all of the
1666 * session setup, forwarding, retry details.
1668 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
1669 struct inode *dir,
1670 struct ceph_mds_request *req)
1672 int err;
1674 dout("do_request on %p\n", req);
1676 /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
1677 if (req->r_inode)
1678 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
1679 if (req->r_locked_dir)
1680 ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
1681 if (req->r_old_dentry)
1682 ceph_get_cap_refs(
1683 ceph_inode(req->r_old_dentry->d_parent->d_inode),
1684 CEPH_CAP_PIN);
1686 /* issue */
1687 mutex_lock(&mdsc->mutex);
1688 __register_request(mdsc, req, dir);
1689 __do_request(mdsc, req);
1691 /* wait */
1692 if (!req->r_reply) {
1693 mutex_unlock(&mdsc->mutex);
1694 if (req->r_timeout) {
1695 err = (long)wait_for_completion_interruptible_timeout(
1696 &req->r_completion, req->r_timeout);
1697 if (err == 0)
1698 req->r_reply = ERR_PTR(-EIO);
1699 else if (err < 0)
1700 req->r_reply = ERR_PTR(err);
1701 } else {
1702 err = wait_for_completion_interruptible(
1703 &req->r_completion);
1704 if (err)
1705 req->r_reply = ERR_PTR(err);
1707 mutex_lock(&mdsc->mutex);
1710 if (IS_ERR(req->r_reply)) {
1711 err = PTR_ERR(req->r_reply);
1712 req->r_reply = NULL;
1714 if (err == -ERESTARTSYS) {
1715 /* aborted */
1716 req->r_aborted = true;
1718 if (req->r_locked_dir &&
1719 (req->r_op & CEPH_MDS_OP_WRITE)) {
1720 struct ceph_inode_info *ci =
1721 ceph_inode(req->r_locked_dir);
1723 dout("aborted, clearing I_COMPLETE on %p\n",
1724 req->r_locked_dir);
1725 spin_lock(&req->r_locked_dir->i_lock);
1726 ci->i_ceph_flags &= ~CEPH_I_COMPLETE;
1727 ci->i_release_count++;
1728 spin_unlock(&req->r_locked_dir->i_lock);
1730 } else {
1731 /* clean up this request */
1732 __unregister_request(mdsc, req);
1733 if (!list_empty(&req->r_unsafe_item))
1734 list_del_init(&req->r_unsafe_item);
1735 complete(&req->r_safe_completion);
1737 } else if (req->r_err) {
1738 err = req->r_err;
1739 } else {
1740 err = le32_to_cpu(req->r_reply_info.head->result);
1742 mutex_unlock(&mdsc->mutex);
1744 dout("do_request %p done, result %d\n", req, err);
1745 return err;
1749 * Handle mds reply.
1751 * We take the session mutex and parse and process the reply immediately.
1752 * This preserves the logical ordering of replies, capabilities, etc., sent
1753 * by the MDS as they are applied to our local cache.
1755 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
1757 struct ceph_mds_client *mdsc = session->s_mdsc;
1758 struct ceph_mds_request *req;
1759 struct ceph_mds_reply_head *head = msg->front.iov_base;
1760 struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */
1761 u64 tid;
1762 int err, result;
1763 int mds = session->s_mds;
1765 if (msg->front.iov_len < sizeof(*head)) {
1766 pr_err("mdsc_handle_reply got corrupt (short) reply\n");
1767 ceph_msg_dump(msg);
1768 return;
1771 /* get request, session */
1772 tid = le64_to_cpu(msg->hdr.tid);
1773 mutex_lock(&mdsc->mutex);
1774 req = __lookup_request(mdsc, tid);
1775 if (!req) {
1776 dout("handle_reply on unknown tid %llu\n", tid);
1777 mutex_unlock(&mdsc->mutex);
1778 return;
1780 dout("handle_reply %p\n", req);
1782 /* correct session? */
1783 if (req->r_session != session) {
1784 pr_err("mdsc_handle_reply got %llu on session mds%d"
1785 " not mds%d\n", tid, session->s_mds,
1786 req->r_session ? req->r_session->s_mds : -1);
1787 mutex_unlock(&mdsc->mutex);
1788 goto out;
1791 /* dup? */
1792 if ((req->r_got_unsafe && !head->safe) ||
1793 (req->r_got_safe && head->safe)) {
1794 pr_warning("got a dup %s reply on %llu from mds%d\n",
1795 head->safe ? "safe" : "unsafe", tid, mds);
1796 mutex_unlock(&mdsc->mutex);
1797 goto out;
1800 result = le32_to_cpu(head->result);
1803 * Tolerate 2 consecutive ESTALEs from the same mds.
1804 * FIXME: we should be looking at the cap migrate_seq.
1806 if (result == -ESTALE) {
1807 req->r_direct_mode = USE_AUTH_MDS;
1808 req->r_num_stale++;
1809 if (req->r_num_stale <= 2) {
1810 __do_request(mdsc, req);
1811 mutex_unlock(&mdsc->mutex);
1812 goto out;
1814 } else {
1815 req->r_num_stale = 0;
1818 if (head->safe) {
1819 req->r_got_safe = true;
1820 __unregister_request(mdsc, req);
1821 complete(&req->r_safe_completion);
1823 if (req->r_got_unsafe) {
1825 * We already handled the unsafe response, now do the
1826 * cleanup. No need to examine the response; the MDS
1827 * doesn't include any result info in the safe
1828 * response. And even if it did, there is nothing
1829 * useful we could do with a revised return value.
