2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/kallsyms.h>
29 * The slab_lock protects operations on the object of a particular
30 * slab and its metadata in the page struct. If the slab lock
31 * has been taken then no allocations nor frees can be performed
32 * on the objects in the slab nor can the slab be added or removed
33 * from the partial or full lists since this would mean modifying
34 * the page_struct of the slab.
36 * The list_lock protects the partial and full list on each node and
37 * the partial slab counter. If taken then no new slabs may be added or
38 * removed from the lists nor make the number of partial slabs be modified.
39 * (Note that the total number of slabs is an atomic value that may be
40 * modified without taking the list lock).
42 * The list_lock is a centralized lock and thus we avoid taking it as
43 * much as possible. As long as SLUB does not have to handle partial
44 * slabs, operations can continue without any centralized lock. F.e.
45 * allocating a long series of objects that fill up slabs does not require
48 * The lock order is sometimes inverted when we are trying to get a slab
49 * off a list. We take the list_lock and then look for a page on the list
50 * to use. While we do that objects in the slabs may be freed. We can
51 * only operate on the slab if we have also taken the slab_lock. So we use
52 * a slab_trylock() on the slab. If trylock was successful then no frees
53 * can occur anymore and we can use the slab for allocations etc. If the
54 * slab_trylock() does not succeed then frees are in progress in the slab and
55 * we must stay away from it for a while since we may cause a bouncing
56 * cacheline if we try to acquire the lock. So go onto the next slab.
57 * If all pages are busy then we may allocate a new slab instead of reusing
58 * a partial slab. A new slab has noone operating on it and thus there is
59 * no danger of cacheline contention.
61 * Interrupts are disabled during allocation and deallocation in order to
62 * make the slab allocator safe to use in the context of an irq. In addition
63 * interrupts are disabled to ensure that the processor does not change
64 * while handling per_cpu slabs, due to kernel preemption.
66 * SLUB assigns one slab for allocation to each processor.
67 * Allocations only occur from these slabs called cpu slabs.
69 * Slabs with free elements are kept on a partial list and during regular
70 * operations no list for full slabs is used. If an object in a full slab is
71 * freed then the slab will show up again on the partial lists.
72 * We track full slabs for debugging purposes though because otherwise we
73 * cannot scan all objects.
75 * Slabs are freed when they become empty. Teardown and setup is
76 * minimal so we rely on the page allocators per cpu caches for
77 * fast frees and allocs.
79 * Overloading of page flags that are otherwise used for LRU management.
81 * PageActive The slab is used as a cpu cache. Allocations
82 * may be performed from the slab. The slab is not
83 * on any slab list and cannot be moved onto one.
84 * The cpu slab may be equipped with an additioanl
85 * lockless_freelist that allows lockless access to
86 * free objects in addition to the regular freelist
87 * that requires the slab lock.
89 * PageError Slab requires special handling due to debug
90 * options set. This moves slab handling out of
91 * the fast path and disables lockless freelists.
94 static inline int SlabDebug(struct page
*page
)
96 #ifdef CONFIG_SLUB_DEBUG
97 return PageError(page
);
103 static inline void SetSlabDebug(struct page
*page
)
105 #ifdef CONFIG_SLUB_DEBUG
110 static inline void ClearSlabDebug(struct page
*page
)
112 #ifdef CONFIG_SLUB_DEBUG
113 ClearPageError(page
);
118 * Issues still to be resolved:
120 * - The per cpu array is updated for each new slab and and is a remote
121 * cacheline for most nodes. This could become a bouncing cacheline given
122 * enough frequent updates. There are 16 pointers in a cacheline, so at
123 * max 16 cpus could compete for the cacheline which may be okay.
125 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
127 * - Variable sizing of the per node arrays
130 /* Enable to test recovery from slab corruption on boot */
131 #undef SLUB_RESILIENCY_TEST
136 * Small page size. Make sure that we do not fragment memory
138 #define DEFAULT_MAX_ORDER 1
139 #define DEFAULT_MIN_OBJECTS 4
144 * Large page machines are customarily able to handle larger
147 #define DEFAULT_MAX_ORDER 2
148 #define DEFAULT_MIN_OBJECTS 8
153 * Mininum number of partial slabs. These will be left on the partial
154 * lists even if they are empty. kmem_cache_shrink may reclaim them.
156 #define MIN_PARTIAL 2
159 * Maximum number of desirable partial slabs.
160 * The existence of more partial slabs makes kmem_cache_shrink
161 * sort the partial list by the number of objects in the.
163 #define MAX_PARTIAL 10
165 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
166 SLAB_POISON | SLAB_STORE_USER)
169 * Set of flags that will prevent slab merging
171 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
172 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
174 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
177 #ifndef ARCH_KMALLOC_MINALIGN
178 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
181 #ifndef ARCH_SLAB_MINALIGN
182 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
185 /* Internal SLUB flags */
186 #define __OBJECT_POISON 0x80000000 /* Poison object */
188 /* Not all arches define cache_line_size */
189 #ifndef cache_line_size
190 #define cache_line_size() L1_CACHE_BYTES
193 static int kmem_size
= sizeof(struct kmem_cache
);
196 static struct notifier_block slab_notifier
;
200 DOWN
, /* No slab functionality available */
201 PARTIAL
, /* kmem_cache_open() works but kmalloc does not */
202 UP
, /* Everything works but does not show up in sysfs */
206 /* A list of all slab caches on the system */
207 static DECLARE_RWSEM(slub_lock
);
208 LIST_HEAD(slab_caches
);
211 * Tracking user of a slab.
214 void *addr
; /* Called from address */
215 int cpu
; /* Was running on cpu */
216 int pid
; /* Pid context */
217 unsigned long when
; /* When did the operation occur */
220 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
222 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
223 static int sysfs_slab_add(struct kmem_cache
*);
224 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
225 static void sysfs_slab_remove(struct kmem_cache
*);
227 static int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
228 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
) { return 0; }
229 static void sysfs_slab_remove(struct kmem_cache
*s
) {}
232 /********************************************************************
233 * Core slab cache functions
234 *******************************************************************/
236 int slab_is_available(void)
238 return slab_state
>= UP
;
241 static inline struct kmem_cache_node
*get_node(struct kmem_cache
*s
, int node
)
244 return s
->node
[node
];
246 return &s
->local_node
;
250 static inline int check_valid_pointer(struct kmem_cache
*s
,
251 struct page
*page
, const void *object
)
258 base
= page_address(page
);
259 if (object
< base
|| object
>= base
+ s
->objects
* s
->size
||
260 (object
- base
) % s
->size
) {
268 * Slow version of get and set free pointer.
270 * This version requires touching the cache lines of kmem_cache which
271 * we avoid to do in the fast alloc free paths. There we obtain the offset
272 * from the page struct.
274 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
276 return *(void **)(object
+ s
->offset
);
279 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
281 *(void **)(object
+ s
->offset
) = fp
;
284 /* Loop over all objects in a slab */
285 #define for_each_object(__p, __s, __addr) \
286 for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
290 #define for_each_free_object(__p, __s, __free) \
291 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
293 /* Determine object index from a given position */
294 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
296 return (p
- addr
) / s
->size
;
299 #ifdef CONFIG_SLUB_DEBUG
303 static int slub_debug
;
305 static char *slub_debug_slabs
;
310 static void print_section(char *text
, u8
*addr
, unsigned int length
)
318 for (i
= 0; i
< length
; i
++) {
320 printk(KERN_ERR
"%10s 0x%p: ", text
, addr
+ i
);
323 printk(" %02x", addr
[i
]);
325 ascii
[offset
] = isgraph(addr
[i
]) ? addr
[i
] : '.';
327 printk(" %s\n",ascii
);
338 printk(" %s\n", ascii
);
342 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
343 enum track_item alloc
)
348 p
= object
+ s
->offset
+ sizeof(void *);
350 p
= object
+ s
->inuse
;
355 static void set_track(struct kmem_cache
*s
, void *object
,
356 enum track_item alloc
, void *addr
)
361 p
= object
+ s
->offset
+ sizeof(void *);
363 p
= object
+ s
->inuse
;
368 p
->cpu
= smp_processor_id();
369 p
->pid
= current
? current
->pid
: -1;
372 memset(p
, 0, sizeof(struct track
));
375 static void init_tracking(struct kmem_cache
*s
, void *object
)
377 if (s
->flags
& SLAB_STORE_USER
) {
378 set_track(s
, object
, TRACK_FREE
, NULL
);
379 set_track(s
, object
, TRACK_ALLOC
, NULL
);
383 static void print_track(const char *s
, struct track
*t
)
388 printk(KERN_ERR
"%s: ", s
);
389 __print_symbol("%s", (unsigned long)t
->addr
);
390 printk(" jiffies_ago=%lu cpu=%u pid=%d\n", jiffies
- t
->when
, t
->cpu
, t
->pid
);
393 static void print_trailer(struct kmem_cache
*s
, u8
*p
)
395 unsigned int off
; /* Offset of last byte */
397 if (s
->flags
& SLAB_RED_ZONE
)
398 print_section("Redzone", p
+ s
->objsize
,
399 s
->inuse
- s
->objsize
);
401 printk(KERN_ERR
"FreePointer 0x%p -> 0x%p\n",
403 get_freepointer(s
, p
));
406 off
= s
->offset
+ sizeof(void *);
410 if (s
->flags
& SLAB_STORE_USER
) {
411 print_track("Last alloc", get_track(s
, p
, TRACK_ALLOC
));
412 print_track("Last free ", get_track(s
, p
, TRACK_FREE
));
413 off
+= 2 * sizeof(struct track
);
417 /* Beginning of the filler is the free pointer */
418 print_section("Filler", p
+ off
, s
->size
- off
);
421 static void object_err(struct kmem_cache
*s
, struct page
*page
,
422 u8
*object
, char *reason
)
424 u8
*addr
= page_address(page
);
426 printk(KERN_ERR
"*** SLUB %s: %s@0x%p slab 0x%p\n",
427 s
->name
, reason
, object
, page
);
428 printk(KERN_ERR
" offset=%tu flags=0x%04lx inuse=%u freelist=0x%p\n",
429 object
- addr
, page
->flags
, page
->inuse
, page
->freelist
);
430 if (object
> addr
+ 16)
431 print_section("Bytes b4", object
- 16, 16);
432 print_section("Object", object
, min(s
->objsize
, 128));
433 print_trailer(s
, object
);
437 static void slab_err(struct kmem_cache
*s
, struct page
*page
, char *reason
, ...)
442 va_start(args
, reason
);
443 vsnprintf(buf
, sizeof(buf
), reason
, args
);
445 printk(KERN_ERR
"*** SLUB %s: %s in slab @0x%p\n", s
->name
, buf
,
450 static void init_object(struct kmem_cache
*s
, void *object
, int active
)
454 if (s
->flags
& __OBJECT_POISON
) {
455 memset(p
, POISON_FREE
, s
->objsize
- 1);
456 p
[s
->objsize
-1] = POISON_END
;
459 if (s
->flags
& SLAB_RED_ZONE
)
460 memset(p
+ s
->objsize
,
461 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
,
462 s
->inuse
- s
->objsize
);
465 static int check_bytes(u8
*start
, unsigned int value
, unsigned int bytes
)
468 if (*start
!= (u8
)value
)
480 * Bytes of the object to be managed.
