ALSA: dice: depends on snd_hwdep
[firewire-audio.git] / kernel / sched_fair.c
blob0c26e2df450ee534e79f1265851100245b30a9cd
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
27 * Targeted preemption latency for CPU-bound tasks:
28 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
30 * NOTE: this latency value is not the same as the concept of
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
38 unsigned int sysctl_sched_latency = 6000000ULL;
39 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
42 * The initial- and re-scaling of tunables is configurable
43 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
45 * Options are:
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
50 enum sched_tunable_scaling sysctl_sched_tunable_scaling
51 = SCHED_TUNABLESCALING_LOG;
54 * Minimal preemption granularity for CPU-bound tasks:
55 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
57 unsigned int sysctl_sched_min_granularity = 750000ULL;
58 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
61 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
63 static unsigned int sched_nr_latency = 8;
66 * After fork, child runs first. If set to 0 (default) then
67 * parent will (try to) run first.
69 unsigned int sysctl_sched_child_runs_first __read_mostly;
72 * sys_sched_yield() compat mode
74 * This option switches the agressive yield implementation of the
75 * old scheduler back on.
77 unsigned int __read_mostly sysctl_sched_compat_yield;
80 * SCHED_OTHER wake-up granularity.
81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
87 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
88 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
90 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
93 * The exponential sliding window over which load is averaged for shares
94 * distribution.
95 * (default: 10msec)
97 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
99 static const struct sched_class fair_sched_class;
101 /**************************************************************
102 * CFS operations on generic schedulable entities:
105 #ifdef CONFIG_FAIR_GROUP_SCHED
107 /* cpu runqueue to which this cfs_rq is attached */
108 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
110 return cfs_rq->rq;
113 /* An entity is a task if it doesn't "own" a runqueue */
114 #define entity_is_task(se) (!se->my_q)
116 static inline struct task_struct *task_of(struct sched_entity *se)
118 #ifdef CONFIG_SCHED_DEBUG
119 WARN_ON_ONCE(!entity_is_task(se));
120 #endif
121 return container_of(se, struct task_struct, se);
124 /* Walk up scheduling entities hierarchy */
125 #define for_each_sched_entity(se) \
126 for (; se; se = se->parent)
128 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
130 return p->se.cfs_rq;
133 /* runqueue on which this entity is (to be) queued */
134 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
136 return se->cfs_rq;
139 /* runqueue "owned" by this group */
140 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
142 return grp->my_q;
145 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
146 * another cpu ('this_cpu')
148 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
150 return cfs_rq->tg->cfs_rq[this_cpu];
153 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
155 if (!cfs_rq->on_list) {
157 * Ensure we either appear before our parent (if already
158 * enqueued) or force our parent to appear after us when it is
159 * enqueued. The fact that we always enqueue bottom-up
160 * reduces this to two cases.
162 if (cfs_rq->tg->parent &&
163 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
164 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
165 &rq_of(cfs_rq)->leaf_cfs_rq_list);
166 } else {
167 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
168 &rq_of(cfs_rq)->leaf_cfs_rq_list);
171 cfs_rq->on_list = 1;
175 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
177 if (cfs_rq->on_list) {
178 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
179 cfs_rq->on_list = 0;
183 /* Iterate thr' all leaf cfs_rq's on a runqueue */
184 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
185 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
187 /* Do the two (enqueued) entities belong to the same group ? */
188 static inline int
189 is_same_group(struct sched_entity *se, struct sched_entity *pse)
191 if (se->cfs_rq == pse->cfs_rq)
192 return 1;
194 return 0;
197 static inline struct sched_entity *parent_entity(struct sched_entity *se)
199 return se->parent;
202 /* return depth at which a sched entity is present in the hierarchy */
203 static inline int depth_se(struct sched_entity *se)
205 int depth = 0;
207 for_each_sched_entity(se)
208 depth++;
210 return depth;
213 static void
214 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
216 int se_depth, pse_depth;
219 * preemption test can be made between sibling entities who are in the
220 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
221 * both tasks until we find their ancestors who are siblings of common
222 * parent.
225 /* First walk up until both entities are at same depth */
226 se_depth = depth_se(*se);
227 pse_depth = depth_se(*pse);
229 while (se_depth > pse_depth) {
230 se_depth--;
231 *se = parent_entity(*se);
234 while (pse_depth > se_depth) {
235 pse_depth--;
236 *pse = parent_entity(*pse);
239 while (!is_same_group(*se, *pse)) {
240 *se = parent_entity(*se);
241 *pse = parent_entity(*pse);
245 #else /* !CONFIG_FAIR_GROUP_SCHED */
247 static inline struct task_struct *task_of(struct sched_entity *se)
249 return container_of(se, struct task_struct, se);
252 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
254 return container_of(cfs_rq, struct rq, cfs);
257 #define entity_is_task(se) 1
259 #define for_each_sched_entity(se) \
260 for (; se; se = NULL)
262 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
264 return &task_rq(p)->cfs;
267 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
269 struct task_struct *p = task_of(se);
270 struct rq *rq = task_rq(p);
272 return &rq->cfs;
275 /* runqueue "owned" by this group */
276 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
278 return NULL;
281 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
283 return &cpu_rq(this_cpu)->cfs;
286 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
294 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
295 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
297 static inline int
298 is_same_group(struct sched_entity *se, struct sched_entity *pse)
300 return 1;
303 static inline struct sched_entity *parent_entity(struct sched_entity *se)
305 return NULL;
308 static inline void
309 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
313 #endif /* CONFIG_FAIR_GROUP_SCHED */
316 /**************************************************************
317 * Scheduling class tree data structure manipulation methods:
320 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
322 s64 delta = (s64)(vruntime - min_vruntime);
323 if (delta > 0)
324 min_vruntime = vruntime;
326 return min_vruntime;
329 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
331 s64 delta = (s64)(vruntime - min_vruntime);
332 if (delta < 0)
333 min_vruntime = vruntime;
335 return min_vruntime;
338 static inline int entity_before(struct sched_entity *a,
339 struct sched_entity *b)
341 return (s64)(a->vruntime - b->vruntime) < 0;
344 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
346 return se->vruntime - cfs_rq->min_vruntime;
349 static void update_min_vruntime(struct cfs_rq *cfs_rq)
351 u64 vruntime = cfs_rq->min_vruntime;
353 if (cfs_rq->curr)
354 vruntime = cfs_rq->curr->vruntime;
356 if (cfs_rq->rb_leftmost) {
357 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
358 struct sched_entity,
359 run_node);
361 if (!cfs_rq->curr)
362 vruntime = se->vruntime;
363 else
364 vruntime = min_vruntime(vruntime, se->vruntime);
367 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
371 * Enqueue an entity into the rb-tree:
373 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
375 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
376 struct rb_node *parent = NULL;
377 struct sched_entity *entry;
378 s64 key = entity_key(cfs_rq, se);
379 int leftmost = 1;
382 * Find the right place in the rbtree:
384 while (*link) {
385 parent = *link;
386 entry = rb_entry(parent, struct sched_entity, run_node);
388 * We dont care about collisions. Nodes with
389 * the same key stay together.
391 if (key < entity_key(cfs_rq, entry)) {
392 link = &parent->rb_left;
393 } else {
394 link = &parent->rb_right;
395 leftmost = 0;
400 * Maintain a cache of leftmost tree entries (it is frequently
401 * used):
403 if (leftmost)
404 cfs_rq->rb_leftmost = &se->run_node;
406 rb_link_node(&se->run_node, parent, link);
407 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
410 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
412 if (cfs_rq->rb_leftmost == &se->run_node) {
413 struct rb_node *next_node;
415 next_node = rb_next(&se->run_node);
416 cfs_rq->rb_leftmost = next_node;
419 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
422 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
424 struct rb_node *left = cfs_rq->rb_leftmost;
426 if (!left)
427 return NULL;
429 return rb_entry(left, struct sched_entity, run_node);
432 static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
434 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
436 if (!last)
437 return NULL;
439 return rb_entry(last, struct sched_entity, run_node);
442 /**************************************************************
443 * Scheduling class statistics methods:
446 #ifdef CONFIG_SCHED_DEBUG
447 int sched_proc_update_handler(struct ctl_table *table, int write,
448 void __user *buffer, size_t *lenp,
449 loff_t *ppos)
451 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
452 int factor = get_update_sysctl_factor();
454 if (ret || !write)
455 return ret;
457 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
458 sysctl_sched_min_granularity);
460 #define WRT_SYSCTL(name) \
461 (normalized_sysctl_##name = sysctl_##name / (factor))
462 WRT_SYSCTL(sched_min_granularity);
463 WRT_SYSCTL(sched_latency);
464 WRT_SYSCTL(sched_wakeup_granularity);
465 #undef WRT_SYSCTL
467 return 0;
469 #endif
472 * delta /= w
474 static inline unsigned long
475 calc_delta_fair(unsigned long delta, struct sched_entity *se)
477 if (unlikely(se->load.weight != NICE_0_LOAD))
478 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
480 return delta;
484 * The idea is to set a period in which each task runs once.
486 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
487 * this period because otherwise the slices get too small.
489 * p = (nr <= nl) ? l : l*nr/nl
491 static u64 __sched_period(unsigned long nr_running)
493 u64 period = sysctl_sched_latency;
494 unsigned long nr_latency = sched_nr_latency;
496 if (unlikely(nr_running > nr_latency)) {
497 period = sysctl_sched_min_granularity;
498 period *= nr_running;
501 return period;
505 * We calculate the wall-time slice from the period by taking a part
506 * proportional to the weight.
508 * s = p*P[w/rw]
510 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
512 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
514 for_each_sched_entity(se) {
515 struct load_weight *load;
516 struct load_weight lw;
518 cfs_rq = cfs_rq_of(se);
519 load = &cfs_rq->load;
521 if (unlikely(!se->on_rq)) {
522 lw = cfs_rq->load;
524 update_load_add(&lw, se->load.weight);
525 load = &lw;
527 slice = calc_delta_mine(slice, se->load.weight, load);
529 return slice;
533 * We calculate the vruntime slice of a to be inserted task
535 * vs = s/w
537 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
539 return calc_delta_fair(sched_slice(cfs_rq, se), se);
542 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
543 static void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta);
546 * Update the current task's runtime statistics. Skip current tasks that
547 * are not in our scheduling class.
549 static inline void
550 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
551 unsigned long delta_exec)
553 unsigned long delta_exec_weighted;
555 schedstat_set(curr->statistics.exec_max,
556 max((u64)delta_exec, curr->statistics.exec_max));
558 curr->sum_exec_runtime += delta_exec;
559 schedstat_add(cfs_rq, exec_clock, delta_exec);
560 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
562 curr->vruntime += delta_exec_weighted;
563 update_min_vruntime(cfs_rq);
565 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
566 cfs_rq->load_unacc_exec_time += delta_exec;
567 #endif
570 static void update_curr(struct cfs_rq *cfs_rq)
572 struct sched_entity *curr = cfs_rq->curr;
573 u64 now = rq_of(cfs_rq)->clock_task;
574 unsigned long delta_exec;
576 if (unlikely(!curr))
577 return;
580 * Get the amount of time the current task was running
581 * since the last time we changed load (this cannot
582 * overflow on 32 bits):
584 delta_exec = (unsigned long)(now - curr->exec_start);
585 if (!delta_exec)
586 return;
588 __update_curr(cfs_rq, curr, delta_exec);
589 curr->exec_start = now;
591 if (entity_is_task(curr)) {
592 struct task_struct *curtask = task_of(curr);
594 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
595 cpuacct_charge(curtask, delta_exec);
596 account_group_exec_runtime(curtask, delta_exec);
600 static inline void
601 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
603 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
607 * Task is being enqueued - update stats:
609 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
612 * Are we enqueueing a waiting task? (for current tasks
613 * a dequeue/enqueue event is a NOP)
615 if (se != cfs_rq->curr)
616 update_stats_wait_start(cfs_rq, se);
619 static void
620 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
622 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
623 rq_of(cfs_rq)->clock - se->statistics.wait_start));
624 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
625 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
626 rq_of(cfs_rq)->clock - se->statistics.wait_start);
627 #ifdef CONFIG_SCHEDSTATS
628 if (entity_is_task(se)) {
629 trace_sched_stat_wait(task_of(se),
630 rq_of(cfs_rq)->clock - se->statistics.wait_start);
632 #endif
633 schedstat_set(se->statistics.wait_start, 0);
636 static inline void
637 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
640 * Mark the end of the wait period if dequeueing a
641 * waiting task:
643 if (se != cfs_rq->curr)
644 update_stats_wait_end(cfs_rq, se);
648 * We are picking a new current task - update its stats:
650 static inline void
651 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
654 * We are starting a new run period:
656 se->exec_start = rq_of(cfs_rq)->clock_task;
659 /**************************************************
660 * Scheduling class queueing methods:
663 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
664 static void
665 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
667 cfs_rq->task_weight += weight;
669 #else
670 static inline void
671 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
674 #endif
676 static void
677 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
679 update_load_add(&cfs_rq->load, se->load.weight);
680 if (!parent_entity(se))
681 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
682 if (entity_is_task(se)) {
683 add_cfs_task_weight(cfs_rq, se->load.weight);
684 list_add(&se->group_node, &cfs_rq->tasks);
686 cfs_rq->nr_running++;
689 static void
690 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
692 update_load_sub(&cfs_rq->load, se->load.weight);
693 if (!parent_entity(se))
694 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
695 if (entity_is_task(se)) {
696 add_cfs_task_weight(cfs_rq, -se->load.weight);
697 list_del_init(&se->group_node);
699 cfs_rq->nr_running--;
702 #ifdef CONFIG_FAIR_GROUP_SCHED
703 # ifdef CONFIG_SMP
704 static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
705 int global_update)
707 struct task_group *tg = cfs_rq->tg;
708 long load_avg;
710 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
711 load_avg -= cfs_rq->load_contribution;
713 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
714 atomic_add(load_avg, &tg->load_weight);
715 cfs_rq->load_contribution += load_avg;
719 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
721 u64 period = sysctl_sched_shares_window;
722 u64 now, delta;
723 unsigned long load = cfs_rq->load.weight;
725 if (cfs_rq->tg == &root_task_group)
726 return;
728 now = rq_of(cfs_rq)->clock_task;
729 delta = now - cfs_rq->load_stamp;
731 /* truncate load history at 4 idle periods */
732 if (cfs_rq->load_stamp > cfs_rq->load_last &&
733 now - cfs_rq->load_last > 4 * period) {
734 cfs_rq->load_period = 0;
735 cfs_rq->load_avg = 0;
738 cfs_rq->load_stamp = now;
739 cfs_rq->load_unacc_exec_time = 0;
740 cfs_rq->load_period += delta;
741 if (load) {
742 cfs_rq->load_last = now;
743 cfs_rq->load_avg += delta * load;
746 /* consider updating load contribution on each fold or truncate */
747 if (global_update || cfs_rq->load_period > period
748 || !cfs_rq->load_period)
749 update_cfs_rq_load_contribution(cfs_rq, global_update);
751 while (cfs_rq->load_period > period) {
753 * Inline assembly required to prevent the compiler
754 * optimising this loop into a divmod call.
