2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
18 #include <linux/backing-dev.h>
19 #include <linux/uio.h>
23 #include <linux/sched.h>
25 #include <linux/file.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/slab.h>
30 #include <linux/timer.h>
31 #include <linux/aio.h>
32 #include <linux/highmem.h>
33 #include <linux/workqueue.h>
34 #include <linux/security.h>
35 #include <linux/eventfd.h>
36 #include <linux/blkdev.h>
37 #include <linux/mempool.h>
38 #include <linux/hash.h>
40 #include <asm/kmap_types.h>
41 #include <asm/uaccess.h>
44 #define dprintk printk
46 #define dprintk(x...) do { ; } while (0)
49 /*------ sysctl variables----*/
50 static DEFINE_SPINLOCK(aio_nr_lock
);
51 unsigned long aio_nr
; /* current system wide number of aio requests */
52 unsigned long aio_max_nr
= 0x10000; /* system wide maximum number of aio requests */
53 /*----end sysctl variables---*/
55 static struct kmem_cache
*kiocb_cachep
;
56 static struct kmem_cache
*kioctx_cachep
;
58 static struct workqueue_struct
*aio_wq
;
60 /* Used for rare fput completion. */
61 static void aio_fput_routine(struct work_struct
*);
62 static DECLARE_WORK(fput_work
, aio_fput_routine
);
64 static DEFINE_SPINLOCK(fput_lock
);
65 static LIST_HEAD(fput_head
);
67 #define AIO_BATCH_HASH_BITS 3 /* allocated on-stack, so don't go crazy */
68 #define AIO_BATCH_HASH_SIZE (1 << AIO_BATCH_HASH_BITS)
69 struct aio_batch_entry
{
70 struct hlist_node list
;
71 struct address_space
*mapping
;
75 static void aio_kick_handler(struct work_struct
*);
76 static void aio_queue_work(struct kioctx
*);
79 * Creates the slab caches used by the aio routines, panic on
80 * failure as this is done early during the boot sequence.
82 static int __init
aio_setup(void)
84 kiocb_cachep
= KMEM_CACHE(kiocb
, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
85 kioctx_cachep
= KMEM_CACHE(kioctx
,SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
87 aio_wq
= create_workqueue("aio");
88 abe_pool
= mempool_create_kmalloc_pool(1, sizeof(struct aio_batch_entry
));
91 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page
));
95 __initcall(aio_setup
);
97 static void aio_free_ring(struct kioctx
*ctx
)
99 struct aio_ring_info
*info
= &ctx
->ring_info
;
102 for (i
=0; i
<info
->nr_pages
; i
++)
103 put_page(info
->ring_pages
[i
]);
105 if (info
->mmap_size
) {
106 down_write(&ctx
->mm
->mmap_sem
);
107 do_munmap(ctx
->mm
, info
->mmap_base
, info
->mmap_size
);
108 up_write(&ctx
->mm
->mmap_sem
);
111 if (info
->ring_pages
&& info
->ring_pages
!= info
->internal_pages
)
112 kfree(info
->ring_pages
);
113 info
->ring_pages
= NULL
;
117 static int aio_setup_ring(struct kioctx
*ctx
)
119 struct aio_ring
*ring
;
120 struct aio_ring_info
*info
= &ctx
->ring_info
;
121 unsigned nr_events
= ctx
->max_reqs
;
125 /* Compensate for the ring buffer's head/tail overlap entry */
126 nr_events
+= 2; /* 1 is required, 2 for good luck */
128 size
= sizeof(struct aio_ring
);
129 size
+= sizeof(struct io_event
) * nr_events
;
130 nr_pages
= (size
+ PAGE_SIZE
-1) >> PAGE_SHIFT
;
135 nr_events
= (PAGE_SIZE
* nr_pages
- sizeof(struct aio_ring
)) / sizeof(struct io_event
);
138 info
->ring_pages
= info
->internal_pages
;
139 if (nr_pages
> AIO_RING_PAGES
) {
140 info
->ring_pages
= kcalloc(nr_pages
, sizeof(struct page
*), GFP_KERNEL
);
141 if (!info
->ring_pages
)
145 info
->mmap_size
= nr_pages
* PAGE_SIZE
;
146 dprintk("attempting mmap of %lu bytes\n", info
->mmap_size
);
147 down_write(&ctx
->mm
->mmap_sem
);
148 info
->mmap_base
= do_mmap(NULL
, 0, info
->mmap_size
,
149 PROT_READ
|PROT_WRITE
, MAP_ANONYMOUS
|MAP_PRIVATE
,
151 if (IS_ERR((void *)info
->mmap_base
)) {
152 up_write(&ctx
->mm
->mmap_sem
);
158 dprintk("mmap address: 0x%08lx\n", info
->mmap_base
);
159 info
->nr_pages
= get_user_pages(current
, ctx
->mm
,
160 info
->mmap_base
, nr_pages
,
161 1, 0, info
->ring_pages
, NULL
);
162 up_write(&ctx
->mm
->mmap_sem
);
164 if (unlikely(info
->nr_pages
!= nr_pages
)) {
169 ctx
->user_id
= info
->mmap_base
;
171 info
->nr
= nr_events
; /* trusted copy */
173 ring
= kmap_atomic(info
->ring_pages
[0], KM_USER0
);
174 ring
->nr
= nr_events
; /* user copy */
175 ring
->id
= ctx
->user_id
;
176 ring
->head
= ring
->tail
= 0;
177 ring
->magic
= AIO_RING_MAGIC
;
178 ring
->compat_features
= AIO_RING_COMPAT_FEATURES
;
179 ring
->incompat_features
= AIO_RING_INCOMPAT_FEATURES
;
180 ring
->header_length
= sizeof(struct aio_ring
);
181 kunmap_atomic(ring
, KM_USER0
);
187 /* aio_ring_event: returns a pointer to the event at the given index from
188 * kmap_atomic(, km). Release the pointer with put_aio_ring_event();
190 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
191 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
192 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
194 #define aio_ring_event(info, nr, km) ({ \
195 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \
196 struct io_event *__event; \
197 __event = kmap_atomic( \
198 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
199 __event += pos % AIO_EVENTS_PER_PAGE; \
203 #define put_aio_ring_event(event, km) do { \
204 struct io_event *__event = (event); \
206 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
209 static void ctx_rcu_free(struct rcu_head
*head
)
211 struct kioctx
*ctx
= container_of(head
, struct kioctx
, rcu_head
);
212 unsigned nr_events
= ctx
->max_reqs
;
214 kmem_cache_free(kioctx_cachep
, ctx
);
217 spin_lock(&aio_nr_lock
);
218 BUG_ON(aio_nr
- nr_events
> aio_nr
);
220 spin_unlock(&aio_nr_lock
);
225 * Called when the last user of an aio context has gone away,
226 * and the struct needs to be freed.