1831 dout("got safe reply %llu, mds%d\n", tid, mds);
1832 list_del_init(&req->r_unsafe_item);
1834 /* last unsafe request during umount? */
1835 if (mdsc->stopping && !__get_oldest_req(mdsc))
1836 complete(&mdsc->safe_umount_waiters);
1837 mutex_unlock(&mdsc->mutex);
1838 goto out;
1842 BUG_ON(req->r_reply);
1844 if (!head->safe) {
1845 req->r_got_unsafe = true;
1846 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
1849 dout("handle_reply tid %lld result %d\n", tid, result);
1850 rinfo = &req->r_reply_info;
1851 err = parse_reply_info(msg, rinfo);
1852 mutex_unlock(&mdsc->mutex);
1854 mutex_lock(&session->s_mutex);
1855 if (err < 0) {
1856 pr_err("mdsc_handle_reply got corrupt reply mds%d\n", mds);
1857 ceph_msg_dump(msg);
1858 goto out_err;
1861 /* snap trace */
1862 if (rinfo->snapblob_len) {
1863 down_write(&mdsc->snap_rwsem);
1864 ceph_update_snap_trace(mdsc, rinfo->snapblob,
1865 rinfo->snapblob + rinfo->snapblob_len,
1866 le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP);
1867 downgrade_write(&mdsc->snap_rwsem);
1868 } else {
1869 down_read(&mdsc->snap_rwsem);
1872 /* insert trace into our cache */
1873 err = ceph_fill_trace(mdsc->client->sb, req, req->r_session);
1874 if (err == 0) {
1875 if (result == 0 && rinfo->dir_nr)
1876 ceph_readdir_prepopulate(req, req->r_session);
1877 ceph_unreserve_caps(&req->r_caps_reservation);
1880 up_read(&mdsc->snap_rwsem);
1881 out_err:
1882 if (err) {
1883 req->r_err = err;
1884 } else {
1885 req->r_reply = msg;
1886 ceph_msg_get(msg);
1889 add_cap_releases(mdsc, req->r_session, -1);
1890 mutex_unlock(&session->s_mutex);
1892 /* kick calling process */
1893 complete_request(mdsc, req);
1894 out:
1895 ceph_mdsc_put_request(req);
1896 return;
1902 * handle mds notification that our request has been forwarded.
1904 static void handle_forward(struct ceph_mds_client *mdsc,
1905 struct ceph_mds_session *session,
1906 struct ceph_msg *msg)
1908 struct ceph_mds_request *req;
1909 u64 tid = le64_to_cpu(msg->hdr.tid);
1910 u32 next_mds;
1911 u32 fwd_seq;
1912 int err = -EINVAL;
1913 void *p = msg->front.iov_base;
1914 void *end = p + msg->front.iov_len;
1916 ceph_decode_need(&p, end, 2*sizeof(u32), bad);
1917 next_mds = ceph_decode_32(&p);
1918 fwd_seq = ceph_decode_32(&p);
1920 mutex_lock(&mdsc->mutex);
1921 req = __lookup_request(mdsc, tid);
1922 if (!req) {
1923 dout("forward %llu to mds%d - req dne\n", tid, next_mds);
1924 goto out; /* dup reply? */
1927 if (fwd_seq <= req->r_num_fwd) {
1928 dout("forward %llu to mds%d - old seq %d <= %d\n",
1929 tid, next_mds, req->r_num_fwd, fwd_seq);
1930 } else {
1931 /* resend. forward race not possible; mds would drop */
1932 dout("forward %llu to mds%d (we resend)\n", tid, next_mds);
1933 req->r_num_fwd = fwd_seq;
1934 req->r_resend_mds = next_mds;
1935 put_request_session(req);
1936 __do_request(mdsc, req);
1938 ceph_mdsc_put_request(req);
1939 out:
1940 mutex_unlock(&mdsc->mutex);
1941 return;
1943 bad:
1944 pr_err("mdsc_handle_forward decode error err=%d\n", err);
1948 * handle a mds session control message
1950 static void handle_session(struct ceph_mds_session *session,
1951 struct ceph_msg *msg)
1953 struct ceph_mds_client *mdsc = session->s_mdsc;
1954 u32 op;
1955 u64 seq;
1956 int mds = session->s_mds;
1957 struct ceph_mds_session_head *h = msg->front.iov_base;
1958 int wake = 0;
1960 /* decode */
1961 if (msg->front.iov_len != sizeof(*h))
1962 goto bad;
1963 op = le32_to_cpu(h->op);
1964 seq = le64_to_cpu(h->seq);
1966 mutex_lock(&mdsc->mutex);
1967 if (op == CEPH_SESSION_CLOSE)
1968 __unregister_session(mdsc, session);
1969 /* FIXME: this ttl calculation is generous */
1970 session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
1971 mutex_unlock(&mdsc->mutex);
1973 mutex_lock(&session->s_mutex);
1975 dout("handle_session mds%d %s %p state %s seq %llu\n",
1976 mds, ceph_session_op_name(op), session,
1977 session_state_name(session->s_state), seq);
1979 if (session->s_state == CEPH_MDS_SESSION_HUNG) {
1980 session->s_state = CEPH_MDS_SESSION_OPEN;
1981 pr_info("mds%d came back\n", session->s_mds);
1984 switch (op) {
1985 case CEPH_SESSION_OPEN:
1986 session->s_state = CEPH_MDS_SESSION_OPEN;
1987 renewed_caps(mdsc, session, 0);
1988 wake = 1;
1989 if (mdsc->stopping)
1990 __close_session(mdsc, session);
1991 break;
1993 case CEPH_SESSION_RENEWCAPS:
1994 if (session->s_renew_seq == seq)
1995 renewed_caps(mdsc, session, 1);
1996 break;
1998 case CEPH_SESSION_CLOSE:
1999 remove_session_caps(session);
2000 wake = 1; /* for good measure */
2001 complete(&mdsc->session_close_waiters);
2002 kick_requests(mdsc, mds, 0); /* cur only */
2003 break;
2005 case CEPH_SESSION_STALE:
2006 pr_info("mds%d caps went stale, renewing\n",
2007 session->s_mds);
2008 spin_lock(&session->s_cap_lock);
2009 session->s_cap_gen++;
2010 session->s_cap_ttl = 0;
2011 spin_unlock(&session->s_cap_lock);
2012 send_renew_caps(mdsc, session);
2013 break;
2015 case CEPH_SESSION_RECALL_STATE:
2016 trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2017 break;
2019 default:
2020 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2021 WARN_ON(1);
2024 mutex_unlock(&session->s_mutex);
2025 if (wake) {
2026 mutex_lock(&mdsc->mutex);
2027 __wake_requests(mdsc, &session->s_waiting);
2028 mutex_unlock(&mdsc->mutex);
2030 return;
2032 bad:
2033 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2034 (int)msg->front.iov_len);
2035 ceph_msg_dump(msg);
2036 return;
2041 * called under session->mutex.