755 * See __iter_div_u64_rem() for another example of this.
757 asm("" : "+rm" (cfs_rq->load_period));
758 cfs_rq->load_period /= 2;
759 cfs_rq->load_avg /= 2;
762 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
763 list_del_leaf_cfs_rq(cfs_rq);
766 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg,
767 long weight_delta)
769 long load_weight, load, shares;
771 load = cfs_rq->load.weight + weight_delta;
773 load_weight = atomic_read(&tg->load_weight);
774 load_weight -= cfs_rq->load_contribution;
775 load_weight += load;
777 shares = (tg->shares * load);
778 if (load_weight)
779 shares /= load_weight;
781 if (shares < MIN_SHARES)
782 shares = MIN_SHARES;
783 if (shares > tg->shares)
784 shares = tg->shares;
786 return shares;
789 static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
791 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
792 update_cfs_load(cfs_rq, 0);
793 update_cfs_shares(cfs_rq, 0);
796 # else /* CONFIG_SMP */
797 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
801 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg,
802 long weight_delta)
804 return tg->shares;
807 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
810 # endif /* CONFIG_SMP */
811 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
812 unsigned long weight)
814 if (se->on_rq) {
815 /* commit outstanding execution time */
816 if (cfs_rq->curr == se)
817 update_curr(cfs_rq);
818 account_entity_dequeue(cfs_rq, se);
821 update_load_set(&se->load, weight);
823 if (se->on_rq)
824 account_entity_enqueue(cfs_rq, se);
827 static void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta)
829 struct task_group *tg;
830 struct sched_entity *se;
831 long shares;
833 tg = cfs_rq->tg;
834 se = tg->se[cpu_of(rq_of(cfs_rq))];
835 if (!se)
836 return;
837 #ifndef CONFIG_SMP
838 if (likely(se->load.weight == tg->shares))
839 return;
840 #endif
841 shares = calc_cfs_shares(cfs_rq, tg, weight_delta);
843 reweight_entity(cfs_rq_of(se), se, shares);
845 #else /* CONFIG_FAIR_GROUP_SCHED */
846 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
850 static inline void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta)
854 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
857 #endif /* CONFIG_FAIR_GROUP_SCHED */
859 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
861 #ifdef CONFIG_SCHEDSTATS
862 struct task_struct *tsk = NULL;
864 if (entity_is_task(se))
865 tsk = task_of(se);
867 if (se->statistics.sleep_start) {
868 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
870 if ((s64)delta < 0)
871 delta = 0;
873 if (unlikely(delta > se->statistics.sleep_max))
874 se->statistics.sleep_max = delta;
876 se->statistics.sleep_start = 0;
877 se->statistics.sum_sleep_runtime += delta;
879 if (tsk) {
880 account_scheduler_latency(tsk, delta >> 10, 1);
881 trace_sched_stat_sleep(tsk, delta);
884 if (se->statistics.block_start) {
885 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
887 if ((s64)delta < 0)
888 delta = 0;
890 if (unlikely(delta > se->statistics.block_max))
891 se->statistics.block_max = delta;
893 se->statistics.block_start = 0;
894 se->statistics.sum_sleep_runtime += delta;
896 if (tsk) {
897 if (tsk->in_iowait) {
898 se->statistics.iowait_sum += delta;
899 se->statistics.iowait_count++;
900 trace_sched_stat_iowait(tsk, delta);
904 * Blocking time is in units of nanosecs, so shift by
905 * 20 to get a milliseconds-range estimation of the
906 * amount of time that the task spent sleeping:
908 if (unlikely(prof_on == SLEEP_PROFILING)) {
909 profile_hits(SLEEP_PROFILING,
910 (void *)get_wchan(tsk),
911 delta >> 20);
913 account_scheduler_latency(tsk, delta >> 10, 0);
916 #endif
919 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
921 #ifdef CONFIG_SCHED_DEBUG
922 s64 d = se->vruntime - cfs_rq->min_vruntime;
924 if (d < 0)
925 d = -d;
927 if (d > 3*sysctl_sched_latency)
928 schedstat_inc(cfs_rq, nr_spread_over);
929 #endif
932 static void
933 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
935 u64 vruntime = cfs_rq->min_vruntime;
938 * The 'current' period is already promised to the current tasks,
939 * however the extra weight of the new task will slow them down a
940 * little, place the new task so that it fits in the slot that
941 * stays open at the end.
943 if (initial && sched_feat(START_DEBIT))
944 vruntime += sched_vslice(cfs_rq, se);
946 /* sleeps up to a single latency don't count. */
947 if (!initial) {
948 unsigned long thresh = sysctl_sched_latency;
951 * Halve their sleep time's effect, to allow
952 * for a gentler effect of sleepers:
954 if (sched_feat(GENTLE_FAIR_SLEEPERS))
955 thresh >>= 1;
957 vruntime -= thresh;
960 /* ensure we never gain time by being placed backwards. */
961 vruntime = max_vruntime(se->vruntime, vruntime);
963 se->vruntime = vruntime;
966 static void
967 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
970 * Update the normalized vruntime before updating min_vruntime
971 * through callig update_curr().
973 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
974 se->vruntime += cfs_rq->min_vruntime;
977 * Update run-time statistics of the 'current'.
979 update_curr(cfs_rq);
980 update_cfs_load(cfs_rq, 0);
981 update_cfs_shares(cfs_rq, se->load.weight);
982 account_entity_enqueue(cfs_rq, se);
984 if (flags & ENQUEUE_WAKEUP) {
985 place_entity(cfs_rq, se, 0);
986 enqueue_sleeper(cfs_rq, se);
989 update_stats_enqueue(cfs_rq, se);
990 check_spread(cfs_rq, se);
991 if (se != cfs_rq->curr)
992 __enqueue_entity(cfs_rq, se);
993 se->on_rq = 1;
995 if (cfs_rq->nr_running == 1)
996 list_add_leaf_cfs_rq(cfs_rq);
999 static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1001 if (!se || cfs_rq->last == se)
1002 cfs_rq->last = NULL;
1004 if (!se || cfs_rq->next == se)
1005 cfs_rq->next = NULL;
1008 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1010 for_each_sched_entity(se)
1011 __clear_buddies(cfs_rq_of(se), se);
1014 static void
1015 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1018 * Update run-time statistics of the 'current'.
1020 update_curr(cfs_rq);
1022 update_stats_dequeue(cfs_rq, se);
1023 if (flags & DEQUEUE_SLEEP) {
1024 #ifdef CONFIG_SCHEDSTATS
1025 if (entity_is_task(se)) {
1026 struct task_struct *tsk = task_of(se);
1028 if (tsk->state & TASK_INTERRUPTIBLE)
1029 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
1030 if (tsk->state & TASK_UNINTERRUPTIBLE)
1031 se->statistics.block_start = rq_of(cfs_rq)->clock;
1033 #endif
1036 clear_buddies(cfs_rq, se);
1038 if (se != cfs_rq->curr)
1039 __dequeue_entity(cfs_rq, se);
1040 se->on_rq = 0;
1041 update_cfs_load(cfs_rq, 0);
1042 account_entity_dequeue(cfs_rq, se);
1043 update_min_vruntime(cfs_rq);
1044 update_cfs_shares(cfs_rq, 0);
1047 * Normalize the entity after updating the min_vruntime because the
1048 * update can refer to the ->curr item and we need to reflect this
1049 * movement in our normalized position.
1051 if (!(flags & DEQUEUE_SLEEP))
1052 se->vruntime -= cfs_rq->min_vruntime;
1056 * Preempt the current task with a newly woken task if needed:
1058 static void
1059 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1061 unsigned long ideal_runtime, delta_exec;
1063 ideal_runtime = sched_slice(cfs_rq, curr);
1064 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1065 if (delta_exec > ideal_runtime) {
1066 resched_task(rq_of(cfs_rq)->curr);
1068 * The current task ran long enough, ensure it doesn't get
1069 * re-elected due to buddy favours.
1071 clear_buddies(cfs_rq, curr);
1072 return;
1076 * Ensure that a task that missed wakeup preemption by a
1077 * narrow margin doesn't have to wait for a full slice.
1078 * This also mitigates buddy induced latencies under load.
1080 if (!sched_feat(WAKEUP_PREEMPT))
1081 return;
1083 if (delta_exec < sysctl_sched_min_granularity)
1084 return;
1086 if (cfs_rq->nr_running > 1) {
1087 struct sched_entity *se = __pick_next_entity(cfs_rq);
1088 s64 delta = curr->vruntime - se->vruntime;
1090 if (delta < 0)
1091 return;
1093 if (delta > ideal_runtime)
1094 resched_task(rq_of(cfs_rq)->curr);
1098 static void
1099 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1101 /* 'current' is not kept within the tree. */
1102 if (se->on_rq) {
1104 * Any task has to be enqueued before it get to execute on
1105 * a CPU. So account for the time it spent waiting on the
1106 * runqueue.
1108 update_stats_wait_end(cfs_rq, se);
1109 __dequeue_entity(cfs_rq, se);
1112 update_stats_curr_start(cfs_rq, se);
1113 cfs_rq->curr = se;
1114 #ifdef CONFIG_SCHEDSTATS
1116 * Track our maximum slice length, if the CPU's load is at
1117 * least twice that of our own weight (i.e. dont track it
1118 * when there are only lesser-weight tasks around):
1120 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1121 se->statistics.slice_max = max(se->statistics.slice_max,
1122 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1124 #endif
1125 se->prev_sum_exec_runtime = se->sum_exec_runtime;
1128 static int
1129 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1131 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1133 struct sched_entity *se = __pick_next_entity(cfs_rq);
1134 struct sched_entity *left = se;
1136 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1137 se = cfs_rq->next;
1140 * Prefer last buddy, try to return the CPU to a preempted task.
1142 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1143 se = cfs_rq->last;
1145 clear_buddies(cfs_rq, se);
1147 return se;
1150 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1153 * If still on the runqueue then deactivate_task()
1154 * was not called and update_curr() has to be done:
1156 if (prev->on_rq)
1157 update_curr(cfs_rq);
1159 check_spread(cfs_rq, prev);
1160 if (prev->on_rq) {
1161 update_stats_wait_start(cfs_rq, prev);
1162 /* Put 'current' back into the tree. */
1163 __enqueue_entity(cfs_rq, prev);
1165 cfs_rq->curr = NULL;
1168 static void
1169 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1172 * Update run-time statistics of the 'current'.
1174 update_curr(cfs_rq);
1177 * Update share accounting for long-running entities.
1179 update_entity_shares_tick(cfs_rq);
1181 #ifdef CONFIG_SCHED_HRTICK
1183 * queued ticks are scheduled to match the slice, so don't bother
1184 * validating it and just reschedule.
1186 if (queued) {
1187 resched_task(rq_of(cfs_rq)->curr);
1188 return;
1191 * don't let the period tick interfere with the hrtick preemption
1193 if (!sched_feat(DOUBLE_TICK) &&
1194 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1195 return;
1196 #endif
1198 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
1199 check_preempt_tick(cfs_rq, curr);
1202 /**************************************************
1203 * CFS operations on tasks:
1206 #ifdef CONFIG_SCHED_HRTICK
1207 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
1209 struct sched_entity *se = &p->se;
1210 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1212 WARN_ON(task_rq(p) != rq);
1214 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
1215 u64 slice = sched_slice(cfs_rq, se);
1216 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1217 s64 delta = slice - ran;
1219 if (delta < 0) {
1220 if (rq->curr == p)
1221 resched_task(p);
1222 return;
1226 * Don't schedule slices shorter than 10000ns, that just
1227 * doesn't make sense. Rely on vruntime for fairness.
1229 if (rq->curr != p)
1230 delta = max_t(s64, 10000LL, delta);
1232 hrtick_start(rq, delta);
1237 * called from enqueue/dequeue and updates the hrtick when the
1238 * current task is from our class and nr_running is low enough
1239 * to matter.