228 static void __put_ioctx(struct kioctx
*ctx
)
230 BUG_ON(ctx
->reqs_active
);
232 cancel_delayed_work(&ctx
->wq
);
233 cancel_work_sync(&ctx
->wq
.work
);
237 pr_debug("__put_ioctx: freeing %p\n", ctx
);
238 call_rcu(&ctx
->rcu_head
, ctx_rcu_free
);
241 #define get_ioctx(kioctx) do { \
242 BUG_ON(atomic_read(&(kioctx)->users) <= 0); \
243 atomic_inc(&(kioctx)->users); \
245 #define put_ioctx(kioctx) do { \
246 BUG_ON(atomic_read(&(kioctx)->users) <= 0); \
247 if (unlikely(atomic_dec_and_test(&(kioctx)->users))) \
248 __put_ioctx(kioctx); \
252 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
254 static struct kioctx
*ioctx_alloc(unsigned nr_events
)
256 struct mm_struct
*mm
;
260 /* Prevent overflows */
261 if ((nr_events
> (0x10000000U
/ sizeof(struct io_event
))) ||
262 (nr_events
> (0x10000000U
/ sizeof(struct kiocb
)))) {
263 pr_debug("ENOMEM: nr_events too high\n");
264 return ERR_PTR(-EINVAL
);
267 if ((unsigned long)nr_events
> aio_max_nr
)
268 return ERR_PTR(-EAGAIN
);
270 ctx
= kmem_cache_zalloc(kioctx_cachep
, GFP_KERNEL
);
272 return ERR_PTR(-ENOMEM
);
274 ctx
->max_reqs
= nr_events
;
275 mm
= ctx
->mm
= current
->mm
;
276 atomic_inc(&mm
->mm_count
);
278 atomic_set(&ctx
->users
, 1);
279 spin_lock_init(&ctx
->ctx_lock
);
280 spin_lock_init(&ctx
->ring_info
.ring_lock
);
281 init_waitqueue_head(&ctx
->wait
);
283 INIT_LIST_HEAD(&ctx
->active_reqs
);
284 INIT_LIST_HEAD(&ctx
->run_list
);
285 INIT_DELAYED_WORK(&ctx
->wq
, aio_kick_handler
);
287 if (aio_setup_ring(ctx
) < 0)
290 /* limit the number of system wide aios */
292 spin_lock_bh(&aio_nr_lock
);
293 if (aio_nr
+ nr_events
> aio_max_nr
||
294 aio_nr
+ nr_events
< aio_nr
)
297 aio_nr
+= ctx
->max_reqs
;
298 spin_unlock_bh(&aio_nr_lock
);
299 if (ctx
->max_reqs
|| did_sync
)
302 /* wait for rcu callbacks to have completed before giving up */
305 ctx
->max_reqs
= nr_events
;
308 if (ctx
->max_reqs
== 0)
311 /* now link into global list. */
312 spin_lock(&mm
->ioctx_lock
);
313 hlist_add_head_rcu(&ctx
->list
, &mm
->ioctx_list
);
314 spin_unlock(&mm
->ioctx_lock
);
316 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
317 ctx
, ctx
->user_id
, current
->mm
, ctx
->ring_info
.nr
);
322 return ERR_PTR(-EAGAIN
);
326 kmem_cache_free(kioctx_cachep
, ctx
);
327 ctx
= ERR_PTR(-ENOMEM
);
329 dprintk("aio: error allocating ioctx %p\n", ctx
);
334 * Cancels all outstanding aio requests on an aio context. Used
335 * when the processes owning a context have all exited to encourage
336 * the rapid destruction of the kioctx.
338 static void aio_cancel_all(struct kioctx
*ctx
)
340 int (*cancel
)(struct kiocb
*, struct io_event
*);
342 spin_lock_irq(&ctx
->ctx_lock
);
344 while (!list_empty(&ctx
->active_reqs
)) {
345 struct list_head
*pos
= ctx
->active_reqs
.next
;
346 struct kiocb
*iocb
= list_kiocb(pos
);
347 list_del_init(&iocb
->ki_list
);
348 cancel
= iocb
->ki_cancel
;
349 kiocbSetCancelled(iocb
);
352 spin_unlock_irq(&ctx
->ctx_lock
);
354 spin_lock_irq(&ctx
->ctx_lock
);
357 spin_unlock_irq(&ctx
->ctx_lock
);
360 static void wait_for_all_aios(struct kioctx
*ctx
)
362 struct task_struct
*tsk
= current
;
363 DECLARE_WAITQUEUE(wait
, tsk
);
365 spin_lock_irq(&ctx
->ctx_lock
);
366 if (!ctx
->reqs_active
)
369 add_wait_queue(&ctx
->wait
, &wait
);
370 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
371 while (ctx
->reqs_active
) {
372 spin_unlock_irq(&ctx
->ctx_lock
);
374 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
375 spin_lock_irq(&ctx
->ctx_lock
);
377 __set_task_state(tsk
, TASK_RUNNING
);
378 remove_wait_queue(&ctx
->wait
, &wait
);
381 spin_unlock_irq(&ctx
->ctx_lock
);
384 /* wait_on_sync_kiocb:
385 * Waits on the given sync kiocb to complete.