2043 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2044 struct ceph_mds_session *session)
2046 struct ceph_mds_request *req, *nreq;
2047 int err;
2049 dout("replay_unsafe_requests mds%d\n", session->s_mds);
2051 mutex_lock(&mdsc->mutex);
2052 list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2053 err = __prepare_send_request(mdsc, req, session->s_mds);
2054 if (!err) {
2055 ceph_msg_get(req->r_request);
2056 ceph_con_send(&session->s_con, req->r_request);
2059 mutex_unlock(&mdsc->mutex);
2063 * Encode information about a cap for a reconnect with the MDS.
2065 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2066 void *arg)
2068 struct ceph_mds_cap_reconnect rec;
2069 struct ceph_inode_info *ci;
2070 struct ceph_pagelist *pagelist = arg;
2071 char *path;
2072 int pathlen, err;
2073 u64 pathbase;
2074 struct dentry *dentry;
2076 ci = cap->ci;
2078 dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2079 inode, ceph_vinop(inode), cap, cap->cap_id,
2080 ceph_cap_string(cap->issued));
2081 err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2082 if (err)
2083 return err;
2085 dentry = d_find_alias(inode);
2086 if (dentry) {
2087 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2088 if (IS_ERR(path)) {
2089 err = PTR_ERR(path);
2090 BUG_ON(err);
2092 } else {
2093 path = NULL;
2094 pathlen = 0;
2096 err = ceph_pagelist_encode_string(pagelist, path, pathlen);
2097 if (err)
2098 goto out;
2100 spin_lock(&inode->i_lock);
2101 cap->seq = 0; /* reset cap seq */
2102 cap->issue_seq = 0; /* and issue_seq */
2103 rec.cap_id = cpu_to_le64(cap->cap_id);
2104 rec.pathbase = cpu_to_le64(pathbase);
2105 rec.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2106 rec.issued = cpu_to_le32(cap->issued);
2107 rec.size = cpu_to_le64(inode->i_size);
2108 ceph_encode_timespec(&rec.mtime, &inode->i_mtime);
2109 ceph_encode_timespec(&rec.atime, &inode->i_atime);
2110 rec.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2111 spin_unlock(&inode->i_lock);
2113 err = ceph_pagelist_append(pagelist, &rec, sizeof(rec));
2115 out:
2116 kfree(path);
2117 dput(dentry);
2118 return err;
2123 * If an MDS fails and recovers, clients need to reconnect in order to
2124 * reestablish shared state. This includes all caps issued through
2125 * this session _and_ the snap_realm hierarchy. Because it's not
2126 * clear which snap realms the mds cares about, we send everything we
2127 * know about.. that ensures we'll then get any new info the
2128 * recovering MDS might have.
2130 * This is a relatively heavyweight operation, but it's rare.
2132 * called with mdsc->mutex held.
2134 static void send_mds_reconnect(struct ceph_mds_client *mdsc, int mds)
2136 struct ceph_mds_session *session = NULL;
2137 struct ceph_msg *reply;
2138 struct rb_node *p;
2139 int err;
2140 struct ceph_pagelist *pagelist;
2142 pr_info("reconnect to recovering mds%d\n", mds);
2144 pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
2145 if (!pagelist)
2146 goto fail_nopagelist;
2147 ceph_pagelist_init(pagelist);
2149 reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, 0, 0, NULL);
2150 if (IS_ERR(reply)) {
2151 err = PTR_ERR(reply);
2152 goto fail_nomsg;
2155 /* find session */
2156 session = __ceph_lookup_mds_session(mdsc, mds);
2157 mutex_unlock(&mdsc->mutex); /* drop lock for duration */
2159 if (session) {
2160 mutex_lock(&session->s_mutex);
2162 session->s_state = CEPH_MDS_SESSION_RECONNECTING;
2163 session->s_seq = 0;
2165 ceph_con_open(&session->s_con,
2166 ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
2168 /* replay unsafe requests */
2169 replay_unsafe_requests(mdsc, session);
2170 } else {
2171 dout("no session for mds%d, will send short reconnect\n",
2172 mds);
2175 down_read(&mdsc->snap_rwsem);
2177 if (!session)
2178 goto send;
2179 dout("session %p state %s\n", session,
2180 session_state_name(session->s_state));
2182 /* traverse this session's caps */
2183 err = ceph_pagelist_encode_32(pagelist, session->s_nr_caps);
2184 if (err)
2185 goto fail;
2186 err = iterate_session_caps(session, encode_caps_cb, pagelist);
2187 if (err < 0)
2188 goto out;
2191 * snaprealms. we provide mds with the ino, seq (version), and
2192 * parent for all of our realms. If the mds has any newer info,
2193 * it will tell us.