1241 static void hrtick_update(struct rq *rq)
1243 struct task_struct *curr = rq->curr;
1245 if (curr->sched_class != &fair_sched_class)
1246 return;
1248 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1249 hrtick_start_fair(rq, curr);
1251 #else /* !CONFIG_SCHED_HRTICK */
1252 static inline void
1253 hrtick_start_fair(struct rq *rq, struct task_struct *p)
1257 static inline void hrtick_update(struct rq *rq)
1260 #endif
1263 * The enqueue_task method is called before nr_running is
1264 * increased. Here we update the fair scheduling stats and
1265 * then put the task into the rbtree:
1267 static void
1268 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1270 struct cfs_rq *cfs_rq;
1271 struct sched_entity *se = &p->se;
1273 for_each_sched_entity(se) {
1274 if (se->on_rq)
1275 break;
1276 cfs_rq = cfs_rq_of(se);
1277 enqueue_entity(cfs_rq, se, flags);
1278 flags = ENQUEUE_WAKEUP;
1281 for_each_sched_entity(se) {
1282 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1284 update_cfs_load(cfs_rq, 0);
1285 update_cfs_shares(cfs_rq, 0);
1288 hrtick_update(rq);
1292 * The dequeue_task method is called before nr_running is
1293 * decreased. We remove the task from the rbtree and
1294 * update the fair scheduling stats:
1296 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1298 struct cfs_rq *cfs_rq;
1299 struct sched_entity *se = &p->se;
1301 for_each_sched_entity(se) {
1302 cfs_rq = cfs_rq_of(se);
1303 dequeue_entity(cfs_rq, se, flags);
1305 /* Don't dequeue parent if it has other entities besides us */
1306 if (cfs_rq->load.weight)
1307 break;
1308 flags |= DEQUEUE_SLEEP;
1311 for_each_sched_entity(se) {
1312 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1314 update_cfs_load(cfs_rq, 0);
1315 update_cfs_shares(cfs_rq, 0);
1318 hrtick_update(rq);
1322 * sched_yield() support is very simple - we dequeue and enqueue.
1324 * If compat_yield is turned on then we requeue to the end of the tree.
1326 static void yield_task_fair(struct rq *rq)
1328 struct task_struct *curr = rq->curr;
1329 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1330 struct sched_entity *rightmost, *se = &curr->se;
1333 * Are we the only task in the tree?
1335 if (unlikely(cfs_rq->nr_running == 1))
1336 return;
1338 clear_buddies(cfs_rq, se);
1340 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1341 update_rq_clock(rq);
1343 * Update run-time statistics of the 'current'.
1345 update_curr(cfs_rq);
1347 return;
1350 * Find the rightmost entry in the rbtree:
1352 rightmost = __pick_last_entity(cfs_rq);
1354 * Already in the rightmost position?
1356 if (unlikely(!rightmost || entity_before(rightmost, se)))
1357 return;
1360 * Minimally necessary key value to be last in the tree:
1361 * Upon rescheduling, sched_class::put_prev_task() will place
1362 * 'current' within the tree based on its new key value.
1364 se->vruntime = rightmost->vruntime + 1;
1367 #ifdef CONFIG_SMP
1369 static void task_waking_fair(struct rq *rq, struct task_struct *p)
1371 struct sched_entity *se = &p->se;
1372 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1374 se->vruntime -= cfs_rq->min_vruntime;
1377 #ifdef CONFIG_FAIR_GROUP_SCHED
1379 * effective_load() calculates the load change as seen from the root_task_group
1381 * Adding load to a group doesn't make a group heavier, but can cause movement
1382 * of group shares between cpus. Assuming the shares were perfectly aligned one
1383 * can calculate the shift in shares.
1385 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
1387 struct sched_entity *se = tg->se[cpu];
1389 if (!tg->parent)
1390 return wl;
1392 for_each_sched_entity(se) {
1393 long lw, w;
1395 tg = se->my_q->tg;
1396 w = se->my_q->load.weight;
1398 /* use this cpu's instantaneous contribution */
1399 lw = atomic_read(&tg->load_weight);
1400 lw -= se->my_q->load_contribution;
1401 lw += w + wg;
1403 wl += w;
1405 if (lw > 0 && wl < lw)
1406 wl = (wl * tg->shares) / lw;
1407 else
1408 wl = tg->shares;
1410 /* zero point is MIN_SHARES */
1411 if (wl < MIN_SHARES)
1412 wl = MIN_SHARES;
1413 wl -= se->load.weight;
1414 wg = 0;
1417 return wl;
1420 #else
1422 static inline unsigned long effective_load(struct task_group *tg, int cpu,
1423 unsigned long wl, unsigned long wg)
1425 return wl;
1428 #endif
1430 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1432 s64 this_load, load;
1433 int idx, this_cpu, prev_cpu;
1434 unsigned long tl_per_task;
1435 struct task_group *tg;
1436 unsigned long weight;
1437 int balanced;
1439 idx = sd->wake_idx;
1440 this_cpu = smp_processor_id();
1441 prev_cpu = task_cpu(p);
1442 load = source_load(prev_cpu, idx);
1443 this_load = target_load(this_cpu, idx);
1446 * If sync wakeup then subtract the (maximum possible)
1447 * effect of the currently running task from the load
1448 * of the current CPU:
1450 rcu_read_lock();
1451 if (sync) {
1452 tg = task_group(current);
1453 weight = current->se.load.weight;
1455 this_load += effective_load(tg, this_cpu, -weight, -weight);
1456 load += effective_load(tg, prev_cpu, 0, -weight);
1459 tg = task_group(p);
1460 weight = p->se.load.weight;
1463 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1464 * due to the sync cause above having dropped this_load to 0, we'll
1465 * always have an imbalance, but there's really nothing you can do
1466 * about that, so that's good too.
1468 * Otherwise check if either cpus are near enough in load to allow this
1469 * task to be woken on this_cpu.
1471 if (this_load > 0) {
1472 s64 this_eff_load, prev_eff_load;
1474 this_eff_load = 100;
1475 this_eff_load *= power_of(prev_cpu);
1476 this_eff_load *= this_load +
1477 effective_load(tg, this_cpu, weight, weight);
1479 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
1480 prev_eff_load *= power_of(this_cpu);
1481 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
1483 balanced = this_eff_load <= prev_eff_load;
1484 } else
1485 balanced = true;
1486 rcu_read_unlock();
1489 * If the currently running task will sleep within
1490 * a reasonable amount of time then attract this newly
1491 * woken task:
1493 if (sync && balanced)
1494 return 1;
1496 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
1497 tl_per_task = cpu_avg_load_per_task(this_cpu);
1499 if (balanced ||
1500 (this_load <= load &&
1501 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1503 * This domain has SD_WAKE_AFFINE and
1504 * p is cache cold in this domain, and
1505 * there is no bad imbalance.
1507 schedstat_inc(sd, ttwu_move_affine);
1508 schedstat_inc(p, se.statistics.nr_wakeups_affine);
1510 return 1;
1512 return 0;
1516 * find_idlest_group finds and returns the least busy CPU group within the
1517 * domain.
1519 static struct sched_group *
1520 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1521 int this_cpu, int load_idx)
1523 struct sched_group *idlest = NULL, *group = sd->groups;
1524 unsigned long min_load = ULONG_MAX, this_load = 0;
1525 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1527 do {
1528 unsigned long load, avg_load;
1529 int local_group;
1530 int i;
1532 /* Skip over this group if it has no CPUs allowed */
1533 if (!cpumask_intersects(sched_group_cpus(group),
1534 &p->cpus_allowed))
1535 continue;
1537 local_group = cpumask_test_cpu(this_cpu,
1538 sched_group_cpus(group));
1540 /* Tally up the load of all CPUs in the group */
1541 avg_load = 0;
1543 for_each_cpu(i, sched_group_cpus(group)) {
1544 /* Bias balancing toward cpus of our domain */
1545 if (local_group)
1546 load = source_load(i, load_idx);
1547 else
1548 load = target_load(i, load_idx);
1550 avg_load += load;
1553 /* Adjust by relative CPU power of the group */
1554 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1556 if (local_group) {
1557 this_load = avg_load;
1558 } else if (avg_load < min_load) {
1559 min_load = avg_load;
1560 idlest = group;
1562 } while (group = group->next, group != sd->groups);
1564 if (!idlest || 100*this_load < imbalance*min_load)
1565 return NULL;
1566 return idlest;
1570 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1572 static int
1573 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1575 unsigned long load, min_load = ULONG_MAX;
1576 int idlest = -1;
1577 int i;
1579 /* Traverse only the allowed CPUs */
1580 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1581 load = weighted_cpuload(i);
1583 if (load < min_load || (load == min_load && i == this_cpu)) {
1584 min_load = load;
1585 idlest = i;
1589 return idlest;
1593 * Try and locate an idle CPU in the sched_domain.
1595 static int select_idle_sibling(struct task_struct *p, int target)
1597 int cpu = smp_processor_id();
1598 int prev_cpu = task_cpu(p);
1599 struct sched_domain *sd;
1600 int i;
1603 * If the task is going to be woken-up on this cpu and if it is
1604 * already idle, then it is the right target.
1606 if (target == cpu && idle_cpu(cpu))
1607 return cpu;
1610 * If the task is going to be woken-up on the cpu where it previously
1611 * ran and if it is currently idle, then it the right target.
1613 if (target == prev_cpu && idle_cpu(prev_cpu))
1614 return prev_cpu;
1617 * Otherwise, iterate the domains and find an elegible idle cpu.
1619 for_each_domain(target, sd) {
1620 if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
1621 break;
1623 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1624 if (idle_cpu(i)) {
1625 target = i;
1626 break;
1631 * Lets stop looking for an idle sibling when we reached
1632 * the domain that spans the current cpu and prev_cpu.
1634 if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
1635 cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
1636 break;
1639 return target;
1643 * sched_balance_self: balance the current task (running on cpu) in domains
1644 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1645 * SD_BALANCE_EXEC.
1647 * Balance, ie. select the least loaded group.
1649 * Returns the target CPU number, or the same CPU if no balancing is needed.
1651 * preempt must be disabled.
1653 static int
1654 select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
1656 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
1657 int cpu = smp_processor_id();
1658 int prev_cpu = task_cpu(p);
1659 int new_cpu = cpu;
1660 int want_affine = 0;
1661 int want_sd = 1;
1662 int sync = wake_flags & WF_SYNC;
1664 if (sd_flag & SD_BALANCE_WAKE) {
1665 if (cpumask_test_cpu(cpu, &p->cpus_allowed))
1666 want_affine = 1;
1667 new_cpu = prev_cpu;
1670 for_each_domain(cpu, tmp) {
1671 if (!(tmp->flags & SD_LOAD_BALANCE))
1672 continue;
1675 * If power savings logic is enabled for a domain, see if we
1676 * are not overloaded, if so, don't balance wider.
1678 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
1679 unsigned long power = 0;
1680 unsigned long nr_running = 0;
1681 unsigned long capacity;
1682 int i;
1684 for_each_cpu(i, sched_domain_span(tmp)) {
1685 power += power_of(i);
1686 nr_running += cpu_rq(i)->cfs.nr_running;
1689 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1691 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1692 nr_running /= 2;
1694 if (nr_running < capacity)
1695 want_sd = 0;
1699 * If both cpu and prev_cpu are part of this domain,
1700 * cpu is a valid SD_WAKE_AFFINE target.
1702 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
1703 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
1704 affine_sd = tmp;
1705 want_affine = 0;
1708 if (!want_sd && !want_affine)
1709 break;
1711 if (!(tmp->flags & sd_flag))
1712 continue;
1714 if (want_sd)
1715 sd = tmp;
1718 if (affine_sd) {
1719 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
1720 return select_idle_sibling(p, cpu);
1721 else
1722 return select_idle_sibling(p, prev_cpu);
1725 while (sd) {
1726 int load_idx = sd->forkexec_idx;
1727 struct sched_group *group;
1728 int weight;
1730 if (!(sd->flags & sd_flag)) {
1731 sd = sd->child;
1732 continue;
1735 if (sd_flag & SD_BALANCE_WAKE)
1736 load_idx = sd->wake_idx;
1738 group = find_idlest_group(sd, p, cpu, load_idx);
1739 if (!group) {
1740 sd = sd->child;
1741 continue;
1744 new_cpu = find_idlest_cpu(group, p, cpu);
1745 if (new_cpu == -1 || new_cpu == cpu) {
1746 /* Now try balancing at a lower domain level of cpu */
1747 sd = sd->child;
1748 continue;
1751 /* Now try balancing at a lower domain level of new_cpu */
1752 cpu = new_cpu;
1753 weight = sd->span_weight;
1754 sd = NULL;
1755 for_each_domain(cpu, tmp) {
1756 if (weight <= tmp->span_weight)
1757 break;
1758 if (tmp->flags & sd_flag)
1759 sd = tmp;
1761 /* while loop will break here if sd == NULL */
1764 return new_cpu;
1766 #endif /* CONFIG_SMP */
1768 static unsigned long
1769 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1771 unsigned long gran = sysctl_sched_wakeup_granularity;
1774 * Since its curr running now, convert the gran from real-time
1775 * to virtual-time in his units.
1777 * By using 'se' instead of 'curr' we penalize light tasks, so
1778 * they get preempted easier. That is, if 'se' < 'curr' then
1779 * the resulting gran will be larger, therefore penalizing the
1780 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1781 * be smaller, again penalizing the lighter task.
1783 * This is especially important for buddies when the leftmost
1784 * task is higher priority than the buddy.
1786 if (unlikely(se->load.weight != NICE_0_LOAD))
1787 gran = calc_delta_fair(gran, se);
1789 return gran;
1793 * Should 'se' preempt 'curr'.
