1 #include "ceph_debug.h"
3 #include <linux/wait.h>
4 #include <linux/slab.h>
5 #include <linux/sched.h>
7 #include "mds_client.h"
8 #include "mon_client.h"
10 #include "messenger.h"
16 * A cluster of MDS (metadata server) daemons is responsible for
17 * managing the file system namespace (the directory hierarchy and
18 * inodes) and for coordinating shared access to storage. Metadata is
19 * partitioning hierarchically across a number of servers, and that
20 * partition varies over time as the cluster adjusts the distribution
21 * in order to balance load.
23 * The MDS client is primarily responsible to managing synchronous
24 * metadata requests for operations like open, unlink, and so forth.
25 * If there is a MDS failure, we find out about it when we (possibly
26 * request and) receive a new MDS map, and can resubmit affected
29 * For the most part, though, we take advantage of a lossless
30 * communications channel to the MDS, and do not need to worry about
31 * timing out or resubmitting requests.
33 * We maintain a stateful "session" with each MDS we interact with.
34 * Within each session, we sent periodic heartbeat messages to ensure
35 * any capabilities or leases we have been issues remain valid. If
36 * the session times out and goes stale, our leases and capabilities
37 * are no longer valid.
40 static void __wake_requests(struct ceph_mds_client
*mdsc
,
41 struct list_head
*head
);
43 const static struct ceph_connection_operations mds_con_ops
;
51 * parse individual inode info
53 static int parse_reply_info_in(void **p
, void *end
,
54 struct ceph_mds_reply_info_in
*info
)
59 *p
+= sizeof(struct ceph_mds_reply_inode
) +
60 sizeof(*info
->in
->fragtree
.splits
) *
61 le32_to_cpu(info
->in
->fragtree
.nsplits
);
63 ceph_decode_32_safe(p
, end
, info
->symlink_len
, bad
);
64 ceph_decode_need(p
, end
, info
->symlink_len
, bad
);
66 *p
+= info
->symlink_len
;
68 ceph_decode_32_safe(p
, end
, info
->xattr_len
, bad
);
69 ceph_decode_need(p
, end
, info
->xattr_len
, bad
);
70 info
->xattr_data
= *p
;
71 *p
+= info
->xattr_len
;
78 * parse a normal reply, which may contain a (dir+)dentry and/or a
81 static int parse_reply_info_trace(void **p
, void *end
,
82 struct ceph_mds_reply_info_parsed
*info
)
86 if (info
->head
->is_dentry
) {
87 err
= parse_reply_info_in(p
, end
, &info
->diri
);
91 if (unlikely(*p
+ sizeof(*info
->dirfrag
) > end
))
94 *p
+= sizeof(*info
->dirfrag
) +
95 sizeof(u32
)*le32_to_cpu(info
->dirfrag
->ndist
);
96 if (unlikely(*p
> end
))
99 ceph_decode_32_safe(p
, end
, info
->dname_len
, bad
);
100 ceph_decode_need(p
, end
, info
->dname_len
, bad
);
102 *p
+= info
->dname_len
;
104 *p
+= sizeof(*info
->dlease
);
107 if (info
->head
->is_target
) {
108 err
= parse_reply_info_in(p
, end
, &info
->targeti
);
113 if (unlikely(*p
!= end
))
120 pr_err("problem parsing mds trace %d\n", err
);
125 * parse readdir results
127 static int parse_reply_info_dir(void **p
, void *end
,
128 struct ceph_mds_reply_info_parsed
*info
)
134 if (*p
+ sizeof(*info
->dir_dir
) > end
)
136 *p
+= sizeof(*info
->dir_dir
) +
137 sizeof(u32
)*le32_to_cpu(info
->dir_dir
->ndist
);
141 ceph_decode_need(p
, end
, sizeof(num
) + 2, bad
);
142 num
= ceph_decode_32(p
);
143 info
->dir_end
= ceph_decode_8(p
);
144 info
->dir_complete
= ceph_decode_8(p
);
148 /* alloc large array */
150 info
->dir_in
= kcalloc(num
, sizeof(*info
->dir_in
) +
151 sizeof(*info
->dir_dname
) +
152 sizeof(*info
->dir_dname_len
) +
153 sizeof(*info
->dir_dlease
),
155 if (info
->dir_in
== NULL
) {
159 info
->dir_dname
= (void *)(info
->dir_in
+ num
);
160 info
->dir_dname_len
= (void *)(info
->dir_dname
+ num
);
161 info
->dir_dlease
= (void *)(info
->dir_dname_len
+ num
);
165 ceph_decode_need(p
, end
, sizeof(u32
)*2, bad
);
166 info
->dir_dname_len
[i
] = ceph_decode_32(p
);
167 ceph_decode_need(p
, end
, info
->dir_dname_len
[i
], bad
);
168 info
->dir_dname
[i
] = *p
;
169 *p
+= info
->dir_dname_len
[i
];
170 dout("parsed dir dname '%.*s'\n", info
->dir_dname_len
[i
],
172 info
->dir_dlease
[i
] = *p
;
173 *p
+= sizeof(struct ceph_mds_reply_lease
);
176 err
= parse_reply_info_in(p
, end
, &info
->dir_in
[i
]);
191 pr_err("problem parsing dir contents %d\n", err
);
196 * parse entire mds reply
198 static int parse_reply_info(struct ceph_msg
*msg
,
199 struct ceph_mds_reply_info_parsed
*info
)
205 info
->head
= msg
->front
.iov_base
;
206 p
= msg
->front
.iov_base
+ sizeof(struct ceph_mds_reply_head
);
207 end
= p
+ msg
->front
.iov_len
- sizeof(struct ceph_mds_reply_head
);
210 ceph_decode_32_safe(&p
, end
, len
, bad
);
212 err
= parse_reply_info_trace(&p
, p
+len
, info
);
218 ceph_decode_32_safe(&p
, end
, len
, bad
);
220 err
= parse_reply_info_dir(&p
, p
+len
, info
);
226 ceph_decode_32_safe(&p
, end
, len
, bad
);
227 info
->snapblob_len
= len
;
238 pr_err("mds parse_reply err %d\n", err
);
242 static void destroy_reply_info(struct ceph_mds_reply_info_parsed
*info
)
251 static const char *session_state_name(int s
)
254 case CEPH_MDS_SESSION_NEW
: return "new";
255 case CEPH_MDS_SESSION_OPENING
: return "opening";
256 case CEPH_MDS_SESSION_OPEN
: return "open";
257 case CEPH_MDS_SESSION_HUNG
: return "hung";
258 case CEPH_MDS_SESSION_CLOSING
: return "closing";
259 case CEPH_MDS_SESSION_RESTARTING
: return "restarting";
260 case CEPH_MDS_SESSION_RECONNECTING
: return "reconnecting";
261 default: return "???";
265 static struct ceph_mds_session
*get_session(struct ceph_mds_session
*s
)
267 if (atomic_inc_not_zero(&s
->s_ref
)) {
268 dout("mdsc get_session %p %d -> %d\n", s
,
269 atomic_read(&s
->s_ref
)-1, atomic_read(&s
->s_ref
));
272 dout("mdsc get_session %p 0 -- FAIL", s
);
277 void ceph_put_mds_session(struct ceph_mds_session
*s
)
279 dout("mdsc put_session %p %d -> %d\n", s
,
280 atomic_read(&s
->s_ref
), atomic_read(&s
->s_ref
)-1);
281 if (atomic_dec_and_test(&s
->s_ref
)) {
283 s
->s_mdsc
->client
->monc
.auth
->ops
->destroy_authorizer(
284 s
->s_mdsc
->client
->monc
.auth
, s
->s_authorizer
);
290 * called under mdsc->mutex
292 struct ceph_mds_session
*__ceph_lookup_mds_session(struct ceph_mds_client
*mdsc
,
295 struct ceph_mds_session
*session
;
297 if (mds
>= mdsc
->max_sessions
|| mdsc
->sessions
[mds
] == NULL
)
299 session
= mdsc
->sessions
[mds
];
300 dout("lookup_mds_session %p %d\n", session
,
301 atomic_read(&session
->s_ref
));
302 get_session(session
);
306 static bool __have_session(struct ceph_mds_client
*mdsc
, int mds
)
308 if (mds
>= mdsc
->max_sessions
)
310 return mdsc
->sessions
[mds
];
313 static int __verify_registered_session(struct ceph_mds_client
*mdsc
,
314 struct ceph_mds_session
*s
)
316 if (s
->s_mds
>= mdsc
->max_sessions
||
317 mdsc
->sessions
[s
->s_mds
] != s
)
323 * create+register a new session for given mds.
324 * called under mdsc->mutex.
326 static struct ceph_mds_session
*register_session(struct ceph_mds_client
*mdsc
,
329 struct ceph_mds_session
*s
;
331 s
= kzalloc(sizeof(*s
), GFP_NOFS
);
333 return ERR_PTR(-ENOMEM
);
336 s
->s_state
= CEPH_MDS_SESSION_NEW
;
339 mutex_init(&s
->s_mutex
);
341 ceph_con_init(mdsc
->client
->msgr
, &s
->s_con
);
342 s
->s_con
.private = s
;
343 s
->s_con
.ops
= &mds_con_ops
;
344 s
->s_con
.peer_name
.type
= CEPH_ENTITY_TYPE_MDS
;
345 s
->s_con
.peer_name
.num
= cpu_to_le64(mds
);
347 spin_lock_init(&s
->s_cap_lock
);
350 s
->s_renew_requested
= 0;
352 INIT_LIST_HEAD(&s
->s_caps
);
355 atomic_set(&s
->s_ref
, 1);
356 INIT_LIST_HEAD(&s
->s_waiting
);
357 INIT_LIST_HEAD(&s
->s_unsafe
);
358 s
->s_num_cap_releases
= 0;
359 s
->s_cap_iterator
= NULL
;
360 INIT_LIST_HEAD(&s
->s_cap_releases
);
361 INIT_LIST_HEAD(&s
->s_cap_releases_done
);
362 INIT_LIST_HEAD(&s
->s_cap_flushing
);
363 INIT_LIST_HEAD(&s
->s_cap_snaps_flushing
);
365 dout("register_session mds%d\n", mds
);
366 if (mds
>= mdsc
->max_sessions
) {
367 int newmax
= 1 << get_count_order(mds
+1);
368 struct ceph_mds_session
**sa
;
370 dout("register_session realloc to %d\n", newmax
);
371 sa
= kcalloc(newmax
, sizeof(void *), GFP_NOFS
);
374 if (mdsc
->sessions
) {
375 memcpy(sa
, mdsc
->sessions
,
376 mdsc
->max_sessions
* sizeof(void *));
377 kfree(mdsc
->sessions
);
380 mdsc
->max_sessions
= newmax
;
382 mdsc
->sessions
[mds
] = s
;
383 atomic_inc(&s
->s_ref
); /* one ref to sessions[], one to caller */
385 ceph_con_open(&s
->s_con
, ceph_mdsmap_get_addr(mdsc
->mdsmap
, mds
));
391 return ERR_PTR(-ENOMEM
);
395 * called under mdsc->mutex
397 static void __unregister_session(struct ceph_mds_client
*mdsc
,
398 struct ceph_mds_session
*s
)
400 dout("__unregister_session mds%d %p\n", s
->s_mds
, s
);
401 BUG_ON(mdsc
->sessions
[s
->s_mds
] != s
);
402 mdsc
->sessions
[s
->s_mds
] = NULL
;
403 ceph_con_close(&s
->s_con
);
404 ceph_put_mds_session(s
);
408 * drop session refs in request.
410 * should be last request ref, or hold mdsc->mutex
412 static void put_request_session(struct ceph_mds_request
*req
)
414 if (req
->r_session
) {
415 ceph_put_mds_session(req
->r_session
);
416 req
->r_session
= NULL
;
420 void ceph_mdsc_release_request(struct kref
*kref
)
422 struct ceph_mds_request
*req
= container_of(kref
,
423 struct ceph_mds_request
,
426 ceph_msg_put(req
->r_request
);
428 ceph_msg_put(req
->r_reply
);
429 destroy_reply_info(&req
->r_reply_info
);
432 ceph_put_cap_refs(ceph_inode(req
->r_inode
),
436 if (req
->r_locked_dir
)
437 ceph_put_cap_refs(ceph_inode(req
->r_locked_dir
),
439 if (req
->r_target_inode
)
440 iput(req
->r_target_inode
);
443 if (req
->r_old_dentry
) {
445 ceph_inode(req
->r_old_dentry
->d_parent
->d_inode
),
447 dput(req
->r_old_dentry
);
451 put_request_session(req
);
452 ceph_unreserve_caps(&req
->r_caps_reservation
);
457 * lookup session, bump ref if found.