2195 for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
2196 struct ceph_snap_realm *realm =
2197 rb_entry(p, struct ceph_snap_realm, node);
2198 struct ceph_mds_snaprealm_reconnect sr_rec;
2200 dout(" adding snap realm %llx seq %lld parent %llx\n",
2201 realm->ino, realm->seq, realm->parent_ino);
2202 sr_rec.ino = cpu_to_le64(realm->ino);
2203 sr_rec.seq = cpu_to_le64(realm->seq);
2204 sr_rec.parent = cpu_to_le64(realm->parent_ino);
2205 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
2206 if (err)
2207 goto fail;
2210 send:
2211 reply->pagelist = pagelist;
2212 reply->hdr.data_len = cpu_to_le32(pagelist->length);
2213 reply->nr_pages = calc_pages_for(0, pagelist->length);
2214 ceph_con_send(&session->s_con, reply);
2216 if (session) {
2217 session->s_state = CEPH_MDS_SESSION_OPEN;
2218 __wake_requests(mdsc, &session->s_waiting);
2221 out:
2222 up_read(&mdsc->snap_rwsem);
2223 if (session) {
2224 mutex_unlock(&session->s_mutex);
2225 ceph_put_mds_session(session);
2227 mutex_lock(&mdsc->mutex);
2228 return;
2230 fail:
2231 ceph_msg_put(reply);
2232 fail_nomsg:
2233 ceph_pagelist_release(pagelist);
2234 kfree(pagelist);
2235 fail_nopagelist:
2236 pr_err("ENOMEM preparing reconnect for mds%d\n", mds);
2237 goto out;
2242 * compare old and new mdsmaps, kicking requests
2243 * and closing out old connections as necessary
2245 * called under mdsc->mutex.
2247 static void check_new_map(struct ceph_mds_client *mdsc,
2248 struct ceph_mdsmap *newmap,
2249 struct ceph_mdsmap *oldmap)
2251 int i;
2252 int oldstate, newstate;
2253 struct ceph_mds_session *s;
2255 dout("check_new_map new %u old %u\n",
2256 newmap->m_epoch, oldmap->m_epoch);
2258 for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) {
2259 if (mdsc->sessions[i] == NULL)
2260 continue;
2261 s = mdsc->sessions[i];
2262 oldstate = ceph_mdsmap_get_state(oldmap, i);
2263 newstate = ceph_mdsmap_get_state(newmap, i);
2265 dout("check_new_map mds%d state %s -> %s (session %s)\n",
2266 i, ceph_mds_state_name(oldstate),
2267 ceph_mds_state_name(newstate),
2268 session_state_name(s->s_state));
2270 if (memcmp(ceph_mdsmap_get_addr(oldmap, i),
2271 ceph_mdsmap_get_addr(newmap, i),
2272 sizeof(struct ceph_entity_addr))) {
2273 if (s->s_state == CEPH_MDS_SESSION_OPENING) {
2274 /* the session never opened, just close it
2275 * out now */
2276 __wake_requests(mdsc, &s->s_waiting);
2277 __unregister_session(mdsc, s);
2278 } else {
2279 /* just close it */
2280 mutex_unlock(&mdsc->mutex);
2281 mutex_lock(&s->s_mutex);
2282 mutex_lock(&mdsc->mutex);
2283 ceph_con_close(&s->s_con);
2284 mutex_unlock(&s->s_mutex);
2285 s->s_state = CEPH_MDS_SESSION_RESTARTING;
2288 /* kick any requests waiting on the recovering mds */
2289 kick_requests(mdsc, i, 1);
2290 } else if (oldstate == newstate) {
2291 continue; /* nothing new with this mds */
2295 * send reconnect?
2297 if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
2298 newstate >= CEPH_MDS_STATE_RECONNECT)
2299 send_mds_reconnect(mdsc, i);
2302 * kick requests on any mds that has gone active.
2304 * kick requests on cur or forwarder: we may have sent
2305 * the request to mds1, mds1 told us it forwarded it
2306 * to mds2, but then we learn mds1 failed and can't be
2307 * sure it successfully forwarded our request before
2308 * it died.