1795 * |s1
1796 * |s2
1797 * |s3
1799 * |<--->|c
1801 * w(c, s1) = -1
1802 * w(c, s2) = 0
1803 * w(c, s3) = 1
1806 static int
1807 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1809 s64 gran, vdiff = curr->vruntime - se->vruntime;
1811 if (vdiff <= 0)
1812 return -1;
1814 gran = wakeup_gran(curr, se);
1815 if (vdiff > gran)
1816 return 1;
1818 return 0;
1821 static void set_last_buddy(struct sched_entity *se)
1823 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1824 for_each_sched_entity(se)
1825 cfs_rq_of(se)->last = se;
1829 static void set_next_buddy(struct sched_entity *se)
1831 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1832 for_each_sched_entity(se)
1833 cfs_rq_of(se)->next = se;
1838 * Preempt the current task with a newly woken task if needed:
1840 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1842 struct task_struct *curr = rq->curr;
1843 struct sched_entity *se = &curr->se, *pse = &p->se;
1844 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1845 int scale = cfs_rq->nr_running >= sched_nr_latency;
1847 if (unlikely(se == pse))
1848 return;
1850 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
1851 set_next_buddy(pse);
1854 * We can come here with TIF_NEED_RESCHED already set from new task
1855 * wake up path.
1857 if (test_tsk_need_resched(curr))
1858 return;
1861 * Batch and idle tasks do not preempt (their preemption is driven by
1862 * the tick):
1864 if (unlikely(p->policy != SCHED_NORMAL))
1865 return;
1867 /* Idle tasks are by definition preempted by everybody. */
1868 if (unlikely(curr->policy == SCHED_IDLE))
1869 goto preempt;
1871 if (!sched_feat(WAKEUP_PREEMPT))
1872 return;
1874 update_curr(cfs_rq);
1875 find_matching_se(&se, &pse);
1876 BUG_ON(!pse);
1877 if (wakeup_preempt_entity(se, pse) == 1)
1878 goto preempt;
1880 return;
1882 preempt:
1883 resched_task(curr);
1885 * Only set the backward buddy when the current task is still
1886 * on the rq. This can happen when a wakeup gets interleaved
1887 * with schedule on the ->pre_schedule() or idle_balance()
1888 * point, either of which can * drop the rq lock.
1890 * Also, during early boot the idle thread is in the fair class,
1891 * for obvious reasons its a bad idea to schedule back to it.
1893 if (unlikely(!se->on_rq || curr == rq->idle))
1894 return;
1896 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1897 set_last_buddy(se);
1900 static struct task_struct *pick_next_task_fair(struct rq *rq)
1902 struct task_struct *p;
1903 struct cfs_rq *cfs_rq = &rq->cfs;
1904 struct sched_entity *se;
1906 if (!cfs_rq->nr_running)
1907 return NULL;
1909 do {
1910 se = pick_next_entity(cfs_rq);
1911 set_next_entity(cfs_rq, se);
1912 cfs_rq = group_cfs_rq(se);
1913 } while (cfs_rq);
1915 p = task_of(se);
1916 hrtick_start_fair(rq, p);
1918 return p;
1922 * Account for a descheduled task:
1924 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1926 struct sched_entity *se = &prev->se;
1927 struct cfs_rq *cfs_rq;
1929 for_each_sched_entity(se) {
1930 cfs_rq = cfs_rq_of(se);
1931 put_prev_entity(cfs_rq, se);
1935 #ifdef CONFIG_SMP
1936 /**************************************************
1937 * Fair scheduling class load-balancing methods:
1941 * pull_task - move a task from a remote runqueue to the local runqueue.
1942 * Both runqueues must be locked.
1944 static void pull_task(struct rq *src_rq, struct task_struct *p,
1945 struct rq *this_rq, int this_cpu)
1947 deactivate_task(src_rq, p, 0);
1948 set_task_cpu(p, this_cpu);
1949 activate_task(this_rq, p, 0);
1950 check_preempt_curr(this_rq, p, 0);
1954 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1956 static
1957 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
1958 struct sched_domain *sd, enum cpu_idle_type idle,
1959 int *all_pinned)
1961 int tsk_cache_hot = 0;
1963 * We do not migrate tasks that are:
1964 * 1) running (obviously), or
1965 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1966 * 3) are cache-hot on their current CPU.
1968 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
1969 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
1970 return 0;
1972 *all_pinned = 0;
1974 if (task_running(rq, p)) {
1975 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1976 return 0;
1980 * Aggressive migration if:
1981 * 1) task is cache cold, or
1982 * 2) too many balance attempts have failed.
1985 tsk_cache_hot = task_hot(p, rq->clock_task, sd);
1986 if (!tsk_cache_hot ||
1987 sd->nr_balance_failed > sd->cache_nice_tries) {
1988 #ifdef CONFIG_SCHEDSTATS
1989 if (tsk_cache_hot) {
1990 schedstat_inc(sd, lb_hot_gained[idle]);
1991 schedstat_inc(p, se.statistics.nr_forced_migrations);
1993 #endif
1994 return 1;
1997 if (tsk_cache_hot) {
1998 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1999 return 0;
2001 return 1;
2005 * move_one_task tries to move exactly one task from busiest to this_rq, as
2006 * part of active balancing operations within "domain".
2007 * Returns 1 if successful and 0 otherwise.
2009 * Called with both runqueues locked.
2011 static int
2012 move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2013 struct sched_domain *sd, enum cpu_idle_type idle)
2015 struct task_struct *p, *n;
2016 struct cfs_rq *cfs_rq;
2017 int pinned = 0;
2019 for_each_leaf_cfs_rq(busiest, cfs_rq) {
2020 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
2022 if (!can_migrate_task(p, busiest, this_cpu,
2023 sd, idle, &pinned))
2024 continue;
2026 pull_task(busiest, p, this_rq, this_cpu);
2028 * Right now, this is only the second place pull_task()
2029 * is called, so we can safely collect pull_task()
2030 * stats here rather than inside pull_task().
2032 schedstat_inc(sd, lb_gained[idle]);
2033 return 1;
2037 return 0;
2040 static unsigned long
2041 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2042 unsigned long max_load_move, struct sched_domain *sd,
2043 enum cpu_idle_type idle, int *all_pinned,
2044 int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
2046 int loops = 0, pulled = 0, pinned = 0;
2047 long rem_load_move = max_load_move;
2048 struct task_struct *p, *n;
2050 if (max_load_move == 0)
2051 goto out;
2053 pinned = 1;
2055 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
2056 if (loops++ > sysctl_sched_nr_migrate)
2057 break;
2059 if ((p->se.load.weight >> 1) > rem_load_move ||
2060 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
2061 continue;
2063 pull_task(busiest, p, this_rq, this_cpu);
2064 pulled++;
2065 rem_load_move -= p->se.load.weight;
2067 #ifdef CONFIG_PREEMPT
2069 * NEWIDLE balancing is a source of latency, so preemptible
2070 * kernels will stop after the first task is pulled to minimize
2071 * the critical section.
2073 if (idle == CPU_NEWLY_IDLE)
2074 break;
2075 #endif
2078 * We only want to steal up to the prescribed amount of
2079 * weighted load.
2081 if (rem_load_move <= 0)
2082 break;
2084 if (p->prio < *this_best_prio)
2085 *this_best_prio = p->prio;
2087 out:
2089 * Right now, this is one of only two places pull_task() is called,
2090 * so we can safely collect pull_task() stats here rather than
2091 * inside pull_task().
2093 schedstat_add(sd, lb_gained[idle], pulled);
2095 if (all_pinned)
2096 *all_pinned = pinned;
2098 return max_load_move - rem_load_move;
2101 #ifdef CONFIG_FAIR_GROUP_SCHED
2103 * update tg->load_weight by folding this cpu's load_avg
2105 static int update_shares_cpu(struct task_group *tg, int cpu)
2107 struct cfs_rq *cfs_rq;
2108 unsigned long flags;
2109 struct rq *rq;
2111 if (!tg->se[cpu])
2112 return 0;
2114 rq = cpu_rq(cpu);
2115 cfs_rq = tg->cfs_rq[cpu];
2117 raw_spin_lock_irqsave(&rq->lock, flags);
2119 update_rq_clock(rq);
2120 update_cfs_load(cfs_rq, 1);
2123 * We need to update shares after updating tg->load_weight in
2124 * order to adjust the weight of groups with long running tasks.
2126 update_cfs_shares(cfs_rq, 0);
2128 raw_spin_unlock_irqrestore(&rq->lock, flags);
2130 return 0;
2133 static void update_shares(int cpu)
2135 struct cfs_rq *cfs_rq;
2136 struct rq *rq = cpu_rq(cpu);
2138 rcu_read_lock();
2139 for_each_leaf_cfs_rq(rq, cfs_rq)
2140 update_shares_cpu(cfs_rq->tg, cpu);
2141 rcu_read_unlock();
2144 static unsigned long
2145 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2146 unsigned long max_load_move,
2147 struct sched_domain *sd, enum cpu_idle_type idle,
2148 int *all_pinned, int *this_best_prio)
2150 long rem_load_move = max_load_move;
2151 int busiest_cpu = cpu_of(busiest);
2152 struct task_group *tg;
2154 rcu_read_lock();
2155 update_h_load(busiest_cpu);
2157 list_for_each_entry_rcu(tg, &task_groups, list) {
2158 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
2159 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
2160 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
2161 u64 rem_load, moved_load;
2164 * empty group
2166 if (!busiest_cfs_rq->task_weight)
2167 continue;
2169 rem_load = (u64)rem_load_move * busiest_weight;
2170 rem_load = div_u64(rem_load, busiest_h_load + 1);
2172 moved_load = balance_tasks(this_rq, this_cpu, busiest,
2173 rem_load, sd, idle, all_pinned, this_best_prio,
2174 busiest_cfs_rq);
2176 if (!moved_load)
2177 continue;
2179 moved_load *= busiest_h_load;
2180 moved_load = div_u64(moved_load, busiest_weight + 1);
2182 rem_load_move -= moved_load;
2183 if (rem_load_move < 0)
2184 break;
2186 rcu_read_unlock();
2188 return max_load_move - rem_load_move;
2190 #else
2191 static inline void update_shares(int cpu)
2195 static unsigned long
2196 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2197 unsigned long max_load_move,
2198 struct sched_domain *sd, enum cpu_idle_type idle,
2199 int *all_pinned, int *this_best_prio)
2201 return balance_tasks(this_rq, this_cpu, busiest,
2202 max_load_move, sd, idle, all_pinned,
2203 this_best_prio, &busiest->cfs);
2205 #endif
2208 * move_tasks tries to move up to max_load_move weighted load from busiest to
2209 * this_rq, as part of a balancing operation within domain "sd".
2210 * Returns 1 if successful and 0 otherwise.
2212 * Called with both runqueues locked.
2214 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2215 unsigned long max_load_move,
2216 struct sched_domain *sd, enum cpu_idle_type idle,
2217 int *all_pinned)
2219 unsigned long total_load_moved = 0, load_moved;
2220 int this_best_prio = this_rq->curr->prio;
2222 do {
2223 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
2224 max_load_move - total_load_moved,
2225 sd, idle, all_pinned, &this_best_prio);
2227 total_load_moved += load_moved;
2229 #ifdef CONFIG_PREEMPT
2231 * NEWIDLE balancing is a source of latency, so preemptible
2232 * kernels will stop after the first task is pulled to minimize
2233 * the critical section.
2235 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2236 break;
2238 if (raw_spin_is_contended(&this_rq->lock) ||
2239 raw_spin_is_contended(&busiest->lock))
2240 break;
2241 #endif
2242 } while (load_moved && max_load_move > total_load_moved);
2244 return total_load_moved > 0;
2247 /********** Helpers for find_busiest_group ************************/
2249 * sd_lb_stats - Structure to store the statistics of a sched_domain
2250 * during load balancing.
2252 struct sd_lb_stats {
2253 struct sched_group *busiest; /* Busiest group in this sd */
2254 struct sched_group *this; /* Local group in this sd */
2255 unsigned long total_load; /* Total load of all groups in sd */
2256 unsigned long total_pwr; /* Total power of all groups in sd */
2257 unsigned long avg_load; /* Average load across all groups in sd */
2259 /** Statistics of this group */
2260 unsigned long this_load;
2261 unsigned long this_load_per_task;
2262 unsigned long this_nr_running;
2263 unsigned long this_has_capacity;
2264 unsigned int this_idle_cpus;
2266 /* Statistics of the busiest group */
2267 unsigned int busiest_idle_cpus;
2268 unsigned long max_load;
2269 unsigned long busiest_load_per_task;
2270 unsigned long busiest_nr_running;
2271 unsigned long busiest_group_capacity;
2272 unsigned long busiest_has_capacity;
2273 unsigned int busiest_group_weight;
2275 int group_imb; /* Is there imbalance in this sd */
2276 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2277 int power_savings_balance; /* Is powersave balance needed for this sd */
2278 struct sched_group *group_min; /* Least loaded group in sd */
2279 struct sched_group *group_leader; /* Group which relieves group_min */
2280 unsigned long min_load_per_task; /* load_per_task in group_min */
2281 unsigned long leader_nr_running; /* Nr running of group_leader */
2282 unsigned long min_nr_running; /* Nr running of group_min */
2283 #endif
2287 * sg_lb_stats - stats of a sched_group required for load_balancing
2289 struct sg_lb_stats {
2290 unsigned long avg_load; /*Avg load across the CPUs of the group */
2291 unsigned long group_load; /* Total load over the CPUs of the group */
2292 unsigned long sum_nr_running; /* Nr tasks running in the group */
2293 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2294 unsigned long group_capacity;
2295 unsigned long idle_cpus;
2296 unsigned long group_weight;
2297 int group_imb; /* Is there an imbalance in the group ? */
2298 int group_has_capacity; /* Is there extra capacity in the group? */
2302 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2303 * @group: The group whose first cpu is to be returned.
