x86: not clear empty_zero_page again
[firewire-audio.git] / arch / x86 / mm / init_64.c
blob6c3f6eb1f790b74f4ef8075ad734db6281950a7f
1 /*
2 * linux/arch/x86_64/mm/init.c
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
6 * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7 */
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/proc_fs.h>
24 #include <linux/pci.h>
25 #include <linux/pfn.h>
26 #include <linux/poison.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/module.h>
29 #include <linux/memory_hotplug.h>
30 #include <linux/nmi.h>
32 #include <asm/processor.h>
33 #include <asm/system.h>
34 #include <asm/uaccess.h>
35 #include <asm/pgtable.h>
36 #include <asm/pgalloc.h>
37 #include <asm/dma.h>
38 #include <asm/fixmap.h>
39 #include <asm/e820.h>
40 #include <asm/apic.h>
41 #include <asm/tlb.h>
42 #include <asm/mmu_context.h>
43 #include <asm/proto.h>
44 #include <asm/smp.h>
45 #include <asm/sections.h>
46 #include <asm/kdebug.h>
47 #include <asm/numa.h>
49 #ifndef Dprintk
50 #define Dprintk(x...)
51 #endif
53 const struct dma_mapping_ops* dma_ops;
54 EXPORT_SYMBOL(dma_ops);
56 static unsigned long dma_reserve __initdata;
58 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
61 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
62 * physical space so we can cache the place of the first one and move
63 * around without checking the pgd every time.
66 void show_mem(void)
68 long i, total = 0, reserved = 0;
69 long shared = 0, cached = 0;
70 pg_data_t *pgdat;
71 struct page *page;
73 printk(KERN_INFO "Mem-info:\n");
74 show_free_areas();
75 printk(KERN_INFO "Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
77 for_each_online_pgdat(pgdat) {
78 for (i = 0; i < pgdat->node_spanned_pages; ++i) {
79 /* this loop can take a while with 256 GB and 4k pages
80 so update the NMI watchdog */
81 if (unlikely(i % MAX_ORDER_NR_PAGES == 0)) {
82 touch_nmi_watchdog();
84 if (!pfn_valid(pgdat->node_start_pfn + i))
85 continue;
86 page = pfn_to_page(pgdat->node_start_pfn + i);
87 total++;
88 if (PageReserved(page))
89 reserved++;
90 else if (PageSwapCache(page))
91 cached++;
92 else if (page_count(page))
93 shared += page_count(page) - 1;
96 printk(KERN_INFO "%lu pages of RAM\n", total);
97 printk(KERN_INFO "%lu reserved pages\n",reserved);
98 printk(KERN_INFO "%lu pages shared\n",shared);
99 printk(KERN_INFO "%lu pages swap cached\n",cached);
102 int after_bootmem;
104 static __init void *spp_getpage(void)
106 void *ptr;
107 if (after_bootmem)
108 ptr = (void *) get_zeroed_page(GFP_ATOMIC);
109 else
110 ptr = alloc_bootmem_pages(PAGE_SIZE);
111 if (!ptr || ((unsigned long)ptr & ~PAGE_MASK))
112 panic("set_pte_phys: cannot allocate page data %s\n", after_bootmem?"after bootmem":"");
114 Dprintk("spp_getpage %p\n", ptr);
115 return ptr;
118 static __init void set_pte_phys(unsigned long vaddr,
119 unsigned long phys, pgprot_t prot)
121 pgd_t *pgd;
122 pud_t *pud;
123 pmd_t *pmd;
124 pte_t *pte, new_pte;
126 Dprintk("set_pte_phys %lx to %lx\n", vaddr, phys);
128 pgd = pgd_offset_k(vaddr);
129 if (pgd_none(*pgd)) {
130 printk("PGD FIXMAP MISSING, it should be setup in head.S!\n");
131 return;
133 pud = pud_offset(pgd, vaddr);
134 if (pud_none(*pud)) {
135 pmd = (pmd_t *) spp_getpage();
136 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | _PAGE_USER));
137 if (pmd != pmd_offset(pud, 0)) {
138 printk("PAGETABLE BUG #01! %p <-> %p\n", pmd, pmd_offset(pud,0));
139 return;
142 pmd = pmd_offset(pud, vaddr);
143 if (pmd_none(*pmd)) {
144 pte = (pte_t *) spp_getpage();
145 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE | _PAGE_USER));
146 if (pte != pte_offset_kernel(pmd, 0)) {
147 printk("PAGETABLE BUG #02!\n");
148 return;
151 new_pte = pfn_pte(phys >> PAGE_SHIFT, prot);
153 pte = pte_offset_kernel(pmd, vaddr);
154 if (!pte_none(*pte) &&
155 pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
156 pte_ERROR(*pte);
157 set_pte(pte, new_pte);
160 * It's enough to flush this one mapping.