481 * If the freepointer may overlay the object then the free
482 * pointer is the first word of the object.
484 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
487 * object + s->objsize
488 * Padding to reach word boundary. This is also used for Redzoning.
489 * Padding is extended by another word if Redzoning is enabled and
492 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
493 * 0xcc (RED_ACTIVE) for objects in use.
496 * Meta data starts here.
498 * A. Free pointer (if we cannot overwrite object on free)
499 * B. Tracking data for SLAB_STORE_USER
500 * C. Padding to reach required alignment boundary or at mininum
501 * one word if debuggin is on to be able to detect writes
502 * before the word boundary.
504 * Padding is done using 0x5a (POISON_INUSE)
507 * Nothing is used beyond s->size.
509 * If slabcaches are merged then the objsize and inuse boundaries are mostly
510 * ignored. And therefore no slab options that rely on these boundaries
511 * may be used with merged slabcaches.
514 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
515 void *from
, void *to
)
517 printk(KERN_ERR
"@@@ SLUB %s: Restoring %s (0x%x) from 0x%p-0x%p\n",
518 s
->name
, message
, data
, from
, to
- 1);
519 memset(from
, data
, to
- from
);
522 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
524 unsigned long off
= s
->inuse
; /* The end of info */
527 /* Freepointer is placed after the object. */
528 off
+= sizeof(void *);
530 if (s
->flags
& SLAB_STORE_USER
)
531 /* We also have user information there */
532 off
+= 2 * sizeof(struct track
);
537 if (check_bytes(p
+ off
, POISON_INUSE
, s
->size
- off
))
540 object_err(s
, page
, p
, "Object padding check fails");
545 restore_bytes(s
, "object padding", POISON_INUSE
, p
+ off
, p
+ s
->size
);
549 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
552 int length
, remainder
;
554 if (!(s
->flags
& SLAB_POISON
))
557 p
= page_address(page
);
558 length
= s
->objects
* s
->size
;
559 remainder
= (PAGE_SIZE
<< s
->order
) - length
;
563 if (!check_bytes(p
+ length
, POISON_INUSE
, remainder
)) {
564 slab_err(s
, page
, "Padding check failed");
565 restore_bytes(s
, "slab padding", POISON_INUSE
, p
+ length
,
566 p
+ length
+ remainder
);
572 static int check_object(struct kmem_cache
*s
, struct page
*page
,
573 void *object
, int active
)
576 u8
*endobject
= object
+ s
->objsize
;
578 if (s
->flags
& SLAB_RED_ZONE
) {
580 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
;
582 if (!check_bytes(endobject
, red
, s
->inuse
- s
->objsize
)) {
583 object_err(s
, page
, object
,
584 active
? "Redzone Active" : "Redzone Inactive");
585 restore_bytes(s
, "redzone", red
,
586 endobject
, object
+ s
->inuse
);
590 if ((s
->flags
& SLAB_POISON
) && s
->objsize
< s
->inuse
&&
591 !check_bytes(endobject
, POISON_INUSE
,
592 s
->inuse
- s
->objsize
)) {
593 object_err(s
, page
, p
, "Alignment padding check fails");
595 * Fix it so that there will not be another report.
597 * Hmmm... We may be corrupting an object that now expects
598 * to be longer than allowed.
600 restore_bytes(s
, "alignment padding", POISON_INUSE
,
601 endobject
, object
+ s
->inuse
);
605 if (s
->flags
& SLAB_POISON
) {
606 if (!active
&& (s
->flags
& __OBJECT_POISON
) &&
607 (!check_bytes(p
, POISON_FREE
, s
->objsize
- 1) ||
608 p
[s
->objsize
- 1] != POISON_END
)) {
610 object_err(s
, page
, p
, "Poison check failed");
611 restore_bytes(s
, "Poison", POISON_FREE
,
612 p
, p
+ s
->objsize
-1);
613 restore_bytes(s
, "Poison", POISON_END
,
614 p
+ s
->objsize
- 1, p
+ s
->objsize
);
618 * check_pad_bytes cleans up on its own.
620 check_pad_bytes(s
, page
, p
);
623 if (!s
->offset
&& active
)
625 * Object and freepointer overlap. Cannot check
626 * freepointer while object is allocated.
630 /* Check free pointer validity */
631 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
632 object_err(s
, page
, p
, "Freepointer corrupt");
634 * No choice but to zap it and thus loose the remainder
635 * of the free objects in this slab. May cause
636 * another error because the object count is now wrong.
638 set_freepointer(s
, p
, NULL
);
644 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
646 VM_BUG_ON(!irqs_disabled());
648 if (!PageSlab(page
)) {
649 slab_err(s
, page
, "Not a valid slab page flags=%lx "
650 "mapping=0x%p count=%d", page
->flags
, page
->mapping
,
654 if (page
->offset
* sizeof(void *) != s
->offset
) {
655 slab_err(s
, page
, "Corrupted offset %lu flags=0x%lx "
656 "mapping=0x%p count=%d",
657 (unsigned long)(page
->offset
* sizeof(void *)),
663 if (page
->inuse
> s
->objects
) {
664 slab_err(s
, page
, "inuse %u > max %u @0x%p flags=%lx "
665 "mapping=0x%p count=%d",
666 s
->name
, page
->inuse
, s
->objects
, page
->flags
,
667 page
->mapping
, page_count(page
));
670 /* Slab_pad_check fixes things up after itself */
671 slab_pad_check(s
, page
);
676 * Determine if a certain object on a page is on the freelist. Must hold the
677 * slab lock to guarantee that the chains are in a consistent state.
679 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
682 void *fp
= page
->freelist
;
685 while (fp
&& nr
<= s
->objects
) {
688 if (!check_valid_pointer(s
, page
, fp
)) {
690 object_err(s
, page
, object
,
691 "Freechain corrupt");
692 set_freepointer(s
, object
, NULL
);
695 slab_err(s
, page
, "Freepointer 0x%p corrupt",
697 page
->freelist
= NULL
;
698 page
->inuse
= s
->objects
;
699 printk(KERN_ERR
"@@@ SLUB %s: Freelist "
700 "cleared. Slab 0x%p\n",
707 fp
= get_freepointer(s
, object
);
711 if (page
->inuse
!= s
->objects
- nr
) {
712 slab_err(s
, page
, "Wrong object count. Counter is %d but "
713 "counted were %d", s
, page
, page
->inuse
,
715 page
->inuse
= s
->objects
- nr
;
716 printk(KERN_ERR
"@@@ SLUB %s: Object count adjusted. "
717 "Slab @0x%p\n", s
->name
, page
);
719 return search
== NULL
;
723 * Tracking of fully allocated slabs for debugging purposes.
725 static void add_full(struct kmem_cache_node
*n
, struct page
*page
)
727 spin_lock(&n
->list_lock
);
728 list_add(&page
->lru
, &n
->full
);
729 spin_unlock(&n
->list_lock
);
732 static void remove_full(struct kmem_cache
*s
, struct page
*page
)
734 struct kmem_cache_node
*n
;
736 if (!(s
->flags
& SLAB_STORE_USER
))
739 n
= get_node(s
, page_to_nid(page
));
741 spin_lock(&n
->list_lock
);
742 list_del(&page
->lru
);
743 spin_unlock(&n
->list_lock
);
746 static int alloc_object_checks(struct kmem_cache
*s
, struct page
*page
,
749 if (!check_slab(s
, page
))
752 if (object
&& !on_freelist(s
, page
, object
)) {
753 slab_err(s
, page
, "Object 0x%p already allocated", object
);
757 if (!check_valid_pointer(s
, page
, object
)) {
758 object_err(s
, page
, object
, "Freelist Pointer check fails");
765 if (!check_object(s
, page
, object
, 0))
770 if (PageSlab(page
)) {
772 * If this is a slab page then lets do the best we can
773 * to avoid issues in the future. Marking all objects
774 * as used avoids touching the remaining objects.
776 printk(KERN_ERR
"@@@ SLUB: %s slab 0x%p. Marking all objects used.\n",
778 page
->inuse
= s
->objects
;
779 page
->freelist
= NULL
;
780 /* Fix up fields that may be corrupted */
781 page
->offset
= s
->offset
/ sizeof(void *);
786 static int free_object_checks(struct kmem_cache
*s
, struct page
*page
,
789 if (!check_slab(s
, page
))
792 if (!check_valid_pointer(s
, page
, object
)) {
793 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
797 if (on_freelist(s
, page
, object
)) {
798 slab_err(s
, page
, "Object 0x%p already free", object
);
802 if (!check_object(s
, page
, object
, 1))
805 if (unlikely(s
!= page
->slab
)) {
807 slab_err(s
, page
, "Attempt to free object(0x%p) "
808 "outside of slab", object
);
812 "SLUB <none>: no slab for object 0x%p.\n",
817 slab_err(s
, page
, "object at 0x%p belongs "
818 "to slab %s", object
, page
->slab
->name
);
823 printk(KERN_ERR
"@@@ SLUB: %s slab 0x%p object at 0x%p not freed.\n",
824 s
->name
, page
, object
);
828 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
, int alloc
)
830 if (s
->flags
& SLAB_TRACE
) {
831 printk(KERN_INFO
"TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
833 alloc
? "alloc" : "free",
838 print_section("Object", (void *)object
, s
->objsize
);
844 static int __init
setup_slub_debug(char *str
)
846 if (!str
|| *str
!= '=')
847 slub_debug
= DEBUG_DEFAULT_FLAGS
;
850 if (*str
== 0 || *str
== ',')
851 slub_debug
= DEBUG_DEFAULT_FLAGS
;
853 for( ;*str
&& *str
!= ','; str
++)
855 case 'f' : case 'F' :
856 slub_debug
|= SLAB_DEBUG_FREE
;
858 case 'z' : case 'Z' :
859 slub_debug
|= SLAB_RED_ZONE
;
861 case 'p' : case 'P' :
862 slub_debug
|= SLAB_POISON
;
864 case 'u' : case 'U' :
865 slub_debug
|= SLAB_STORE_USER
;
867 case 't' : case 'T' :
868 slub_debug
|= SLAB_TRACE
;
871 printk(KERN_ERR
"slub_debug option '%c' "
872 "unknown. skipped\n",*str
);
877 slub_debug_slabs
= str
+ 1;
881 __setup("slub_debug", setup_slub_debug
);
883 static void kmem_cache_open_debug_check(struct kmem_cache
*s
)
886 * The page->offset field is only 16 bit wide. This is an offset
887 * in units of words from the beginning of an object. If the slab
888 * size is bigger then we cannot move the free pointer behind the
891 * On 32 bit platforms the limit is 256k. On 64bit platforms
894 * Debugging or ctor/dtors may create a need to move the free
895 * pointer. Fail if this happens.