459 * called under mdsc->mutex.
461 static struct ceph_mds_request
*__lookup_request(struct ceph_mds_client
*mdsc
,
464 struct ceph_mds_request
*req
;
465 struct rb_node
*n
= mdsc
->request_tree
.rb_node
;
468 req
= rb_entry(n
, struct ceph_mds_request
, r_node
);
469 if (tid
< req
->r_tid
)
471 else if (tid
> req
->r_tid
)
474 ceph_mdsc_get_request(req
);
481 static void __insert_request(struct ceph_mds_client
*mdsc
,
482 struct ceph_mds_request
*new)
484 struct rb_node
**p
= &mdsc
->request_tree
.rb_node
;
485 struct rb_node
*parent
= NULL
;
486 struct ceph_mds_request
*req
= NULL
;
490 req
= rb_entry(parent
, struct ceph_mds_request
, r_node
);
491 if (new->r_tid
< req
->r_tid
)
493 else if (new->r_tid
> req
->r_tid
)
499 rb_link_node(&new->r_node
, parent
, p
);
500 rb_insert_color(&new->r_node
, &mdsc
->request_tree
);
504 * Register an in-flight request, and assign a tid. Link to directory
505 * are modifying (if any).
507 * Called under mdsc->mutex.
509 static void __register_request(struct ceph_mds_client
*mdsc
,
510 struct ceph_mds_request
*req
,
513 req
->r_tid
= ++mdsc
->last_tid
;
515 ceph_reserve_caps(&req
->r_caps_reservation
, req
->r_num_caps
);
516 dout("__register_request %p tid %lld\n", req
, req
->r_tid
);
517 ceph_mdsc_get_request(req
);
518 __insert_request(mdsc
, req
);
521 struct ceph_inode_info
*ci
= ceph_inode(dir
);
523 spin_lock(&ci
->i_unsafe_lock
);
524 req
->r_unsafe_dir
= dir
;
525 list_add_tail(&req
->r_unsafe_dir_item
, &ci
->i_unsafe_dirops
);
526 spin_unlock(&ci
->i_unsafe_lock
);
530 static void __unregister_request(struct ceph_mds_client
*mdsc
,
531 struct ceph_mds_request
*req
)
533 dout("__unregister_request %p tid %lld\n", req
, req
->r_tid
);
534 rb_erase(&req
->r_node
, &mdsc
->request_tree
);
535 RB_CLEAR_NODE(&req
->r_node
);
537 if (req
->r_unsafe_dir
) {
538 struct ceph_inode_info
*ci
= ceph_inode(req
->r_unsafe_dir
);
540 spin_lock(&ci
->i_unsafe_lock
);
541 list_del_init(&req
->r_unsafe_dir_item
);
542 spin_unlock(&ci
->i_unsafe_lock
);
545 ceph_mdsc_put_request(req
);
549 * Choose mds to send request to next. If there is a hint set in the
550 * request (e.g., due to a prior forward hint from the mds), use that.
551 * Otherwise, consult frag tree and/or caps to identify the
552 * appropriate mds. If all else fails, choose randomly.
554 * Called under mdsc->mutex.
556 static int __choose_mds(struct ceph_mds_client
*mdsc
,
557 struct ceph_mds_request
*req
)
560 struct ceph_inode_info
*ci
;
561 struct ceph_cap
*cap
;
562 int mode
= req
->r_direct_mode
;
564 u32 hash
= req
->r_direct_hash
;
565 bool is_hash
= req
->r_direct_is_hash
;
568 * is there a specific mds we should try? ignore hint if we have
569 * no session and the mds is not up (active or recovering).
571 if (req
->r_resend_mds
>= 0 &&
572 (__have_session(mdsc
, req
->r_resend_mds
) ||
573 ceph_mdsmap_get_state(mdsc
->mdsmap
, req
->r_resend_mds
) > 0)) {
574 dout("choose_mds using resend_mds mds%d\n",
576 return req
->r_resend_mds
;
579 if (mode
== USE_RANDOM_MDS
)
584 inode
= req
->r_inode
;
585 } else if (req
->r_dentry
) {
586 if (req
->r_dentry
->d_inode
) {
587 inode
= req
->r_dentry
->d_inode
;
589 inode
= req
->r_dentry
->d_parent
->d_inode
;
590 hash
= req
->r_dentry
->d_name
.hash
;
594 dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode
, (int)is_hash
,
598 ci
= ceph_inode(inode
);
600 if (is_hash
&& S_ISDIR(inode
->i_mode
)) {
601 struct ceph_inode_frag frag
;
604 ceph_choose_frag(ci
, hash
, &frag
, &found
);
606 if (mode
== USE_ANY_MDS
&& frag
.ndist
> 0) {
609 /* choose a random replica */
610 get_random_bytes(&r
, 1);
613 dout("choose_mds %p %llx.%llx "
614 "frag %u mds%d (%d/%d)\n",
615 inode
, ceph_vinop(inode
),
621 /* since this file/dir wasn't known to be
622 * replicated, then we want to look for the
623 * authoritative mds. */
626 /* choose auth mds */
628 dout("choose_mds %p %llx.%llx "
629 "frag %u mds%d (auth)\n",
630 inode
, ceph_vinop(inode
), frag
.frag
, mds
);
636 spin_lock(&inode
->i_lock
);
638 if (mode
== USE_AUTH_MDS
)
639 cap
= ci
->i_auth_cap
;
640 if (!cap
&& !RB_EMPTY_ROOT(&ci
->i_caps
))
641 cap
= rb_entry(rb_first(&ci
->i_caps
), struct ceph_cap
, ci_node
);
643 spin_unlock(&inode
->i_lock
);
646 mds
= cap
->session
->s_mds
;
647 dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
648 inode
, ceph_vinop(inode
), mds
,
649 cap
== ci
->i_auth_cap
? "auth " : "", cap
);
650 spin_unlock(&inode
->i_lock
);
654 mds
= ceph_mdsmap_get_random_mds(mdsc
->mdsmap
);
655 dout("choose_mds chose random mds%d\n", mds
);
663 static struct ceph_msg
*create_session_msg(u32 op
, u64 seq
)
665 struct ceph_msg
*msg
;
666 struct ceph_mds_session_head
*h
;
668 msg
= ceph_msg_new(CEPH_MSG_CLIENT_SESSION
, sizeof(*h
), 0, 0, NULL
);
670 pr_err("create_session_msg ENOMEM creating msg\n");
671 return ERR_PTR(PTR_ERR(msg
));
673 h
= msg
->front
.iov_base
;
674 h
->op
= cpu_to_le32(op
);
675 h
->seq
= cpu_to_le64(seq
);
680 * send session open request.
682 * called under mdsc->mutex
684 static int __open_session(struct ceph_mds_client
*mdsc
,
685 struct ceph_mds_session
*session
)
687 struct ceph_msg
*msg
;
689 int mds
= session
->s_mds
;
692 /* wait for mds to go active? */
693 mstate
= ceph_mdsmap_get_state(mdsc
->mdsmap
, mds
);
694 dout("open_session to mds%d (%s)\n", mds
,
695 ceph_mds_state_name(mstate
));
696 session
->s_state
= CEPH_MDS_SESSION_OPENING
;
697 session
->s_renew_requested
= jiffies
;
699 /* send connect message */
700 msg
= create_session_msg(CEPH_SESSION_REQUEST_OPEN
, session
->s_seq
);
705 ceph_con_send(&session
->s_con
, msg
);
716 * Free preallocated cap messages assigned to this session
718 static void cleanup_cap_releases(struct ceph_mds_session
*session
)
720 struct ceph_msg
*msg
;
722 spin_lock(&session
->s_cap_lock
);
723 while (!list_empty(&session
->s_cap_releases
)) {
724 msg
= list_first_entry(&session
->s_cap_releases
,
725 struct ceph_msg
, list_head
);
726 list_del_init(&msg
->list_head
);
729 while (!list_empty(&session
->s_cap_releases_done
)) {
730 msg
= list_first_entry(&session
->s_cap_releases_done
,
731 struct ceph_msg
, list_head
);
732 list_del_init(&msg
->list_head
);
735 spin_unlock(&session
->s_cap_lock
);
739 * Helper to safely iterate over all caps associated with a session.
741 * caller must hold session s_mutex
743 static int iterate_session_caps(struct ceph_mds_session
*session
,
744 int (*cb
)(struct inode
*, struct ceph_cap
*,
748 struct ceph_cap
*cap
;
749 struct inode
*inode
, *last_inode
= NULL
;
750 struct ceph_cap
*old_cap
= NULL
;
753 dout("iterate_session_caps %p mds%d\n", session
, session
->s_mds
);
754 spin_lock(&session
->s_cap_lock
);
755 p
= session
->s_caps
.next
;
756 while (p
!= &session
->s_caps
) {
757 cap
= list_entry(p
, struct ceph_cap
, session_caps
);
758 inode
= igrab(&cap
->ci
->vfs_inode
);
763 session
->s_cap_iterator
= cap
;
764 spin_unlock(&session
->s_cap_lock
);
771 ceph_put_cap(old_cap
);
775 ret
= cb(inode
, cap
, arg
);
778 spin_lock(&session
->s_cap_lock
);
780 if (cap
->ci
== NULL
) {
781 dout("iterate_session_caps finishing cap %p removal\n",
783 BUG_ON(cap
->session
!= session
);
784 list_del_init(&cap
->session_caps
);
785 session
->s_nr_caps
--;
787 old_cap
= cap
; /* put_cap it w/o locks held */
794 session
->s_cap_iterator
= NULL
;
795 spin_unlock(&session
->s_cap_lock
);
800 ceph_put_cap(old_cap
);
805 static int remove_session_caps_cb(struct inode
*inode
, struct ceph_cap
*cap
,
808 struct ceph_inode_info
*ci
= ceph_inode(inode
);
809 dout("removing cap %p, ci is %p, inode is %p\n",
810 cap
, ci
, &ci
->vfs_inode
);
811 ceph_remove_cap(cap
);
816 * caller must hold session s_mutex
818 static void remove_session_caps(struct ceph_mds_session
*session
)
820 dout("remove_session_caps on %p\n", session
);
821 iterate_session_caps(session
, remove_session_caps_cb
, NULL
);
822 BUG_ON(session
->s_nr_caps
> 0);
823 cleanup_cap_releases(session
);
827 * wake up any threads waiting on this session's caps. if the cap is
828 * old (didn't get renewed on the client reconnect), remove it now.
830 * caller must hold s_mutex.
832 static int wake_up_session_cb(struct inode
*inode
, struct ceph_cap
*cap
,
835 struct ceph_inode_info
*ci
= ceph_inode(inode
);
837 wake_up(&ci
->i_cap_wq
);
839 spin_lock(&inode
->i_lock
);
840 ci
->i_wanted_max_size
= 0;
841 ci
->i_requested_max_size
= 0;
842 spin_unlock(&inode
->i_lock
);
847 static void wake_up_session_caps(struct ceph_mds_session
*session
,
850 dout("wake_up_session_caps %p mds%d\n", session
, session
->s_mds
);
851 iterate_session_caps(session
, wake_up_session_cb
,
852 (void *)(unsigned long)reconnect
);
856 * Send periodic message to MDS renewing all currently held caps. The
857 * ack will reset the expiration for all caps from this session.