161 * (PGE mappings get flushed as well)
163 __flush_tlb_one(vaddr);
166 /* NOTE: this is meant to be run only at boot */
167 void __init
168 __set_fixmap (enum fixed_addresses idx, unsigned long phys, pgprot_t prot)
170 unsigned long address = __fix_to_virt(idx);
172 if (idx >= __end_of_fixed_addresses) {
173 printk("Invalid __set_fixmap\n");
174 return;
176 set_pte_phys(address, phys, prot);
179 unsigned long __meminitdata table_start, table_end;
181 static __meminit void *alloc_low_page(unsigned long *phys)
183 unsigned long pfn = table_end++;
184 void *adr;
186 if (after_bootmem) {
187 adr = (void *)get_zeroed_page(GFP_ATOMIC);
188 *phys = __pa(adr);
189 return adr;
192 if (pfn >= end_pfn)
193 panic("alloc_low_page: ran out of memory");
195 adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE);
196 memset(adr, 0, PAGE_SIZE);
197 *phys = pfn * PAGE_SIZE;
198 return adr;
201 static __meminit void unmap_low_page(void *adr)
204 if (after_bootmem)
205 return;
207 early_iounmap(adr, PAGE_SIZE);
210 /* Must run before zap_low_mappings */
211 __meminit void *early_ioremap(unsigned long addr, unsigned long size)
213 unsigned long vaddr;
214 pmd_t *pmd, *last_pmd;
215 int i, pmds;
217 pmds = ((addr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
218 vaddr = __START_KERNEL_map;
219 pmd = level2_kernel_pgt;
220 last_pmd = level2_kernel_pgt + PTRS_PER_PMD - 1;
221 for (; pmd <= last_pmd; pmd++, vaddr += PMD_SIZE) {
222 for (i = 0; i < pmds; i++) {
223 if (pmd_present(pmd[i]))
224 goto next;
226 vaddr += addr & ~PMD_MASK;
227 addr &= PMD_MASK;
228 for (i = 0; i < pmds; i++, addr += PMD_SIZE)
229 set_pmd(pmd+i, __pmd(addr | __PAGE_KERNEL_LARGE_EXEC));
230 __flush_tlb();
231 return (void *)vaddr;
232 next:
235 printk("early_ioremap(0x%lx, %lu) failed\n", addr, size);
236 return NULL;
239 /* To avoid virtual aliases later */
240 __meminit void early_iounmap(void *addr, unsigned long size)
242 unsigned long vaddr;
243 pmd_t *pmd;
244 int i, pmds;
246 vaddr = (unsigned long)addr;
247 pmds = ((vaddr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
248 pmd = level2_kernel_pgt + pmd_index(vaddr);
249 for (i = 0; i < pmds; i++)
250 pmd_clear(pmd + i);
251 __flush_tlb();
254 static void __meminit
255 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end)
257 int i = pmd_index(address);
259 for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
260 unsigned long entry;
261 pmd_t *pmd = pmd_page + pmd_index(address);
263 if (address >= end) {
264 if (!after_bootmem)
265 for (; i < PTRS_PER_PMD; i++, pmd++)
266 set_pmd(pmd, __pmd(0));
267 break;
270 if (pmd_val(*pmd))
271 continue;
273 entry = __PAGE_KERNEL_LARGE|_PAGE_GLOBAL|address;
274 entry &= __supported_pte_mask;
275 set_pmd(pmd, __pmd(entry));
279 static void __meminit
280 phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end)
282 pmd_t *pmd = pmd_offset(pud,0);
283 spin_lock(&init_mm.page_table_lock);
284 phys_pmd_init(pmd, address, end);
285 spin_unlock(&init_mm.page_table_lock);
286 __flush_tlb_all();
289 static void __meminit phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end)
291 int i = pud_index(addr);
294 for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE ) {
295 unsigned long pmd_phys;
296 pud_t *pud = pud_page + pud_index(addr);
297 pmd_t *pmd;
299 if (addr >= end)
300 break;
302 if (!after_bootmem && !e820_any_mapped(addr,addr+PUD_SIZE,0)) {
303 set_pud(pud, __pud(0));
304 continue;
307 if (pud_val(*pud)) {
308 phys_pmd_update(pud, addr, end);
309 continue;
312 pmd = alloc_low_page(&pmd_phys);
313 spin_lock(&init_mm.page_table_lock);
314 set_pud(pud, __pud(pmd_phys | _KERNPG_TABLE));
315 phys_pmd_init(pmd, addr, end);
316 spin_unlock(&init_mm.page_table_lock);
317 unmap_low_page(pmd);
319 __flush_tlb();
322 static void __init find_early_table_space(unsigned long end)
324 unsigned long puds, pmds, tables, start;
326 puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
327 pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
328 tables = round_up(puds * sizeof(pud_t), PAGE_SIZE) +
329 round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
331 /* RED-PEN putting page tables only on node 0 could
332 cause a hotspot and fill up ZONE_DMA. The page tables
333 need roughly 0.5KB per GB. */
334 start = 0x8000;
335 table_start = find_e820_area(start, end, tables);
336 if (table_start == -1UL)
337 panic("Cannot find space for the kernel page tables");
339 table_start >>= PAGE_SHIFT;
340 table_end = table_start;
342 early_printk("kernel direct mapping tables up to %lx @ %lx-%lx\n",
343 end, table_start << PAGE_SHIFT,
344 (table_start << PAGE_SHIFT) + tables);
347 /* Setup the direct mapping of the physical memory at PAGE_OFFSET.