2310 if (oldstate < CEPH_MDS_STATE_ACTIVE &&
2311 newstate >= CEPH_MDS_STATE_ACTIVE) {
2312 pr_info("mds%d reconnect completed\n", s->s_mds);
2313 kick_requests(mdsc, i, 1);
2314 ceph_kick_flushing_caps(mdsc, s);
2315 wake_up_session_caps(s, 1);
2323 * leases
2327 * caller must hold session s_mutex, dentry->d_lock
2329 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
2331 struct ceph_dentry_info *di = ceph_dentry(dentry);
2333 ceph_put_mds_session(di->lease_session);
2334 di->lease_session = NULL;
2337 static void handle_lease(struct ceph_mds_client *mdsc,
2338 struct ceph_mds_session *session,
2339 struct ceph_msg *msg)
2341 struct super_block *sb = mdsc->client->sb;
2342 struct inode *inode;
2343 struct ceph_inode_info *ci;
2344 struct dentry *parent, *dentry;
2345 struct ceph_dentry_info *di;
2346 int mds = session->s_mds;
2347 struct ceph_mds_lease *h = msg->front.iov_base;
2348 struct ceph_vino vino;
2349 int mask;
2350 struct qstr dname;
2351 int release = 0;
2353 dout("handle_lease from mds%d\n", mds);
2355 /* decode */
2356 if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
2357 goto bad;
2358 vino.ino = le64_to_cpu(h->ino);
2359 vino.snap = CEPH_NOSNAP;
2360 mask = le16_to_cpu(h->mask);
2361 dname.name = (void *)h + sizeof(*h) + sizeof(u32);
2362 dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
2363 if (dname.len != get_unaligned_le32(h+1))
2364 goto bad;
2366 mutex_lock(&session->s_mutex);
2367 session->s_seq++;
2369 /* lookup inode */
2370 inode = ceph_find_inode(sb, vino);
2371 dout("handle_lease '%s', mask %d, ino %llx %p\n",
2372 ceph_lease_op_name(h->action), mask, vino.ino, inode);
2373 if (inode == NULL) {
2374 dout("handle_lease no inode %llx\n", vino.ino);
2375 goto release;
2377 ci = ceph_inode(inode);
2379 /* dentry */
2380 parent = d_find_alias(inode);
2381 if (!parent) {
2382 dout("no parent dentry on inode %p\n", inode);
2383 WARN_ON(1);
2384 goto release; /* hrm... */
2386 dname.hash = full_name_hash(dname.name, dname.len);
2387 dentry = d_lookup(parent, &dname);
2388 dput(parent);
2389 if (!dentry)
2390 goto release;
2392 spin_lock(&dentry->d_lock);
2393 di = ceph_dentry(dentry);
2394 switch (h->action) {
2395 case CEPH_MDS_LEASE_REVOKE:
2396 if (di && di->lease_session == session) {
2397 h->seq = cpu_to_le32(di->lease_seq);
2398 __ceph_mdsc_drop_dentry_lease(dentry);
2400 release = 1;
2401 break;
2403 case CEPH_MDS_LEASE_RENEW:
2404 if (di && di->lease_session == session &&
2405 di->lease_gen == session->s_cap_gen &&
2406 di->lease_renew_from &&
2407 di->lease_renew_after == 0) {
2408 unsigned long duration =
2409 le32_to_cpu(h->duration_ms) * HZ / 1000;
2411 di->lease_seq = le32_to_cpu(h->seq);
2412 dentry->d_time = di->lease_renew_from + duration;
2413 di->lease_renew_after = di->lease_renew_from +
2414 (duration >> 1);
2415 di->lease_renew_from = 0;
2417 break;
2419 spin_unlock(&dentry->d_lock);
2420 dput(dentry);
2422 if (!release)
2423 goto out;
2425 release:
2426 /* let's just reuse the same message */
2427 h->action = CEPH_MDS_LEASE_REVOKE_ACK;
2428 ceph_msg_get(msg);
2429 ceph_con_send(&session->s_con, msg);
2431 out:
2432 iput(inode);
2433 mutex_unlock(&session->s_mutex);
2434 return;
2436 bad:
2437 pr_err("corrupt lease message\n");
2438 ceph_msg_dump(msg);
2441 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
2442 struct inode *inode,
2443 struct dentry *dentry, char action,
2444 u32 seq)
2446 struct ceph_msg *msg;
2447 struct ceph_mds_lease *lease;
2448 int len = sizeof(*lease) + sizeof(u32);
2449 int dnamelen = 0;
2451 dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
2452 inode, dentry, ceph_lease_op_name(action), session->s_mds);
2453 dnamelen = dentry->d_name.len;
2454 len += dnamelen;
2456 msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, 0, 0, NULL);
2457 if (IS_ERR(msg))
2458 return;
2459 lease = msg->front.iov_base;
2460 lease->action = action;
2461 lease->mask = cpu_to_le16(CEPH_LOCK_DN);
2462 lease->ino = cpu_to_le64(ceph_vino(inode).ino);
2463 lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
2464 lease->seq = cpu_to_le32(seq);
2465 put_unaligned_le32(dnamelen, lease + 1);
2466 memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
2469 * if this is a preemptive lease RELEASE, no need to
2470 * flush request stream, since the actual request will
2471 * soon follow.
2473 msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
2475 ceph_con_send(&session->s_con, msg);
2479 * Preemptively release a lease we expect to invalidate anyway.
2480 * Pass @inode always, @dentry is optional.
2482 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode,
2483 struct dentry *dentry, int mask)
2485 struct ceph_dentry_info *di;
2486 struct ceph_mds_session *session;
2487 u32 seq;
2489 BUG_ON(inode == NULL);
2490 BUG_ON(dentry == NULL);
2491 BUG_ON(mask != CEPH_LOCK_DN);
2493 /* is dentry lease valid? */
2494 spin_lock(&dentry->d_lock);
2495 di = ceph_dentry(dentry);
2496 if (!di || !di->lease_session ||
2497 di->lease_session->s_mds < 0 ||
2498 di->lease_gen != di->lease_session->s_cap_gen ||
2499 !time_before(jiffies, dentry->d_time)) {
2500 dout("lease_release inode %p dentry %p -- "
2501 "no lease on %d\n",
2502 inode, dentry, mask);
2503 spin_unlock(&dentry->d_lock);
2504 return;