859 * caller holds s_mutex
861 static int send_renew_caps(struct ceph_mds_client
*mdsc
,
862 struct ceph_mds_session
*session
)
864 struct ceph_msg
*msg
;
867 if (time_after_eq(jiffies
, session
->s_cap_ttl
) &&
868 time_after_eq(session
->s_cap_ttl
, session
->s_renew_requested
))
869 pr_info("mds%d caps stale\n", session
->s_mds
);
870 session
->s_renew_requested
= jiffies
;
872 /* do not try to renew caps until a recovering mds has reconnected
873 * with its clients. */
874 state
= ceph_mdsmap_get_state(mdsc
->mdsmap
, session
->s_mds
);
875 if (state
< CEPH_MDS_STATE_RECONNECT
) {
876 dout("send_renew_caps ignoring mds%d (%s)\n",
877 session
->s_mds
, ceph_mds_state_name(state
));
881 dout("send_renew_caps to mds%d (%s)\n", session
->s_mds
,
882 ceph_mds_state_name(state
));
883 msg
= create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS
,
884 ++session
->s_renew_seq
);
887 ceph_con_send(&session
->s_con
, msg
);
892 * Note new cap ttl, and any transition from stale -> not stale (fresh?).
894 * Called under session->s_mutex
896 static void renewed_caps(struct ceph_mds_client
*mdsc
,
897 struct ceph_mds_session
*session
, int is_renew
)
902 spin_lock(&session
->s_cap_lock
);
903 was_stale
= is_renew
&& (session
->s_cap_ttl
== 0 ||
904 time_after_eq(jiffies
, session
->s_cap_ttl
));
906 session
->s_cap_ttl
= session
->s_renew_requested
+
907 mdsc
->mdsmap
->m_session_timeout
*HZ
;
910 if (time_before(jiffies
, session
->s_cap_ttl
)) {
911 pr_info("mds%d caps renewed\n", session
->s_mds
);
914 pr_info("mds%d caps still stale\n", session
->s_mds
);
917 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
918 session
->s_mds
, session
->s_cap_ttl
, was_stale
? "stale" : "fresh",
919 time_before(jiffies
, session
->s_cap_ttl
) ? "stale" : "fresh");
920 spin_unlock(&session
->s_cap_lock
);
923 wake_up_session_caps(session
, 0);
927 * send a session close request
929 static int request_close_session(struct ceph_mds_client
*mdsc
,
930 struct ceph_mds_session
*session
)
932 struct ceph_msg
*msg
;
935 dout("request_close_session mds%d state %s seq %lld\n",
936 session
->s_mds
, session_state_name(session
->s_state
),
938 msg
= create_session_msg(CEPH_SESSION_REQUEST_CLOSE
, session
->s_seq
);
942 ceph_con_send(&session
->s_con
, msg
);
947 * Called with s_mutex held.
949 static int __close_session(struct ceph_mds_client
*mdsc
,
950 struct ceph_mds_session
*session
)
952 if (session
->s_state
>= CEPH_MDS_SESSION_CLOSING
)
954 session
->s_state
= CEPH_MDS_SESSION_CLOSING
;
955 return request_close_session(mdsc
, session
);
961 * Because we can't cache an inode without one or more caps, we do
962 * this indirectly: if a cap is unused, we prune its aliases, at which
963 * point the inode will hopefully get dropped to.
965 * Yes, this is a bit sloppy. Our only real goal here is to respond to
966 * memory pressure from the MDS, though, so it needn't be perfect.
968 static int trim_caps_cb(struct inode
*inode
, struct ceph_cap
*cap
, void *arg
)
970 struct ceph_mds_session
*session
= arg
;
971 struct ceph_inode_info
*ci
= ceph_inode(inode
);
972 int used
, oissued
, mine
;
974 if (session
->s_trim_caps
<= 0)
977 spin_lock(&inode
->i_lock
);
978 mine
= cap
->issued
| cap
->implemented
;
979 used
= __ceph_caps_used(ci
);
980 oissued
= __ceph_caps_issued_other(ci
, cap
);
982 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s\n",
983 inode
, cap
, ceph_cap_string(mine
), ceph_cap_string(oissued
),
984 ceph_cap_string(used
));
985 if (ci
->i_dirty_caps
)
986 goto out
; /* dirty caps */
987 if ((used
& ~oissued
) & mine
)
988 goto out
; /* we need these caps */
990 session
->s_trim_caps
--;
992 /* we aren't the only cap.. just remove us */
993 __ceph_remove_cap(cap
);
995 /* try to drop referring dentries */
996 spin_unlock(&inode
->i_lock
);
997 d_prune_aliases(inode
);
998 dout("trim_caps_cb %p cap %p pruned, count now %d\n",
999 inode
, cap
, atomic_read(&inode
->i_count
));
1004 spin_unlock(&inode
->i_lock
);
1009 * Trim session cap count down to some max number.
1011 static int trim_caps(struct ceph_mds_client
*mdsc
,
1012 struct ceph_mds_session
*session
,
1015 int trim_caps
= session
->s_nr_caps
- max_caps
;
1017 dout("trim_caps mds%d start: %d / %d, trim %d\n",
1018 session
->s_mds
, session
->s_nr_caps
, max_caps
, trim_caps
);
1019 if (trim_caps
> 0) {
1020 session
->s_trim_caps
= trim_caps
;
1021 iterate_session_caps(session
, trim_caps_cb
, session
);
1022 dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1023 session
->s_mds
, session
->s_nr_caps
, max_caps
,
1024 trim_caps
- session
->s_trim_caps
);
1025 session
->s_trim_caps
= 0;
1031 * Allocate cap_release messages. If there is a partially full message
1032 * in the queue, try to allocate enough to cover it's remainder, so that
1033 * we can send it immediately.
1035 * Called under s_mutex.
1037 static int add_cap_releases(struct ceph_mds_client
*mdsc
,
1038 struct ceph_mds_session
*session
,
1041 struct ceph_msg
*msg
;
1042 struct ceph_mds_cap_release
*head
;
1046 extra
= mdsc
->client
->mount_args
->cap_release_safety
;
1048 spin_lock(&session
->s_cap_lock
);
1050 if (!list_empty(&session
->s_cap_releases
)) {
1051 msg
= list_first_entry(&session
->s_cap_releases
,
1054 head
= msg
->front
.iov_base
;
1055 extra
+= CEPH_CAPS_PER_RELEASE
- le32_to_cpu(head
->num
);
1058 while (session
->s_num_cap_releases
< session
->s_nr_caps
+ extra
) {
1059 spin_unlock(&session
->s_cap_lock
);
1060 msg
= ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE
, PAGE_CACHE_SIZE
,
1064 dout("add_cap_releases %p msg %p now %d\n", session
, msg
,
1065 (int)msg
->front
.iov_len
);
1066 head
= msg
->front
.iov_base
;
1067 head
->num
= cpu_to_le32(0);
1068 msg
->front
.iov_len
= sizeof(*head
);
1069 spin_lock(&session
->s_cap_lock
);
1070 list_add(&msg
->list_head
, &session
->s_cap_releases
);
1071 session
->s_num_cap_releases
+= CEPH_CAPS_PER_RELEASE
;
1074 if (!list_empty(&session
->s_cap_releases
)) {
1075 msg
= list_first_entry(&session
->s_cap_releases
,
1078 head
= msg
->front
.iov_base
;
1080 dout(" queueing non-full %p (%d)\n", msg
,
1081 le32_to_cpu(head
->num
));
1082 list_move_tail(&msg
->list_head
,
1083 &session
->s_cap_releases_done
);
1084 session
->s_num_cap_releases
-=
1085 CEPH_CAPS_PER_RELEASE
- le32_to_cpu(head
->num
);
1089 spin_unlock(&session
->s_cap_lock
);
1095 * flush all dirty inode data to disk.
1097 * returns true if we've flushed through want_flush_seq
1099 static int check_cap_flush(struct ceph_mds_client
*mdsc
, u64 want_flush_seq
)
1103 dout("check_cap_flush want %lld\n", want_flush_seq
);
1104 mutex_lock(&mdsc
->mutex
);
1105 for (mds
= 0; ret
&& mds
< mdsc
->max_sessions
; mds
++) {
1106 struct ceph_mds_session
*session
= mdsc
->sessions
[mds
];
1110 get_session(session
);
1111 mutex_unlock(&mdsc
->mutex
);
1113 mutex_lock(&session
->s_mutex
);
1114 if (!list_empty(&session
->s_cap_flushing
)) {
1115 struct ceph_inode_info
*ci
=
1116 list_entry(session
->s_cap_flushing
.next
,
1117 struct ceph_inode_info
,
1119 struct inode
*inode
= &ci
->vfs_inode
;
1121 spin_lock(&inode
->i_lock
);
1122 if (ci
->i_cap_flush_seq
<= want_flush_seq
) {
1123 dout("check_cap_flush still flushing %p "
1124 "seq %lld <= %lld to mds%d\n", inode
,
1125 ci
->i_cap_flush_seq
, want_flush_seq
,
1129 spin_unlock(&inode
->i_lock
);
1131 mutex_unlock(&session
->s_mutex
);
1132 ceph_put_mds_session(session
);
1136 mutex_lock(&mdsc
->mutex
);
1139 mutex_unlock(&mdsc
->mutex
);
1140 dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq
);
1145 * called under s_mutex
1147 static void send_cap_releases(struct ceph_mds_client
*mdsc
,
1148 struct ceph_mds_session
*session
)
1150 struct ceph_msg
*msg
;
1152 dout("send_cap_releases mds%d\n", session
->s_mds
);
1154 spin_lock(&session
->s_cap_lock
);
1155 if (list_empty(&session
->s_cap_releases_done
))
1157 msg
= list_first_entry(&session
->s_cap_releases_done
,
1158 struct ceph_msg
, list_head
);
1159 list_del_init(&msg
->list_head
);
1160 spin_unlock(&session
->s_cap_lock
);
1161 msg
->hdr
.front_len
= cpu_to_le32(msg
->front
.iov_len
);
1162 dout("send_cap_releases mds%d %p\n", session
->s_mds
, msg
);
1163 ceph_con_send(&session
->s_con
, msg
);
1165 spin_unlock(&session
->s_cap_lock
);
1173 * Create an mds request.
1175 struct ceph_mds_request
*
1176 ceph_mdsc_create_request(struct ceph_mds_client
*mdsc
, int op
, int mode
)
1178 struct ceph_mds_request
*req
= kzalloc(sizeof(*req
), GFP_NOFS
);
1181 return ERR_PTR(-ENOMEM
);
1183 req
->r_started
= jiffies
;
1184 req
->r_resend_mds
= -1;
1185 INIT_LIST_HEAD(&req
->r_unsafe_dir_item
);
1187 kref_init(&req
->r_kref
);
1188 INIT_LIST_HEAD(&req
->r_wait
);
1189 init_completion(&req
->r_completion
);
1190 init_completion(&req
->r_safe_completion
);
1191 INIT_LIST_HEAD(&req
->r_unsafe_item
);
1194 req
->r_direct_mode
= mode
;
1199 * return oldest (lowest) request, tid in request tree, 0 if none.
1201 * called under mdsc->mutex.
1203 static struct ceph_mds_request
*__get_oldest_req(struct ceph_mds_client
*mdsc
)
1205 if (RB_EMPTY_ROOT(&mdsc
->request_tree
))
1207 return rb_entry(rb_first(&mdsc
->request_tree
),
1208 struct ceph_mds_request
, r_node
);
1211 static u64
__get_oldest_tid(struct ceph_mds_client
*mdsc
)
1213 struct ceph_mds_request
*req
= __get_oldest_req(mdsc
);
1221 * Build a dentry's path. Allocate on heap; caller must kfree. Based
1222 * on build_path_from_dentry in fs/cifs/dir.c.
1224 * If @stop_on_nosnap, generate path relative to the first non-snapped
1227 * Encode hidden .snap dirs as a double /, i.e.