387 ssize_t
wait_on_sync_kiocb(struct kiocb
*iocb
)
389 while (iocb
->ki_users
) {
390 set_current_state(TASK_UNINTERRUPTIBLE
);
395 __set_current_state(TASK_RUNNING
);
396 return iocb
->ki_user_data
;
398 EXPORT_SYMBOL(wait_on_sync_kiocb
);
400 /* exit_aio: called when the last user of mm goes away. At this point,
401 * there is no way for any new requests to be submited or any of the
402 * io_* syscalls to be called on the context. However, there may be
403 * outstanding requests which hold references to the context; as they
404 * go away, they will call put_ioctx and release any pinned memory
405 * associated with the request (held via struct page * references).
407 void exit_aio(struct mm_struct
*mm
)
411 while (!hlist_empty(&mm
->ioctx_list
)) {
412 ctx
= hlist_entry(mm
->ioctx_list
.first
, struct kioctx
, list
);
413 hlist_del_rcu(&ctx
->list
);
417 wait_for_all_aios(ctx
);
419 * Ensure we don't leave the ctx on the aio_wq
421 cancel_work_sync(&ctx
->wq
.work
);
423 if (1 != atomic_read(&ctx
->users
))
425 "exit_aio:ioctx still alive: %d %d %d\n",
426 atomic_read(&ctx
->users
), ctx
->dead
,
433 * Allocate a slot for an aio request. Increments the users count
434 * of the kioctx so that the kioctx stays around until all requests are
435 * complete. Returns NULL if no requests are free.
437 * Returns with kiocb->users set to 2. The io submit code path holds
438 * an extra reference while submitting the i/o.
439 * This prevents races between the aio code path referencing the
440 * req (after submitting it) and aio_complete() freeing the req.
442 static struct kiocb
*__aio_get_req(struct kioctx
*ctx
)
444 struct kiocb
*req
= NULL
;
445 struct aio_ring
*ring
;
448 req
= kmem_cache_alloc(kiocb_cachep
, GFP_KERNEL
);
456 req
->ki_cancel
= NULL
;
457 req
->ki_retry
= NULL
;
460 req
->ki_iovec
= NULL
;
461 INIT_LIST_HEAD(&req
->ki_run_list
);
462 req
->ki_eventfd
= NULL
;
464 /* Check if the completion queue has enough free space to
465 * accept an event from this io.
467 spin_lock_irq(&ctx
->ctx_lock
);
468 ring
= kmap_atomic(ctx
->ring_info
.ring_pages
[0], KM_USER0
);
469 if (ctx
->reqs_active
< aio_ring_avail(&ctx
->ring_info
, ring
)) {
470 list_add(&req
->ki_list
, &ctx
->active_reqs
);
474 kunmap_atomic(ring
, KM_USER0
);
475 spin_unlock_irq(&ctx
->ctx_lock
);
478 kmem_cache_free(kiocb_cachep
, req
);
485 static inline struct kiocb
*aio_get_req(struct kioctx
*ctx
)
488 /* Handle a potential starvation case -- should be exceedingly rare as
489 * requests will be stuck on fput_head only if the aio_fput_routine is
490 * delayed and the requests were the last user of the struct file.
492 req
= __aio_get_req(ctx
);
493 if (unlikely(NULL
== req
)) {
494 aio_fput_routine(NULL
);
495 req
= __aio_get_req(ctx
);
500 static inline void really_put_req(struct kioctx
*ctx
, struct kiocb
*req
)
502 assert_spin_locked(&ctx
->ctx_lock
);
504 if (req
->ki_eventfd
!= NULL
)
505 eventfd_ctx_put(req
->ki_eventfd
);
508 if (req
->ki_iovec
!= &req
->ki_inline_vec
)
509 kfree(req
->ki_iovec
);
510 kmem_cache_free(kiocb_cachep
, req
);
513 if (unlikely(!ctx
->reqs_active
&& ctx
->dead
))
517 static void aio_fput_routine(struct work_struct
*data
)
519 spin_lock_irq(&fput_lock
);
520 while (likely(!list_empty(&fput_head
))) {
521 struct kiocb
*req
= list_kiocb(fput_head
.next
);
522 struct kioctx
*ctx
= req
->ki_ctx
;
524 list_del(&req
->ki_list
);
525 spin_unlock_irq(&fput_lock
);
527 /* Complete the fput(s) */
528 if (req
->ki_filp
!= NULL
)
529 __fput(req
->ki_filp
);
531 /* Link the iocb into the context's free list */
532 spin_lock_irq(&ctx
->ctx_lock
);
533 really_put_req(ctx
, req
);
534 spin_unlock_irq(&ctx
->ctx_lock
);
537 spin_lock_irq(&fput_lock
);
539 spin_unlock_irq(&fput_lock
);
543 * Returns true if this put was the last user of the request.