2507 /* we do have a lease on this dentry; note mds and seq */
2508 session = ceph_get_mds_session(di->lease_session);
2509 seq = di->lease_seq;
2510 __ceph_mdsc_drop_dentry_lease(dentry);
2511 spin_unlock(&dentry->d_lock);
2513 dout("lease_release inode %p dentry %p mask %d to mds%d\n",
2514 inode, dentry, mask, session->s_mds);
2515 ceph_mdsc_lease_send_msg(session, inode, dentry,
2516 CEPH_MDS_LEASE_RELEASE, seq);
2517 ceph_put_mds_session(session);
2521 * drop all leases (and dentry refs) in preparation for umount
2523 static void drop_leases(struct ceph_mds_client *mdsc)
2525 int i;
2527 dout("drop_leases\n");
2528 mutex_lock(&mdsc->mutex);
2529 for (i = 0; i < mdsc->max_sessions; i++) {
2530 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2531 if (!s)
2532 continue;
2533 mutex_unlock(&mdsc->mutex);
2534 mutex_lock(&s->s_mutex);
2535 mutex_unlock(&s->s_mutex);
2536 ceph_put_mds_session(s);
2537 mutex_lock(&mdsc->mutex);
2539 mutex_unlock(&mdsc->mutex);
2545 * delayed work -- periodically trim expired leases, renew caps with mds
2547 static void schedule_delayed(struct ceph_mds_client *mdsc)
2549 int delay = 5;
2550 unsigned hz = round_jiffies_relative(HZ * delay);
2551 schedule_delayed_work(&mdsc->delayed_work, hz);
2554 static void delayed_work(struct work_struct *work)
2556 int i;
2557 struct ceph_mds_client *mdsc =
2558 container_of(work, struct ceph_mds_client, delayed_work.work);
2559 int renew_interval;
2560 int renew_caps;
2562 dout("mdsc delayed_work\n");
2563 ceph_check_delayed_caps(mdsc);
2565 mutex_lock(&mdsc->mutex);
2566 renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
2567 renew_caps = time_after_eq(jiffies, HZ*renew_interval +
2568 mdsc->last_renew_caps);
2569 if (renew_caps)
2570 mdsc->last_renew_caps = jiffies;
2572 for (i = 0; i < mdsc->max_sessions; i++) {
2573 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
2574 if (s == NULL)
2575 continue;
2576 if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
2577 dout("resending session close request for mds%d\n",
2578 s->s_mds);
2579 request_close_session(mdsc, s);
2580 ceph_put_mds_session(s);
2581 continue;
2583 if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
2584 if (s->s_state == CEPH_MDS_SESSION_OPEN) {
2585 s->s_state = CEPH_MDS_SESSION_HUNG;
2586 pr_info("mds%d hung\n", s->s_mds);
2589 if (s->s_state < CEPH_MDS_SESSION_OPEN) {
2590 /* this mds is failed or recovering, just wait */
2591 ceph_put_mds_session(s);
2592 continue;
2594 mutex_unlock(&mdsc->mutex);
2596 mutex_lock(&s->s_mutex);
2597 if (renew_caps)
2598 send_renew_caps(mdsc, s);
2599 else
2600 ceph_con_keepalive(&s->s_con);
2601 add_cap_releases(mdsc, s, -1);
2602 send_cap_releases(mdsc, s);
2603 mutex_unlock(&s->s_mutex);
2604 ceph_put_mds_session(s);
2606 mutex_lock(&mdsc->mutex);
2608 mutex_unlock(&mdsc->mutex);
2610 schedule_delayed(mdsc);
2614 int ceph_mdsc_init(struct ceph_mds_client *mdsc, struct ceph_client *client)
2616 mdsc->client = client;
2617 mutex_init(&mdsc->mutex);
2618 mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
2619 init_completion(&mdsc->safe_umount_waiters);
2620 init_completion(&mdsc->session_close_waiters);
2621 INIT_LIST_HEAD(&mdsc->waiting_for_map);
2622 mdsc->sessions = NULL;
2623 mdsc->max_sessions = 0;
2624 mdsc->stopping = 0;
2625 init_rwsem(&mdsc->snap_rwsem);
2626 mdsc->snap_realms = RB_ROOT;
2627 INIT_LIST_HEAD(&mdsc->snap_empty);
2628 spin_lock_init(&mdsc->snap_empty_lock);
2629 mdsc->last_tid = 0;
2630 mdsc->request_tree = RB_ROOT;
2631 INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
2632 mdsc->last_renew_caps = jiffies;
2633 INIT_LIST_HEAD(&mdsc->cap_delay_list);
2634 spin_lock_init(&mdsc->cap_delay_lock);
2635 INIT_LIST_HEAD(&mdsc->snap_flush_list);
2636 spin_lock_init(&mdsc->snap_flush_lock);
2637 mdsc->cap_flush_seq = 0;
2638 INIT_LIST_HEAD(&mdsc->cap_dirty);
2639 mdsc->num_cap_flushing = 0;
2640 spin_lock_init(&mdsc->cap_dirty_lock);
2641 init_waitqueue_head(&mdsc->cap_flushing_wq);
2642 spin_lock_init(&mdsc->dentry_lru_lock);
2643 INIT_LIST_HEAD(&mdsc->dentry_lru);
2644 return 0;
2648 * Wait for safe replies on open mds requests. If we time out, drop
2649 * all requests from the tree to avoid dangling dentry refs.
2651 static void wait_requests(struct ceph_mds_client *mdsc)
2653 struct ceph_mds_request *req;
2654 struct ceph_client *client = mdsc->client;
2656 mutex_lock(&mdsc->mutex);
2657 if (__get_oldest_req(mdsc)) {
2658 mutex_unlock(&mdsc->mutex);
2660 dout("wait_requests waiting for requests\n");
2661 wait_for_completion_timeout(&mdsc->safe_umount_waiters,
2662 client->mount_args->mount_timeout * HZ);
2664 /* tear down remaining requests */
2665 mutex_lock(&mdsc->mutex);
2666 while ((req = __get_oldest_req(mdsc))) {
2667 dout("wait_requests timed out on tid %llu\n",
2668 req->r_tid);
2669 __unregister_request(mdsc, req);
2672 mutex_unlock(&mdsc->mutex);
2673 dout("wait_requests done\n");
2677 * called before mount is ro, and before dentries are torn down.
2678 * (hmm, does this still race with new lookups?)
2680 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
2682 dout("pre_umount\n");
2683 mdsc->stopping = 1;
2685 drop_leases(mdsc);
2686 ceph_flush_dirty_caps(mdsc);
2687 wait_requests(mdsc);
2691 * wait for all write mds requests to flush.