1228 * foo/.snap/bar -> foo//bar
1230 char *ceph_mdsc_build_path(struct dentry
*dentry
, int *plen
, u64
*base
,
1233 struct dentry
*temp
;
1238 return ERR_PTR(-EINVAL
);
1242 for (temp
= dentry
; !IS_ROOT(temp
);) {
1243 struct inode
*inode
= temp
->d_inode
;
1244 if (inode
&& ceph_snap(inode
) == CEPH_SNAPDIR
)
1245 len
++; /* slash only */
1246 else if (stop_on_nosnap
&& inode
&&
1247 ceph_snap(inode
) == CEPH_NOSNAP
)
1250 len
+= 1 + temp
->d_name
.len
;
1251 temp
= temp
->d_parent
;
1253 pr_err("build_path_dentry corrupt dentry %p\n", dentry
);
1254 return ERR_PTR(-EINVAL
);
1258 len
--; /* no leading '/' */
1260 path
= kmalloc(len
+1, GFP_NOFS
);
1262 return ERR_PTR(-ENOMEM
);
1264 path
[pos
] = 0; /* trailing null */
1265 for (temp
= dentry
; !IS_ROOT(temp
) && pos
!= 0; ) {
1266 struct inode
*inode
= temp
->d_inode
;
1268 if (inode
&& ceph_snap(inode
) == CEPH_SNAPDIR
) {
1269 dout("build_path_dentry path+%d: %p SNAPDIR\n",
1271 } else if (stop_on_nosnap
&& inode
&&
1272 ceph_snap(inode
) == CEPH_NOSNAP
) {
1275 pos
-= temp
->d_name
.len
;
1278 strncpy(path
+ pos
, temp
->d_name
.name
,
1280 dout("build_path_dentry path+%d: %p '%.*s'\n",
1281 pos
, temp
, temp
->d_name
.len
, path
+ pos
);
1285 temp
= temp
->d_parent
;
1287 pr_err("build_path_dentry corrupt dentry\n");
1289 return ERR_PTR(-EINVAL
);
1293 pr_err("build_path_dentry did not end path lookup where "
1294 "expected, namelen is %d, pos is %d\n", len
, pos
);
1295 /* presumably this is only possible if racing with a
1296 rename of one of the parent directories (we can not
1297 lock the dentries above us to prevent this, but
1298 retrying should be harmless) */
1303 *base
= ceph_ino(temp
->d_inode
);
1305 dout("build_path_dentry on %p %d built %llx '%.*s'\n",
1306 dentry
, atomic_read(&dentry
->d_count
), *base
, len
, path
);
1310 static int build_dentry_path(struct dentry
*dentry
,
1311 const char **ppath
, int *ppathlen
, u64
*pino
,
1316 if (ceph_snap(dentry
->d_parent
->d_inode
) == CEPH_NOSNAP
) {
1317 *pino
= ceph_ino(dentry
->d_parent
->d_inode
);
1318 *ppath
= dentry
->d_name
.name
;
1319 *ppathlen
= dentry
->d_name
.len
;
1322 path
= ceph_mdsc_build_path(dentry
, ppathlen
, pino
, 1);
1324 return PTR_ERR(path
);
1330 static int build_inode_path(struct inode
*inode
,
1331 const char **ppath
, int *ppathlen
, u64
*pino
,
1334 struct dentry
*dentry
;
1337 if (ceph_snap(inode
) == CEPH_NOSNAP
) {
1338 *pino
= ceph_ino(inode
);
1342 dentry
= d_find_alias(inode
);
1343 path
= ceph_mdsc_build_path(dentry
, ppathlen
, pino
, 1);
1346 return PTR_ERR(path
);
1353 * request arguments may be specified via an inode *, a dentry *, or
1354 * an explicit ino+path.
1356 static int set_request_path_attr(struct inode
*rinode
, struct dentry
*rdentry
,
1357 const char *rpath
, u64 rino
,
1358 const char **ppath
, int *pathlen
,
1359 u64
*ino
, int *freepath
)
1364 r
= build_inode_path(rinode
, ppath
, pathlen
, ino
, freepath
);
1365 dout(" inode %p %llx.%llx\n", rinode
, ceph_ino(rinode
),
1367 } else if (rdentry
) {
1368 r
= build_dentry_path(rdentry
, ppath
, pathlen
, ino
, freepath
);
1369 dout(" dentry %p %llx/%.*s\n", rdentry
, *ino
, *pathlen
,
1374 *pathlen
= strlen(rpath
);
1375 dout(" path %.*s\n", *pathlen
, rpath
);
1382 * called under mdsc->mutex
1384 static struct ceph_msg
*create_request_message(struct ceph_mds_client
*mdsc
,
1385 struct ceph_mds_request
*req
,
1388 struct ceph_msg
*msg
;
1389 struct ceph_mds_request_head
*head
;
1390 const char *path1
= NULL
;
1391 const char *path2
= NULL
;
1392 u64 ino1
= 0, ino2
= 0;
1393 int pathlen1
= 0, pathlen2
= 0;
1394 int freepath1
= 0, freepath2
= 0;
1400 ret
= set_request_path_attr(req
->r_inode
, req
->r_dentry
,
1401 req
->r_path1
, req
->r_ino1
.ino
,
1402 &path1
, &pathlen1
, &ino1
, &freepath1
);
1408 ret
= set_request_path_attr(NULL
, req
->r_old_dentry
,
1409 req
->r_path2
, req
->r_ino2
.ino
,
1410 &path2
, &pathlen2
, &ino2
, &freepath2
);
1416 len
= sizeof(*head
) +
1417 pathlen1
+ pathlen2
+ 2*(1 + sizeof(u32
) + sizeof(u64
));
1419 /* calculate (max) length for cap releases */
1420 len
+= sizeof(struct ceph_mds_request_release
) *
1421 (!!req
->r_inode_drop
+ !!req
->r_dentry_drop
+
1422 !!req
->r_old_inode_drop
+ !!req
->r_old_dentry_drop
);
1423 if (req
->r_dentry_drop
)
1424 len
+= req
->r_dentry
->d_name
.len
;
1425 if (req
->r_old_dentry_drop
)
1426 len
+= req
->r_old_dentry
->d_name
.len
;
1428 msg
= ceph_msg_new(CEPH_MSG_CLIENT_REQUEST
, len
, 0, 0, NULL
);
1432 msg
->hdr
.tid
= cpu_to_le64(req
->r_tid
);
1434 head
= msg
->front
.iov_base
;
1435 p
= msg
->front
.iov_base
+ sizeof(*head
);
1436 end
= msg
->front
.iov_base
+ msg
->front
.iov_len
;
1438 head
->mdsmap_epoch
= cpu_to_le32(mdsc
->mdsmap
->m_epoch
);
1439 head
->op
= cpu_to_le32(req
->r_op
);
1440 head
->caller_uid
= cpu_to_le32(current_fsuid());
1441 head
->caller_gid
= cpu_to_le32(current_fsgid());
1442 head
->args
= req
->r_args
;
1444 ceph_encode_filepath(&p
, end
, ino1
, path1
);
1445 ceph_encode_filepath(&p
, end
, ino2
, path2
);
1449 if (req
->r_inode_drop
)
1450 releases
+= ceph_encode_inode_release(&p
,
1451 req
->r_inode
? req
->r_inode
: req
->r_dentry
->d_inode
,
1452 mds
, req
->r_inode_drop
, req
->r_inode_unless
, 0);
1453 if (req
->r_dentry_drop
)
1454 releases
+= ceph_encode_dentry_release(&p
, req
->r_dentry
,
1455 mds
, req
->r_dentry_drop
, req
->r_dentry_unless
);
1456 if (req
->r_old_dentry_drop
)
1457 releases
+= ceph_encode_dentry_release(&p
, req
->r_old_dentry
,
1458 mds
, req
->r_old_dentry_drop
, req
->r_old_dentry_unless
);
1459 if (req
->r_old_inode_drop
)
1460 releases
+= ceph_encode_inode_release(&p
,
1461 req
->r_old_dentry
->d_inode
,
1462 mds
, req
->r_old_inode_drop
, req
->r_old_inode_unless
, 0);
1463 head
->num_releases
= cpu_to_le16(releases
);
1466 msg
->front
.iov_len
= p
- msg
->front
.iov_base
;
1467 msg
->hdr
.front_len
= cpu_to_le32(msg
->front
.iov_len
);
1469 msg
->pages
= req
->r_pages
;
1470 msg
->nr_pages
= req
->r_num_pages
;
1471 msg
->hdr
.data_len
= cpu_to_le32(req
->r_data_len
);
1472 msg
->hdr
.data_off
= cpu_to_le16(0);
1476 kfree((char *)path2
);
1479 kfree((char *)path1
);
1485 * called under mdsc->mutex if error, under no mutex if
1488 static void complete_request(struct ceph_mds_client
*mdsc
,
1489 struct ceph_mds_request
*req
)
1491 if (req
->r_callback
)
1492 req
->r_callback(mdsc
, req
);
1494 complete(&req
->r_completion
);
1498 * called under mdsc->mutex
1500 static int __prepare_send_request(struct ceph_mds_client
*mdsc
,
1501 struct ceph_mds_request
*req
,
1504 struct ceph_mds_request_head
*rhead
;
1505 struct ceph_msg
*msg
;
1510 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req
,
1511 req
->r_tid
, ceph_mds_op_name(req
->r_op
), req
->r_attempts
);
1513 if (req
->r_request
) {
1514 ceph_msg_put(req
->r_request
);
1515 req
->r_request
= NULL
;
1517 msg
= create_request_message(mdsc
, req
, mds
);
1519 req
->r_reply
= ERR_PTR(PTR_ERR(msg
));
1520 complete_request(mdsc
, req
);
1521 return -PTR_ERR(msg
);
1523 req
->r_request
= msg
;
1525 rhead
= msg
->front
.iov_base
;
1526 rhead
->oldest_client_tid
= cpu_to_le64(__get_oldest_tid(mdsc
));
1527 if (req
->r_got_unsafe
)
1528 flags
|= CEPH_MDS_FLAG_REPLAY
;
1529 if (req
->r_locked_dir
)
1530 flags
|= CEPH_MDS_FLAG_WANT_DENTRY
;
1531 rhead
->flags
= cpu_to_le32(flags
);
1532 rhead
->num_fwd
= req
->r_num_fwd
;
1533 rhead
->num_retry
= req
->r_attempts
- 1;
1535 dout(" r_locked_dir = %p\n", req
->r_locked_dir
);
1537 if (req
->r_target_inode
&& req
->r_got_unsafe
)
1538 rhead
->ino
= cpu_to_le64(ceph_ino(req
->r_target_inode
));
1545 * send request, or put it on the appropriate wait list.
1547 static int __do_request(struct ceph_mds_client
*mdsc
,
1548 struct ceph_mds_request
*req
)
1550 struct ceph_mds_session
*session
= NULL
;
1557 if (req
->r_timeout
&&
1558 time_after_eq(jiffies
, req
->r_started
+ req
->r_timeout
)) {
1559 dout("do_request timed out\n");
1564 mds
= __choose_mds(mdsc
, req
);
1566 ceph_mdsmap_get_state(mdsc
->mdsmap
, mds
) < CEPH_MDS_STATE_ACTIVE
) {
1567 dout("do_request no mds or not active, waiting for map\n");
1568 list_add(&req
->r_wait
, &mdsc
->waiting_for_map
);
1572 /* get, open session */
1573 session
= __ceph_lookup_mds_session(mdsc
, mds
);
1575 session
= register_session(mdsc
, mds
);
1576 if (IS_ERR(session
)) {
1577 err
= PTR_ERR(session
);
1581 dout("do_request mds%d session %p state %s\n", mds
, session
,
1582 session_state_name(session
->s_state
));
1583 if (session
->s_state
!= CEPH_MDS_SESSION_OPEN
&&
1584 session
->s_state
!= CEPH_MDS_SESSION_HUNG
) {
1585 if (session
->s_state
== CEPH_MDS_SESSION_NEW
||
1586 session
->s_state
== CEPH_MDS_SESSION_CLOSING
)
1587 __open_session(mdsc
, session
);
1588 list_add(&req
->r_wait
, &session
->s_waiting
);
1593 req
->r_session
= get_session(session
);
1594 req
->r_resend_mds
= -1; /* forget any previous mds hint */
1596 if (req
->r_request_started
== 0) /* note request start time */
1597 req
->r_request_started
= jiffies
;
1599 err
= __prepare_send_request(mdsc
, req
, mds
);
1601 ceph_msg_get(req
->r_request
);
1602 ceph_con_send(&session
->s_con
, req
->r_request
);
1606 ceph_put_mds_session(session
);
1611 req
->r_reply
= ERR_PTR(err
);
1612 complete_request(mdsc
, req
);
1617 * called under mdsc->mutex
1619 static void __wake_requests(struct ceph_mds_client
*mdsc
,
1620 struct list_head
*head
)
1622 struct ceph_mds_request
*req
, *nreq
;
1624 list_for_each_entry_safe(req
, nreq
, head
, r_wait
) {
1625 list_del_init(&req
->r_wait
);
1626 __do_request(mdsc
, req
);
1631 * Wake up threads with requests pending for @mds, so that they can
1632 * resubmit their requests to a possibly different mds. If @all is set,
1633 * wake up if their requests has been forwarded to @mds, too.