545 static int __aio_put_req(struct kioctx
*ctx
, struct kiocb
*req
)
547 dprintk(KERN_DEBUG
"aio_put(%p): f_count=%ld\n",
548 req
, atomic_long_read(&req
->ki_filp
->f_count
));
550 assert_spin_locked(&ctx
->ctx_lock
);
553 BUG_ON(req
->ki_users
< 0);
554 if (likely(req
->ki_users
))
556 list_del(&req
->ki_list
); /* remove from active_reqs */
557 req
->ki_cancel
= NULL
;
558 req
->ki_retry
= NULL
;
561 * Try to optimize the aio and eventfd file* puts, by avoiding to
562 * schedule work in case it is not __fput() time. In normal cases,
563 * we would not be holding the last reference to the file*, so
564 * this function will be executed w/out any aio kthread wakeup.
566 if (unlikely(atomic_long_dec_and_test(&req
->ki_filp
->f_count
))) {
568 spin_lock(&fput_lock
);
569 list_add(&req
->ki_list
, &fput_head
);
570 spin_unlock(&fput_lock
);
571 queue_work(aio_wq
, &fput_work
);
574 really_put_req(ctx
, req
);
580 * Returns true if this put was the last user of the kiocb,
581 * false if the request is still in use.
583 int aio_put_req(struct kiocb
*req
)
585 struct kioctx
*ctx
= req
->ki_ctx
;
587 spin_lock_irq(&ctx
->ctx_lock
);
588 ret
= __aio_put_req(ctx
, req
);
589 spin_unlock_irq(&ctx
->ctx_lock
);
592 EXPORT_SYMBOL(aio_put_req
);
594 static struct kioctx
*lookup_ioctx(unsigned long ctx_id
)
596 struct mm_struct
*mm
= current
->mm
;
597 struct kioctx
*ctx
, *ret
= NULL
;
598 struct hlist_node
*n
;
602 hlist_for_each_entry_rcu(ctx
, n
, &mm
->ioctx_list
, list
) {
603 if (ctx
->user_id
== ctx_id
&& !ctx
->dead
) {
615 * Queue up a kiocb to be retried. Assumes that the kiocb
616 * has already been marked as kicked, and places it on
617 * the retry run list for the corresponding ioctx, if it
618 * isn't already queued. Returns 1 if it actually queued
619 * the kiocb (to tell the caller to activate the work
620 * queue to process it), or 0, if it found that it was
623 static inline int __queue_kicked_iocb(struct kiocb
*iocb
)
625 struct kioctx
*ctx
= iocb
->ki_ctx
;
627 assert_spin_locked(&ctx
->ctx_lock
);
629 if (list_empty(&iocb
->ki_run_list
)) {
630 list_add_tail(&iocb
->ki_run_list
,
638 * This is the core aio execution routine. It is
639 * invoked both for initial i/o submission and
640 * subsequent retries via the aio_kick_handler.
641 * Expects to be invoked with iocb->ki_ctx->lock
642 * already held. The lock is released and reacquired
643 * as needed during processing.
645 * Calls the iocb retry method (already setup for the
646 * iocb on initial submission) for operation specific
647 * handling, but takes care of most of common retry
648 * execution details for a given iocb. The retry method
649 * needs to be non-blocking as far as possible, to avoid
650 * holding up other iocbs waiting to be serviced by the
651 * retry kernel thread.
653 * The trickier parts in this code have to do with
654 * ensuring that only one retry instance is in progress
655 * for a given iocb at any time. Providing that guarantee
656 * simplifies the coding of individual aio operations as
657 * it avoids various potential races.
659 static ssize_t
aio_run_iocb(struct kiocb
*iocb
)
661 struct kioctx
*ctx
= iocb
->ki_ctx
;
662 ssize_t (*retry
)(struct kiocb
*);
665 if (!(retry
= iocb
->ki_retry
)) {
666 printk("aio_run_iocb: iocb->ki_retry = NULL\n");
671 * We don't want the next retry iteration for this
672 * operation to start until this one has returned and
673 * updated the iocb state. However, wait_queue functions
674 * can trigger a kick_iocb from interrupt context in the
675 * meantime, indicating that data is available for the next
676 * iteration. We want to remember that and enable the
677 * next retry iteration _after_ we are through with
680 * So, in order to be able to register a "kick", but
681 * prevent it from being queued now, we clear the kick
682 * flag, but make the kick code *think* that the iocb is
683 * still on the run list until we are actually done.
684 * When we are done with this iteration, we check if
685 * the iocb was kicked in the meantime and if so, queue
689 kiocbClearKicked(iocb
);
692 * This is so that aio_complete knows it doesn't need to
693 * pull the iocb off the run list (We can't just call
694 * INIT_LIST_HEAD because we don't want a kick_iocb to
695 * queue this on the run list yet)
697 iocb
->ki_run_list
.next
= iocb
->ki_run_list
.prev
= NULL
;
698 spin_unlock_irq(&ctx
->ctx_lock
);
700 /* Quit retrying if the i/o has been cancelled */
701 if (kiocbIsCancelled(iocb
)) {
703 aio_complete(iocb
, ret
, 0);
704 /* must not access the iocb after this */
709 * Now we are all set to call the retry method in async
714 if (ret
!= -EIOCBRETRY
&& ret
!= -EIOCBQUEUED
) {
715 BUG_ON(!list_empty(&iocb
->ki_wait
.task_list
));
716 aio_complete(iocb
, ret
, 0);
719 spin_lock_irq(&ctx
->ctx_lock
);
721 if (-EIOCBRETRY
== ret
) {
723 * OK, now that we are done with this iteration
724 * and know that there is more left to go,
725 * this is where we let go so that a subsequent
726 * "kick" can start the next iteration
729 /* will make __queue_kicked_iocb succeed from here on */
730 INIT_LIST_HEAD(&iocb
->ki_run_list
);
731 /* we must queue the next iteration ourselves, if it
732 * has already been kicked */
733 if (kiocbIsKicked(iocb
)) {
734 __queue_kicked_iocb(iocb
);
737 * __queue_kicked_iocb will always return 1 here, because
738 * iocb->ki_run_list is empty at this point so it should
739 * be safe to unconditionally queue the context into the
750 * Process all pending retries queued on the ioctx
752 * Assumes it is operating within the aio issuer's mm
755 static int __aio_run_iocbs(struct kioctx
*ctx
)
758 struct list_head run_list
;
760 assert_spin_locked(&ctx
->ctx_lock
);
762 list_replace_init(&ctx
->run_list
, &run_list
);
763 while (!list_empty(&run_list
)) {
764 iocb
= list_entry(run_list
.next
, struct kiocb
,
766 list_del(&iocb
->ki_run_list
);
768 * Hold an extra reference while retrying i/o.