897 if (s
->size
>= 65535 * sizeof(void *)) {
898 BUG_ON(s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
|
899 SLAB_STORE_USER
| SLAB_DESTROY_BY_RCU
));
900 BUG_ON(s
->ctor
|| s
->dtor
);
904 * Enable debugging if selected on the kernel commandline.
906 if (slub_debug
&& (!slub_debug_slabs
||
907 strncmp(slub_debug_slabs
, s
->name
,
908 strlen(slub_debug_slabs
)) == 0))
909 s
->flags
|= slub_debug
;
913 static inline int alloc_object_checks(struct kmem_cache
*s
,
914 struct page
*page
, void *object
) { return 0; }
916 static inline int free_object_checks(struct kmem_cache
*s
,
917 struct page
*page
, void *object
) { return 0; }
919 static inline void add_full(struct kmem_cache_node
*n
, struct page
*page
) {}
920 static inline void remove_full(struct kmem_cache
*s
, struct page
*page
) {}
921 static inline void trace(struct kmem_cache
*s
, struct page
*page
,
922 void *object
, int alloc
) {}
923 static inline void init_object(struct kmem_cache
*s
,
924 void *object
, int active
) {}
925 static inline void init_tracking(struct kmem_cache
*s
, void *object
) {}
926 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
928 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
929 void *object
, int active
) { return 1; }
930 static inline void set_track(struct kmem_cache
*s
, void *object
,
931 enum track_item alloc
, void *addr
) {}
932 static inline void kmem_cache_open_debug_check(struct kmem_cache
*s
) {}
936 * Slab allocation and freeing
938 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
941 int pages
= 1 << s
->order
;
946 if (s
->flags
& SLAB_CACHE_DMA
)
950 page
= alloc_pages(flags
, s
->order
);
952 page
= alloc_pages_node(node
, flags
, s
->order
);
957 mod_zone_page_state(page_zone(page
),
958 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
959 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
965 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
968 if (SlabDebug(page
)) {
969 init_object(s
, object
, 0);
970 init_tracking(s
, object
);
973 if (unlikely(s
->ctor
))
974 s
->ctor(object
, s
, SLAB_CTOR_CONSTRUCTOR
);
977 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
980 struct kmem_cache_node
*n
;
986 BUG_ON(flags
& ~(GFP_DMA
| GFP_LEVEL_MASK
));
988 if (flags
& __GFP_WAIT
)
991 page
= allocate_slab(s
, flags
& GFP_LEVEL_MASK
, node
);
995 n
= get_node(s
, page_to_nid(page
));
997 atomic_long_inc(&n
->nr_slabs
);
998 page
->offset
= s
->offset
/ sizeof(void *);
1000 page
->flags
|= 1 << PG_slab
;
1001 if (s
->flags
& (SLAB_DEBUG_FREE
| SLAB_RED_ZONE
| SLAB_POISON
|
1002 SLAB_STORE_USER
| SLAB_TRACE
))
1005 start
= page_address(page
);
1006 end
= start
+ s
->objects
* s
->size
;
1008 if (unlikely(s
->flags
& SLAB_POISON
))
1009 memset(start
, POISON_INUSE
, PAGE_SIZE
<< s
->order
);
1012 for_each_object(p
, s
, start
) {
1013 setup_object(s
, page
, last
);
1014 set_freepointer(s
, last
, p
);
1017 setup_object(s
, page
, last
);
1018 set_freepointer(s
, last
, NULL
);
1020 page
->freelist
= start
;
1021 page
->lockless_freelist
= NULL
;
1024 if (flags
& __GFP_WAIT
)
1025 local_irq_disable();
1029 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1031 int pages
= 1 << s
->order
;
1033 if (unlikely(SlabDebug(page
) || s
->dtor
)) {
1036 slab_pad_check(s
, page
);
1037 for_each_object(p
, s
, page_address(page
)) {
1040 check_object(s
, page
, p
, 0);
1044 mod_zone_page_state(page_zone(page
),
1045 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1046 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1049 page
->mapping
= NULL
;
1050 __free_pages(page
, s
->order
);
1053 static void rcu_free_slab(struct rcu_head
*h
)
1057 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1058 __free_slab(page
->slab
, page
);
1061 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1063 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
1065 * RCU free overloads the RCU head over the LRU
1067 struct rcu_head
*head
= (void *)&page
->lru
;
1069 call_rcu(head
, rcu_free_slab
);
1071 __free_slab(s
, page
);
1074 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1076 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1078 atomic_long_dec(&n
->nr_slabs
);
1079 reset_page_mapcount(page
);
1080 ClearSlabDebug(page
);
1081 __ClearPageSlab(page
);
1086 * Per slab locking using the pagelock
1088 static __always_inline
void slab_lock(struct page
*page
)
1090 bit_spin_lock(PG_locked
, &page
->flags
);
1093 static __always_inline
void slab_unlock(struct page
*page
)
1095 bit_spin_unlock(PG_locked
, &page
->flags
);
1098 static __always_inline
int slab_trylock(struct page
*page
)
1102 rc
= bit_spin_trylock(PG_locked
, &page
->flags
);
1107 * Management of partially allocated slabs
1109 static void add_partial_tail(struct kmem_cache_node
*n
, struct page
*page
)
1111 spin_lock(&n
->list_lock
);
1113 list_add_tail(&page
->lru
, &n
->partial
);
1114 spin_unlock(&n
->list_lock
);
1117 static void add_partial(struct kmem_cache_node
*n
, struct page
*page
)
1119 spin_lock(&n
->list_lock
);
1121 list_add(&page
->lru
, &n
->partial
);
1122 spin_unlock(&n
->list_lock
);
1125 static void remove_partial(struct kmem_cache
*s
,
1128 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1130 spin_lock(&n
->list_lock
);
1131 list_del(&page
->lru
);
1133 spin_unlock(&n
->list_lock
);
1137 * Lock slab and remove from the partial list.
1139 * Must hold list_lock.
1141 static int lock_and_del_slab(struct kmem_cache_node
*n
, struct page
*page
)
1143 if (slab_trylock(page
)) {
1144 list_del(&page
->lru
);
1152 * Try to allocate a partial slab from a specific node.
1154 static struct page
*get_partial_node(struct kmem_cache_node
*n
)
1159 * Racy check. If we mistakenly see no partial slabs then we
1160 * just allocate an empty slab. If we mistakenly try to get a
1161 * partial slab and there is none available then get_partials()
1164 if (!n
|| !n
->nr_partial
)
1167 spin_lock(&n
->list_lock
);
1168 list_for_each_entry(page
, &n
->partial
, lru
)
1169 if (lock_and_del_slab(n
, page
))
1173 spin_unlock(&n
->list_lock
);
1178 * Get a page from somewhere. Search in increasing NUMA distances.
1180 static struct page
*get_any_partial(struct kmem_cache
*s
, gfp_t flags
)
1183 struct zonelist
*zonelist
;
1188 * The defrag ratio allows a configuration of the tradeoffs between
1189 * inter node defragmentation and node local allocations. A lower
1190 * defrag_ratio increases the tendency to do local allocations
1191 * instead of attempting to obtain partial slabs from other nodes.
1193 * If the defrag_ratio is set to 0 then kmalloc() always
1194 * returns node local objects. If the ratio is higher then kmalloc()
1195 * may return off node objects because partial slabs are obtained
1196 * from other nodes and filled up.
1198 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
1199 * defrag_ratio = 1000) then every (well almost) allocation will
1200 * first attempt to defrag slab caches on other nodes. This means
1201 * scanning over all nodes to look for partial slabs which may be
1202 * expensive if we do it every time we are trying to find a slab
1203 * with available objects.
1205 if (!s
->defrag_ratio
|| get_cycles() % 1024 > s
->defrag_ratio
)
1208 zonelist
= &NODE_DATA(slab_node(current
->mempolicy
))
1209 ->node_zonelists
[gfp_zone(flags
)];
1210 for (z
= zonelist
->zones
; *z
; z
++) {
1211 struct kmem_cache_node
*n
;
1213 n
= get_node(s
, zone_to_nid(*z
));
1215 if (n
&& cpuset_zone_allowed_hardwall(*z
, flags
) &&
1216 n
->nr_partial
> MIN_PARTIAL
) {
1217 page
= get_partial_node(n
);
1227 * Get a partial page, lock it and return it.
1229 static struct page
*get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
)
1232 int searchnode
= (node
== -1) ? numa_node_id() : node
;
1234 page
= get_partial_node(get_node(s
, searchnode
));
1235 if (page
|| (flags
& __GFP_THISNODE
))
1238 return get_any_partial(s
, flags
);
1242 * Move a page back to the lists.
1244 * Must be called with the slab lock held.
1246 * On exit the slab lock will have been dropped.
1248 static void putback_slab(struct kmem_cache
*s
, struct page
*page
)
1250 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1255 add_partial(n
, page
);
1256 else if (SlabDebug(page
) && (s
->flags
& SLAB_STORE_USER
))
1261 if (n
->nr_partial
< MIN_PARTIAL
) {
1263 * Adding an empty slab to the partial slabs in order
1264 * to avoid page allocator overhead. This slab needs
1265 * to come after the other slabs with objects in
1266 * order to fill them up. That way the size of the
1267 * partial list stays small. kmem_cache_shrink can
1268 * reclaim empty slabs from the partial list.
1270 add_partial_tail(n
, page
);
1274 discard_slab(s
, page
);
1280 * Remove the cpu slab
1282 static void deactivate_slab(struct kmem_cache
*s
, struct page
*page
, int cpu
)
1285 * Merge cpu freelist into freelist. Typically we get here
1286 * because both freelists are empty. So this is unlikely
1289 while (unlikely(page
->lockless_freelist
)) {
1292 /* Retrieve object from cpu_freelist */
1293 object
= page
->lockless_freelist
;
1294 page
->lockless_freelist
= page
->lockless_freelist
[page
->offset
];
1296 /* And put onto the regular freelist */
1297 object
[page
->offset
] = page
->freelist
;
1298 page
->freelist
= object
;
1301 s
->cpu_slab
[cpu
] = NULL
;
1302 ClearPageActive(page
);
1304 putback_slab(s
, page
);
1307 static void flush_slab(struct kmem_cache
*s
, struct page
*page
, int cpu
)
1310 deactivate_slab(s
, page
, cpu
);
1315 * Called from IPI handler with interrupts disabled.
1317 static void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
1319 struct page
*page
= s
->cpu_slab
[cpu
];
1322 flush_slab(s
, page
, cpu
);
1325 static void flush_cpu_slab(void *d
)
1327 struct kmem_cache
*s
= d
;
1328 int cpu
= smp_processor_id();
1330 __flush_cpu_slab(s
, cpu
);
1333 static void flush_all(struct kmem_cache
*s
)
1336 on_each_cpu(flush_cpu_slab
, s
, 1, 1);
1338 unsigned long flags
;
1340 local_irq_save(flags
);
1342 local_irq_restore(flags
);
1347 * Slow path. The lockless freelist is empty or we need to perform
1350 * Interrupts are disabled.