1635 static void kick_requests(struct ceph_mds_client
*mdsc
, int mds
, int all
)
1637 struct ceph_mds_request
*req
;
1640 dout("kick_requests mds%d\n", mds
);
1641 for (p
= rb_first(&mdsc
->request_tree
); p
; p
= rb_next(p
)) {
1642 req
= rb_entry(p
, struct ceph_mds_request
, r_node
);
1643 if (req
->r_got_unsafe
)
1645 if (req
->r_session
&&
1646 req
->r_session
->s_mds
== mds
) {
1647 dout(" kicking tid %llu\n", req
->r_tid
);
1648 put_request_session(req
);
1649 __do_request(mdsc
, req
);
1654 void ceph_mdsc_submit_request(struct ceph_mds_client
*mdsc
,
1655 struct ceph_mds_request
*req
)
1657 dout("submit_request on %p\n", req
);
1658 mutex_lock(&mdsc
->mutex
);
1659 __register_request(mdsc
, req
, NULL
);
1660 __do_request(mdsc
, req
);
1661 mutex_unlock(&mdsc
->mutex
);
1665 * Synchrously perform an mds request. Take care of all of the
1666 * session setup, forwarding, retry details.
1668 int ceph_mdsc_do_request(struct ceph_mds_client
*mdsc
,
1670 struct ceph_mds_request
*req
)
1674 dout("do_request on %p\n", req
);
1676 /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
1678 ceph_get_cap_refs(ceph_inode(req
->r_inode
), CEPH_CAP_PIN
);
1679 if (req
->r_locked_dir
)
1680 ceph_get_cap_refs(ceph_inode(req
->r_locked_dir
), CEPH_CAP_PIN
);
1681 if (req
->r_old_dentry
)
1683 ceph_inode(req
->r_old_dentry
->d_parent
->d_inode
),
1687 mutex_lock(&mdsc
->mutex
);
1688 __register_request(mdsc
, req
, dir
);
1689 __do_request(mdsc
, req
);
1692 if (!req
->r_reply
) {
1693 mutex_unlock(&mdsc
->mutex
);
1694 if (req
->r_timeout
) {
1695 err
= (long)wait_for_completion_interruptible_timeout(
1696 &req
->r_completion
, req
->r_timeout
);
1698 req
->r_reply
= ERR_PTR(-EIO
);
1700 req
->r_reply
= ERR_PTR(err
);
1702 err
= wait_for_completion_interruptible(
1703 &req
->r_completion
);
1705 req
->r_reply
= ERR_PTR(err
);
1707 mutex_lock(&mdsc
->mutex
);
1710 if (IS_ERR(req
->r_reply
)) {
1711 err
= PTR_ERR(req
->r_reply
);
1712 req
->r_reply
= NULL
;
1714 if (err
== -ERESTARTSYS
) {
1716 req
->r_aborted
= true;
1718 if (req
->r_locked_dir
&&
1719 (req
->r_op
& CEPH_MDS_OP_WRITE
)) {
1720 struct ceph_inode_info
*ci
=
1721 ceph_inode(req
->r_locked_dir
);
1723 dout("aborted, clearing I_COMPLETE on %p\n",
1725 spin_lock(&req
->r_locked_dir
->i_lock
);
1726 ci
->i_ceph_flags
&= ~CEPH_I_COMPLETE
;
1727 ci
->i_release_count
++;
1728 spin_unlock(&req
->r_locked_dir
->i_lock
);
1731 /* clean up this request */
1732 __unregister_request(mdsc
, req
);
1733 if (!list_empty(&req
->r_unsafe_item
))
1734 list_del_init(&req
->r_unsafe_item
);
1735 complete(&req
->r_safe_completion
);
1737 } else if (req
->r_err
) {
1740 err
= le32_to_cpu(req
->r_reply_info
.head
->result
);
1742 mutex_unlock(&mdsc
->mutex
);
1744 dout("do_request %p done, result %d\n", req
, err
);
1751 * We take the session mutex and parse and process the reply immediately.
1752 * This preserves the logical ordering of replies, capabilities, etc., sent
1753 * by the MDS as they are applied to our local cache.
1755 static void handle_reply(struct ceph_mds_session
*session
, struct ceph_msg
*msg
)
1757 struct ceph_mds_client
*mdsc
= session
->s_mdsc
;
1758 struct ceph_mds_request
*req
;
1759 struct ceph_mds_reply_head
*head
= msg
->front
.iov_base
;
1760 struct ceph_mds_reply_info_parsed
*rinfo
; /* parsed reply info */
1763 int mds
= session
->s_mds
;
1765 if (msg
->front
.iov_len
< sizeof(*head
)) {
1766 pr_err("mdsc_handle_reply got corrupt (short) reply\n");
1771 /* get request, session */
1772 tid
= le64_to_cpu(msg
->hdr
.tid
);
1773 mutex_lock(&mdsc
->mutex
);
1774 req
= __lookup_request(mdsc
, tid
);
1776 dout("handle_reply on unknown tid %llu\n", tid
);
1777 mutex_unlock(&mdsc
->mutex
);
1780 dout("handle_reply %p\n", req
);
1782 /* correct session? */
1783 if (req
->r_session
!= session
) {
1784 pr_err("mdsc_handle_reply got %llu on session mds%d"
1785 " not mds%d\n", tid
, session
->s_mds
,
1786 req
->r_session
? req
->r_session
->s_mds
: -1);
1787 mutex_unlock(&mdsc
->mutex
);
1792 if ((req
->r_got_unsafe
&& !head
->safe
) ||
1793 (req
->r_got_safe
&& head
->safe
)) {
1794 pr_warning("got a dup %s reply on %llu from mds%d\n",
1795 head
->safe
? "safe" : "unsafe", tid
, mds
);
1796 mutex_unlock(&mdsc
->mutex
);
1800 result
= le32_to_cpu(head
->result
);
1803 * Tolerate 2 consecutive ESTALEs from the same mds.
1804 * FIXME: we should be looking at the cap migrate_seq.
1806 if (result
== -ESTALE
) {
1807 req
->r_direct_mode
= USE_AUTH_MDS
;
1809 if (req
->r_num_stale
<= 2) {
1810 __do_request(mdsc
, req
);
1811 mutex_unlock(&mdsc
->mutex
);
1815 req
->r_num_stale
= 0;
1819 req
->r_got_safe
= true;
1820 __unregister_request(mdsc
, req
);
1821 complete(&req
->r_safe_completion
);
1823 if (req
->r_got_unsafe
) {
1825 * We already handled the unsafe response, now do the
1826 * cleanup. No need to examine the response; the MDS
1827 * doesn't include any result info in the safe
1828 * response. And even if it did, there is nothing
1829 * useful we could do with a revised return value.
1831 dout("got safe reply %llu, mds%d\n", tid
, mds
);
1832 list_del_init(&req
->r_unsafe_item
);
1834 /* last unsafe request during umount? */
1835 if (mdsc
->stopping
&& !__get_oldest_req(mdsc
))
1836 complete(&mdsc
->safe_umount_waiters
);
1837 mutex_unlock(&mdsc
->mutex
);
1842 BUG_ON(req
->r_reply
);
1845 req
->r_got_unsafe
= true;
1846 list_add_tail(&req
->r_unsafe_item
, &req
->r_session
->s_unsafe
);
1849 dout("handle_reply tid %lld result %d\n", tid
, result
);
1850 rinfo
= &req
->r_reply_info
;
1851 err
= parse_reply_info(msg
, rinfo
);
1852 mutex_unlock(&mdsc
->mutex
);
1854 mutex_lock(&session
->s_mutex
);
1856 pr_err("mdsc_handle_reply got corrupt reply mds%d\n", mds
);
1862 if (rinfo
->snapblob_len
) {
1863 down_write(&mdsc
->snap_rwsem
);
1864 ceph_update_snap_trace(mdsc
, rinfo
->snapblob
,
1865 rinfo
->snapblob
+ rinfo
->snapblob_len
,
1866 le32_to_cpu(head
->op
) == CEPH_MDS_OP_RMSNAP
);
1867 downgrade_write(&mdsc
->snap_rwsem
);
1869 down_read(&mdsc
->snap_rwsem
);
1872 /* insert trace into our cache */
1873 err
= ceph_fill_trace(mdsc
->client
->sb
, req
, req
->r_session
);
1875 if (result
== 0 && rinfo
->dir_nr
)
1876 ceph_readdir_prepopulate(req
, req
->r_session
);
1877 ceph_unreserve_caps(&req
->r_caps_reservation
);
1880 up_read(&mdsc
->snap_rwsem
);
1889 add_cap_releases(mdsc
, req
->r_session
, -1);
1890 mutex_unlock(&session
->s_mutex
);
1892 /* kick calling process */
1893 complete_request(mdsc
, req
);
1895 ceph_mdsc_put_request(req
);
1902 * handle mds notification that our request has been forwarded.
1904 static void handle_forward(struct ceph_mds_client
*mdsc
,
1905 struct ceph_mds_session
*session
,
1906 struct ceph_msg
*msg
)
1908 struct ceph_mds_request
*req
;
1909 u64 tid
= le64_to_cpu(msg
->hdr
.tid
);
1913 void *p
= msg
->front
.iov_base
;
1914 void *end
= p
+ msg
->front
.iov_len
;
1916 ceph_decode_need(&p
, end
, 2*sizeof(u32
), bad
);
1917 next_mds
= ceph_decode_32(&p
);
1918 fwd_seq
= ceph_decode_32(&p
);
1920 mutex_lock(&mdsc
->mutex
);
1921 req
= __lookup_request(mdsc
, tid
);
1923 dout("forward %llu to mds%d - req dne\n", tid
, next_mds
);
1924 goto out
; /* dup reply? */
1927 if (fwd_seq
<= req
->r_num_fwd
) {
1928 dout("forward %llu to mds%d - old seq %d <= %d\n",
1929 tid
, next_mds
, req
->r_num_fwd
, fwd_seq
);
1931 /* resend. forward race not possible; mds would drop */
1932 dout("forward %llu to mds%d (we resend)\n", tid
, next_mds
);
1933 req
->r_num_fwd
= fwd_seq
;
1934 req
->r_resend_mds
= next_mds
;
1935 put_request_session(req
);
1936 __do_request(mdsc
, req
);
1938 ceph_mdsc_put_request(req
);
1940 mutex_unlock(&mdsc
->mutex
);
1944 pr_err("mdsc_handle_forward decode error err=%d\n", err
);
1948 * handle a mds session control message
1950 static void handle_session(struct ceph_mds_session
*session
,
1951 struct ceph_msg
*msg
)
1953 struct ceph_mds_client
*mdsc
= session
->s_mdsc
;
1956 int mds
= session
->s_mds
;
1957 struct ceph_mds_session_head
*h
= msg
->front
.iov_base
;
1961 if (msg
->front
.iov_len
!= sizeof(*h
))
1963 op
= le32_to_cpu(h
->op
);
1964 seq
= le64_to_cpu(h
->seq
);
1966 mutex_lock(&mdsc
->mutex
);
1967 if (op
== CEPH_SESSION_CLOSE
)
1968 __unregister_session(mdsc
, session
);
1969 /* FIXME: this ttl calculation is generous */
1970 session
->s_ttl
= jiffies
+ HZ
*mdsc
->mdsmap
->m_session_autoclose
;
1971 mutex_unlock(&mdsc
->mutex
);
1973 mutex_lock(&session
->s_mutex
);
1975 dout("handle_session mds%d %s %p state %s seq %llu\n",
1976 mds
, ceph_session_op_name(op
), session
,
1977 session_state_name(session
->s_state
), seq
);
1979 if (session
->s_state
== CEPH_MDS_SESSION_HUNG
) {
1980 session
->s_state
= CEPH_MDS_SESSION_OPEN
;
1981 pr_info("mds%d came back\n", session
->s_mds
);
1985 case CEPH_SESSION_OPEN
:
1986 session
->s_state
= CEPH_MDS_SESSION_OPEN
;
1987 renewed_caps(mdsc
, session
, 0);
1990 __close_session(mdsc
, session
);
1993 case CEPH_SESSION_RENEWCAPS
:
1994 if (session
->s_renew_seq
== seq
)
1995 renewed_caps(mdsc
, session
, 1);
1998 case CEPH_SESSION_CLOSE
:
1999 remove_session_caps(session
);
2000 wake
= 1; /* for good measure */
2001 complete(&mdsc
->session_close_waiters
);
2002 kick_requests(mdsc
, mds
, 0); /* cur only */
2005 case CEPH_SESSION_STALE
:
2006 pr_info("mds%d caps went stale, renewing\n",
2008 spin_lock(&session
->s_cap_lock
);
2009 session
->s_cap_gen
++;
2010 session
->s_cap_ttl
= 0;
2011 spin_unlock(&session
->s_cap_lock
);
2012 send_renew_caps(mdsc
, session
);
2015 case CEPH_SESSION_RECALL_STATE
:
2016 trim_caps(mdsc
, session
, le32_to_cpu(h
->max_caps
));
2020 pr_err("mdsc_handle_session bad op %d mds%d\n", op
, mds
);
2024 mutex_unlock(&session
->s_mutex
);
2026 mutex_lock(&mdsc
->mutex
);
2027 __wake_requests(mdsc
, &session
->s_waiting
);
2028 mutex_unlock(&mdsc
->mutex
);
2033 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds
,
2034 (int)msg
->front
.iov_len
);
2041 * called under session->mutex.