2693 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
2695 struct ceph_mds_request *req = NULL, *nextreq;
2696 struct rb_node *n;
2698 mutex_lock(&mdsc->mutex);
2699 dout("wait_unsafe_requests want %lld\n", want_tid);
2700 restart:
2701 req = __get_oldest_req(mdsc);
2702 while (req && req->r_tid <= want_tid) {
2703 /* find next request */
2704 n = rb_next(&req->r_node);
2705 if (n)
2706 nextreq = rb_entry(n, struct ceph_mds_request, r_node);
2707 else
2708 nextreq = NULL;
2709 if ((req->r_op & CEPH_MDS_OP_WRITE)) {
2710 /* write op */
2711 ceph_mdsc_get_request(req);
2712 if (nextreq)
2713 ceph_mdsc_get_request(nextreq);
2714 mutex_unlock(&mdsc->mutex);
2715 dout("wait_unsafe_requests wait on %llu (want %llu)\n",
2716 req->r_tid, want_tid);
2717 wait_for_completion(&req->r_safe_completion);
2718 mutex_lock(&mdsc->mutex);
2719 ceph_mdsc_put_request(req);
2720 if (!nextreq)
2721 break; /* next dne before, so we're done! */
2722 if (RB_EMPTY_NODE(&nextreq->r_node)) {
2723 /* next request was removed from tree */
2724 ceph_mdsc_put_request(nextreq);
2725 goto restart;
2727 ceph_mdsc_put_request(nextreq); /* won't go away */
2729 req = nextreq;
2731 mutex_unlock(&mdsc->mutex);
2732 dout("wait_unsafe_requests done\n");
2735 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
2737 u64 want_tid, want_flush;
2739 dout("sync\n");
2740 mutex_lock(&mdsc->mutex);
2741 want_tid = mdsc->last_tid;
2742 want_flush = mdsc->cap_flush_seq;
2743 mutex_unlock(&mdsc->mutex);
2744 dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush);
2746 ceph_flush_dirty_caps(mdsc);
2748 wait_unsafe_requests(mdsc, want_tid);
2749 wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush));
2754 * called after sb is ro.
2756 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
2758 struct ceph_mds_session *session;
2759 int i;
2760 int n;
2761 struct ceph_client *client = mdsc->client;
2762 unsigned long started, timeout = client->mount_args->mount_timeout * HZ;
2764 dout("close_sessions\n");
2766 mutex_lock(&mdsc->mutex);
2768 /* close sessions */
2769 started = jiffies;
2770 while (time_before(jiffies, started + timeout)) {
2771 dout("closing sessions\n");
2772 n = 0;
2773 for (i = 0; i < mdsc->max_sessions; i++) {
2774 session = __ceph_lookup_mds_session(mdsc, i);
2775 if (!session)
2776 continue;
2777 mutex_unlock(&mdsc->mutex);
2778 mutex_lock(&session->s_mutex);
2779 __close_session(mdsc, session);
2780 mutex_unlock(&session->s_mutex);
2781 ceph_put_mds_session(session);
2782 mutex_lock(&mdsc->mutex);
2783 n++;
2785 if (n == 0)
2786 break;
2788 if (client->mount_state == CEPH_MOUNT_SHUTDOWN)
2789 break;
2791 dout("waiting for sessions to close\n");
2792 mutex_unlock(&mdsc->mutex);
2793 wait_for_completion_timeout(&mdsc->session_close_waiters,
2794 timeout);
2795 mutex_lock(&mdsc->mutex);
2798 /* tear down remaining sessions */
2799 for (i = 0; i < mdsc->max_sessions; i++) {
2800 if (mdsc->sessions[i]) {
2801 session = get_session(mdsc->sessions[i]);
2802 __unregister_session(mdsc, session);
2803 mutex_unlock(&mdsc->mutex);
2804 mutex_lock(&session->s_mutex);
2805 remove_session_caps(session);
2806 mutex_unlock(&session->s_mutex);
2807 ceph_put_mds_session(session);
2808 mutex_lock(&mdsc->mutex);
2812 WARN_ON(!list_empty(&mdsc->cap_delay_list));
2814 mutex_unlock(&mdsc->mutex);
2816 ceph_cleanup_empty_realms(mdsc);
2818 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
2820 dout("stopped\n");
2823 void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
2825 dout("stop\n");
2826 cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
2827 if (mdsc->mdsmap)
2828 ceph_mdsmap_destroy(mdsc->mdsmap);
2829 kfree(mdsc->sessions);
2834 * handle mds map update.