1352 * Processing is still very fast if new objects have been freed to the
1353 * regular freelist. In that case we simply take over the regular freelist
1354 * as the lockless freelist and zap the regular freelist.
1356 * If that is not working then we fall back to the partial lists. We take the
1357 * first element of the freelist as the object to allocate now and move the
1358 * rest of the freelist to the lockless freelist.
1360 * And if we were unable to get a new slab from the partial slab lists then
1361 * we need to allocate a new slab. This is slowest path since we may sleep.
1363 static void *__slab_alloc(struct kmem_cache
*s
,
1364 gfp_t gfpflags
, int node
, void *addr
, struct page
*page
)
1367 int cpu
= smp_processor_id();
1373 if (unlikely(node
!= -1 && page_to_nid(page
) != node
))
1376 object
= page
->freelist
;
1377 if (unlikely(!object
))
1379 if (unlikely(SlabDebug(page
)))
1382 object
= page
->freelist
;
1383 page
->lockless_freelist
= object
[page
->offset
];
1384 page
->inuse
= s
->objects
;
1385 page
->freelist
= NULL
;
1390 deactivate_slab(s
, page
, cpu
);
1393 page
= get_partial(s
, gfpflags
, node
);
1396 s
->cpu_slab
[cpu
] = page
;
1397 SetPageActive(page
);
1401 page
= new_slab(s
, gfpflags
, node
);
1403 cpu
= smp_processor_id();
1404 if (s
->cpu_slab
[cpu
]) {
1406 * Someone else populated the cpu_slab while we
1407 * enabled interrupts, or we have gotten scheduled
1408 * on another cpu. The page may not be on the
1409 * requested node even if __GFP_THISNODE was
1410 * specified. So we need to recheck.
1413 page_to_nid(s
->cpu_slab
[cpu
]) == node
) {
1415 * Current cpuslab is acceptable and we
1416 * want the current one since its cache hot
1418 discard_slab(s
, page
);
1419 page
= s
->cpu_slab
[cpu
];
1423 /* New slab does not fit our expectations */
1424 flush_slab(s
, s
->cpu_slab
[cpu
], cpu
);
1431 object
= page
->freelist
;
1432 if (!alloc_object_checks(s
, page
, object
))
1434 if (s
->flags
& SLAB_STORE_USER
)
1435 set_track(s
, object
, TRACK_ALLOC
, addr
);
1436 trace(s
, page
, object
, 1);
1437 init_object(s
, object
, 1);
1440 page
->freelist
= object
[page
->offset
];
1446 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1447 * have the fastpath folded into their functions. So no function call
1448 * overhead for requests that can be satisfied on the fastpath.
1450 * The fastpath works by first checking if the lockless freelist can be used.
1451 * If not then __slab_alloc is called for slow processing.
1453 * Otherwise we can simply pick the next object from the lockless free list.
1455 static void __always_inline
*slab_alloc(struct kmem_cache
*s
,
1456 gfp_t gfpflags
, int node
, void *addr
)
1460 unsigned long flags
;
1462 local_irq_save(flags
);
1463 page
= s
->cpu_slab
[smp_processor_id()];
1464 if (unlikely(!page
|| !page
->lockless_freelist
||
1465 (node
!= -1 && page_to_nid(page
) != node
)))
1467 object
= __slab_alloc(s
, gfpflags
, node
, addr
, page
);
1470 object
= page
->lockless_freelist
;
1471 page
->lockless_freelist
= object
[page
->offset
];
1473 local_irq_restore(flags
);
1477 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
1479 return slab_alloc(s
, gfpflags
, -1, __builtin_return_address(0));
1481 EXPORT_SYMBOL(kmem_cache_alloc
);
1484 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
1486 return slab_alloc(s
, gfpflags
, node
, __builtin_return_address(0));
1488 EXPORT_SYMBOL(kmem_cache_alloc_node
);
1492 * Slow patch handling. This may still be called frequently since objects
1493 * have a longer lifetime than the cpu slabs in most processing loads.
1495 * So we still attempt to reduce cache line usage. Just take the slab
1496 * lock and free the item. If there is no additional partial page
1497 * handling required then we can return immediately.
1499 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
1500 void *x
, void *addr
)
1503 void **object
= (void *)x
;
1507 if (unlikely(SlabDebug(page
)))
1510 prior
= object
[page
->offset
] = page
->freelist
;
1511 page
->freelist
= object
;
1514 if (unlikely(PageActive(page
)))
1516 * Cpu slabs are never on partial lists and are
1521 if (unlikely(!page
->inuse
))
1525 * Objects left in the slab. If it
1526 * was not on the partial list before
1529 if (unlikely(!prior
))
1530 add_partial(get_node(s
, page_to_nid(page
)), page
);
1539 * Slab still on the partial list.
1541 remove_partial(s
, page
);
1544 discard_slab(s
, page
);
1548 if (!free_object_checks(s
, page
, x
))
1550 if (!PageActive(page
) && !page
->freelist
)
1551 remove_full(s
, page
);
1552 if (s
->flags
& SLAB_STORE_USER
)
1553 set_track(s
, x
, TRACK_FREE
, addr
);
1554 trace(s
, page
, object
, 0);
1555 init_object(s
, object
, 0);
1560 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1561 * can perform fastpath freeing without additional function calls.
1563 * The fastpath is only possible if we are freeing to the current cpu slab
1564 * of this processor. This typically the case if we have just allocated
1567 * If fastpath is not possible then fall back to __slab_free where we deal
1568 * with all sorts of special processing.
1570 static void __always_inline
slab_free(struct kmem_cache
*s
,
1571 struct page
*page
, void *x
, void *addr
)
1573 void **object
= (void *)x
;
1574 unsigned long flags
;
1576 local_irq_save(flags
);
1577 if (likely(page
== s
->cpu_slab
[smp_processor_id()] &&
1578 !SlabDebug(page
))) {
1579 object
[page
->offset
] = page
->lockless_freelist
;
1580 page
->lockless_freelist
= object
;
1582 __slab_free(s
, page
, x
, addr
);
1584 local_irq_restore(flags
);
1587 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
1591 page
= virt_to_head_page(x
);
1593 slab_free(s
, page
, x
, __builtin_return_address(0));
1595 EXPORT_SYMBOL(kmem_cache_free
);
1597 /* Figure out on which slab object the object resides */
1598 static struct page
*get_object_page(const void *x
)
1600 struct page
*page
= virt_to_head_page(x
);
1602 if (!PageSlab(page
))
1609 * Object placement in a slab is made very easy because we always start at
1610 * offset 0. If we tune the size of the object to the alignment then we can
1611 * get the required alignment by putting one properly sized object after
1614 * Notice that the allocation order determines the sizes of the per cpu
1615 * caches. Each processor has always one slab available for allocations.
1616 * Increasing the allocation order reduces the number of times that slabs
1617 * must be moved on and off the partial lists and is therefore a factor in
1622 * Mininum / Maximum order of slab pages. This influences locking overhead
1623 * and slab fragmentation. A higher order reduces the number of partial slabs
1624 * and increases the number of allocations possible without having to
1625 * take the list_lock.
1627 static int slub_min_order
;
1628 static int slub_max_order
= DEFAULT_MAX_ORDER
;
1629 static int slub_min_objects
= DEFAULT_MIN_OBJECTS
;
1632 * Merge control. If this is set then no merging of slab caches will occur.
1633 * (Could be removed. This was introduced to pacify the merge skeptics.)
1635 static int slub_nomerge
;
1638 * Calculate the order of allocation given an slab object size.
1640 * The order of allocation has significant impact on performance and other
1641 * system components. Generally order 0 allocations should be preferred since
1642 * order 0 does not cause fragmentation in the page allocator. Larger objects
1643 * be problematic to put into order 0 slabs because there may be too much
1644 * unused space left. We go to a higher order if more than 1/8th of the slab
1647 * In order to reach satisfactory performance we must ensure that a minimum
1648 * number of objects is in one slab. Otherwise we may generate too much
1649 * activity on the partial lists which requires taking the list_lock. This is
1650 * less a concern for large slabs though which are rarely used.
1652 * slub_max_order specifies the order where we begin to stop considering the
1653 * number of objects in a slab as critical. If we reach slub_max_order then
1654 * we try to keep the page order as low as possible. So we accept more waste
1655 * of space in favor of a small page order.
1657 * Higher order allocations also allow the placement of more objects in a
1658 * slab and thereby reduce object handling overhead. If the user has
1659 * requested a higher mininum order then we start with that one instead of
1660 * the smallest order which will fit the object.
1662 static inline int slab_order(int size
, int min_objects
,
1663 int max_order
, int fract_leftover
)
1668 for (order
= max(slub_min_order
,
1669 fls(min_objects
* size
- 1) - PAGE_SHIFT
);
1670 order
<= max_order
; order
++) {
1672 unsigned long slab_size
= PAGE_SIZE
<< order
;
1674 if (slab_size
< min_objects
* size
)
1677 rem
= slab_size
% size
;
1679 if (rem
<= slab_size
/ fract_leftover
)
1687 static inline int calculate_order(int size
)
1694 * Attempt to find best configuration for a slab. This
1695 * works by first attempting to generate a layout with
1696 * the best configuration and backing off gradually.
1698 * First we reduce the acceptable waste in a slab. Then
1699 * we reduce the minimum objects required in a slab.
1701 min_objects
= slub_min_objects
;
1702 while (min_objects
> 1) {
1704 while (fraction
>= 4) {
1705 order
= slab_order(size
, min_objects
,
1706 slub_max_order
, fraction
);
1707 if (order
<= slub_max_order
)
1715 * We were unable to place multiple objects in a slab. Now
1716 * lets see if we can place a single object there.
1718 order
= slab_order(size
, 1, slub_max_order
, 1);
1719 if (order
<= slub_max_order
)
1723 * Doh this slab cannot be placed using slub_max_order.
1725 order
= slab_order(size
, 1, MAX_ORDER
, 1);
1726 if (order
<= MAX_ORDER
)
1732 * Figure out what the alignment of the objects will be.
1734 static unsigned long calculate_alignment(unsigned long flags
,
1735 unsigned long align
, unsigned long size
)
1738 * If the user wants hardware cache aligned objects then
1739 * follow that suggestion if the object is sufficiently
1742 * The hardware cache alignment cannot override the
1743 * specified alignment though. If that is greater
1746 if ((flags
& SLAB_HWCACHE_ALIGN
) &&
1747 size
> cache_line_size() / 2)
1748 return max_t(unsigned long, align
, cache_line_size());
1750 if (align
< ARCH_SLAB_MINALIGN
)
1751 return ARCH_SLAB_MINALIGN
;
1753 return ALIGN(align
, sizeof(void *));
1756 static void init_kmem_cache_node(struct kmem_cache_node
*n
)
1759 atomic_long_set(&n
->nr_slabs
, 0);
1760 spin_lock_init(&n
->list_lock
);
1761 INIT_LIST_HEAD(&n
->partial
);
1762 INIT_LIST_HEAD(&n
->full
);
1767 * No kmalloc_node yet so do it by hand. We know that this is the first
1768 * slab on the node for this slabcache. There are no concurrent accesses
1771 * Note that this function only works on the kmalloc_node_cache
1772 * when allocating for the kmalloc_node_cache.