770 iocb
->ki_users
++; /* grab extra reference */
772 __aio_put_req(ctx
, iocb
);
774 if (!list_empty(&ctx
->run_list
))
779 static void aio_queue_work(struct kioctx
* ctx
)
781 unsigned long timeout
;
783 * if someone is waiting, get the work started right
784 * away, otherwise, use a longer delay
787 if (waitqueue_active(&ctx
->wait
))
791 queue_delayed_work(aio_wq
, &ctx
->wq
, timeout
);
797 * Process all pending retries queued on the ioctx
799 * Assumes it is operating within the aio issuer's mm
802 static inline void aio_run_iocbs(struct kioctx
*ctx
)
806 spin_lock_irq(&ctx
->ctx_lock
);
808 requeue
= __aio_run_iocbs(ctx
);
809 spin_unlock_irq(&ctx
->ctx_lock
);
815 * just like aio_run_iocbs, but keeps running them until
816 * the list stays empty
818 static inline void aio_run_all_iocbs(struct kioctx
*ctx
)
820 spin_lock_irq(&ctx
->ctx_lock
);
821 while (__aio_run_iocbs(ctx
))
823 spin_unlock_irq(&ctx
->ctx_lock
);
828 * Work queue handler triggered to process pending
829 * retries on an ioctx. Takes on the aio issuer's
830 * mm context before running the iocbs, so that
831 * copy_xxx_user operates on the issuer's address
833 * Run on aiod's context.
835 static void aio_kick_handler(struct work_struct
*work
)
837 struct kioctx
*ctx
= container_of(work
, struct kioctx
, wq
.work
);
838 mm_segment_t oldfs
= get_fs();
839 struct mm_struct
*mm
;
844 spin_lock_irq(&ctx
->ctx_lock
);
845 requeue
=__aio_run_iocbs(ctx
);
847 spin_unlock_irq(&ctx
->ctx_lock
);
851 * we're in a worker thread already, don't use queue_delayed_work,
854 queue_delayed_work(aio_wq
, &ctx
->wq
, 0);
859 * Called by kick_iocb to queue the kiocb for retry
860 * and if required activate the aio work queue to process
863 static void try_queue_kicked_iocb(struct kiocb
*iocb
)
865 struct kioctx
*ctx
= iocb
->ki_ctx
;
869 /* We're supposed to be the only path putting the iocb back on the run
870 * list. If we find that the iocb is *back* on a wait queue already
871 * than retry has happened before we could queue the iocb. This also
872 * means that the retry could have completed and freed our iocb, no
874 BUG_ON((!list_empty(&iocb
->ki_wait
.task_list
)));
876 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
877 /* set this inside the lock so that we can't race with aio_run_iocb()
878 * testing it and putting the iocb on the run list under the lock */
879 if (!kiocbTryKick(iocb
))
880 run
= __queue_kicked_iocb(iocb
);
881 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
888 * Called typically from a wait queue callback context
889 * (aio_wake_function) to trigger a retry of the iocb.
890 * The retry is usually executed by aio workqueue
891 * threads (See aio_kick_handler).
893 void kick_iocb(struct kiocb
*iocb
)
895 /* sync iocbs are easy: they can only ever be executing from a
897 if (is_sync_kiocb(iocb
)) {
898 kiocbSetKicked(iocb
);
899 wake_up_process(iocb
->ki_obj
.tsk
);
903 try_queue_kicked_iocb(iocb
);
905 EXPORT_SYMBOL(kick_iocb
);
908 * Called when the io request on the given iocb is complete.
909 * Returns true if this is the last user of the request. The
910 * only other user of the request can be the cancellation code.
912 int aio_complete(struct kiocb
*iocb
, long res
, long res2
)
914 struct kioctx
*ctx
= iocb
->ki_ctx
;
915 struct aio_ring_info
*info
;
916 struct aio_ring
*ring
;
917 struct io_event
*event
;
923 * Special case handling for sync iocbs:
924 * - events go directly into the iocb for fast handling
925 * - the sync task with the iocb in its stack holds the single iocb
926 * ref, no other paths have a way to get another ref
927 * - the sync task helpfully left a reference to itself in the iocb
929 if (is_sync_kiocb(iocb
)) {
930 BUG_ON(iocb
->ki_users
!= 1);
931 iocb
->ki_user_data
= res
;
933 wake_up_process(iocb
->ki_obj
.tsk
);
937 info
= &ctx
->ring_info
;
939 /* add a completion event to the ring buffer.