2305 static inline unsigned int group_first_cpu(struct sched_group *group)
2307 return cpumask_first(sched_group_cpus(group));
2311 * get_sd_load_idx - Obtain the load index for a given sched domain.
2312 * @sd: The sched_domain whose load_idx is to be obtained.
2313 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2315 static inline int get_sd_load_idx(struct sched_domain *sd,
2316 enum cpu_idle_type idle)
2318 int load_idx;
2320 switch (idle) {
2321 case CPU_NOT_IDLE:
2322 load_idx = sd->busy_idx;
2323 break;
2325 case CPU_NEWLY_IDLE:
2326 load_idx = sd->newidle_idx;
2327 break;
2328 default:
2329 load_idx = sd->idle_idx;
2330 break;
2333 return load_idx;
2337 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2339 * init_sd_power_savings_stats - Initialize power savings statistics for
2340 * the given sched_domain, during load balancing.
2342 * @sd: Sched domain whose power-savings statistics are to be initialized.
2343 * @sds: Variable containing the statistics for sd.
2344 * @idle: Idle status of the CPU at which we're performing load-balancing.
2346 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2347 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2350 * Busy processors will not participate in power savings
2351 * balance.
2353 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2354 sds->power_savings_balance = 0;
2355 else {
2356 sds->power_savings_balance = 1;
2357 sds->min_nr_running = ULONG_MAX;
2358 sds->leader_nr_running = 0;
2363 * update_sd_power_savings_stats - Update the power saving stats for a
2364 * sched_domain while performing load balancing.
2366 * @group: sched_group belonging to the sched_domain under consideration.
2367 * @sds: Variable containing the statistics of the sched_domain
2368 * @local_group: Does group contain the CPU for which we're performing
2369 * load balancing ?
2370 * @sgs: Variable containing the statistics of the group.
2372 static inline void update_sd_power_savings_stats(struct sched_group *group,
2373 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2376 if (!sds->power_savings_balance)
2377 return;
2380 * If the local group is idle or completely loaded
2381 * no need to do power savings balance at this domain
2383 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2384 !sds->this_nr_running))
2385 sds->power_savings_balance = 0;
2388 * If a group is already running at full capacity or idle,
2389 * don't include that group in power savings calculations
2391 if (!sds->power_savings_balance ||
2392 sgs->sum_nr_running >= sgs->group_capacity ||
2393 !sgs->sum_nr_running)
2394 return;
2397 * Calculate the group which has the least non-idle load.
2398 * This is the group from where we need to pick up the load
2399 * for saving power
2401 if ((sgs->sum_nr_running < sds->min_nr_running) ||
2402 (sgs->sum_nr_running == sds->min_nr_running &&
2403 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2404 sds->group_min = group;
2405 sds->min_nr_running = sgs->sum_nr_running;
2406 sds->min_load_per_task = sgs->sum_weighted_load /
2407 sgs->sum_nr_running;
2411 * Calculate the group which is almost near its
2412 * capacity but still has some space to pick up some load
2413 * from other group and save more power
2415 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2416 return;
2418 if (sgs->sum_nr_running > sds->leader_nr_running ||
2419 (sgs->sum_nr_running == sds->leader_nr_running &&
2420 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2421 sds->group_leader = group;
2422 sds->leader_nr_running = sgs->sum_nr_running;
2427 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2428 * @sds: Variable containing the statistics of the sched_domain
2429 * under consideration.
2430 * @this_cpu: Cpu at which we're currently performing load-balancing.
2431 * @imbalance: Variable to store the imbalance.
2433 * Description:
2434 * Check if we have potential to perform some power-savings balance.
2435 * If yes, set the busiest group to be the least loaded group in the
2436 * sched_domain, so that it's CPUs can be put to idle.
2438 * Returns 1 if there is potential to perform power-savings balance.
2439 * Else returns 0.
2441 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2442 int this_cpu, unsigned long *imbalance)
2444 if (!sds->power_savings_balance)
2445 return 0;
2447 if (sds->this != sds->group_leader ||
2448 sds->group_leader == sds->group_min)
2449 return 0;
2451 *imbalance = sds->min_load_per_task;
2452 sds->busiest = sds->group_min;
2454 return 1;
2457 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2458 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2459 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2461 return;
2464 static inline void update_sd_power_savings_stats(struct sched_group *group,
2465 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2467 return;
2470 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2471 int this_cpu, unsigned long *imbalance)
2473 return 0;
2475 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2478 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2480 return SCHED_LOAD_SCALE;
2483 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2485 return default_scale_freq_power(sd, cpu);
2488 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2490 unsigned long weight = sd->span_weight;
2491 unsigned long smt_gain = sd->smt_gain;
2493 smt_gain /= weight;
2495 return smt_gain;
2498 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2500 return default_scale_smt_power(sd, cpu);
2503 unsigned long scale_rt_power(int cpu)
2505 struct rq *rq = cpu_rq(cpu);
2506 u64 total, available;
2508 total = sched_avg_period() + (rq->clock - rq->age_stamp);
2510 if (unlikely(total < rq->rt_avg)) {
2511 /* Ensures that power won't end up being negative */
2512 available = 0;
2513 } else {
2514 available = total - rq->rt_avg;
2517 if (unlikely((s64)total < SCHED_LOAD_SCALE))
2518 total = SCHED_LOAD_SCALE;
2520 total >>= SCHED_LOAD_SHIFT;
2522 return div_u64(available, total);
2525 static void update_cpu_power(struct sched_domain *sd, int cpu)
2527 unsigned long weight = sd->span_weight;
2528 unsigned long power = SCHED_LOAD_SCALE;
2529 struct sched_group *sdg = sd->groups;
2531 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2532 if (sched_feat(ARCH_POWER))
2533 power *= arch_scale_smt_power(sd, cpu);
2534 else
2535 power *= default_scale_smt_power(sd, cpu);
2537 power >>= SCHED_LOAD_SHIFT;
2540 sdg->cpu_power_orig = power;
2542 if (sched_feat(ARCH_POWER))
2543 power *= arch_scale_freq_power(sd, cpu);
2544 else
2545 power *= default_scale_freq_power(sd, cpu);
2547 power >>= SCHED_LOAD_SHIFT;
2549 power *= scale_rt_power(cpu);
2550 power >>= SCHED_LOAD_SHIFT;
2552 if (!power)
2553 power = 1;
2555 cpu_rq(cpu)->cpu_power = power;
2556 sdg->cpu_power = power;
2559 static void update_group_power(struct sched_domain *sd, int cpu)
2561 struct sched_domain *child = sd->child;
2562 struct sched_group *group, *sdg = sd->groups;
2563 unsigned long power;
2565 if (!child) {
2566 update_cpu_power(sd, cpu);
2567 return;
2570 power = 0;
2572 group = child->groups;
2573 do {
2574 power += group->cpu_power;
2575 group = group->next;
2576 } while (group != child->groups);
2578 sdg->cpu_power = power;
2582 * Try and fix up capacity for tiny siblings, this is needed when
2583 * things like SD_ASYM_PACKING need f_b_g to select another sibling
2584 * which on its own isn't powerful enough.
2586 * See update_sd_pick_busiest() and check_asym_packing().
2588 static inline int
2589 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
2592 * Only siblings can have significantly less than SCHED_LOAD_SCALE
2594 if (sd->level != SD_LV_SIBLING)
2595 return 0;
2598 * If ~90% of the cpu_power is still there, we're good.
2600 if (group->cpu_power * 32 > group->cpu_power_orig * 29)
2601 return 1;
2603 return 0;
2607 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2608 * @sd: The sched_domain whose statistics are to be updated.
2609 * @group: sched_group whose statistics are to be updated.
2610 * @this_cpu: Cpu for which load balance is currently performed.
2611 * @idle: Idle status of this_cpu
2612 * @load_idx: Load index of sched_domain of this_cpu for load calc.
2613 * @sd_idle: Idle status of the sched_domain containing group.
2614 * @local_group: Does group contain this_cpu.
2615 * @cpus: Set of cpus considered for load balancing.
2616 * @balance: Should we balance.
2617 * @sgs: variable to hold the statistics for this group.
2619 static inline void update_sg_lb_stats(struct sched_domain *sd,
2620 struct sched_group *group, int this_cpu,
2621 enum cpu_idle_type idle, int load_idx, int *sd_idle,
2622 int local_group, const struct cpumask *cpus,
2623 int *balance, struct sg_lb_stats *sgs)
2625 unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
2626 int i;
2627 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2628 unsigned long avg_load_per_task = 0;
2630 if (local_group)
2631 balance_cpu = group_first_cpu(group);
2633 /* Tally up the load of all CPUs in the group */
2634 max_cpu_load = 0;
2635 min_cpu_load = ~0UL;
2636 max_nr_running = 0;
2638 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
2639 struct rq *rq = cpu_rq(i);
2641 if (*sd_idle && rq->nr_running)
2642 *sd_idle = 0;
2644 /* Bias balancing toward cpus of our domain */
2645 if (local_group) {
2646 if (idle_cpu(i) && !first_idle_cpu) {
2647 first_idle_cpu = 1;
2648 balance_cpu = i;
2651 load = target_load(i, load_idx);
2652 } else {
2653 load = source_load(i, load_idx);
2654 if (load > max_cpu_load) {
2655 max_cpu_load = load;
2656 max_nr_running = rq->nr_running;
2658 if (min_cpu_load > load)
2659 min_cpu_load = load;
2662 sgs->group_load += load;
2663 sgs->sum_nr_running += rq->nr_running;
2664 sgs->sum_weighted_load += weighted_cpuload(i);
2665 if (idle_cpu(i))
2666 sgs->idle_cpus++;
2670 * First idle cpu or the first cpu(busiest) in this sched group
2671 * is eligible for doing load balancing at this and above
2672 * domains. In the newly idle case, we will allow all the cpu's
2673 * to do the newly idle load balance.
2675 if (idle != CPU_NEWLY_IDLE && local_group) {
2676 if (balance_cpu != this_cpu) {
2677 *balance = 0;
2678 return;
2680 update_group_power(sd, this_cpu);
2683 /* Adjust by relative CPU power of the group */
2684 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
2687 * Consider the group unbalanced when the imbalance is larger
2688 * than the average weight of two tasks.
2690 * APZ: with cgroup the avg task weight can vary wildly and
2691 * might not be a suitable number - should we keep a
2692 * normalized nr_running number somewhere that negates
2693 * the hierarchy?
2695 if (sgs->sum_nr_running)
2696 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
2698 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task && max_nr_running > 1)
2699 sgs->group_imb = 1;
2701 sgs->group_capacity = DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
2702 if (!sgs->group_capacity)
2703 sgs->group_capacity = fix_small_capacity(sd, group);
2704 sgs->group_weight = group->group_weight;
2706 if (sgs->group_capacity > sgs->sum_nr_running)
2707 sgs->group_has_capacity = 1;
2711 * update_sd_pick_busiest - return 1 on busiest group
2712 * @sd: sched_domain whose statistics are to be checked
2713 * @sds: sched_domain statistics
2714 * @sg: sched_group candidate to be checked for being the busiest
2715 * @sgs: sched_group statistics
2716 * @this_cpu: the current cpu
2718 * Determine if @sg is a busier group than the previously selected
2719 * busiest group.
2721 static bool update_sd_pick_busiest(struct sched_domain *sd,
2722 struct sd_lb_stats *sds,
2723 struct sched_group *sg,
2724 struct sg_lb_stats *sgs,
2725 int this_cpu)
2727 if (sgs->avg_load <= sds->max_load)
2728 return false;
2730 if (sgs->sum_nr_running > sgs->group_capacity)
2731 return true;
2733 if (sgs->group_imb)
2734 return true;
2737 * ASYM_PACKING needs to move all the work to the lowest
2738 * numbered CPUs in the group, therefore mark all groups
2739 * higher than ourself as busy.
2741 if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
2742 this_cpu < group_first_cpu(sg)) {
2743 if (!sds->busiest)
2744 return true;
2746 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
2747 return true;
2750 return false;
2754 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2755 * @sd: sched_domain whose statistics are to be updated.
2756 * @this_cpu: Cpu for which load balance is currently performed.
2757 * @idle: Idle status of this_cpu
2758 * @sd_idle: Idle status of the sched_domain containing sg.
2759 * @cpus: Set of cpus considered for load balancing.
2760 * @balance: Should we balance.
2761 * @sds: variable to hold the statistics for this sched_domain.
2763 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
2764 enum cpu_idle_type idle, int *sd_idle,
2765 const struct cpumask *cpus, int *balance,
2766 struct sd_lb_stats *sds)
2768 struct sched_domain *child = sd->child;
2769 struct sched_group *sg = sd->groups;
2770 struct sg_lb_stats sgs;
2771 int load_idx, prefer_sibling = 0;
2773 if (child && child->flags & SD_PREFER_SIBLING)
2774 prefer_sibling = 1;
2776 init_sd_power_savings_stats(sd, sds, idle);
2777 load_idx = get_sd_load_idx(sd, idle);
2779 do {
2780 int local_group;
2782 local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
2783 memset(&sgs, 0, sizeof(sgs));
2784 update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx, sd_idle,
2785 local_group, cpus, balance, &sgs);
2787 if (local_group && !(*balance))
2788 return;
2790 sds->total_load += sgs.group_load;
2791 sds->total_pwr += sg->cpu_power;
2794 * In case the child domain prefers tasks go to siblings
2795 * first, lower the sg capacity to one so that we'll try
2796 * and move all the excess tasks away. We lower the capacity
2797 * of a group only if the local group has the capacity to fit
2798 * these excess tasks, i.e. nr_running < group_capacity. The
2799 * extra check prevents the case where you always pull from the
2800 * heaviest group when it is already under-utilized (possible
2801 * with a large weight task outweighs the tasks on the system).