1774 static struct kmem_cache_node
* __init
early_kmem_cache_node_alloc(gfp_t gfpflags
,
1778 struct kmem_cache_node
*n
;
1780 BUG_ON(kmalloc_caches
->size
< sizeof(struct kmem_cache_node
));
1782 page
= new_slab(kmalloc_caches
, gfpflags
| GFP_THISNODE
, node
);
1783 /* new_slab() disables interupts */
1789 page
->freelist
= get_freepointer(kmalloc_caches
, n
);
1791 kmalloc_caches
->node
[node
] = n
;
1792 init_object(kmalloc_caches
, n
, 1);
1793 init_kmem_cache_node(n
);
1794 atomic_long_inc(&n
->nr_slabs
);
1795 add_partial(n
, page
);
1799 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
1803 for_each_online_node(node
) {
1804 struct kmem_cache_node
*n
= s
->node
[node
];
1805 if (n
&& n
!= &s
->local_node
)
1806 kmem_cache_free(kmalloc_caches
, n
);
1807 s
->node
[node
] = NULL
;
1811 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
1816 if (slab_state
>= UP
)
1817 local_node
= page_to_nid(virt_to_page(s
));
1821 for_each_online_node(node
) {
1822 struct kmem_cache_node
*n
;
1824 if (local_node
== node
)
1827 if (slab_state
== DOWN
) {
1828 n
= early_kmem_cache_node_alloc(gfpflags
,
1832 n
= kmem_cache_alloc_node(kmalloc_caches
,
1836 free_kmem_cache_nodes(s
);
1842 init_kmem_cache_node(n
);
1847 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
1851 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
1853 init_kmem_cache_node(&s
->local_node
);
1859 * calculate_sizes() determines the order and the distribution of data within
1862 static int calculate_sizes(struct kmem_cache
*s
)
1864 unsigned long flags
= s
->flags
;
1865 unsigned long size
= s
->objsize
;
1866 unsigned long align
= s
->align
;
1869 * Determine if we can poison the object itself. If the user of
1870 * the slab may touch the object after free or before allocation
1871 * then we should never poison the object itself.
1873 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
1874 !s
->ctor
&& !s
->dtor
)
1875 s
->flags
|= __OBJECT_POISON
;
1877 s
->flags
&= ~__OBJECT_POISON
;
1880 * Round up object size to the next word boundary. We can only
1881 * place the free pointer at word boundaries and this determines
1882 * the possible location of the free pointer.
1884 size
= ALIGN(size
, sizeof(void *));
1886 #ifdef CONFIG_SLUB_DEBUG
1888 * If we are Redzoning then check if there is some space between the
1889 * end of the object and the free pointer. If not then add an
1890 * additional word to have some bytes to store Redzone information.
1892 if ((flags
& SLAB_RED_ZONE
) && size
== s
->objsize
)
1893 size
+= sizeof(void *);
1897 * With that we have determined the number of bytes in actual use
1898 * by the object. This is the potential offset to the free pointer.
1902 #ifdef CONFIG_SLUB_DEBUG
1903 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
1904 s
->ctor
|| s
->dtor
)) {
1906 * Relocate free pointer after the object if it is not
1907 * permitted to overwrite the first word of the object on
1910 * This is the case if we do RCU, have a constructor or
1911 * destructor or are poisoning the objects.
1914 size
+= sizeof(void *);
1917 if (flags
& SLAB_STORE_USER
)
1919 * Need to store information about allocs and frees after
1922 size
+= 2 * sizeof(struct track
);
1924 if (flags
& SLAB_RED_ZONE
)
1926 * Add some empty padding so that we can catch
1927 * overwrites from earlier objects rather than let
1928 * tracking information or the free pointer be
1929 * corrupted if an user writes before the start
1932 size
+= sizeof(void *);
1936 * Determine the alignment based on various parameters that the
1937 * user specified and the dynamic determination of cache line size
1940 align
= calculate_alignment(flags
, align
, s
->objsize
);
1943 * SLUB stores one object immediately after another beginning from
1944 * offset 0. In order to align the objects we have to simply size
1945 * each object to conform to the alignment.
1947 size
= ALIGN(size
, align
);
1950 s
->order
= calculate_order(size
);
1955 * Determine the number of objects per slab
1957 s
->objects
= (PAGE_SIZE
<< s
->order
) / size
;
1960 * Verify that the number of objects is within permitted limits.
1961 * The page->inuse field is only 16 bit wide! So we cannot have
1962 * more than 64k objects per slab.
1964 if (!s
->objects
|| s
->objects
> 65535)
1970 static int kmem_cache_open(struct kmem_cache
*s
, gfp_t gfpflags
,
1971 const char *name
, size_t size
,
1972 size_t align
, unsigned long flags
,
1973 void (*ctor
)(void *, struct kmem_cache
*, unsigned long),
1974 void (*dtor
)(void *, struct kmem_cache
*, unsigned long))
1976 memset(s
, 0, kmem_size
);
1983 kmem_cache_open_debug_check(s
);
1985 if (!calculate_sizes(s
))
1990 s
->defrag_ratio
= 100;
1993 if (init_kmem_cache_nodes(s
, gfpflags
& ~SLUB_DMA
))
1996 if (flags
& SLAB_PANIC
)
1997 panic("Cannot create slab %s size=%lu realsize=%u "
1998 "order=%u offset=%u flags=%lx\n",
1999 s
->name
, (unsigned long)size
, s
->size
, s
->order
,
2003 EXPORT_SYMBOL(kmem_cache_open
);
2006 * Check if a given pointer is valid
2008 int kmem_ptr_validate(struct kmem_cache
*s
, const void *object
)
2012 page
= get_object_page(object
);
2014 if (!page
|| s
!= page
->slab
)
2015 /* No slab or wrong slab */
2018 if (!check_valid_pointer(s
, page
, object
))
2022 * We could also check if the object is on the slabs freelist.
2023 * But this would be too expensive and it seems that the main
2024 * purpose of kmem_ptr_valid is to check if the object belongs
2025 * to a certain slab.
2029 EXPORT_SYMBOL(kmem_ptr_validate
);
2032 * Determine the size of a slab object
2034 unsigned int kmem_cache_size(struct kmem_cache
*s
)
2038 EXPORT_SYMBOL(kmem_cache_size
);
2040 const char *kmem_cache_name(struct kmem_cache
*s
)
2044 EXPORT_SYMBOL(kmem_cache_name
);
2047 * Attempt to free all slabs on a node. Return the number of slabs we
2048 * were unable to free.
2050 static int free_list(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
2051 struct list_head
*list
)
2053 int slabs_inuse
= 0;
2054 unsigned long flags
;
2055 struct page
*page
, *h
;
2057 spin_lock_irqsave(&n
->list_lock
, flags
);
2058 list_for_each_entry_safe(page
, h
, list
, lru
)
2060 list_del(&page
->lru
);
2061 discard_slab(s
, page
);
2064 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2069 * Release all resources used by a slab cache.
2071 static int kmem_cache_close(struct kmem_cache
*s
)
2077 /* Attempt to free all objects */
2078 for_each_online_node(node
) {
2079 struct kmem_cache_node
*n
= get_node(s
, node
);
2081 n
->nr_partial
-= free_list(s
, n
, &n
->partial
);
2082 if (atomic_long_read(&n
->nr_slabs
))
2085 free_kmem_cache_nodes(s
);
2090 * Close a cache and release the kmem_cache structure
2091 * (must be used for caches created using kmem_cache_create)
2093 void kmem_cache_destroy(struct kmem_cache
*s
)
2095 down_write(&slub_lock
);
2099 if (kmem_cache_close(s
))
2101 sysfs_slab_remove(s
);
2104 up_write(&slub_lock
);
2106 EXPORT_SYMBOL(kmem_cache_destroy
);
2108 /********************************************************************
2110 *******************************************************************/
2112 struct kmem_cache kmalloc_caches
[KMALLOC_SHIFT_HIGH
+ 1] __cacheline_aligned
;
2113 EXPORT_SYMBOL(kmalloc_caches
);
2115 #ifdef CONFIG_ZONE_DMA
2116 static struct kmem_cache
*kmalloc_caches_dma
[KMALLOC_SHIFT_HIGH
+ 1];
2119 static int __init
setup_slub_min_order(char *str
)
2121 get_option (&str
, &slub_min_order
);
2126 __setup("slub_min_order=", setup_slub_min_order
);
2128 static int __init
setup_slub_max_order(char *str
)
2130 get_option (&str
, &slub_max_order
);
2135 __setup("slub_max_order=", setup_slub_max_order
);
2137 static int __init
setup_slub_min_objects(char *str
)
2139 get_option (&str
, &slub_min_objects
);
2144 __setup("slub_min_objects=", setup_slub_min_objects
);
2146 static int __init
setup_slub_nomerge(char *str
)
2152 __setup("slub_nomerge", setup_slub_nomerge
);
2154 static struct kmem_cache
*create_kmalloc_cache(struct kmem_cache
*s
,
2155 const char *name
, int size
, gfp_t gfp_flags
)
2157 unsigned int flags
= 0;
2159 if (gfp_flags
& SLUB_DMA
)
2160 flags
= SLAB_CACHE_DMA
;
2162 down_write(&slub_lock
);
2163 if (!kmem_cache_open(s
, gfp_flags
, name
, size
, ARCH_KMALLOC_MINALIGN
,
2167 list_add(&s
->list
, &slab_caches
);
2168 up_write(&slub_lock
);
2169 if (sysfs_slab_add(s
))
2174 panic("Creation of kmalloc slab %s size=%d failed.\n", name
, size
);
2177 static struct kmem_cache
*get_slab(size_t size
, gfp_t flags
)
2179 int index
= kmalloc_index(size
);
2184 /* Allocation too large? */
2187 #ifdef CONFIG_ZONE_DMA
2188 if ((flags
& SLUB_DMA
)) {
2189 struct kmem_cache
*s
;
2190 struct kmem_cache
*x
;
2194 s
= kmalloc_caches_dma
[index
];
2198 /* Dynamically create dma cache */
2199 x
= kmalloc(kmem_size
, flags
& ~SLUB_DMA
);
2201 panic("Unable to allocate memory for dma cache\n");
2203 if (index
<= KMALLOC_SHIFT_HIGH
)
2204 realsize
= 1 << index
;
2212 text
= kasprintf(flags
& ~SLUB_DMA
, "kmalloc_dma-%d",
2213 (unsigned int)realsize
);
2214 s
= create_kmalloc_cache(x
, text
, realsize
, flags
);
2215 kmalloc_caches_dma
[index
] = s
;
2219 return &kmalloc_caches
[index
];
2222 void *__kmalloc(size_t size
, gfp_t flags
)
2224 struct kmem_cache
*s
= get_slab(size
, flags
);
2227 return slab_alloc(s
, flags
, -1, __builtin_return_address(0));
2230 EXPORT_SYMBOL(__kmalloc
);
2233 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
2235 struct kmem_cache
*s
= get_slab(size
, flags
);
2238 return slab_alloc(s
, flags
, node
, __builtin_return_address(0));
2241 EXPORT_SYMBOL(__kmalloc_node
);
2244 size_t ksize(const void *object
)
2246 struct page
*page
= get_object_page(object
);
2247 struct kmem_cache
*s
;
2254 * Debugging requires use of the padding between object
2255 * and whatever may come after it.