2043 static void replay_unsafe_requests(struct ceph_mds_client
*mdsc
,
2044 struct ceph_mds_session
*session
)
2046 struct ceph_mds_request
*req
, *nreq
;
2049 dout("replay_unsafe_requests mds%d\n", session
->s_mds
);
2051 mutex_lock(&mdsc
->mutex
);
2052 list_for_each_entry_safe(req
, nreq
, &session
->s_unsafe
, r_unsafe_item
) {
2053 err
= __prepare_send_request(mdsc
, req
, session
->s_mds
);
2055 ceph_msg_get(req
->r_request
);
2056 ceph_con_send(&session
->s_con
, req
->r_request
);
2059 mutex_unlock(&mdsc
->mutex
);
2063 * Encode information about a cap for a reconnect with the MDS.
2065 static int encode_caps_cb(struct inode
*inode
, struct ceph_cap
*cap
,
2068 struct ceph_mds_cap_reconnect rec
;
2069 struct ceph_inode_info
*ci
;
2070 struct ceph_pagelist
*pagelist
= arg
;
2074 struct dentry
*dentry
;
2078 dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2079 inode
, ceph_vinop(inode
), cap
, cap
->cap_id
,
2080 ceph_cap_string(cap
->issued
));
2081 err
= ceph_pagelist_encode_64(pagelist
, ceph_ino(inode
));
2085 dentry
= d_find_alias(inode
);
2087 path
= ceph_mdsc_build_path(dentry
, &pathlen
, &pathbase
, 0);
2089 err
= PTR_ERR(path
);
2096 err
= ceph_pagelist_encode_string(pagelist
, path
, pathlen
);
2100 spin_lock(&inode
->i_lock
);
2101 cap
->seq
= 0; /* reset cap seq */
2102 cap
->issue_seq
= 0; /* and issue_seq */
2103 rec
.cap_id
= cpu_to_le64(cap
->cap_id
);
2104 rec
.pathbase
= cpu_to_le64(pathbase
);
2105 rec
.wanted
= cpu_to_le32(__ceph_caps_wanted(ci
));
2106 rec
.issued
= cpu_to_le32(cap
->issued
);
2107 rec
.size
= cpu_to_le64(inode
->i_size
);
2108 ceph_encode_timespec(&rec
.mtime
, &inode
->i_mtime
);
2109 ceph_encode_timespec(&rec
.atime
, &inode
->i_atime
);
2110 rec
.snaprealm
= cpu_to_le64(ci
->i_snap_realm
->ino
);
2111 spin_unlock(&inode
->i_lock
);
2113 err
= ceph_pagelist_append(pagelist
, &rec
, sizeof(rec
));
2123 * If an MDS fails and recovers, clients need to reconnect in order to
2124 * reestablish shared state. This includes all caps issued through
2125 * this session _and_ the snap_realm hierarchy. Because it's not
2126 * clear which snap realms the mds cares about, we send everything we
2127 * know about.. that ensures we'll then get any new info the
2128 * recovering MDS might have.
2130 * This is a relatively heavyweight operation, but it's rare.
2132 * called with mdsc->mutex held.
2134 static void send_mds_reconnect(struct ceph_mds_client
*mdsc
, int mds
)
2136 struct ceph_mds_session
*session
= NULL
;
2137 struct ceph_msg
*reply
;
2140 struct ceph_pagelist
*pagelist
;
2142 pr_info("reconnect to recovering mds%d\n", mds
);
2144 pagelist
= kmalloc(sizeof(*pagelist
), GFP_NOFS
);
2146 goto fail_nopagelist
;
2147 ceph_pagelist_init(pagelist
);
2149 reply
= ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT
, 0, 0, 0, NULL
);
2150 if (IS_ERR(reply
)) {
2151 err
= PTR_ERR(reply
);
2156 session
= __ceph_lookup_mds_session(mdsc
, mds
);
2157 mutex_unlock(&mdsc
->mutex
); /* drop lock for duration */
2160 mutex_lock(&session
->s_mutex
);
2162 session
->s_state
= CEPH_MDS_SESSION_RECONNECTING
;
2165 ceph_con_open(&session
->s_con
,
2166 ceph_mdsmap_get_addr(mdsc
->mdsmap
, mds
));
2168 /* replay unsafe requests */
2169 replay_unsafe_requests(mdsc
, session
);
2171 dout("no session for mds%d, will send short reconnect\n",
2175 down_read(&mdsc
->snap_rwsem
);
2179 dout("session %p state %s\n", session
,
2180 session_state_name(session
->s_state
));
2182 /* traverse this session's caps */
2183 err
= ceph_pagelist_encode_32(pagelist
, session
->s_nr_caps
);
2186 err
= iterate_session_caps(session
, encode_caps_cb
, pagelist
);
2191 * snaprealms. we provide mds with the ino, seq (version), and
2192 * parent for all of our realms. If the mds has any newer info,
2195 for (p
= rb_first(&mdsc
->snap_realms
); p
; p
= rb_next(p
)) {
2196 struct ceph_snap_realm
*realm
=
2197 rb_entry(p
, struct ceph_snap_realm
, node
);
2198 struct ceph_mds_snaprealm_reconnect sr_rec
;
2200 dout(" adding snap realm %llx seq %lld parent %llx\n",
2201 realm
->ino
, realm
->seq
, realm
->parent_ino
);
2202 sr_rec
.ino
= cpu_to_le64(realm
->ino
);
2203 sr_rec
.seq
= cpu_to_le64(realm
->seq
);
2204 sr_rec
.parent
= cpu_to_le64(realm
->parent_ino
);
2205 err
= ceph_pagelist_append(pagelist
, &sr_rec
, sizeof(sr_rec
));
2211 reply
->pagelist
= pagelist
;
2212 reply
->hdr
.data_len
= cpu_to_le32(pagelist
->length
);
2213 reply
->nr_pages
= calc_pages_for(0, pagelist
->length
);
2214 ceph_con_send(&session
->s_con
, reply
);
2217 session
->s_state
= CEPH_MDS_SESSION_OPEN
;
2218 __wake_requests(mdsc
, &session
->s_waiting
);
2222 up_read(&mdsc
->snap_rwsem
);
2224 mutex_unlock(&session
->s_mutex
);
2225 ceph_put_mds_session(session
);
2227 mutex_lock(&mdsc
->mutex
);
2231 ceph_msg_put(reply
);
2233 ceph_pagelist_release(pagelist
);
2236 pr_err("ENOMEM preparing reconnect for mds%d\n", mds
);
2242 * compare old and new mdsmaps, kicking requests
2243 * and closing out old connections as necessary
2245 * called under mdsc->mutex.
2247 static void check_new_map(struct ceph_mds_client
*mdsc
,
2248 struct ceph_mdsmap
*newmap
,
2249 struct ceph_mdsmap
*oldmap
)
2252 int oldstate
, newstate
;
2253 struct ceph_mds_session
*s
;
2255 dout("check_new_map new %u old %u\n",
2256 newmap
->m_epoch
, oldmap
->m_epoch
);
2258 for (i
= 0; i
< oldmap
->m_max_mds
&& i
< mdsc
->max_sessions
; i
++) {
2259 if (mdsc
->sessions
[i
] == NULL
)
2261 s
= mdsc
->sessions
[i
];
2262 oldstate
= ceph_mdsmap_get_state(oldmap
, i
);
2263 newstate
= ceph_mdsmap_get_state(newmap
, i
);
2265 dout("check_new_map mds%d state %s -> %s (session %s)\n",
2266 i
, ceph_mds_state_name(oldstate
),
2267 ceph_mds_state_name(newstate
),
2268 session_state_name(s
->s_state
));
2270 if (memcmp(ceph_mdsmap_get_addr(oldmap
, i
),
2271 ceph_mdsmap_get_addr(newmap
, i
),
2272 sizeof(struct ceph_entity_addr
))) {
2273 if (s
->s_state
== CEPH_MDS_SESSION_OPENING
) {
2274 /* the session never opened, just close it
2276 __wake_requests(mdsc
, &s
->s_waiting
);
2277 __unregister_session(mdsc
, s
);
2280 mutex_unlock(&mdsc
->mutex
);
2281 mutex_lock(&s
->s_mutex
);
2282 mutex_lock(&mdsc
->mutex
);
2283 ceph_con_close(&s
->s_con
);
2284 mutex_unlock(&s
->s_mutex
);
2285 s
->s_state
= CEPH_MDS_SESSION_RESTARTING
;
2288 /* kick any requests waiting on the recovering mds */
2289 kick_requests(mdsc
, i
, 1);
2290 } else if (oldstate
== newstate
) {
2291 continue; /* nothing new with this mds */
2297 if (s
->s_state
== CEPH_MDS_SESSION_RESTARTING
&&
2298 newstate
>= CEPH_MDS_STATE_RECONNECT
)
2299 send_mds_reconnect(mdsc
, i
);
2302 * kick requests on any mds that has gone active.