348 This runs before bootmem is initialized and gets pages directly from the
349 physical memory. To access them they are temporarily mapped. */
350 void __init_refok init_memory_mapping(unsigned long start, unsigned long end)
352 unsigned long next;
354 Dprintk("init_memory_mapping\n");
357 * Find space for the kernel direct mapping tables.
358 * Later we should allocate these tables in the local node of the memory
359 * mapped. Unfortunately this is done currently before the nodes are
360 * discovered.
362 if (!after_bootmem)
363 find_early_table_space(end);
365 start = (unsigned long)__va(start);
366 end = (unsigned long)__va(end);
368 for (; start < end; start = next) {
369 unsigned long pud_phys;
370 pgd_t *pgd = pgd_offset_k(start);
371 pud_t *pud;
373 if (after_bootmem)
374 pud = pud_offset(pgd, start & PGDIR_MASK);
375 else
376 pud = alloc_low_page(&pud_phys);
378 next = start + PGDIR_SIZE;
379 if (next > end)
380 next = end;
381 phys_pud_init(pud, __pa(start), __pa(next));
382 if (!after_bootmem)
383 set_pgd(pgd_offset_k(start), mk_kernel_pgd(pud_phys));
384 unmap_low_page(pud);
387 if (!after_bootmem)
388 mmu_cr4_features = read_cr4();
389 __flush_tlb_all();
392 #ifndef CONFIG_NUMA
393 void __init paging_init(void)
395 unsigned long max_zone_pfns[MAX_NR_ZONES];
396 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
397 max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
398 max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
399 max_zone_pfns[ZONE_NORMAL] = end_pfn;
401 memory_present(0, 0, end_pfn);
402 sparse_init();
403 free_area_init_nodes(max_zone_pfns);
405 #endif
407 /* Unmap a kernel mapping if it exists. This is useful to avoid prefetches
408 from the CPU leading to inconsistent cache lines. address and size
409 must be aligned to 2MB boundaries.
410 Does nothing when the mapping doesn't exist. */
411 void __init clear_kernel_mapping(unsigned long address, unsigned long size)
413 unsigned long end = address + size;
415 BUG_ON(address & ~LARGE_PAGE_MASK);
416 BUG_ON(size & ~LARGE_PAGE_MASK);
418 for (; address < end; address += LARGE_PAGE_SIZE) {
419 pgd_t *pgd = pgd_offset_k(address);
420 pud_t *pud;
421 pmd_t *pmd;
422 if (pgd_none(*pgd))
423 continue;
424 pud = pud_offset(pgd, address);
425 if (pud_none(*pud))
426 continue;
427 pmd = pmd_offset(pud, address);
428 if (!pmd || pmd_none(*pmd))
429 continue;
430 if (0 == (pmd_val(*pmd) & _PAGE_PSE)) {
431 /* Could handle this, but it should not happen currently. */
432 printk(KERN_ERR
433 "clear_kernel_mapping: mapping has been split. will leak memory\n");
434 pmd_ERROR(*pmd);
436 set_pmd(pmd, __pmd(0));
438 __flush_tlb_all();
442 * Memory hotplug specific functions
444 void online_page(struct page *page)
446 ClearPageReserved(page);
447 init_page_count(page);
448 __free_page(page);
449 totalram_pages++;
450 num_physpages++;
453 #ifdef CONFIG_MEMORY_HOTPLUG
455 * Memory is added always to NORMAL zone. This means you will never get
456 * additional DMA/DMA32 memory.