2803 if (prefer_sibling && !local_group && sds->this_has_capacity)
2804 sgs.group_capacity = min(sgs.group_capacity, 1UL);
2806 if (local_group) {
2807 sds->this_load = sgs.avg_load;
2808 sds->this = sg;
2809 sds->this_nr_running = sgs.sum_nr_running;
2810 sds->this_load_per_task = sgs.sum_weighted_load;
2811 sds->this_has_capacity = sgs.group_has_capacity;
2812 sds->this_idle_cpus = sgs.idle_cpus;
2813 } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
2814 sds->max_load = sgs.avg_load;
2815 sds->busiest = sg;
2816 sds->busiest_nr_running = sgs.sum_nr_running;
2817 sds->busiest_idle_cpus = sgs.idle_cpus;
2818 sds->busiest_group_capacity = sgs.group_capacity;
2819 sds->busiest_load_per_task = sgs.sum_weighted_load;
2820 sds->busiest_has_capacity = sgs.group_has_capacity;
2821 sds->busiest_group_weight = sgs.group_weight;
2822 sds->group_imb = sgs.group_imb;
2825 update_sd_power_savings_stats(sg, sds, local_group, &sgs);
2826 sg = sg->next;
2827 } while (sg != sd->groups);
2830 int __weak arch_sd_sibling_asym_packing(void)
2832 return 0*SD_ASYM_PACKING;
2836 * check_asym_packing - Check to see if the group is packed into the
2837 * sched doman.
2839 * This is primarily intended to used at the sibling level. Some
2840 * cores like POWER7 prefer to use lower numbered SMT threads. In the
2841 * case of POWER7, it can move to lower SMT modes only when higher
2842 * threads are idle. When in lower SMT modes, the threads will
2843 * perform better since they share less core resources. Hence when we
2844 * have idle threads, we want them to be the higher ones.
2846 * This packing function is run on idle threads. It checks to see if
2847 * the busiest CPU in this domain (core in the P7 case) has a higher
2848 * CPU number than the packing function is being run on. Here we are
2849 * assuming lower CPU number will be equivalent to lower a SMT thread
2850 * number.
2852 * Returns 1 when packing is required and a task should be moved to
2853 * this CPU. The amount of the imbalance is returned in *imbalance.
2855 * @sd: The sched_domain whose packing is to be checked.
2856 * @sds: Statistics of the sched_domain which is to be packed
2857 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2858 * @imbalance: returns amount of imbalanced due to packing.
2860 static int check_asym_packing(struct sched_domain *sd,
2861 struct sd_lb_stats *sds,
2862 int this_cpu, unsigned long *imbalance)
2864 int busiest_cpu;
2866 if (!(sd->flags & SD_ASYM_PACKING))
2867 return 0;
2869 if (!sds->busiest)
2870 return 0;
2872 busiest_cpu = group_first_cpu(sds->busiest);
2873 if (this_cpu > busiest_cpu)
2874 return 0;
2876 *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->cpu_power,
2877 SCHED_LOAD_SCALE);
2878 return 1;
2882 * fix_small_imbalance - Calculate the minor imbalance that exists
2883 * amongst the groups of a sched_domain, during
2884 * load balancing.
2885 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2886 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2887 * @imbalance: Variable to store the imbalance.
2889 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
2890 int this_cpu, unsigned long *imbalance)
2892 unsigned long tmp, pwr_now = 0, pwr_move = 0;
2893 unsigned int imbn = 2;
2894 unsigned long scaled_busy_load_per_task;
2896 if (sds->this_nr_running) {
2897 sds->this_load_per_task /= sds->this_nr_running;
2898 if (sds->busiest_load_per_task >
2899 sds->this_load_per_task)
2900 imbn = 1;
2901 } else
2902 sds->this_load_per_task =
2903 cpu_avg_load_per_task(this_cpu);
2905 scaled_busy_load_per_task = sds->busiest_load_per_task
2906 * SCHED_LOAD_SCALE;
2907 scaled_busy_load_per_task /= sds->busiest->cpu_power;
2909 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
2910 (scaled_busy_load_per_task * imbn)) {
2911 *imbalance = sds->busiest_load_per_task;
2912 return;
2916 * OK, we don't have enough imbalance to justify moving tasks,
2917 * however we may be able to increase total CPU power used by
2918 * moving them.
2921 pwr_now += sds->busiest->cpu_power *
2922 min(sds->busiest_load_per_task, sds->max_load);
2923 pwr_now += sds->this->cpu_power *
2924 min(sds->this_load_per_task, sds->this_load);
2925 pwr_now /= SCHED_LOAD_SCALE;
2927 /* Amount of load we'd subtract */
2928 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2929 sds->busiest->cpu_power;
2930 if (sds->max_load > tmp)
2931 pwr_move += sds->busiest->cpu_power *
2932 min(sds->busiest_load_per_task, sds->max_load - tmp);
2934 /* Amount of load we'd add */
2935 if (sds->max_load * sds->busiest->cpu_power <
2936 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
2937 tmp = (sds->max_load * sds->busiest->cpu_power) /
2938 sds->this->cpu_power;
2939 else
2940 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2941 sds->this->cpu_power;
2942 pwr_move += sds->this->cpu_power *
2943 min(sds->this_load_per_task, sds->this_load + tmp);
2944 pwr_move /= SCHED_LOAD_SCALE;
2946 /* Move if we gain throughput */
2947 if (pwr_move > pwr_now)
2948 *imbalance = sds->busiest_load_per_task;
2952 * calculate_imbalance - Calculate the amount of imbalance present within the
2953 * groups of a given sched_domain during load balance.
2954 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
2955 * @this_cpu: Cpu for which currently load balance is being performed.
2956 * @imbalance: The variable to store the imbalance.
2958 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
2959 unsigned long *imbalance)
2961 unsigned long max_pull, load_above_capacity = ~0UL;
2963 sds->busiest_load_per_task /= sds->busiest_nr_running;
2964 if (sds->group_imb) {
2965 sds->busiest_load_per_task =
2966 min(sds->busiest_load_per_task, sds->avg_load);
2970 * In the presence of smp nice balancing, certain scenarios can have
2971 * max load less than avg load(as we skip the groups at or below
2972 * its cpu_power, while calculating max_load..)
2974 if (sds->max_load < sds->avg_load) {
2975 *imbalance = 0;
2976 return fix_small_imbalance(sds, this_cpu, imbalance);
2979 if (!sds->group_imb) {
2981 * Don't want to pull so many tasks that a group would go idle.
2983 load_above_capacity = (sds->busiest_nr_running -
2984 sds->busiest_group_capacity);
2986 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
2988 load_above_capacity /= sds->busiest->cpu_power;
2992 * We're trying to get all the cpus to the average_load, so we don't
2993 * want to push ourselves above the average load, nor do we wish to
2994 * reduce the max loaded cpu below the average load. At the same time,
2995 * we also don't want to reduce the group load below the group capacity
2996 * (so that we can implement power-savings policies etc). Thus we look
2997 * for the minimum possible imbalance.
2998 * Be careful of negative numbers as they'll appear as very large values
2999 * with unsigned longs.
3001 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
3003 /* How much load to actually move to equalise the imbalance */
3004 *imbalance = min(max_pull * sds->busiest->cpu_power,
3005 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
3006 / SCHED_LOAD_SCALE;
3009 * if *imbalance is less than the average load per runnable task
3010 * there is no gaurantee that any tasks will be moved so we'll have
3011 * a think about bumping its value to force at least one task to be
3012 * moved
3014 if (*imbalance < sds->busiest_load_per_task)
3015 return fix_small_imbalance(sds, this_cpu, imbalance);
3019 /******* find_busiest_group() helpers end here *********************/
3022 * find_busiest_group - Returns the busiest group within the sched_domain
3023 * if there is an imbalance. If there isn't an imbalance, and
3024 * the user has opted for power-savings, it returns a group whose
3025 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3026 * such a group exists.
3028 * Also calculates the amount of weighted load which should be moved
3029 * to restore balance.
3031 * @sd: The sched_domain whose busiest group is to be returned.
3032 * @this_cpu: The cpu for which load balancing is currently being performed.
3033 * @imbalance: Variable which stores amount of weighted load which should
3034 * be moved to restore balance/put a group to idle.
3035 * @idle: The idle status of this_cpu.
3036 * @sd_idle: The idleness of sd
3037 * @cpus: The set of CPUs under consideration for load-balancing.
3038 * @balance: Pointer to a variable indicating if this_cpu
3039 * is the appropriate cpu to perform load balancing at this_level.
3041 * Returns: - the busiest group if imbalance exists.
3042 * - If no imbalance and user has opted for power-savings balance,
3043 * return the least loaded group whose CPUs can be
3044 * put to idle by rebalancing its tasks onto our group.
3046 static struct sched_group *
3047 find_busiest_group(struct sched_domain *sd, int this_cpu,
3048 unsigned long *imbalance, enum cpu_idle_type idle,
3049 int *sd_idle, const struct cpumask *cpus, int *balance)
3051 struct sd_lb_stats sds;
3053 memset(&sds, 0, sizeof(sds));
3056 * Compute the various statistics relavent for load balancing at
3057 * this level.
3059 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3060 balance, &sds);
3062 /* Cases where imbalance does not exist from POV of this_cpu */
3063 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3064 * at this level.
3065 * 2) There is no busy sibling group to pull from.
3066 * 3) This group is the busiest group.
3067 * 4) This group is more busy than the avg busieness at this
3068 * sched_domain.
3069 * 5) The imbalance is within the specified limit.
3071 * Note: when doing newidle balance, if the local group has excess
3072 * capacity (i.e. nr_running < group_capacity) and the busiest group
3073 * does not have any capacity, we force a load balance to pull tasks
3074 * to the local group. In this case, we skip past checks 3, 4 and 5.
3076 if (!(*balance))
3077 goto ret;
3079 if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
3080 check_asym_packing(sd, &sds, this_cpu, imbalance))
3081 return sds.busiest;
3083 if (!sds.busiest || sds.busiest_nr_running == 0)
3084 goto out_balanced;
3086 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
3087 if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
3088 !sds.busiest_has_capacity)
3089 goto force_balance;
3091 if (sds.this_load >= sds.max_load)
3092 goto out_balanced;
3094 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3096 if (sds.this_load >= sds.avg_load)
3097 goto out_balanced;
3100 * In the CPU_NEWLY_IDLE, use imbalance_pct to be conservative.
3101 * And to check for busy balance use !idle_cpu instead of
3102 * CPU_NOT_IDLE. This is because HT siblings will use CPU_NOT_IDLE
3103 * even when they are idle.
3105 if (idle == CPU_NEWLY_IDLE || !idle_cpu(this_cpu)) {
3106 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3107 goto out_balanced;
3108 } else {
3110 * This cpu is idle. If the busiest group load doesn't
3111 * have more tasks than the number of available cpu's and
3112 * there is no imbalance between this and busiest group
3113 * wrt to idle cpu's, it is balanced.
3115 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
3116 sds.busiest_nr_running <= sds.busiest_group_weight)
3117 goto out_balanced;
3120 force_balance:
3121 /* Looks like there is an imbalance. Compute it */
3122 calculate_imbalance(&sds, this_cpu, imbalance);
3123 return sds.busiest;
3125 out_balanced:
3127 * There is no obvious imbalance. But check if we can do some balancing
3128 * to save power.
3130 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3131 return sds.busiest;
3132 ret:
3133 *imbalance = 0;
3134 return NULL;
3138 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3140 static struct rq *
3141 find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
3142 enum cpu_idle_type idle, unsigned long imbalance,
3143 const struct cpumask *cpus)
3145 struct rq *busiest = NULL, *rq;
3146 unsigned long max_load = 0;
3147 int i;
3149 for_each_cpu(i, sched_group_cpus(group)) {
3150 unsigned long power = power_of(i);
3151 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
3152 unsigned long wl;
3154 if (!capacity)
3155 capacity = fix_small_capacity(sd, group);
3157 if (!cpumask_test_cpu(i, cpus))
3158 continue;
3160 rq = cpu_rq(i);
3161 wl = weighted_cpuload(i);
3164 * When comparing with imbalance, use weighted_cpuload()
3165 * which is not scaled with the cpu power.
3167 if (capacity && rq->nr_running == 1 && wl > imbalance)
3168 continue;
3171 * For the load comparisons with the other cpu's, consider
3172 * the weighted_cpuload() scaled with the cpu power, so that
3173 * the load can be moved away from the cpu that is potentially
3174 * running at a lower capacity.
3176 wl = (wl * SCHED_LOAD_SCALE) / power;
3178 if (wl > max_load) {
3179 max_load = wl;
3180 busiest = rq;
3184 return busiest;
3188 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3189 * so long as it is large enough.
3191 #define MAX_PINNED_INTERVAL 512
3193 /* Working cpumask for load_balance and load_balance_newidle. */
3194 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3196 static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle,
3197 int busiest_cpu, int this_cpu)
3199 if (idle == CPU_NEWLY_IDLE) {
3202 * ASYM_PACKING needs to force migrate tasks from busy but
3203 * higher numbered CPUs in order to pack all tasks in the
3204 * lowest numbered CPUs.
3206 if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
3207 return 1;
3210 * The only task running in a non-idle cpu can be moved to this
3211 * cpu in an attempt to completely freeup the other CPU
3212 * package.