2304 * kick requests on cur or forwarder: we may have sent
2305 * the request to mds1, mds1 told us it forwarded it
2306 * to mds2, but then we learn mds1 failed and can't be
2307 * sure it successfully forwarded our request before
2310 if (oldstate
< CEPH_MDS_STATE_ACTIVE
&&
2311 newstate
>= CEPH_MDS_STATE_ACTIVE
) {
2312 pr_info("mds%d reconnect completed\n", s
->s_mds
);
2313 kick_requests(mdsc
, i
, 1);
2314 ceph_kick_flushing_caps(mdsc
, s
);
2315 wake_up_session_caps(s
, 1);
2327 * caller must hold session s_mutex, dentry->d_lock
2329 void __ceph_mdsc_drop_dentry_lease(struct dentry
*dentry
)
2331 struct ceph_dentry_info
*di
= ceph_dentry(dentry
);
2333 ceph_put_mds_session(di
->lease_session
);
2334 di
->lease_session
= NULL
;
2337 static void handle_lease(struct ceph_mds_client
*mdsc
,
2338 struct ceph_mds_session
*session
,
2339 struct ceph_msg
*msg
)
2341 struct super_block
*sb
= mdsc
->client
->sb
;
2342 struct inode
*inode
;
2343 struct ceph_inode_info
*ci
;
2344 struct dentry
*parent
, *dentry
;
2345 struct ceph_dentry_info
*di
;
2346 int mds
= session
->s_mds
;
2347 struct ceph_mds_lease
*h
= msg
->front
.iov_base
;
2348 struct ceph_vino vino
;
2353 dout("handle_lease from mds%d\n", mds
);
2356 if (msg
->front
.iov_len
< sizeof(*h
) + sizeof(u32
))
2358 vino
.ino
= le64_to_cpu(h
->ino
);
2359 vino
.snap
= CEPH_NOSNAP
;
2360 mask
= le16_to_cpu(h
->mask
);
2361 dname
.name
= (void *)h
+ sizeof(*h
) + sizeof(u32
);
2362 dname
.len
= msg
->front
.iov_len
- sizeof(*h
) - sizeof(u32
);
2363 if (dname
.len
!= get_unaligned_le32(h
+1))
2366 mutex_lock(&session
->s_mutex
);
2370 inode
= ceph_find_inode(sb
, vino
);
2371 dout("handle_lease '%s', mask %d, ino %llx %p\n",
2372 ceph_lease_op_name(h
->action
), mask
, vino
.ino
, inode
);
2373 if (inode
== NULL
) {
2374 dout("handle_lease no inode %llx\n", vino
.ino
);
2377 ci
= ceph_inode(inode
);
2380 parent
= d_find_alias(inode
);
2382 dout("no parent dentry on inode %p\n", inode
);
2384 goto release
; /* hrm... */
2386 dname
.hash
= full_name_hash(dname
.name
, dname
.len
);
2387 dentry
= d_lookup(parent
, &dname
);
2392 spin_lock(&dentry
->d_lock
);
2393 di
= ceph_dentry(dentry
);
2394 switch (h
->action
) {
2395 case CEPH_MDS_LEASE_REVOKE
:
2396 if (di
&& di
->lease_session
== session
) {
2397 h
->seq
= cpu_to_le32(di
->lease_seq
);
2398 __ceph_mdsc_drop_dentry_lease(dentry
);
2403 case CEPH_MDS_LEASE_RENEW
:
2404 if (di
&& di
->lease_session
== session
&&
2405 di
->lease_gen
== session
->s_cap_gen
&&
2406 di
->lease_renew_from
&&
2407 di
->lease_renew_after
== 0) {
2408 unsigned long duration
=
2409 le32_to_cpu(h
->duration_ms
) * HZ
/ 1000;
2411 di
->lease_seq
= le32_to_cpu(h
->seq
);
2412 dentry
->d_time
= di
->lease_renew_from
+ duration
;
2413 di
->lease_renew_after
= di
->lease_renew_from
+
2415 di
->lease_renew_from
= 0;
2419 spin_unlock(&dentry
->d_lock
);
2426 /* let's just reuse the same message */
2427 h
->action
= CEPH_MDS_LEASE_REVOKE_ACK
;
2429 ceph_con_send(&session
->s_con
, msg
);
2433 mutex_unlock(&session
->s_mutex
);
2437 pr_err("corrupt lease message\n");
2441 void ceph_mdsc_lease_send_msg(struct ceph_mds_session
*session
,
2442 struct inode
*inode
,
2443 struct dentry
*dentry
, char action
,
2446 struct ceph_msg
*msg
;
2447 struct ceph_mds_lease
*lease
;
2448 int len
= sizeof(*lease
) + sizeof(u32
);
2451 dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
2452 inode
, dentry
, ceph_lease_op_name(action
), session
->s_mds
);
2453 dnamelen
= dentry
->d_name
.len
;
2456 msg
= ceph_msg_new(CEPH_MSG_CLIENT_LEASE
, len
, 0, 0, NULL
);
2459 lease
= msg
->front
.iov_base
;
2460 lease
->action
= action
;
2461 lease
->mask
= cpu_to_le16(CEPH_LOCK_DN
);
2462 lease
->ino
= cpu_to_le64(ceph_vino(inode
).ino
);
2463 lease
->first
= lease
->last
= cpu_to_le64(ceph_vino(inode
).snap
);
2464 lease
->seq
= cpu_to_le32(seq
);
2465 put_unaligned_le32(dnamelen
, lease
+ 1);
2466 memcpy((void *)(lease
+ 1) + 4, dentry
->d_name
.name
, dnamelen
);
2469 * if this is a preemptive lease RELEASE, no need to
2470 * flush request stream, since the actual request will
2473 msg
->more_to_follow
= (action
== CEPH_MDS_LEASE_RELEASE
);
2475 ceph_con_send(&session
->s_con
, msg
);
2479 * Preemptively release a lease we expect to invalidate anyway.
2480 * Pass @inode always, @dentry is optional.
2482 void ceph_mdsc_lease_release(struct ceph_mds_client
*mdsc
, struct inode
*inode
,
2483 struct dentry
*dentry
, int mask
)
2485 struct ceph_dentry_info
*di
;
2486 struct ceph_mds_session
*session
;
2489 BUG_ON(inode
== NULL
);
2490 BUG_ON(dentry
== NULL
);
2491 BUG_ON(mask
!= CEPH_LOCK_DN
);
2493 /* is dentry lease valid? */
2494 spin_lock(&dentry
->d_lock
);
2495 di
= ceph_dentry(dentry
);
2496 if (!di
|| !di
->lease_session
||
2497 di
->lease_session
->s_mds
< 0 ||
2498 di
->lease_gen
!= di
->lease_session
->s_cap_gen
||
2499 !time_before(jiffies
, dentry
->d_time
)) {
2500 dout("lease_release inode %p dentry %p -- "
2502 inode
, dentry
, mask
);
2503 spin_unlock(&dentry
->d_lock
);
2507 /* we do have a lease on this dentry; note mds and seq */
2508 session
= ceph_get_mds_session(di
->lease_session
);
2509 seq
= di
->lease_seq
;
2510 __ceph_mdsc_drop_dentry_lease(dentry
);
2511 spin_unlock(&dentry
->d_lock
);
2513 dout("lease_release inode %p dentry %p mask %d to mds%d\n",
2514 inode
, dentry
, mask
, session
->s_mds
);
2515 ceph_mdsc_lease_send_msg(session
, inode
, dentry
,
2516 CEPH_MDS_LEASE_RELEASE
, seq
);
2517 ceph_put_mds_session(session
);
2521 * drop all leases (and dentry refs) in preparation for umount
2523 static void drop_leases(struct ceph_mds_client
*mdsc
)
2527 dout("drop_leases\n");
2528 mutex_lock(&mdsc
->mutex
);
2529 for (i
= 0; i
< mdsc
->max_sessions
; i
++) {
2530 struct ceph_mds_session
*s
= __ceph_lookup_mds_session(mdsc
, i
);
2533 mutex_unlock(&mdsc
->mutex
);
2534 mutex_lock(&s
->s_mutex
);
2535 mutex_unlock(&s
->s_mutex
);
2536 ceph_put_mds_session(s
);
2537 mutex_lock(&mdsc
->mutex
);
2539 mutex_unlock(&mdsc
->mutex
);
2545 * delayed work -- periodically trim expired leases, renew caps with mds
2547 static void schedule_delayed(struct ceph_mds_client
*mdsc
)
2550 unsigned hz
= round_jiffies_relative(HZ
* delay
);
2551 schedule_delayed_work(&mdsc
->delayed_work
, hz
);
2554 static void delayed_work(struct work_struct
*work
)
2557 struct ceph_mds_client
*mdsc
=
2558 container_of(work
, struct ceph_mds_client
, delayed_work
.work
);
2562 dout("mdsc delayed_work\n");
2563 ceph_check_delayed_caps(mdsc
);
2565 mutex_lock(&mdsc
->mutex
);
2566 renew_interval
= mdsc
->mdsmap
->m_session_timeout
>> 2;
2567 renew_caps
= time_after_eq(jiffies
, HZ
*renew_interval
+
2568 mdsc
->last_renew_caps
);
2570 mdsc
->last_renew_caps
= jiffies
;
2572 for (i
= 0; i
< mdsc
->max_sessions
; i
++) {
2573 struct ceph_mds_session
*s
= __ceph_lookup_mds_session(mdsc
, i
);
2576 if (s
->s_state
== CEPH_MDS_SESSION_CLOSING
) {
2577 dout("resending session close request for mds%d\n",
2579 request_close_session(mdsc
, s
);
2580 ceph_put_mds_session(s
);
2583 if (s
->s_ttl
&& time_after(jiffies
, s
->s_ttl
)) {
2584 if (s
->s_state
== CEPH_MDS_SESSION_OPEN
) {
2585 s
->s_state
= CEPH_MDS_SESSION_HUNG
;
2586 pr_info("mds%d hung\n", s
->s_mds
);
2589 if (s
->s_state
< CEPH_MDS_SESSION_OPEN
) {
2590 /* this mds is failed or recovering, just wait */
2591 ceph_put_mds_session(s
);
2594 mutex_unlock(&mdsc
->mutex
);
2596 mutex_lock(&s
->s_mutex
);
2598 send_renew_caps(mdsc
, s
);
2600 ceph_con_keepalive(&s
->s_con
);
2601 add_cap_releases(mdsc
, s
, -1);
2602 send_cap_releases(mdsc
, s
);
2603 mutex_unlock(&s
->s_mutex
);
2604 ceph_put_mds_session(s
);
2606 mutex_lock(&mdsc
->mutex
);
2608 mutex_unlock(&mdsc
->mutex
);
2610 schedule_delayed(mdsc
);
2614 int ceph_mdsc_init(struct ceph_mds_client
*mdsc
, struct ceph_client
*client
)
2616 mdsc
->client
= client
;
2617 mutex_init(&mdsc
->mutex
);
2618 mdsc
->mdsmap
= kzalloc(sizeof(*mdsc
->mdsmap
), GFP_NOFS
);
2619 init_completion(&mdsc
->safe_umount_waiters
);
2620 init_completion(&mdsc
->session_close_waiters
);
2621 INIT_LIST_HEAD(&mdsc
->waiting_for_map
);
2622 mdsc
->sessions
= NULL
;
2623 mdsc
->max_sessions
= 0;
2625 init_rwsem(&mdsc
->snap_rwsem
);
2626 mdsc
->snap_realms
= RB_ROOT
;
2627 INIT_LIST_HEAD(&mdsc
->snap_empty
);
2628 spin_lock_init(&mdsc
->snap_empty_lock
);
2630 mdsc
->request_tree
= RB_ROOT
;
2631 INIT_DELAYED_WORK(&mdsc
->delayed_work
, delayed_work
);
2632 mdsc
->last_renew_caps
= jiffies
;
2633 INIT_LIST_HEAD(&mdsc
->cap_delay_list
);
2634 spin_lock_init(&mdsc
->cap_delay_lock
);
2635 INIT_LIST_HEAD(&mdsc
->snap_flush_list
);
2636 spin_lock_init(&mdsc
->snap_flush_lock
);
2637 mdsc
->cap_flush_seq
= 0;
2638 INIT_LIST_HEAD(&mdsc
->cap_dirty
);
2639 mdsc
->num_cap_flushing
= 0;
2640 spin_lock_init(&mdsc
->cap_dirty_lock
);
2641 init_waitqueue_head(&mdsc
->cap_flushing_wq
);
2642 spin_lock_init(&mdsc
->dentry_lru_lock
);
2643 INIT_LIST_HEAD(&mdsc
->dentry_lru
);
2648 * Wait for safe replies on open mds requests. If we time out, drop
2649 * all requests from the tree to avoid dangling dentry refs.
2651 static void wait_requests(struct ceph_mds_client
*mdsc
)
2653 struct ceph_mds_request
*req
;
2654 struct ceph_client
*client
= mdsc
->client
;
2656 mutex_lock(&mdsc
->mutex
);
2657 if (__get_oldest_req(mdsc
)) {
2658 mutex_unlock(&mdsc
->mutex
);
2660 dout("wait_requests waiting for requests\n");
2661 wait_for_completion_timeout(&mdsc
->safe_umount_waiters
,
2662 client
->mount_args
->mount_timeout
* HZ
);
2664 /* tear down remaining requests */
2665 mutex_lock(&mdsc
->mutex
);
2666 while ((req
= __get_oldest_req(mdsc
))) {
2667 dout("wait_requests timed out on tid %llu\n",
2669 __unregister_request(mdsc
, req
);
2672 mutex_unlock(&mdsc
->mutex
);
2673 dout("wait_requests done\n");
2677 * called before mount is ro, and before dentries are torn down.
2678 * (hmm, does this still race with new lookups?)
2680 void ceph_mdsc_pre_umount(struct ceph_mds_client
*mdsc
)
2682 dout("pre_umount\n");
2686 ceph_flush_dirty_caps(mdsc
);
2687 wait_requests(mdsc
);
2691 * wait for all write mds requests to flush.