458 int arch_add_memory(int nid, u64 start, u64 size)
460 struct pglist_data *pgdat = NODE_DATA(nid);
461 struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
462 unsigned long start_pfn = start >> PAGE_SHIFT;
463 unsigned long nr_pages = size >> PAGE_SHIFT;
464 int ret;
466 init_memory_mapping(start, (start + size -1));
468 ret = __add_pages(zone, start_pfn, nr_pages);
469 if (ret)
470 goto error;
472 return ret;
473 error:
474 printk("%s: Problem encountered in __add_pages!\n", __func__);
475 return ret;
477 EXPORT_SYMBOL_GPL(arch_add_memory);
479 #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
480 int memory_add_physaddr_to_nid(u64 start)
482 return 0;
484 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
485 #endif
487 #endif /* CONFIG_MEMORY_HOTPLUG */
489 static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel, kcore_modules,
490 kcore_vsyscall;
492 void __init mem_init(void)
494 long codesize, reservedpages, datasize, initsize;
496 pci_iommu_alloc();
498 /* clear_bss() already clear the empty_zero_page */
500 reservedpages = 0;
502 /* this will put all low memory onto the freelists */
503 #ifdef CONFIG_NUMA
504 totalram_pages = numa_free_all_bootmem();
505 #else
506 totalram_pages = free_all_bootmem();
507 #endif
508 reservedpages = end_pfn - totalram_pages -
509 absent_pages_in_range(0, end_pfn);
511 after_bootmem = 1;
513 codesize = (unsigned long) &_etext - (unsigned long) &_text;
514 datasize = (unsigned long) &_edata - (unsigned long) &_etext;
515 initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
517 /* Register memory areas for /proc/kcore */
518 kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
519 kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
520 VMALLOC_END-VMALLOC_START);
521 kclist_add(&kcore_kernel, &_stext, _end - _stext);
522 kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
523 kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
524 VSYSCALL_END - VSYSCALL_START);
526 printk("Memory: %luk/%luk available (%ldk kernel code, %ldk reserved, %ldk data, %ldk init)\n",
527 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
528 end_pfn << (PAGE_SHIFT-10),
529 codesize >> 10,
530 reservedpages << (PAGE_SHIFT-10),
531 datasize >> 10,
532 initsize >> 10);
535 void free_init_pages(char *what, unsigned long begin, unsigned long end)
537 unsigned long addr;
539 if (begin >= end)
540 return;
542 printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
543 for (addr = begin; addr < end; addr += PAGE_SIZE) {
544 ClearPageReserved(virt_to_page(addr));
545 init_page_count(virt_to_page(addr));
546 memset((void *)(addr & ~(PAGE_SIZE-1)),
547 POISON_FREE_INITMEM, PAGE_SIZE);
548 if (addr >= __START_KERNEL_map)
549 change_page_attr_addr(addr, 1, __pgprot(0));
550 free_page(addr);
551 totalram_pages++;
553 if (addr > __START_KERNEL_map)
554 global_flush_tlb();
557 void free_initmem(void)
559 free_init_pages("unused kernel memory",
560 (unsigned long)(&__init_begin),
561 (unsigned long)(&__init_end));
564 #ifdef CONFIG_DEBUG_RODATA
566 void mark_rodata_ro(void)
568 unsigned long start = (unsigned long)_stext, end;
570 #ifdef CONFIG_HOTPLUG_CPU
571 /* It must still be possible to apply SMP alternatives. */
572 if (num_possible_cpus() > 1)
573 start = (unsigned long)_etext;
574 #endif
576 #ifdef CONFIG_KPROBES
577 start = (unsigned long)__start_rodata;
578 #endif
580 end = (unsigned long)__end_rodata;
581 start = (start + PAGE_SIZE - 1) & PAGE_MASK;
582 end &= PAGE_MASK;
583 if (end <= start)
584 return;
586 change_page_attr_addr(start, (end - start) >> PAGE_SHIFT, PAGE_KERNEL_RO);
588 printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
589 (end - start) >> 10);
592 * change_page_attr_addr() requires a global_flush_tlb() call after it.
593 * We do this after the printk so that if something went wrong in the
594 * change, the printk gets out at least to give a better debug hint
595 * of who is the culprit.