940 * must be done holding ctx->ctx_lock to prevent
941 * other code from messing with the tail
942 * pointer since we might be called from irq
945 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
947 if (iocb
->ki_run_list
.prev
&& !list_empty(&iocb
->ki_run_list
))
948 list_del_init(&iocb
->ki_run_list
);
951 * cancelled requests don't get events, userland was given one
952 * when the event got cancelled.
954 if (kiocbIsCancelled(iocb
))
957 ring
= kmap_atomic(info
->ring_pages
[0], KM_IRQ1
);
960 event
= aio_ring_event(info
, tail
, KM_IRQ0
);
961 if (++tail
>= info
->nr
)
964 event
->obj
= (u64
)(unsigned long)iocb
->ki_obj
.user
;
965 event
->data
= iocb
->ki_user_data
;
969 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
970 ctx
, tail
, iocb
, iocb
->ki_obj
.user
, iocb
->ki_user_data
,
973 /* after flagging the request as done, we
974 * must never even look at it again
976 smp_wmb(); /* make event visible before updating tail */
981 put_aio_ring_event(event
, KM_IRQ0
);
982 kunmap_atomic(ring
, KM_IRQ1
);
984 pr_debug("added to ring %p at [%lu]\n", iocb
, tail
);
987 * Check if the user asked us to deliver the result through an
988 * eventfd. The eventfd_signal() function is safe to be called
991 if (iocb
->ki_eventfd
!= NULL
)
992 eventfd_signal(iocb
->ki_eventfd
, 1);
995 /* everything turned out well, dispose of the aiocb. */
996 ret
= __aio_put_req(ctx
, iocb
);
999 * We have to order our ring_info tail store above and test
1000 * of the wait list below outside the wait lock. This is
1001 * like in wake_up_bit() where clearing a bit has to be
1002 * ordered with the unlocked test.
1006 if (waitqueue_active(&ctx
->wait
))
1007 wake_up(&ctx
->wait
);
1009 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
1012 EXPORT_SYMBOL(aio_complete
);
1015 * Pull an event off of the ioctx's event ring. Returns the number of
1016 * events fetched (0 or 1 ;-)
1017 * FIXME: make this use cmpxchg.
1018 * TODO: make the ringbuffer user mmap()able (requires FIXME).
1020 static int aio_read_evt(struct kioctx
*ioctx
, struct io_event
*ent
)
1022 struct aio_ring_info
*info
= &ioctx
->ring_info
;
1023 struct aio_ring
*ring
;
1027 ring
= kmap_atomic(info
->ring_pages
[0], KM_USER0
);
1028 dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1029 (unsigned long)ring
->head
, (unsigned long)ring
->tail
,
1030 (unsigned long)ring
->nr
);
1032 if (ring
->head
== ring
->tail
)
1035 spin_lock(&info
->ring_lock
);
1037 head
= ring
->head
% info
->nr
;
1038 if (head
!= ring
->tail
) {
1039 struct io_event
*evp
= aio_ring_event(info
, head
, KM_USER1
);
1041 head
= (head
+ 1) % info
->nr
;
1042 smp_mb(); /* finish reading the event before updatng the head */
1045 put_aio_ring_event(evp
, KM_USER1
);
1047 spin_unlock(&info
->ring_lock
);
1050 kunmap_atomic(ring
, KM_USER0
);
1051 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret
,
1052 (unsigned long)ring
->head
, (unsigned long)ring
->tail
);
1056 struct aio_timeout
{
1057 struct timer_list timer
;
1059 struct task_struct
*p
;
1062 static void timeout_func(unsigned long data
)
1064 struct aio_timeout
*to
= (struct aio_timeout
*)data
;
1067 wake_up_process(to
->p
);
1070 static inline void init_timeout(struct aio_timeout
*to
)
1072 setup_timer_on_stack(&to
->timer
, timeout_func
, (unsigned long) to
);
1077 static inline void set_timeout(long start_jiffies
, struct aio_timeout
*to
,
1078 const struct timespec
*ts
)
1080 to
->timer
.expires
= start_jiffies
+ timespec_to_jiffies(ts
);
1081 if (time_after(to
->timer
.expires
, jiffies
))
1082 add_timer(&to
->timer
);
1087 static inline void clear_timeout(struct aio_timeout
*to
)
1089 del_singleshot_timer_sync(&to
->timer
);
1092 static int read_events(struct kioctx
*ctx
,
1093 long min_nr
, long nr
,
1094 struct io_event __user
*event
,
1095 struct timespec __user
*timeout
)
1097 long start_jiffies
= jiffies
;
1098 struct task_struct
*tsk
= current
;
1099 DECLARE_WAITQUEUE(wait
, tsk
);
1102 struct io_event ent
;
1103 struct aio_timeout to
;
1106 /* needed to zero any padding within an entry (there shouldn't be
1107 * any, but C is fun!