2836 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
2838 u32 epoch;
2839 u32 maplen;
2840 void *p = msg->front.iov_base;
2841 void *end = p + msg->front.iov_len;
2842 struct ceph_mdsmap *newmap, *oldmap;
2843 struct ceph_fsid fsid;
2844 int err = -EINVAL;
2846 ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
2847 ceph_decode_copy(&p, &fsid, sizeof(fsid));
2848 if (ceph_check_fsid(mdsc->client, &fsid) < 0)
2849 return;
2850 epoch = ceph_decode_32(&p);
2851 maplen = ceph_decode_32(&p);
2852 dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
2854 /* do we need it? */
2855 ceph_monc_got_mdsmap(&mdsc->client->monc, epoch);
2856 mutex_lock(&mdsc->mutex);
2857 if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
2858 dout("handle_map epoch %u <= our %u\n",
2859 epoch, mdsc->mdsmap->m_epoch);
2860 mutex_unlock(&mdsc->mutex);
2861 return;
2864 newmap = ceph_mdsmap_decode(&p, end);
2865 if (IS_ERR(newmap)) {
2866 err = PTR_ERR(newmap);
2867 goto bad_unlock;
2870 /* swap into place */
2871 if (mdsc->mdsmap) {
2872 oldmap = mdsc->mdsmap;
2873 mdsc->mdsmap = newmap;
2874 check_new_map(mdsc, newmap, oldmap);
2875 ceph_mdsmap_destroy(oldmap);
2876 } else {
2877 mdsc->mdsmap = newmap; /* first mds map */
2879 mdsc->client->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
2881 __wake_requests(mdsc, &mdsc->waiting_for_map);
2883 mutex_unlock(&mdsc->mutex);
2884 schedule_delayed(mdsc);
2885 return;
2887 bad_unlock:
2888 mutex_unlock(&mdsc->mutex);
2889 bad:
2890 pr_err("error decoding mdsmap %d\n", err);
2891 return;
2894 static struct ceph_connection *con_get(struct ceph_connection *con)
2896 struct ceph_mds_session *s = con->private;
2898 if (get_session(s)) {
2899 dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref));
2900 return con;
2902 dout("mdsc con_get %p FAIL\n", s);
2903 return NULL;
2906 static void con_put(struct ceph_connection *con)
2908 struct ceph_mds_session *s = con->private;
2910 ceph_put_mds_session(s);
2911 dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref));
2915 * if the client is unresponsive for long enough, the mds will kill
2916 * the session entirely.
2918 static void peer_reset(struct ceph_connection *con)
2920 struct ceph_mds_session *s = con->private;
2922 pr_err("mds%d gave us the boot. IMPLEMENT RECONNECT.\n",
2923 s->s_mds);
2926 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
2928 struct ceph_mds_session *s = con->private;
2929 struct ceph_mds_client *mdsc = s->s_mdsc;
2930 int type = le16_to_cpu(msg->hdr.type);
2932 mutex_lock(&mdsc->mutex);
2933 if (__verify_registered_session(mdsc, s) < 0) {
2934 mutex_unlock(&mdsc->mutex);
2935 goto out;
2937 mutex_unlock(&mdsc->mutex);
2939 switch (type) {
2940 case CEPH_MSG_MDS_MAP:
2941 ceph_mdsc_handle_map(mdsc, msg);
2942 break;
2943 case CEPH_MSG_CLIENT_SESSION:
2944 handle_session(s, msg);
2945 break;
2946 case CEPH_MSG_CLIENT_REPLY:
2947 handle_reply(s, msg);
2948 break;
2949 case CEPH_MSG_CLIENT_REQUEST_FORWARD:
2950 handle_forward(mdsc, s, msg);
2951 break;
2952 case CEPH_MSG_CLIENT_CAPS:
2953 ceph_handle_caps(s, msg);
2954 break;
2955 case CEPH_MSG_CLIENT_SNAP:
2956 ceph_handle_snap(mdsc, s, msg);
2957 break;
2958 case CEPH_MSG_CLIENT_LEASE:
2959 handle_lease(mdsc, s, msg);
2960 break;
2962 default:
2963 pr_err("received unknown message type %d %s\n", type,
2964 ceph_msg_type_name(type));
2966 out:
2967 ceph_msg_put(msg);
2971 * authentication
2973 static int get_authorizer(struct ceph_connection *con,
2974 void **buf, int *len, int *proto,
2975 void **reply_buf, int *reply_len, int force_new)
2977 struct ceph_mds_session *s = con->private;
2978 struct ceph_mds_client *mdsc = s->s_mdsc;
2979 struct ceph_auth_client *ac = mdsc->client->monc.auth;
2980 int ret = 0;
2982 if (force_new && s->s_authorizer) {
2983 ac->ops->destroy_authorizer(ac, s->s_authorizer);
2984 s->s_authorizer = NULL;
2986 if (s->s_authorizer == NULL) {
2987 if (ac->ops->create_authorizer) {
2988 ret = ac->ops->create_authorizer(
2989 ac, CEPH_ENTITY_TYPE_MDS,
2990 &s->s_authorizer,
2991 &s->s_authorizer_buf,
2992 &s->s_authorizer_buf_len,
2993 &s->s_authorizer_reply_buf,
2994 &s->s_authorizer_reply_buf_len);
2995 if (ret)
2996 return ret;
3000 *proto = ac->protocol;
3001 *buf = s->s_authorizer_buf;
3002 *len = s->s_authorizer_buf_len;
3003 *reply_buf = s->s_authorizer_reply_buf;
3004 *reply_len = s->s_authorizer_reply_buf_len;
3005 return 0;
3009 static int verify_authorizer_reply(struct ceph_connection *con, int len)
3011 struct ceph_mds_session *s = con->private;
3012 struct ceph_mds_client *mdsc = s->s_mdsc;
3013 struct ceph_auth_client *ac = mdsc->client->monc.auth;
3015 return ac->ops->verify_authorizer_reply(ac, s->s_authorizer, len);
3018 static int invalidate_authorizer(struct ceph_connection *con)
3020 struct ceph_mds_session *s = con->private;
3021 struct ceph_mds_client *mdsc = s->s_mdsc;
3022 struct ceph_auth_client *ac = mdsc->client->monc.auth;
3024 if (ac->ops->invalidate_authorizer)
3025 ac->ops->invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
3027 return ceph_monc_validate_auth(&mdsc->client->monc);
3030 const static struct ceph_connection_operations mds_con_ops = {
3031 .get = con_get,
3032 .put = con_put,
3033 .dispatch = dispatch,
3034 .get_authorizer = get_authorizer,
3035 .verify_authorizer_reply = verify_authorizer_reply,
3036 .invalidate_authorizer = invalidate_authorizer,
3037 .peer_reset = peer_reset,
3043 /* eof */