597 global_flush_tlb();
599 #endif
601 #ifdef CONFIG_BLK_DEV_INITRD
602 void free_initrd_mem(unsigned long start, unsigned long end)
604 free_init_pages("initrd memory", start, end);
606 #endif
608 void __init reserve_bootmem_generic(unsigned long phys, unsigned len)
610 #ifdef CONFIG_NUMA
611 int nid = phys_to_nid(phys);
612 #endif
613 unsigned long pfn = phys >> PAGE_SHIFT;
614 if (pfn >= end_pfn) {
615 /* This can happen with kdump kernels when accessing firmware
616 tables. */
617 if (pfn < end_pfn_map)
618 return;
619 printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %u\n",
620 phys, len);
621 return;
624 /* Should check here against the e820 map to avoid double free */
625 #ifdef CONFIG_NUMA
626 reserve_bootmem_node(NODE_DATA(nid), phys, len);
627 #else
628 reserve_bootmem(phys, len);
629 #endif
630 if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
631 dma_reserve += len / PAGE_SIZE;
632 set_dma_reserve(dma_reserve);
636 int kern_addr_valid(unsigned long addr)
638 unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
639 pgd_t *pgd;
640 pud_t *pud;
641 pmd_t *pmd;
642 pte_t *pte;
644 if (above != 0 && above != -1UL)
645 return 0;
647 pgd = pgd_offset_k(addr);
648 if (pgd_none(*pgd))
649 return 0;
651 pud = pud_offset(pgd, addr);
652 if (pud_none(*pud))
653 return 0;
655 pmd = pmd_offset(pud, addr);
656 if (pmd_none(*pmd))
657 return 0;
658 if (pmd_large(*pmd))
659 return pfn_valid(pmd_pfn(*pmd));
661 pte = pte_offset_kernel(pmd, addr);
662 if (pte_none(*pte))
663 return 0;
664 return pfn_valid(pte_pfn(*pte));
667 /* A pseudo VMA to allow ptrace access for the vsyscall page. This only
668 covers the 64bit vsyscall page now. 32bit has a real VMA now and does
669 not need special handling anymore. */
671 static struct vm_area_struct gate_vma = {
672 .vm_start = VSYSCALL_START,
673 .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES << PAGE_SHIFT),
674 .vm_page_prot = PAGE_READONLY_EXEC,
675 .vm_flags = VM_READ | VM_EXEC
678 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
680 #ifdef CONFIG_IA32_EMULATION
681 if (test_tsk_thread_flag(tsk, TIF_IA32))
682 return NULL;
683 #endif
684 return &gate_vma;
687 int in_gate_area(struct task_struct *task, unsigned long addr)
689 struct vm_area_struct *vma = get_gate_vma(task);
690 if (!vma)
691 return 0;
692 return (addr >= vma->vm_start) && (addr < vma->vm_end);
695 /* Use this when you have no reliable task/vma, typically from interrupt
696 * context. It is less reliable than using the task's vma and may give
697 * false positives.
699 int in_gate_area_no_task(unsigned long addr)
701 return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
704 const char *arch_vma_name(struct vm_area_struct *vma)
706 if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
707 return "[vdso]";
708 if (vma == &gate_vma)
709 return "[vsyscall]";
710 return NULL;
713 #ifdef CONFIG_SPARSEMEM_VMEMMAP
715 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
717 int __meminit vmemmap_populate(struct page *start_page,
718 unsigned long size, int node)
720 unsigned long addr = (unsigned long)start_page;
721 unsigned long end = (unsigned long)(start_page + size);
722 unsigned long next;
723 pgd_t *pgd;
724 pud_t *pud;
725 pmd_t *pmd;
727 for (; addr < end; addr = next) {
728 next = pmd_addr_end(addr, end);
730 pgd = vmemmap_pgd_populate(addr, node);
731 if (!pgd)
732 return -ENOMEM;
733 pud = vmemmap_pud_populate(pgd, addr, node);
734 if (!pud)
735 return -ENOMEM;
737 pmd = pmd_offset(pud, addr);
738 if (pmd_none(*pmd)) {
739 pte_t entry;
740 void *p = vmemmap_alloc_block(PMD_SIZE, node);
741 if (!p)
742 return -ENOMEM;
744 entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL_LARGE);
745 set_pmd(pmd, __pmd(pte_val(entry)));
747 printk(KERN_DEBUG " [%lx-%lx] PMD ->%p on node %d\n",
748 addr, addr + PMD_SIZE - 1, p, node);
749 } else
750 vmemmap_verify((pte_t *)pmd, node, addr, next);
753 return 0;
755 #endif