1109 memset(&ent
, 0, sizeof(ent
));
1112 while (likely(i
< nr
)) {
1113 ret
= aio_read_evt(ctx
, &ent
);
1114 if (unlikely(ret
<= 0))
1117 dprintk("read event: %Lx %Lx %Lx %Lx\n",
1118 ent
.data
, ent
.obj
, ent
.res
, ent
.res2
);
1120 /* Could we split the check in two? */
1122 if (unlikely(copy_to_user(event
, &ent
, sizeof(ent
)))) {
1123 dprintk("aio: lost an event due to EFAULT.\n");
1128 /* Good, event copied to userland, update counts. */
1140 /* racey check, but it gets redone */
1141 if (!retry
&& unlikely(!list_empty(&ctx
->run_list
))) {
1143 aio_run_all_iocbs(ctx
);
1151 if (unlikely(copy_from_user(&ts
, timeout
, sizeof(ts
))))
1154 set_timeout(start_jiffies
, &to
, &ts
);
1157 while (likely(i
< nr
)) {
1158 add_wait_queue_exclusive(&ctx
->wait
, &wait
);
1160 set_task_state(tsk
, TASK_INTERRUPTIBLE
);
1161 ret
= aio_read_evt(ctx
, &ent
);
1166 if (unlikely(ctx
->dead
)) {
1170 if (to
.timed_out
) /* Only check after read evt */
1172 /* Try to only show up in io wait if there are ops
1174 if (ctx
->reqs_active
)
1178 if (signal_pending(tsk
)) {
1182 /*ret = aio_read_evt(ctx, &ent);*/
1185 set_task_state(tsk
, TASK_RUNNING
);
1186 remove_wait_queue(&ctx
->wait
, &wait
);
1188 if (unlikely(ret
<= 0))
1192 if (unlikely(copy_to_user(event
, &ent
, sizeof(ent
)))) {
1193 dprintk("aio: lost an event due to EFAULT.\n");
1197 /* Good, event copied to userland, update counts. */
1205 destroy_timer_on_stack(&to
.timer
);
1209 /* Take an ioctx and remove it from the list of ioctx's. Protects
1210 * against races with itself via ->dead.
1212 static void io_destroy(struct kioctx
*ioctx
)
1214 struct mm_struct
*mm
= current
->mm
;
1217 /* delete the entry from the list is someone else hasn't already */
1218 spin_lock(&mm
->ioctx_lock
);
1219 was_dead
= ioctx
->dead
;
1221 hlist_del_rcu(&ioctx
->list
);
1222 spin_unlock(&mm
->ioctx_lock
);
1224 dprintk("aio_release(%p)\n", ioctx
);
1225 if (likely(!was_dead
))
1226 put_ioctx(ioctx
); /* twice for the list */
1228 aio_cancel_all(ioctx
);
1229 wait_for_all_aios(ioctx
);
1232 * Wake up any waiters. The setting of ctx->dead must be seen
1233 * by other CPUs at this point. Right now, we rely on the
1234 * locking done by the above calls to ensure this consistency.
1236 wake_up(&ioctx
->wait
);
1237 put_ioctx(ioctx
); /* once for the lookup */
1241 * Create an aio_context capable of receiving at least nr_events.
1242 * ctxp must not point to an aio_context that already exists, and
1243 * must be initialized to 0 prior to the call. On successful
1244 * creation of the aio_context, *ctxp is filled in with the resulting
1245 * handle. May fail with -EINVAL if *ctxp is not initialized,
1246 * if the specified nr_events exceeds internal limits. May fail
1247 * with -EAGAIN if the specified nr_events exceeds the user's limit
1248 * of available events. May fail with -ENOMEM if insufficient kernel
1249 * resources are available. May fail with -EFAULT if an invalid
1250 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1253 SYSCALL_DEFINE2(io_setup
, unsigned, nr_events
, aio_context_t __user
*, ctxp
)
1255 struct kioctx
*ioctx
= NULL
;
1259 ret
= get_user(ctx
, ctxp
);
1264 if (unlikely(ctx
|| nr_events
== 0)) {
1265 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1270 ioctx
= ioctx_alloc(nr_events
);
1271 ret
= PTR_ERR(ioctx
);
1272 if (!IS_ERR(ioctx
)) {
1273 ret
= put_user(ioctx
->user_id
, ctxp
);
1277 get_ioctx(ioctx
); /* io_destroy() expects us to hold a ref */
1286 * Destroy the aio_context specified. May cancel any outstanding
1287 * AIOs and block on completion. Will fail with -ENOSYS if not
1288 * implemented. May fail with -EFAULT if the context pointed to
1291 SYSCALL_DEFINE1(io_destroy
, aio_context_t
, ctx
)
1293 struct kioctx
*ioctx
= lookup_ioctx(ctx
);
1294 if (likely(NULL
!= ioctx
)) {
1298 pr_debug("EINVAL: io_destroy: invalid context id\n");
1302 static void aio_advance_iovec(struct kiocb
*iocb
, ssize_t ret
)
1304 struct iovec
*iov
= &iocb
->ki_iovec
[iocb
->ki_cur_seg
];
1308 while (iocb
->ki_cur_seg
< iocb
->ki_nr_segs
&& ret
> 0) {
1309 ssize_t
this = min((ssize_t
)iov
->iov_len
, ret
);
1310 iov
->iov_base
+= this;
1311 iov
->iov_len
-= this;
1312 iocb
->ki_left
-= this;
1314 if (iov
->iov_len
== 0) {
1320 /* the caller should not have done more io than what fit in