2257 if (s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
))
2261 * If we have the need to store the freelist pointer
2262 * back there or track user information then we can
2263 * only use the space before that information.
2265 if (s
->flags
& (SLAB_DESTROY_BY_RCU
| SLAB_STORE_USER
))
2269 * Else we can use all the padding etc for the allocation
2273 EXPORT_SYMBOL(ksize
);
2275 void kfree(const void *x
)
2277 struct kmem_cache
*s
;
2283 page
= virt_to_head_page(x
);
2286 slab_free(s
, page
, (void *)x
, __builtin_return_address(0));
2288 EXPORT_SYMBOL(kfree
);
2291 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2292 * the remaining slabs by the number of items in use. The slabs with the
2293 * most items in use come first. New allocations will then fill those up
2294 * and thus they can be removed from the partial lists.
2296 * The slabs with the least items are placed last. This results in them
2297 * being allocated from last increasing the chance that the last objects
2298 * are freed in them.
2300 int kmem_cache_shrink(struct kmem_cache
*s
)
2304 struct kmem_cache_node
*n
;
2307 struct list_head
*slabs_by_inuse
=
2308 kmalloc(sizeof(struct list_head
) * s
->objects
, GFP_KERNEL
);
2309 unsigned long flags
;
2311 if (!slabs_by_inuse
)
2315 for_each_online_node(node
) {
2316 n
= get_node(s
, node
);
2321 for (i
= 0; i
< s
->objects
; i
++)
2322 INIT_LIST_HEAD(slabs_by_inuse
+ i
);
2324 spin_lock_irqsave(&n
->list_lock
, flags
);
2327 * Build lists indexed by the items in use in each slab.
2329 * Note that concurrent frees may occur while we hold the
2330 * list_lock. page->inuse here is the upper limit.
2332 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
2333 if (!page
->inuse
&& slab_trylock(page
)) {
2335 * Must hold slab lock here because slab_free
2336 * may have freed the last object and be
2337 * waiting to release the slab.
2339 list_del(&page
->lru
);
2342 discard_slab(s
, page
);
2344 if (n
->nr_partial
> MAX_PARTIAL
)
2345 list_move(&page
->lru
,
2346 slabs_by_inuse
+ page
->inuse
);
2350 if (n
->nr_partial
<= MAX_PARTIAL
)
2354 * Rebuild the partial list with the slabs filled up most
2355 * first and the least used slabs at the end.
2357 for (i
= s
->objects
- 1; i
>= 0; i
--)
2358 list_splice(slabs_by_inuse
+ i
, n
->partial
.prev
);
2361 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2364 kfree(slabs_by_inuse
);
2367 EXPORT_SYMBOL(kmem_cache_shrink
);
2370 * krealloc - reallocate memory. The contents will remain unchanged.
2371 * @p: object to reallocate memory for.
2372 * @new_size: how many bytes of memory are required.
2373 * @flags: the type of memory to allocate.
2375 * The contents of the object pointed to are preserved up to the
2376 * lesser of the new and old sizes. If @p is %NULL, krealloc()
2377 * behaves exactly like kmalloc(). If @size is 0 and @p is not a
2378 * %NULL pointer, the object pointed to is freed.
2380 void *krealloc(const void *p
, size_t new_size
, gfp_t flags
)
2386 return kmalloc(new_size
, flags
);
2388 if (unlikely(!new_size
)) {
2397 ret
= kmalloc(new_size
, flags
);
2399 memcpy(ret
, p
, min(new_size
, ks
));
2404 EXPORT_SYMBOL(krealloc
);
2406 /********************************************************************
2407 * Basic setup of slabs
2408 *******************************************************************/
2410 void __init
kmem_cache_init(void)
2416 * Must first have the slab cache available for the allocations of the
2417 * struct kmem_cache_node's. There is special bootstrap code in
2418 * kmem_cache_open for slab_state == DOWN.
2420 create_kmalloc_cache(&kmalloc_caches
[0], "kmem_cache_node",
2421 sizeof(struct kmem_cache_node
), GFP_KERNEL
);
2424 /* Able to allocate the per node structures */
2425 slab_state
= PARTIAL
;
2427 /* Caches that are not of the two-to-the-power-of size */
2428 create_kmalloc_cache(&kmalloc_caches
[1],
2429 "kmalloc-96", 96, GFP_KERNEL
);
2430 create_kmalloc_cache(&kmalloc_caches
[2],
2431 "kmalloc-192", 192, GFP_KERNEL
);
2433 for (i
= KMALLOC_SHIFT_LOW
; i
<= KMALLOC_SHIFT_HIGH
; i
++)
2434 create_kmalloc_cache(&kmalloc_caches
[i
],
2435 "kmalloc", 1 << i
, GFP_KERNEL
);
2439 /* Provide the correct kmalloc names now that the caches are up */
2440 for (i
= KMALLOC_SHIFT_LOW
; i
<= KMALLOC_SHIFT_HIGH
; i
++)
2441 kmalloc_caches
[i
]. name
=
2442 kasprintf(GFP_KERNEL
, "kmalloc-%d", 1 << i
);
2445 register_cpu_notifier(&slab_notifier
);
2448 kmem_size
= offsetof(struct kmem_cache
, cpu_slab
) +
2449 nr_cpu_ids
* sizeof(struct page
*);
2451 printk(KERN_INFO
"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2452 " Processors=%d, Nodes=%d\n",
2453 KMALLOC_SHIFT_HIGH
, cache_line_size(),
2454 slub_min_order
, slub_max_order
, slub_min_objects
,
2455 nr_cpu_ids
, nr_node_ids
);
2459 * Find a mergeable slab cache
2461 static int slab_unmergeable(struct kmem_cache
*s
)
2463 if (slub_nomerge
|| (s
->flags
& SLUB_NEVER_MERGE
))
2466 if (s
->ctor
|| s
->dtor
)
2472 static struct kmem_cache
*find_mergeable(size_t size
,
2473 size_t align
, unsigned long flags
,
2474 void (*ctor
)(void *, struct kmem_cache
*, unsigned long),
2475 void (*dtor
)(void *, struct kmem_cache
*, unsigned long))
2477 struct list_head
*h
;
2479 if (slub_nomerge
|| (flags
& SLUB_NEVER_MERGE
))
2485 size
= ALIGN(size
, sizeof(void *));
2486 align
= calculate_alignment(flags
, align
, size
);
2487 size
= ALIGN(size
, align
);
2489 list_for_each(h
, &slab_caches
) {
2490 struct kmem_cache
*s
=
2491 container_of(h
, struct kmem_cache
, list
);
2493 if (slab_unmergeable(s
))
2499 if (((flags
| slub_debug
) & SLUB_MERGE_SAME
) !=
2500 (s
->flags
& SLUB_MERGE_SAME
))
2503 * Check if alignment is compatible.
2504 * Courtesy of Adrian Drzewiecki
2506 if ((s
->size
& ~(align
-1)) != s
->size
)
2509 if (s
->size
- size
>= sizeof(void *))
2517 struct kmem_cache
*kmem_cache_create(const char *name
, size_t size
,
2518 size_t align
, unsigned long flags
,
2519 void (*ctor
)(void *, struct kmem_cache
*, unsigned long),
2520 void (*dtor
)(void *, struct kmem_cache
*, unsigned long))
2522 struct kmem_cache
*s
;
2524 down_write(&slub_lock
);
2525 s
= find_mergeable(size
, align
, flags
, dtor
, ctor
);
2529 * Adjust the object sizes so that we clear
2530 * the complete object on kzalloc.