2693 static void wait_unsafe_requests(struct ceph_mds_client
*mdsc
, u64 want_tid
)
2695 struct ceph_mds_request
*req
= NULL
, *nextreq
;
2698 mutex_lock(&mdsc
->mutex
);
2699 dout("wait_unsafe_requests want %lld\n", want_tid
);
2701 req
= __get_oldest_req(mdsc
);
2702 while (req
&& req
->r_tid
<= want_tid
) {
2703 /* find next request */
2704 n
= rb_next(&req
->r_node
);
2706 nextreq
= rb_entry(n
, struct ceph_mds_request
, r_node
);
2709 if ((req
->r_op
& CEPH_MDS_OP_WRITE
)) {
2711 ceph_mdsc_get_request(req
);
2713 ceph_mdsc_get_request(nextreq
);
2714 mutex_unlock(&mdsc
->mutex
);
2715 dout("wait_unsafe_requests wait on %llu (want %llu)\n",
2716 req
->r_tid
, want_tid
);
2717 wait_for_completion(&req
->r_safe_completion
);
2718 mutex_lock(&mdsc
->mutex
);
2719 ceph_mdsc_put_request(req
);
2721 break; /* next dne before, so we're done! */
2722 if (RB_EMPTY_NODE(&nextreq
->r_node
)) {
2723 /* next request was removed from tree */
2724 ceph_mdsc_put_request(nextreq
);
2727 ceph_mdsc_put_request(nextreq
); /* won't go away */
2731 mutex_unlock(&mdsc
->mutex
);
2732 dout("wait_unsafe_requests done\n");
2735 void ceph_mdsc_sync(struct ceph_mds_client
*mdsc
)
2737 u64 want_tid
, want_flush
;
2740 mutex_lock(&mdsc
->mutex
);
2741 want_tid
= mdsc
->last_tid
;
2742 want_flush
= mdsc
->cap_flush_seq
;
2743 mutex_unlock(&mdsc
->mutex
);
2744 dout("sync want tid %lld flush_seq %lld\n", want_tid
, want_flush
);
2746 ceph_flush_dirty_caps(mdsc
);
2748 wait_unsafe_requests(mdsc
, want_tid
);
2749 wait_event(mdsc
->cap_flushing_wq
, check_cap_flush(mdsc
, want_flush
));
2754 * called after sb is ro.
2756 void ceph_mdsc_close_sessions(struct ceph_mds_client
*mdsc
)
2758 struct ceph_mds_session
*session
;
2761 struct ceph_client
*client
= mdsc
->client
;
2762 unsigned long started
, timeout
= client
->mount_args
->mount_timeout
* HZ
;
2764 dout("close_sessions\n");
2766 mutex_lock(&mdsc
->mutex
);
2768 /* close sessions */
2770 while (time_before(jiffies
, started
+ timeout
)) {
2771 dout("closing sessions\n");
2773 for (i
= 0; i
< mdsc
->max_sessions
; i
++) {
2774 session
= __ceph_lookup_mds_session(mdsc
, i
);
2777 mutex_unlock(&mdsc
->mutex
);
2778 mutex_lock(&session
->s_mutex
);
2779 __close_session(mdsc
, session
);
2780 mutex_unlock(&session
->s_mutex
);
2781 ceph_put_mds_session(session
);
2782 mutex_lock(&mdsc
->mutex
);
2788 if (client
->mount_state
== CEPH_MOUNT_SHUTDOWN
)
2791 dout("waiting for sessions to close\n");
2792 mutex_unlock(&mdsc
->mutex
);
2793 wait_for_completion_timeout(&mdsc
->session_close_waiters
,
2795 mutex_lock(&mdsc
->mutex
);
2798 /* tear down remaining sessions */
2799 for (i
= 0; i
< mdsc
->max_sessions
; i
++) {
2800 if (mdsc
->sessions
[i
]) {
2801 session
= get_session(mdsc
->sessions
[i
]);
2802 __unregister_session(mdsc
, session
);
2803 mutex_unlock(&mdsc
->mutex
);
2804 mutex_lock(&session
->s_mutex
);
2805 remove_session_caps(session
);
2806 mutex_unlock(&session
->s_mutex
);
2807 ceph_put_mds_session(session
);
2808 mutex_lock(&mdsc
->mutex
);
2812 WARN_ON(!list_empty(&mdsc
->cap_delay_list
));
2814 mutex_unlock(&mdsc
->mutex
);
2816 ceph_cleanup_empty_realms(mdsc
);
2818 cancel_delayed_work_sync(&mdsc
->delayed_work
); /* cancel timer */
2823 void ceph_mdsc_stop(struct ceph_mds_client
*mdsc
)
2826 cancel_delayed_work_sync(&mdsc
->delayed_work
); /* cancel timer */
2828 ceph_mdsmap_destroy(mdsc
->mdsmap
);
2829 kfree(mdsc
->sessions
);
2834 * handle mds map update.
2836 void ceph_mdsc_handle_map(struct ceph_mds_client
*mdsc
, struct ceph_msg
*msg
)
2840 void *p
= msg
->front
.iov_base
;
2841 void *end
= p
+ msg
->front
.iov_len
;
2842 struct ceph_mdsmap
*newmap
, *oldmap
;
2843 struct ceph_fsid fsid
;
2846 ceph_decode_need(&p
, end
, sizeof(fsid
)+2*sizeof(u32
), bad
);
2847 ceph_decode_copy(&p
, &fsid
, sizeof(fsid
));
2848 if (ceph_check_fsid(mdsc
->client
, &fsid
) < 0)
2850 epoch
= ceph_decode_32(&p
);
2851 maplen
= ceph_decode_32(&p
);
2852 dout("handle_map epoch %u len %d\n", epoch
, (int)maplen
);
2854 /* do we need it? */
2855 ceph_monc_got_mdsmap(&mdsc
->client
->monc
, epoch
);
2856 mutex_lock(&mdsc
->mutex
);
2857 if (mdsc
->mdsmap
&& epoch
<= mdsc
->mdsmap
->m_epoch
) {
2858 dout("handle_map epoch %u <= our %u\n",
2859 epoch
, mdsc
->mdsmap
->m_epoch
);
2860 mutex_unlock(&mdsc
->mutex
);
2864 newmap
= ceph_mdsmap_decode(&p
, end
);
2865 if (IS_ERR(newmap
)) {
2866 err
= PTR_ERR(newmap
);
2870 /* swap into place */
2872 oldmap
= mdsc
->mdsmap
;
2873 mdsc
->mdsmap
= newmap
;
2874 check_new_map(mdsc
, newmap
, oldmap
);
2875 ceph_mdsmap_destroy(oldmap
);
2877 mdsc
->mdsmap
= newmap
; /* first mds map */
2879 mdsc
->client
->sb
->s_maxbytes
= mdsc
->mdsmap
->m_max_file_size
;
2881 __wake_requests(mdsc
, &mdsc
->waiting_for_map
);
2883 mutex_unlock(&mdsc
->mutex
);
2884 schedule_delayed(mdsc
);
2888 mutex_unlock(&mdsc
->mutex
);
2890 pr_err("error decoding mdsmap %d\n", err
);
2894 static struct ceph_connection
*con_get(struct ceph_connection
*con
)
2896 struct ceph_mds_session
*s
= con
->private;
2898 if (get_session(s
)) {
2899 dout("mdsc con_get %p ok (%d)\n", s
, atomic_read(&s
->s_ref
));
2902 dout("mdsc con_get %p FAIL\n", s
);
2906 static void con_put(struct ceph_connection
*con
)
2908 struct ceph_mds_session
*s
= con
->private;
2910 ceph_put_mds_session(s
);
2911 dout("mdsc con_put %p (%d)\n", s
, atomic_read(&s
->s_ref
));
2915 * if the client is unresponsive for long enough, the mds will kill
2916 * the session entirely.
2918 static void peer_reset(struct ceph_connection
*con
)
2920 struct ceph_mds_session
*s
= con
->private;
2922 pr_err("mds%d gave us the boot. IMPLEMENT RECONNECT.\n",
2926 static void dispatch(struct ceph_connection
*con
, struct ceph_msg
*msg
)
2928 struct ceph_mds_session
*s
= con
->private;
2929 struct ceph_mds_client
*mdsc
= s
->s_mdsc
;
2930 int type
= le16_to_cpu(msg
->hdr
.type
);
2932 mutex_lock(&mdsc
->mutex
);
2933 if (__verify_registered_session(mdsc
, s
) < 0) {
2934 mutex_unlock(&mdsc
->mutex
);
2937 mutex_unlock(&mdsc
->mutex
);
2940 case CEPH_MSG_MDS_MAP
:
2941 ceph_mdsc_handle_map(mdsc
, msg
);
2943 case CEPH_MSG_CLIENT_SESSION
:
2944 handle_session(s
, msg
);
2946 case CEPH_MSG_CLIENT_REPLY
:
2947 handle_reply(s
, msg
);
2949 case CEPH_MSG_CLIENT_REQUEST_FORWARD
:
2950 handle_forward(mdsc
, s
, msg
);
2952 case CEPH_MSG_CLIENT_CAPS
:
2953 ceph_handle_caps(s
, msg
);
2955 case CEPH_MSG_CLIENT_SNAP
:
2956 ceph_handle_snap(mdsc
, s
, msg
);
2958 case CEPH_MSG_CLIENT_LEASE
:
2959 handle_lease(mdsc
, s
, msg
);
2963 pr_err("received unknown message type %d %s\n", type
,
2964 ceph_msg_type_name(type
));
2973 static int get_authorizer(struct ceph_connection
*con
,
2974 void **buf
, int *len
, int *proto
,
2975 void **reply_buf
, int *reply_len
, int force_new
)
2977 struct ceph_mds_session
*s
= con
->private;
2978 struct ceph_mds_client
*mdsc
= s
->s_mdsc
;
2979 struct ceph_auth_client
*ac
= mdsc
->client
->monc
.auth
;
2982 if (force_new
&& s
->s_authorizer
) {
2983 ac
->ops
->destroy_authorizer(ac
, s
->s_authorizer
);
2984 s
->s_authorizer
= NULL
;
2986 if (s
->s_authorizer
== NULL
) {
2987 if (ac
->ops
->create_authorizer
) {
2988 ret
= ac
->ops
->create_authorizer(
2989 ac
, CEPH_ENTITY_TYPE_MDS
,
2991 &s
->s_authorizer_buf
,
2992 &s
->s_authorizer_buf_len
,
2993 &s
->s_authorizer_reply_buf
,
2994 &s
->s_authorizer_reply_buf_len
);
3000 *proto
= ac
->protocol
;
3001 *buf
= s
->s_authorizer_buf
;
3002 *len
= s
->s_authorizer_buf_len
;
3003 *reply_buf
= s
->s_authorizer_reply_buf
;
3004 *reply_len
= s
->s_authorizer_reply_buf_len
;
3009 static int verify_authorizer_reply(struct ceph_connection
*con
, int len
)
3011 struct ceph_mds_session
*s
= con
->private;
3012 struct ceph_mds_client
*mdsc
= s
->s_mdsc
;
3013 struct ceph_auth_client
*ac
= mdsc
->client
->monc
.auth
;
3015 return ac
->ops
->verify_authorizer_reply(ac
, s
->s_authorizer
, len
);
3018 static int invalidate_authorizer(struct ceph_connection
*con
)
3020 struct ceph_mds_session
*s
= con
->private;
3021 struct ceph_mds_client
*mdsc
= s
->s_mdsc
;
3022 struct ceph_auth_client
*ac
= mdsc
->client
->monc
.auth
;
3024 if (ac
->ops
->invalidate_authorizer
)
3025 ac
->ops
->invalidate_authorizer(ac
, CEPH_ENTITY_TYPE_MDS
);
3027 return ceph_monc_validate_auth(&mdsc
->client
->monc
);
3030 const static struct ceph_connection_operations mds_con_ops
= {
3033 .dispatch
= dispatch
,
3034 .get_authorizer
= get_authorizer
,
3035 .verify_authorizer_reply
= verify_authorizer_reply
,
3036 .invalidate_authorizer
= invalidate_authorizer
,
3037 .peer_reset
= peer_reset
,