3214 * The package power saving logic comes from
3215 * find_busiest_group(). If there are no imbalance, then
3216 * f_b_g() will return NULL. However when sched_mc={1,2} then
3217 * f_b_g() will select a group from which a running task may be
3218 * pulled to this cpu in order to make the other package idle.
3219 * If there is no opportunity to make a package idle and if
3220 * there are no imbalance, then f_b_g() will return NULL and no
3221 * action will be taken in load_balance_newidle().
3223 * Under normal task pull operation due to imbalance, there
3224 * will be more than one task in the source run queue and
3225 * move_tasks() will succeed. ld_moved will be true and this
3226 * active balance code will not be triggered.
3228 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3229 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3230 return 0;
3232 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3233 return 0;
3236 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
3239 static int active_load_balance_cpu_stop(void *data);
3242 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3243 * tasks if there is an imbalance.
3245 static int load_balance(int this_cpu, struct rq *this_rq,
3246 struct sched_domain *sd, enum cpu_idle_type idle,
3247 int *balance)
3249 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3250 struct sched_group *group;
3251 unsigned long imbalance;
3252 struct rq *busiest;
3253 unsigned long flags;
3254 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
3256 cpumask_copy(cpus, cpu_active_mask);
3259 * When power savings policy is enabled for the parent domain, idle
3260 * sibling can pick up load irrespective of busy siblings. In this case,
3261 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3262 * portraying it as CPU_NOT_IDLE.
3264 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3265 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3266 sd_idle = 1;
3268 schedstat_inc(sd, lb_count[idle]);
3270 redo:
3271 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3272 cpus, balance);
3274 if (*balance == 0)
3275 goto out_balanced;
3277 if (!group) {
3278 schedstat_inc(sd, lb_nobusyg[idle]);
3279 goto out_balanced;
3282 busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
3283 if (!busiest) {
3284 schedstat_inc(sd, lb_nobusyq[idle]);
3285 goto out_balanced;
3288 BUG_ON(busiest == this_rq);
3290 schedstat_add(sd, lb_imbalance[idle], imbalance);
3292 ld_moved = 0;
3293 if (busiest->nr_running > 1) {
3295 * Attempt to move tasks. If find_busiest_group has found
3296 * an imbalance but busiest->nr_running <= 1, the group is
3297 * still unbalanced. ld_moved simply stays zero, so it is
3298 * correctly treated as an imbalance.
3300 local_irq_save(flags);
3301 double_rq_lock(this_rq, busiest);
3302 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3303 imbalance, sd, idle, &all_pinned);
3304 double_rq_unlock(this_rq, busiest);
3305 local_irq_restore(flags);
3308 * some other cpu did the load balance for us.
3310 if (ld_moved && this_cpu != smp_processor_id())
3311 resched_cpu(this_cpu);
3313 /* All tasks on this runqueue were pinned by CPU affinity */
3314 if (unlikely(all_pinned)) {
3315 cpumask_clear_cpu(cpu_of(busiest), cpus);
3316 if (!cpumask_empty(cpus))
3317 goto redo;
3318 goto out_balanced;
3322 if (!ld_moved) {
3323 schedstat_inc(sd, lb_failed[idle]);
3325 * Increment the failure counter only on periodic balance.
3326 * We do not want newidle balance, which can be very
3327 * frequent, pollute the failure counter causing
3328 * excessive cache_hot migrations and active balances.
3330 if (idle != CPU_NEWLY_IDLE)
3331 sd->nr_balance_failed++;
3333 if (need_active_balance(sd, sd_idle, idle, cpu_of(busiest),
3334 this_cpu)) {
3335 raw_spin_lock_irqsave(&busiest->lock, flags);
3337 /* don't kick the active_load_balance_cpu_stop,
3338 * if the curr task on busiest cpu can't be
3339 * moved to this_cpu
3341 if (!cpumask_test_cpu(this_cpu,
3342 &busiest->curr->cpus_allowed)) {
3343 raw_spin_unlock_irqrestore(&busiest->lock,
3344 flags);
3345 all_pinned = 1;
3346 goto out_one_pinned;
3350 * ->active_balance synchronizes accesses to
3351 * ->active_balance_work. Once set, it's cleared
3352 * only after active load balance is finished.
3354 if (!busiest->active_balance) {
3355 busiest->active_balance = 1;
3356 busiest->push_cpu = this_cpu;
3357 active_balance = 1;
3359 raw_spin_unlock_irqrestore(&busiest->lock, flags);
3361 if (active_balance)
3362 stop_one_cpu_nowait(cpu_of(busiest),
3363 active_load_balance_cpu_stop, busiest,
3364 &busiest->active_balance_work);
3367 * We've kicked active balancing, reset the failure
3368 * counter.
3370 sd->nr_balance_failed = sd->cache_nice_tries+1;
3372 } else
3373 sd->nr_balance_failed = 0;
3375 if (likely(!active_balance)) {
3376 /* We were unbalanced, so reset the balancing interval */
3377 sd->balance_interval = sd->min_interval;
3378 } else {
3380 * If we've begun active balancing, start to back off. This
3381 * case may not be covered by the all_pinned logic if there
3382 * is only 1 task on the busy runqueue (because we don't call
3383 * move_tasks).
3385 if (sd->balance_interval < sd->max_interval)
3386 sd->balance_interval *= 2;
3389 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3390 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3391 ld_moved = -1;
3393 goto out;
3395 out_balanced:
3396 schedstat_inc(sd, lb_balanced[idle]);
3398 sd->nr_balance_failed = 0;
3400 out_one_pinned:
3401 /* tune up the balancing interval */
3402 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3403 (sd->balance_interval < sd->max_interval))
3404 sd->balance_interval *= 2;
3406 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3407 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3408 ld_moved = -1;
3409 else
3410 ld_moved = 0;
3411 out:
3412 return ld_moved;
3416 * idle_balance is called by schedule() if this_cpu is about to become
3417 * idle. Attempts to pull tasks from other CPUs.
3419 static void idle_balance(int this_cpu, struct rq *this_rq)
3421 struct sched_domain *sd;
3422 int pulled_task = 0;
3423 unsigned long next_balance = jiffies + HZ;
3425 this_rq->idle_stamp = this_rq->clock;
3427 if (this_rq->avg_idle < sysctl_sched_migration_cost)
3428 return;
3431 * Drop the rq->lock, but keep IRQ/preempt disabled.
3433 raw_spin_unlock(&this_rq->lock);
3435 update_shares(this_cpu);
3436 for_each_domain(this_cpu, sd) {
3437 unsigned long interval;
3438 int balance = 1;
3440 if (!(sd->flags & SD_LOAD_BALANCE))
3441 continue;
3443 if (sd->flags & SD_BALANCE_NEWIDLE) {
3444 /* If we've pulled tasks over stop searching: */
3445 pulled_task = load_balance(this_cpu, this_rq,
3446 sd, CPU_NEWLY_IDLE, &balance);
3449 interval = msecs_to_jiffies(sd->balance_interval);
3450 if (time_after(next_balance, sd->last_balance + interval))
3451 next_balance = sd->last_balance + interval;
3452 if (pulled_task) {
3453 this_rq->idle_stamp = 0;
3454 break;
3458 raw_spin_lock(&this_rq->lock);
3460 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3462 * We are going idle. next_balance may be set based on
3463 * a busy processor. So reset next_balance.
3465 this_rq->next_balance = next_balance;
3470 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
3471 * running tasks off the busiest CPU onto idle CPUs. It requires at
3472 * least 1 task to be running on each physical CPU where possible, and
3473 * avoids physical / logical imbalances.
3475 static int active_load_balance_cpu_stop(void *data)
3477 struct rq *busiest_rq = data;
3478 int busiest_cpu = cpu_of(busiest_rq);
3479 int target_cpu = busiest_rq->push_cpu;
3480 struct rq *target_rq = cpu_rq(target_cpu);
3481 struct sched_domain *sd;
3483 raw_spin_lock_irq(&busiest_rq->lock);
3485 /* make sure the requested cpu hasn't gone down in the meantime */
3486 if (unlikely(busiest_cpu != smp_processor_id() ||
3487 !busiest_rq->active_balance))
3488 goto out_unlock;
3490 /* Is there any task to move? */
3491 if (busiest_rq->nr_running <= 1)
3492 goto out_unlock;
3495 * This condition is "impossible", if it occurs
3496 * we need to fix it. Originally reported by
3497 * Bjorn Helgaas on a 128-cpu setup.
3499 BUG_ON(busiest_rq == target_rq);
3501 /* move a task from busiest_rq to target_rq */
3502 double_lock_balance(busiest_rq, target_rq);
3504 /* Search for an sd spanning us and the target CPU. */
3505 for_each_domain(target_cpu, sd) {
3506 if ((sd->flags & SD_LOAD_BALANCE) &&
3507 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3508 break;
3511 if (likely(sd)) {
3512 schedstat_inc(sd, alb_count);
3514 if (move_one_task(target_rq, target_cpu, busiest_rq,
3515 sd, CPU_IDLE))
3516 schedstat_inc(sd, alb_pushed);
3517 else
3518 schedstat_inc(sd, alb_failed);
3520 double_unlock_balance(busiest_rq, target_rq);
3521 out_unlock:
3522 busiest_rq->active_balance = 0;
3523 raw_spin_unlock_irq(&busiest_rq->lock);
3524 return 0;
3527 #ifdef CONFIG_NO_HZ
3529 static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
3531 static void trigger_sched_softirq(void *data)
3533 raise_softirq_irqoff(SCHED_SOFTIRQ);
3536 static inline void init_sched_softirq_csd(struct call_single_data *csd)
3538 csd->func = trigger_sched_softirq;
3539 csd->info = NULL;
3540 csd->flags = 0;
3541 csd->priv = 0;
3545 * idle load balancing details
3546 * - One of the idle CPUs nominates itself as idle load_balancer, while
3547 * entering idle.
3548 * - This idle load balancer CPU will also go into tickless mode when
3549 * it is idle, just like all other idle CPUs
3550 * - When one of the busy CPUs notice that there may be an idle rebalancing
3551 * needed, they will kick the idle load balancer, which then does idle
3552 * load balancing for all the idle CPUs.
3554 static struct {
3555 atomic_t load_balancer;
3556 atomic_t first_pick_cpu;
3557 atomic_t second_pick_cpu;
3558 cpumask_var_t idle_cpus_mask;
3559 cpumask_var_t grp_idle_mask;
3560 unsigned long next_balance; /* in jiffy units */
3561 } nohz ____cacheline_aligned;
3563 int get_nohz_load_balancer(void)
3565 return atomic_read(&nohz.load_balancer);
3568 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3570 * lowest_flag_domain - Return lowest sched_domain containing flag.
3571 * @cpu: The cpu whose lowest level of sched domain is to
3572 * be returned.
3573 * @flag: The flag to check for the lowest sched_domain
3574 * for the given cpu.
3576 * Returns the lowest sched_domain of a cpu which contains the given flag.
3578 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3580 struct sched_domain *sd;
3582 for_each_domain(cpu, sd)
3583 if (sd && (sd->flags & flag))
3584 break;
3586 return sd;
3590 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3591 * @cpu: The cpu whose domains we're iterating over.
3592 * @sd: variable holding the value of the power_savings_sd
3593 * for cpu.
3594 * @flag: The flag to filter the sched_domains to be iterated.
3596 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3597 * set, starting from the lowest sched_domain to the highest.
3599 #define for_each_flag_domain(cpu, sd, flag) \
3600 for (sd = lowest_flag_domain(cpu, flag); \
3601 (sd && (sd->flags & flag)); sd = sd->parent)
3604 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3605 * @ilb_group: group to be checked for semi-idleness
3607 * Returns: 1 if the group is semi-idle. 0 otherwise.
3609 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3610 * and atleast one non-idle CPU. This helper function checks if the given
3611 * sched_group is semi-idle or not.
3613 static inline int is_semi_idle_group(struct sched_group *ilb_group)
3615 cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
3616 sched_group_cpus(ilb_group));
3619 * A sched_group is semi-idle when it has atleast one busy cpu
3620 * and atleast one idle cpu.
3622 if (cpumask_empty(nohz.grp_idle_mask))
3623 return 0;
3625 if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
3626 return 0;
3628 return 1;
3631 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3632 * @cpu: The cpu which is nominating a new idle_load_balancer.
3634 * Returns: Returns the id of the idle load balancer if it exists,
3635 * Else, returns >= nr_cpu_ids.
3637 * This algorithm picks the idle load balancer such that it belongs to a
3638 * semi-idle powersavings sched_domain. The idea is to try and avoid
3639 * completely idle packages/cores just for the purpose of idle load balancing
3640 * when there are other idle cpu's which are better suited for that job.
3642 static int find_new_ilb(int cpu)
3644 struct sched_domain *sd;
3645 struct sched_group *ilb_group;
3648 * Have idle load balancer selection from semi-idle packages only
3649 * when power-aware load balancing is enabled
3651 if (!(sched_smt_power_savings || sched_mc_power_savings))
3652 goto out_done;
3655 * Optimize for the case when we have no idle CPUs or only one
3656 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3658 if (cpumask_weight(nohz.idle_cpus_mask) < 2)
3659 goto out_done;
3661 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
3662 ilb_group = sd->groups;
3664 do {
3665 if (is_semi_idle_group(ilb_group))
3666 return cpumask_first(nohz.grp_idle_mask);
3668 ilb_group = ilb_group->next;
3670 } while (ilb_group != sd->groups);
3673 out_done:
3674 return nr_cpu_ids;
3676 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3677 static inline int find_new_ilb(int call_cpu)
3679 return nr_cpu_ids;
3681 #endif
3684 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
3685 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
3686 * CPU (if there is one).