2532 s
->objsize
= max(s
->objsize
, (int)size
);
2533 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
2534 if (sysfs_slab_alias(s
, name
))
2537 s
= kmalloc(kmem_size
, GFP_KERNEL
);
2538 if (s
&& kmem_cache_open(s
, GFP_KERNEL
, name
,
2539 size
, align
, flags
, ctor
, dtor
)) {
2540 if (sysfs_slab_add(s
)) {
2544 list_add(&s
->list
, &slab_caches
);
2548 up_write(&slub_lock
);
2552 up_write(&slub_lock
);
2553 if (flags
& SLAB_PANIC
)
2554 panic("Cannot create slabcache %s\n", name
);
2559 EXPORT_SYMBOL(kmem_cache_create
);
2561 void *kmem_cache_zalloc(struct kmem_cache
*s
, gfp_t flags
)
2565 x
= slab_alloc(s
, flags
, -1, __builtin_return_address(0));
2567 memset(x
, 0, s
->objsize
);
2570 EXPORT_SYMBOL(kmem_cache_zalloc
);
2573 static void for_all_slabs(void (*func
)(struct kmem_cache
*, int), int cpu
)
2575 struct list_head
*h
;
2577 down_read(&slub_lock
);
2578 list_for_each(h
, &slab_caches
) {
2579 struct kmem_cache
*s
=
2580 container_of(h
, struct kmem_cache
, list
);
2584 up_read(&slub_lock
);
2588 * Use the cpu notifier to insure that the cpu slabs are flushed when
2591 static int __cpuinit
slab_cpuup_callback(struct notifier_block
*nfb
,
2592 unsigned long action
, void *hcpu
)
2594 long cpu
= (long)hcpu
;
2597 case CPU_UP_CANCELED
:
2598 case CPU_UP_CANCELED_FROZEN
:
2600 case CPU_DEAD_FROZEN
:
2601 for_all_slabs(__flush_cpu_slab
, cpu
);
2609 static struct notifier_block __cpuinitdata slab_notifier
=
2610 { &slab_cpuup_callback
, NULL
, 0 };
2614 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, void *caller
)
2616 struct kmem_cache
*s
= get_slab(size
, gfpflags
);
2621 return slab_alloc(s
, gfpflags
, -1, caller
);
2624 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
2625 int node
, void *caller
)
2627 struct kmem_cache
*s
= get_slab(size
, gfpflags
);
2632 return slab_alloc(s
, gfpflags
, node
, caller
);
2635 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
2636 static int validate_slab(struct kmem_cache
*s
, struct page
*page
)
2639 void *addr
= page_address(page
);
2640 DECLARE_BITMAP(map
, s
->objects
);
2642 if (!check_slab(s
, page
) ||
2643 !on_freelist(s
, page
, NULL
))
2646 /* Now we know that a valid freelist exists */
2647 bitmap_zero(map
, s
->objects
);
2649 for_each_free_object(p
, s
, page
->freelist
) {
2650 set_bit(slab_index(p
, s
, addr
), map
);
2651 if (!check_object(s
, page
, p
, 0))
2655 for_each_object(p
, s
, addr
)
2656 if (!test_bit(slab_index(p
, s
, addr
), map
))
2657 if (!check_object(s
, page
, p
, 1))
2662 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
)
2664 if (slab_trylock(page
)) {
2665 validate_slab(s
, page
);
2668 printk(KERN_INFO
"SLUB %s: Skipped busy slab 0x%p\n",
2671 if (s
->flags
& DEBUG_DEFAULT_FLAGS
) {
2672 if (!SlabDebug(page
))
2673 printk(KERN_ERR
"SLUB %s: SlabDebug not set "
2674 "on slab 0x%p\n", s
->name
, page
);
2676 if (SlabDebug(page
))
2677 printk(KERN_ERR
"SLUB %s: SlabDebug set on "
2678 "slab 0x%p\n", s
->name
, page
);
2682 static int validate_slab_node(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
2684 unsigned long count
= 0;
2686 unsigned long flags
;
2688 spin_lock_irqsave(&n
->list_lock
, flags
);
2690 list_for_each_entry(page
, &n
->partial
, lru
) {
2691 validate_slab_slab(s
, page
);
2694 if (count
!= n
->nr_partial
)
2695 printk(KERN_ERR
"SLUB %s: %ld partial slabs counted but "
2696 "counter=%ld\n", s
->name
, count
, n
->nr_partial
);
2698 if (!(s
->flags
& SLAB_STORE_USER
))
2701 list_for_each_entry(page
, &n
->full
, lru
) {
2702 validate_slab_slab(s
, page
);
2705 if (count
!= atomic_long_read(&n
->nr_slabs
))
2706 printk(KERN_ERR
"SLUB: %s %ld slabs counted but "
2707 "counter=%ld\n", s
->name
, count
,
2708 atomic_long_read(&n
->nr_slabs
));
2711 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2715 static unsigned long validate_slab_cache(struct kmem_cache
*s
)
2718 unsigned long count
= 0;
2721 for_each_online_node(node
) {
2722 struct kmem_cache_node
*n
= get_node(s
, node
);
2724 count
+= validate_slab_node(s
, n
);
2729 #ifdef SLUB_RESILIENCY_TEST
2730 static void resiliency_test(void)
2734 printk(KERN_ERR
"SLUB resiliency testing\n");
2735 printk(KERN_ERR
"-----------------------\n");
2736 printk(KERN_ERR
"A. Corruption after allocation\n");
2738 p
= kzalloc(16, GFP_KERNEL
);
2740 printk(KERN_ERR
"\n1. kmalloc-16: Clobber Redzone/next pointer"
2741 " 0x12->0x%p\n\n", p
+ 16);
2743 validate_slab_cache(kmalloc_caches
+ 4);
2745 /* Hmmm... The next two are dangerous */
2746 p
= kzalloc(32, GFP_KERNEL
);
2747 p
[32 + sizeof(void *)] = 0x34;
2748 printk(KERN_ERR
"\n2. kmalloc-32: Clobber next pointer/next slab"
2749 " 0x34 -> -0x%p\n", p
);
2750 printk(KERN_ERR
"If allocated object is overwritten then not detectable\n\n");
2752 validate_slab_cache(kmalloc_caches
+ 5);
2753 p
= kzalloc(64, GFP_KERNEL
);
2754 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
2756 printk(KERN_ERR
"\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
2758 printk(KERN_ERR
"If allocated object is overwritten then not detectable\n\n");
2759 validate_slab_cache(kmalloc_caches
+ 6);
2761 printk(KERN_ERR
"\nB. Corruption after free\n");
2762 p
= kzalloc(128, GFP_KERNEL
);
2765 printk(KERN_ERR
"1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
2766 validate_slab_cache(kmalloc_caches
+ 7);
2768 p
= kzalloc(256, GFP_KERNEL
);
2771 printk(KERN_ERR
"\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p
);
2772 validate_slab_cache(kmalloc_caches
+ 8);
2774 p
= kzalloc(512, GFP_KERNEL
);
2777 printk(KERN_ERR
"\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
2778 validate_slab_cache(kmalloc_caches
+ 9);
2781 static void resiliency_test(void) {};
2785 * Generate lists of code addresses where slabcache objects are allocated
2790 unsigned long count
;
2803 unsigned long count
;
2804 struct location
*loc
;
2807 static void free_loc_track(struct loc_track
*t
)
2810 free_pages((unsigned long)t
->loc
,
2811 get_order(sizeof(struct location
) * t
->max
));
2814 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
)
2820 max
= PAGE_SIZE
/ sizeof(struct location
);
2822 order
= get_order(sizeof(struct location
) * max
);
2824 l
= (void *)__get_free_pages(GFP_KERNEL
, order
);
2830 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
2838 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
2839 const struct track
*track
)
2841 long start
, end
, pos
;
2844 unsigned long age
= jiffies
- track
->when
;
2850 pos
= start
+ (end
- start
+ 1) / 2;
2853 * There is nothing at "end". If we end up there
2854 * we need to add something to before end.
2859 caddr
= t
->loc
[pos
].addr
;
2860 if (track
->addr
== caddr
) {
2866 if (age
< l
->min_time
)
2868 if (age
> l
->max_time
)
2871 if (track
->pid
< l
->min_pid
)
2872 l
->min_pid
= track
->pid
;
2873 if (track
->pid
> l
->max_pid
)
2874 l
->max_pid
= track
->pid
;
2876 cpu_set(track
->cpu
, l
->cpus
);
2878 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
2882 if (track
->addr
< caddr
)
2889 * Not found. Insert new tracking element.
2891 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
))
2897 (t
->count
- pos
) * sizeof(struct location
));
2900 l
->addr
= track
->addr
;
2904 l
->min_pid
= track
->pid
;
2905 l
->max_pid
= track
->pid
;
2906 cpus_clear(l
->cpus
);
2907 cpu_set(track
->cpu
, l
->cpus
);
2908 nodes_clear(l
->nodes
);
2909 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
2913 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
2914 struct page
*page
, enum track_item alloc
)
2916 void *addr
= page_address(page
);
2917 DECLARE_BITMAP(map
, s
->objects
);
2920 bitmap_zero(map
, s
->objects
);
2921 for_each_free_object(p
, s
, page
->freelist
)
2922 set_bit(slab_index(p
, s
, addr
), map
);
2924 for_each_object(p
, s
, addr
)
2925 if (!test_bit(slab_index(p
, s
, addr
), map
))
2926 add_location(t
, s
, get_track(s
, p
, alloc
));
2929 static int list_locations(struct kmem_cache
*s
, char *buf
,
2930 enum track_item alloc
)
2940 /* Push back cpu slabs */
2943 for_each_online_node(node
) {
2944 struct kmem_cache_node
*n
= get_node(s
, node
);
2945 unsigned long flags
;
2948 if (!atomic_read(&n
->nr_slabs
))
2951 spin_lock_irqsave(&n
->list_lock
, flags
);
2952 list_for_each_entry(page
, &n
->partial
, lru
)
2953 process_slab(&t
, s
, page
, alloc
);
2954 list_for_each_entry(page
, &n
->full
, lru
)
2955 process_slab(&t
, s
, page
, alloc
);
2956 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2959 for (i
= 0; i
< t
.count
; i
++) {
2960 struct location
*l
= &t
.loc
[i
];
2962 if (n
> PAGE_SIZE
- 100)
2964 n
+= sprintf(buf
+ n
, "%7ld ", l
->count
);
2967 n
+= sprint_symbol(buf
+ n
, (unsigned long)l
->addr
);
2969 n
+= sprintf(buf
+ n
, "<not-available>");
2971 if (l
->sum_time
!= l
->min_time
) {
2972 unsigned long remainder
;
2974 n
+= sprintf(buf
+ n
, " age=%ld/%ld/%ld",
2976 div_long_long_rem(l
->sum_time
, l
->count
, &remainder
),
2979 n
+= sprintf(buf
+ n
, " age=%ld",
2982 if (l
->min_pid
!= l
->max_pid
)
2983 n
+= sprintf(buf
+ n
, " pid=%ld-%ld",
2984 l
->min_pid
, l
->max_pid
);
2986 n
+= sprintf(buf
+ n
, " pid=%ld",
2989 if (num_online_cpus() > 1 && !cpus_empty(l
->cpus
)) {
2990 n
+= sprintf(buf
+ n
, " cpus=");
2991 n
+= cpulist_scnprintf(buf
+ n
, PAGE_SIZE
- n
- 50,
2995 if (num_online_nodes() > 1 && !nodes_empty(l
->nodes
)) {
2996 n
+= sprintf(buf
+ n
, " nodes=");
2997 n
+= nodelist_scnprintf(buf
+ n
, PAGE_SIZE
- n
- 50,
3001 n
+= sprintf(buf
+ n
, "\n");
3006 n
+= sprintf(buf
, "No data\n");
3010 static unsigned long count_partial(struct kmem_cache_node
*n
)
3012 unsigned long flags
;
3013 unsigned long x
= 0;
3016 spin_lock_irqsave(&n
->list_lock
, flags
);
3017 list_for_each_entry(page
, &n
->partial
, lru
)
3019 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3023 enum slab_stat_type
{
3030 #define SO_FULL (1 << SL_FULL)
3031 #define SO_PARTIAL (1 << SL_PARTIAL)
3032 #define SO_CPU (1 << SL_CPU)
3033 #define SO_OBJECTS (1 << SL_OBJECTS)
3035 static unsigned long slab_objects(struct kmem_cache
*s
,
3036 char *buf
, unsigned long flags
)
3038 unsigned long total
= 0;
3042 unsigned long *nodes
;
3043 unsigned long *per_cpu
;
3045 nodes
= kzalloc(2 * sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
3046 per_cpu
= nodes
+ nr_node_ids
;
3048 for_each_possible_cpu(cpu
) {
3049 struct page
*page
= s
->cpu_slab
[cpu
];
3053 node
= page_to_nid(page
);
3054 if (flags
& SO_CPU
) {
3057 if (flags
& SO_OBJECTS
)
3068 for_each_online_node(node
) {
3069 struct kmem_cache_node
*n
= get_node(s
, node
);
3071 if (flags
& SO_PARTIAL
) {
3072 if (flags
& SO_OBJECTS
)
3073 x
= count_partial(n
);
3080 if (flags
& SO_FULL
) {
3081 int full_slabs
= atomic_read(&n
->nr_slabs
)
3085 if (flags
& SO_OBJECTS
)
3086 x
= full_slabs
* s
->objects
;
3094 x
= sprintf(buf
, "%lu", total
);
3096 for_each_online_node(node
)
3098 x
+= sprintf(buf
+ x
, " N%d=%lu",
3102 return x
+ sprintf(buf
+ x
, "\n");
3105 static int any_slab_objects(struct kmem_cache
*s
)
3110 for_each_possible_cpu(cpu
)
3111 if (s
->cpu_slab
[cpu
])
3114 for_each_node(node
) {
3115 struct kmem_cache_node
*n
= get_node(s
, node
);
3117 if (n
->nr_partial
|| atomic_read(&n
->nr_slabs
))
3123 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3124 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3126 struct slab_attribute
{
3127 struct attribute attr
;
3128 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
3129 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
3132 #define SLAB_ATTR_RO(_name) \
3133 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3135 #define SLAB_ATTR(_name) \
3136 static struct slab_attribute _name##_attr = \
3137 __ATTR(_name, 0644, _name##_show, _name##_store)
3139 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
3141 return sprintf(buf
, "%d\n", s
->size
);
3143 SLAB_ATTR_RO(slab_size
);
3145 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
3147 return sprintf(buf
, "%d\n", s
->align
);
3149 SLAB_ATTR_RO(align
);
3151 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
3153 return sprintf(buf
, "%d\n", s
->objsize
);
3155 SLAB_ATTR_RO(object_size
);
3157 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
3159 return sprintf(buf
, "%d\n", s
->objects
);
3161 SLAB_ATTR_RO(objs_per_slab
);
3163 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
3165 return sprintf(buf
, "%d\n", s
->order
);
3167 SLAB_ATTR_RO(order
);
3169 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
3172 int n
= sprint_symbol(buf
, (unsigned long)s
->ctor
);
3174 return n
+ sprintf(buf
+ n
, "\n");
3180 static ssize_t
dtor_show(struct kmem_cache
*s
, char *buf
)
3183 int n
= sprint_symbol(buf
, (unsigned long)s
->dtor
);
3185 return n
+ sprintf(buf
+ n
, "\n");
3191 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
3193 return sprintf(buf
, "%d\n", s
->refcount
- 1);
3195 SLAB_ATTR_RO(aliases
);
3197 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
3199 return slab_objects(s
, buf
, SO_FULL
|SO_PARTIAL
|SO_CPU
);
3201 SLAB_ATTR_RO(slabs
);
3203 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
3205 return slab_objects(s
, buf
, SO_PARTIAL
);
3207 SLAB_ATTR_RO(partial
);
3209 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
3211 return slab_objects(s
, buf
, SO_CPU
);
3213 SLAB_ATTR_RO(cpu_slabs
);
3215 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
3217 return slab_objects(s
, buf
, SO_FULL
|SO_PARTIAL
|SO_CPU
|SO_OBJECTS
);
3219 SLAB_ATTR_RO(objects
);
3221 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
3223 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DEBUG_FREE
));
3226 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
3227 const char *buf
, size_t length
)
3229 s
->flags
&= ~SLAB_DEBUG_FREE
;
3231 s
->flags
|= SLAB_DEBUG_FREE
;
3234 SLAB_ATTR(sanity_checks
);
3236 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
3238 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
3241 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
3244 s
->flags
&= ~SLAB_TRACE
;
3246 s
->flags
|= SLAB_TRACE
;
3251 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
3253 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
3256 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
3257 const char *buf
, size_t length
)
3259 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
3261 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
3264 SLAB_ATTR(reclaim_account
);
3266 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
3268 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
3270 SLAB_ATTR_RO(hwcache_align
);
3272 #ifdef CONFIG_ZONE_DMA
3273 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
3275 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
3277 SLAB_ATTR_RO(cache_dma
);
3280 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
3282 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
3284 SLAB_ATTR_RO(destroy_by_rcu
);
3286 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
3288 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
3291 static ssize_t
red_zone_store(struct kmem_cache
*s
,
3292 const char *buf
, size_t length
)
3294 if (any_slab_objects(s
))
3297 s
->flags
&= ~SLAB_RED_ZONE
;
3299 s
->flags
|= SLAB_RED_ZONE
;
3303 SLAB_ATTR(red_zone
);
3305 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
3307 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
3310 static ssize_t
poison_store(struct kmem_cache
*s
,
3311 const char *buf
, size_t length
)
3313 if (any_slab_objects(s
))
3316 s
->flags
&= ~SLAB_POISON
;
3318 s
->flags
|= SLAB_POISON
;
3324 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
3326 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
3329 static ssize_t
store_user_store(struct kmem_cache
*s
,
3330 const char *buf
, size_t length
)
3332 if (any_slab_objects(s
))
3335 s
->flags
&= ~SLAB_STORE_USER
;
3337 s
->flags
|= SLAB_STORE_USER
;
3341 SLAB_ATTR(store_user
);
3343 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
3348 static ssize_t
validate_store(struct kmem_cache
*s
,
3349 const char *buf
, size_t length
)
3352 validate_slab_cache(s
);
3357 SLAB_ATTR(validate
);
3359 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
3364 static ssize_t
shrink_store(struct kmem_cache
*s
,
3365 const char *buf
, size_t length
)
3367 if (buf
[0] == '1') {
3368 int rc
= kmem_cache_shrink(s
);
3378 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
3380 if (!(s
->flags
& SLAB_STORE_USER
))
3382 return list_locations(s
, buf
, TRACK_ALLOC
);
3384 SLAB_ATTR_RO(alloc_calls
);
3386 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
3388 if (!(s
->flags
& SLAB_STORE_USER
))
3390 return list_locations(s
, buf
, TRACK_FREE
);
3392 SLAB_ATTR_RO(free_calls
);
3395 static ssize_t
defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
3397 return sprintf(buf
, "%d\n", s
->defrag_ratio
/ 10);
3400 static ssize_t
defrag_ratio_store(struct kmem_cache
*s
,
3401 const char *buf
, size_t length
)
3403 int n
= simple_strtoul(buf
, NULL
, 10);
3406 s
->defrag_ratio
= n
* 10;
3409 SLAB_ATTR(defrag_ratio
);
3412 static struct attribute
* slab_attrs
[] = {
3413 &slab_size_attr
.attr
,
3414 &object_size_attr
.attr
,
3415 &objs_per_slab_attr
.attr
,
3420 &cpu_slabs_attr
.attr
,
3425 &sanity_checks_attr
.attr
,
3427 &hwcache_align_attr
.attr
,
3428 &reclaim_account_attr
.attr
,
3429 &destroy_by_rcu_attr
.attr
,
3430 &red_zone_attr
.attr
,
3432 &store_user_attr
.attr
,
3433 &validate_attr
.attr
,
3435 &alloc_calls_attr
.attr
,
3436 &free_calls_attr
.attr
,
3437 #ifdef CONFIG_ZONE_DMA
3438 &cache_dma_attr
.attr
,
3441 &defrag_ratio_attr
.attr
,
3446 static struct attribute_group slab_attr_group
= {
3447 .attrs
= slab_attrs
,
3450 static ssize_t
slab_attr_show(struct kobject
*kobj
,
3451 struct attribute
*attr
,
3454 struct slab_attribute
*attribute
;
3455 struct kmem_cache
*s
;
3458 attribute
= to_slab_attr(attr
);
3461 if (!attribute
->show
)
3464 err
= attribute
->show(s
, buf
);
3469 static ssize_t
slab_attr_store(struct kobject
*kobj
,
3470 struct attribute
*attr
,
3471 const char *buf
, size_t len
)
3473 struct slab_attribute
*attribute
;
3474 struct kmem_cache
*s
;
3477 attribute
= to_slab_attr(attr
);
3480 if (!attribute
->store
)
3483 err
= attribute
->store(s
, buf
, len
);
3488 static struct sysfs_ops slab_sysfs_ops
= {
3489 .show
= slab_attr_show
,
3490 .store
= slab_attr_store
,
3493 static struct kobj_type slab_ktype
= {
3494 .sysfs_ops
= &slab_sysfs_ops
,
3497 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
3499 struct kobj_type
*ktype
= get_ktype(kobj
);
3501 if (ktype
== &slab_ktype
)
3506 static struct kset_uevent_ops slab_uevent_ops
= {
3507 .filter
= uevent_filter
,
3510 decl_subsys(slab
, &slab_ktype
, &slab_uevent_ops
);
3512 #define ID_STR_LENGTH 64
3514 /* Create a unique string id for a slab cache:
3516 * :[flags-]size:[memory address of kmemcache]
3518 static char *create_unique_id(struct kmem_cache
*s
)
3520 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
3527 * First flags affecting slabcache operations. We will only
3528 * get here for aliasable slabs so we do not need to support
3529 * too many flags. The flags here must cover all flags that
3530 * are matched during merging to guarantee that the id is
3533 if (s
->flags
& SLAB_CACHE_DMA
)
3535 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
3537 if (s
->flags
& SLAB_DEBUG_FREE
)
3541 p
+= sprintf(p
, "%07d", s
->size
);
3542 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
3546 static int sysfs_slab_add(struct kmem_cache
*s
)
3552 if (slab_state
< SYSFS
)
3553 /* Defer until later */
3556 unmergeable
= slab_unmergeable(s
);
3559 * Slabcache can never be merged so we can use the name proper.
3560 * This is typically the case for debug situations. In that
3561 * case we can catch duplicate names easily.
3563 sysfs_remove_link(&slab_subsys
.kobj
, s
->name
);
3567 * Create a unique name for the slab as a target
3570 name
= create_unique_id(s
);
3573 kobj_set_kset_s(s
, slab_subsys
);
3574 kobject_set_name(&s
->kobj
, name
);
3575 kobject_init(&s
->kobj
);
3576 err
= kobject_add(&s
->kobj
);
3580 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
3583 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
3585 /* Setup first alias */
3586 sysfs_slab_alias(s
, s
->name
);
3592 static void sysfs_slab_remove(struct kmem_cache
*s
)
3594 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
3595 kobject_del(&s
->kobj
);
3599 * Need to buffer aliases during bootup until sysfs becomes
3600 * available lest we loose that information.
3602 struct saved_alias
{
3603 struct kmem_cache
*s
;
3605 struct saved_alias
*next
;
3608 struct saved_alias
*alias_list
;
3610 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
3612 struct saved_alias
*al
;
3614 if (slab_state
== SYSFS
) {
3616 * If we have a leftover link then remove it.
3618 sysfs_remove_link(&slab_subsys
.kobj
, name
);
3619 return sysfs_create_link(&slab_subsys
.kobj
,
3623 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
3629 al
->next
= alias_list
;
3634 static int __init
slab_sysfs_init(void)
3636 struct list_head
*h
;
3639 err
= subsystem_register(&slab_subsys
);
3641 printk(KERN_ERR
"Cannot register slab subsystem.\n");
3647 list_for_each(h
, &slab_caches
) {
3648 struct kmem_cache
*s
=
3649 container_of(h
, struct kmem_cache
, list
);
3651 err
= sysfs_slab_add(s
);
3655 while (alias_list
) {
3656 struct saved_alias
*al
= alias_list
;
3658 alias_list
= alias_list
->next
;
3659 err
= sysfs_slab_alias(al
->s
, al
->name
);
3668 __initcall(slab_sysfs_init
);