3688 static void nohz_balancer_kick(int cpu)
3690 int ilb_cpu;
3692 nohz.next_balance++;
3694 ilb_cpu = get_nohz_load_balancer();
3696 if (ilb_cpu >= nr_cpu_ids) {
3697 ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
3698 if (ilb_cpu >= nr_cpu_ids)
3699 return;
3702 if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
3703 struct call_single_data *cp;
3705 cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
3706 cp = &per_cpu(remote_sched_softirq_cb, cpu);
3707 __smp_call_function_single(ilb_cpu, cp, 0);
3709 return;
3713 * This routine will try to nominate the ilb (idle load balancing)
3714 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3715 * load balancing on behalf of all those cpus.
3717 * When the ilb owner becomes busy, we will not have new ilb owner until some
3718 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
3719 * idle load balancing by kicking one of the idle CPUs.
3721 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
3722 * ilb owner CPU in future (when there is a need for idle load balancing on
3723 * behalf of all idle CPUs).
3725 void select_nohz_load_balancer(int stop_tick)
3727 int cpu = smp_processor_id();
3729 if (stop_tick) {
3730 if (!cpu_active(cpu)) {
3731 if (atomic_read(&nohz.load_balancer) != cpu)
3732 return;
3735 * If we are going offline and still the leader,
3736 * give up!
3738 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3739 nr_cpu_ids) != cpu)
3740 BUG();
3742 return;
3745 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
3747 if (atomic_read(&nohz.first_pick_cpu) == cpu)
3748 atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
3749 if (atomic_read(&nohz.second_pick_cpu) == cpu)
3750 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
3752 if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
3753 int new_ilb;
3755 /* make me the ilb owner */
3756 if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
3757 cpu) != nr_cpu_ids)
3758 return;
3761 * Check to see if there is a more power-efficient
3762 * ilb.
3764 new_ilb = find_new_ilb(cpu);
3765 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
3766 atomic_set(&nohz.load_balancer, nr_cpu_ids);
3767 resched_cpu(new_ilb);
3768 return;
3770 return;
3772 } else {
3773 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
3774 return;
3776 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
3778 if (atomic_read(&nohz.load_balancer) == cpu)
3779 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3780 nr_cpu_ids) != cpu)
3781 BUG();
3783 return;
3785 #endif
3787 static DEFINE_SPINLOCK(balancing);
3790 * It checks each scheduling domain to see if it is due to be balanced,
3791 * and initiates a balancing operation if so.
3793 * Balancing parameters are set up in arch_init_sched_domains.
3795 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3797 int balance = 1;
3798 struct rq *rq = cpu_rq(cpu);
3799 unsigned long interval;
3800 struct sched_domain *sd;
3801 /* Earliest time when we have to do rebalance again */
3802 unsigned long next_balance = jiffies + 60*HZ;
3803 int update_next_balance = 0;
3804 int need_serialize;
3806 update_shares(cpu);
3808 for_each_domain(cpu, sd) {
3809 if (!(sd->flags & SD_LOAD_BALANCE))
3810 continue;
3812 interval = sd->balance_interval;
3813 if (idle != CPU_IDLE)
3814 interval *= sd->busy_factor;
3816 /* scale ms to jiffies */
3817 interval = msecs_to_jiffies(interval);
3818 if (unlikely(!interval))
3819 interval = 1;
3820 if (interval > HZ*NR_CPUS/10)
3821 interval = HZ*NR_CPUS/10;
3823 need_serialize = sd->flags & SD_SERIALIZE;
3825 if (need_serialize) {
3826 if (!spin_trylock(&balancing))
3827 goto out;
3830 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3831 if (load_balance(cpu, rq, sd, idle, &balance)) {
3833 * We've pulled tasks over so either we're no
3834 * longer idle, or one of our SMT siblings is
3835 * not idle.
3837 idle = CPU_NOT_IDLE;
3839 sd->last_balance = jiffies;
3841 if (need_serialize)
3842 spin_unlock(&balancing);
3843 out:
3844 if (time_after(next_balance, sd->last_balance + interval)) {
3845 next_balance = sd->last_balance + interval;
3846 update_next_balance = 1;
3850 * Stop the load balance at this level. There is another
3851 * CPU in our sched group which is doing load balancing more
3852 * actively.
3854 if (!balance)
3855 break;
3859 * next_balance will be updated only when there is a need.
3860 * When the cpu is attached to null domain for ex, it will not be
3861 * updated.
3863 if (likely(update_next_balance))
3864 rq->next_balance = next_balance;
3867 #ifdef CONFIG_NO_HZ
3869 * In CONFIG_NO_HZ case, the idle balance kickee will do the
3870 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3872 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
3874 struct rq *this_rq = cpu_rq(this_cpu);
3875 struct rq *rq;
3876 int balance_cpu;
3878 if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
3879 return;
3881 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
3882 if (balance_cpu == this_cpu)
3883 continue;
3886 * If this cpu gets work to do, stop the load balancing
3887 * work being done for other cpus. Next load
3888 * balancing owner will pick it up.
3890 if (need_resched()) {
3891 this_rq->nohz_balance_kick = 0;
3892 break;
3895 raw_spin_lock_irq(&this_rq->lock);
3896 update_rq_clock(this_rq);
3897 update_cpu_load(this_rq);
3898 raw_spin_unlock_irq(&this_rq->lock);
3900 rebalance_domains(balance_cpu, CPU_IDLE);
3902 rq = cpu_rq(balance_cpu);
3903 if (time_after(this_rq->next_balance, rq->next_balance))
3904 this_rq->next_balance = rq->next_balance;
3906 nohz.next_balance = this_rq->next_balance;
3907 this_rq->nohz_balance_kick = 0;
3911 * Current heuristic for kicking the idle load balancer
3912 * - first_pick_cpu is the one of the busy CPUs. It will kick
3913 * idle load balancer when it has more than one process active. This
3914 * eliminates the need for idle load balancing altogether when we have
3915 * only one running process in the system (common case).
3916 * - If there are more than one busy CPU, idle load balancer may have
3917 * to run for active_load_balance to happen (i.e., two busy CPUs are
3918 * SMT or core siblings and can run better if they move to different
3919 * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
3920 * which will kick idle load balancer as soon as it has any load.
3922 static inline int nohz_kick_needed(struct rq *rq, int cpu)
3924 unsigned long now = jiffies;
3925 int ret;
3926 int first_pick_cpu, second_pick_cpu;
3928 if (time_before(now, nohz.next_balance))
3929 return 0;
3931 if (rq->idle_at_tick)
3932 return 0;
3934 first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
3935 second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
3937 if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
3938 second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
3939 return 0;
3941 ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
3942 if (ret == nr_cpu_ids || ret == cpu) {
3943 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
3944 if (rq->nr_running > 1)
3945 return 1;
3946 } else {
3947 ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
3948 if (ret == nr_cpu_ids || ret == cpu) {
3949 if (rq->nr_running)
3950 return 1;
3953 return 0;
3955 #else
3956 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
3957 #endif
3960 * run_rebalance_domains is triggered when needed from the scheduler tick.
3961 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
3963 static void run_rebalance_domains(struct softirq_action *h)
3965 int this_cpu = smp_processor_id();
3966 struct rq *this_rq = cpu_rq(this_cpu);
3967 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3968 CPU_IDLE : CPU_NOT_IDLE;
3970 rebalance_domains(this_cpu, idle);
3973 * If this cpu has a pending nohz_balance_kick, then do the
3974 * balancing on behalf of the other idle cpus whose ticks are
3975 * stopped.
3977 nohz_idle_balance(this_cpu, idle);
3980 static inline int on_null_domain(int cpu)
3982 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
3986 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3988 static inline void trigger_load_balance(struct rq *rq, int cpu)
3990 /* Don't need to rebalance while attached to NULL domain */
3991 if (time_after_eq(jiffies, rq->next_balance) &&
3992 likely(!on_null_domain(cpu)))
3993 raise_softirq(SCHED_SOFTIRQ);
3994 #ifdef CONFIG_NO_HZ
3995 else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
3996 nohz_balancer_kick(cpu);
3997 #endif
4000 static void rq_online_fair(struct rq *rq)
4002 update_sysctl();
4005 static void rq_offline_fair(struct rq *rq)
4007 update_sysctl();
4010 #else /* CONFIG_SMP */
4013 * on UP we do not need to balance between CPUs:
4015 static inline void idle_balance(int cpu, struct rq *rq)
4019 #endif /* CONFIG_SMP */
4022 * scheduler tick hitting a task of our scheduling class:
4024 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
4026 struct cfs_rq *cfs_rq;
4027 struct sched_entity *se = &curr->se;
4029 for_each_sched_entity(se) {
4030 cfs_rq = cfs_rq_of(se);
4031 entity_tick(cfs_rq, se, queued);
4036 * called on fork with the child task as argument from the parent's context
4037 * - child not yet on the tasklist
4038 * - preemption disabled
4040 static void task_fork_fair(struct task_struct *p)
4042 struct cfs_rq *cfs_rq = task_cfs_rq(current);
4043 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
4044 int this_cpu = smp_processor_id();
4045 struct rq *rq = this_rq();
4046 unsigned long flags;
4048 raw_spin_lock_irqsave(&rq->lock, flags);
4050 update_rq_clock(rq);
4052 if (unlikely(task_cpu(p) != this_cpu)) {
4053 rcu_read_lock();
4054 __set_task_cpu(p, this_cpu);
4055 rcu_read_unlock();
4058 update_curr(cfs_rq);
4060 if (curr)
4061 se->vruntime = curr->vruntime;
4062 place_entity(cfs_rq, se, 1);
4064 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
4066 * Upon rescheduling, sched_class::put_prev_task() will place
4067 * 'current' within the tree based on its new key value.
4069 swap(curr->vruntime, se->vruntime);
4070 resched_task(rq->curr);
4073 se->vruntime -= cfs_rq->min_vruntime;
4075 raw_spin_unlock_irqrestore(&rq->lock, flags);
4079 * Priority of the task has changed. Check to see if we preempt
4080 * the current task.
4082 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
4083 int oldprio, int running)
4086 * Reschedule if we are currently running on this runqueue and
4087 * our priority decreased, or if we are not currently running on
4088 * this runqueue and our priority is higher than the current's
4090 if (running) {
4091 if (p->prio > oldprio)
4092 resched_task(rq->curr);
4093 } else
4094 check_preempt_curr(rq, p, 0);
4098 * We switched to the sched_fair class.
4100 static void switched_to_fair(struct rq *rq, struct task_struct *p,
4101 int running)
4104 * We were most likely switched from sched_rt, so
4105 * kick off the schedule if running, otherwise just see
4106 * if we can still preempt the current task.
4108 if (running)
4109 resched_task(rq->curr);
4110 else
4111 check_preempt_curr(rq, p, 0);
4114 /* Account for a task changing its policy or group.
4116 * This routine is mostly called to set cfs_rq->curr field when a task
4117 * migrates between groups/classes.
4119 static void set_curr_task_fair(struct rq *rq)
4121 struct sched_entity *se = &rq->curr->se;
4123 for_each_sched_entity(se)
4124 set_next_entity(cfs_rq_of(se), se);
4127 #ifdef CONFIG_FAIR_GROUP_SCHED
4128 static void task_move_group_fair(struct task_struct *p, int on_rq)
4131 * If the task was not on the rq at the time of this cgroup movement
4132 * it must have been asleep, sleeping tasks keep their ->vruntime
4133 * absolute on their old rq until wakeup (needed for the fair sleeper
4134 * bonus in place_entity()).
4136 * If it was on the rq, we've just 'preempted' it, which does convert
4137 * ->vruntime to a relative base.
4139 * Make sure both cases convert their relative position when migrating
4140 * to another cgroup's rq. This does somewhat interfere with the
4141 * fair sleeper stuff for the first placement, but who cares.
4143 if (!on_rq)
4144 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
4145 set_task_rq(p, task_cpu(p));
4146 if (!on_rq)
4147 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
4149 #endif
4151 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
4153 struct sched_entity *se = &task->se;
4154 unsigned int rr_interval = 0;
4157 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
4158 * idle runqueue:
4160 if (rq->cfs.load.weight)
4161 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
4163 return rr_interval;
4167 * All the scheduling class methods:
4169 static const struct sched_class fair_sched_class = {
4170 .next = &idle_sched_class,
4171 .enqueue_task = enqueue_task_fair,
4172 .dequeue_task = dequeue_task_fair,
4173 .yield_task = yield_task_fair,
4175 .check_preempt_curr = check_preempt_wakeup,
4177 .pick_next_task = pick_next_task_fair,
4178 .put_prev_task = put_prev_task_fair,
4180 #ifdef CONFIG_SMP
4181 .select_task_rq = select_task_rq_fair,
4183 .rq_online = rq_online_fair,
4184 .rq_offline = rq_offline_fair,
4186 .task_waking = task_waking_fair,
4187 #endif
4189 .set_curr_task = set_curr_task_fair,
4190 .task_tick = task_tick_fair,
4191 .task_fork = task_fork_fair,
4193 .prio_changed = prio_changed_fair,
4194 .switched_to = switched_to_fair,
4196 .get_rr_interval = get_rr_interval_fair,
4198 #ifdef CONFIG_FAIR_GROUP_SCHED
4199 .task_move_group = task_move_group_fair,
4200 #endif
4203 #ifdef CONFIG_SCHED_DEBUG
4204 static void print_cfs_stats(struct seq_file *m, int cpu)
4206 struct cfs_rq *cfs_rq;
4208 rcu_read_lock();
4209 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
4210 print_cfs_rq(m, cpu, cfs_rq);
4211 rcu_read_unlock();
4213 #endif