1321 * the remaining iovecs */
1322 BUG_ON(ret
> 0 && iocb
->ki_left
== 0);
1325 static ssize_t
aio_rw_vect_retry(struct kiocb
*iocb
)
1327 struct file
*file
= iocb
->ki_filp
;
1328 struct address_space
*mapping
= file
->f_mapping
;
1329 struct inode
*inode
= mapping
->host
;
1330 ssize_t (*rw_op
)(struct kiocb
*, const struct iovec
*,
1331 unsigned long, loff_t
);
1333 unsigned short opcode
;
1335 if ((iocb
->ki_opcode
== IOCB_CMD_PREADV
) ||
1336 (iocb
->ki_opcode
== IOCB_CMD_PREAD
)) {
1337 rw_op
= file
->f_op
->aio_read
;
1338 opcode
= IOCB_CMD_PREADV
;
1340 rw_op
= file
->f_op
->aio_write
;
1341 opcode
= IOCB_CMD_PWRITEV
;
1344 /* This matches the pread()/pwrite() logic */
1345 if (iocb
->ki_pos
< 0)
1349 ret
= rw_op(iocb
, &iocb
->ki_iovec
[iocb
->ki_cur_seg
],
1350 iocb
->ki_nr_segs
- iocb
->ki_cur_seg
,
1353 aio_advance_iovec(iocb
, ret
);
1355 /* retry all partial writes. retry partial reads as long as its a
1357 } while (ret
> 0 && iocb
->ki_left
> 0 &&
1358 (opcode
== IOCB_CMD_PWRITEV
||
1359 (!S_ISFIFO(inode
->i_mode
) && !S_ISSOCK(inode
->i_mode
))));
1361 /* This means we must have transferred all that we could */
1362 /* No need to retry anymore */
1363 if ((ret
== 0) || (iocb
->ki_left
== 0))
1364 ret
= iocb
->ki_nbytes
- iocb
->ki_left
;
1366 /* If we managed to write some out we return that, rather than
1367 * the eventual error. */
1368 if (opcode
== IOCB_CMD_PWRITEV
1369 && ret
< 0 && ret
!= -EIOCBQUEUED
&& ret
!= -EIOCBRETRY
1370 && iocb
->ki_nbytes
- iocb
->ki_left
)
1371 ret
= iocb
->ki_nbytes
- iocb
->ki_left
;
1376 static ssize_t
aio_fdsync(struct kiocb
*iocb
)
1378 struct file
*file
= iocb
->ki_filp
;
1379 ssize_t ret
= -EINVAL
;
1381 if (file
->f_op
->aio_fsync
)
1382 ret
= file
->f_op
->aio_fsync(iocb
, 1);
1386 static ssize_t
aio_fsync(struct kiocb
*iocb
)
1388 struct file
*file
= iocb
->ki_filp
;
1389 ssize_t ret
= -EINVAL
;
1391 if (file
->f_op
->aio_fsync
)
1392 ret
= file
->f_op
->aio_fsync(iocb
, 0);
1396 static ssize_t
aio_setup_vectored_rw(int type
, struct kiocb
*kiocb
)
1400 ret
= rw_copy_check_uvector(type
, (struct iovec __user
*)kiocb
->ki_buf
,
1401 kiocb
->ki_nbytes
, 1,
1402 &kiocb
->ki_inline_vec
, &kiocb
->ki_iovec
);
1406 kiocb
->ki_nr_segs
= kiocb
->ki_nbytes
;
1407 kiocb
->ki_cur_seg
= 0;
1408 /* ki_nbytes/left now reflect bytes instead of segs */
1409 kiocb
->ki_nbytes
= ret
;
1410 kiocb
->ki_left
= ret
;
1417 static ssize_t
aio_setup_single_vector(struct kiocb
*kiocb
)
1419 kiocb
->ki_iovec
= &kiocb
->ki_inline_vec
;
1420 kiocb
->ki_iovec
->iov_base
= kiocb
->ki_buf
;
1421 kiocb
->ki_iovec
->iov_len
= kiocb
->ki_left
;
1422 kiocb
->ki_nr_segs
= 1;
1423 kiocb
->ki_cur_seg
= 0;
1429 * Performs the initial checks and aio retry method
1430 * setup for the kiocb at the time of io submission.
1432 static ssize_t
aio_setup_iocb(struct kiocb
*kiocb
)
1434 struct file
*file
= kiocb
->ki_filp
;
1437 switch (kiocb
->ki_opcode
) {
1438 case IOCB_CMD_PREAD
:
1440 if (unlikely(!(file
->f_mode
& FMODE_READ
)))
1443 if (unlikely(!access_ok(VERIFY_WRITE
, kiocb
->ki_buf
,
1446 ret
= security_file_permission(file
, MAY_READ
);
1449 ret
= aio_setup_single_vector(kiocb
);
1453 if (file
->f_op
->aio_read
)
1454 kiocb
->ki_retry
= aio_rw_vect_retry
;
1456 case IOCB_CMD_PWRITE
:
1458 if (unlikely(!(file
->f_mode
& FMODE_WRITE
)))
1461 if (unlikely(!access_ok(VERIFY_READ
, kiocb
->ki_buf
,
1464 ret
= security_file_permission(file
, MAY_WRITE
);
1467 ret
= aio_setup_single_vector(kiocb
);
1471 if (file
->f_op
->aio_write
)
1472 kiocb
->ki_retry
= aio_rw_vect_retry
;
1474 case IOCB_CMD_PREADV
:
1476 if (unlikely(!(file
->f_mode
& FMODE_READ
)))
1478 ret
= security_file_permission(file
, MAY_READ
);
1481 ret
= aio_setup_vectored_rw(READ
, kiocb
);
1485 if (file
->f_op
->aio_read
)
1486 kiocb
->ki_retry
= aio_rw_vect_retry
;
1488 case IOCB_CMD_PWRITEV
:
1490 if (unlikely(!(file
->f_mode
& FMODE_WRITE
)))
1492 ret
= security_file_permission(file
, MAY_WRITE
);
1495 ret
= aio_setup_vectored_rw(WRITE
, kiocb
);
1499 if (file
->f_op
->aio_write
)
1500 kiocb
->ki_retry
= aio_rw_vect_retry
;
1502 case IOCB_CMD_FDSYNC
:
1504 if (file
->f_op
->aio_fsync
)
1505 kiocb
->ki_retry
= aio_fdsync
;
1507 case IOCB_CMD_FSYNC
:
1509 if (file
->f_op
->aio_fsync
)
1510 kiocb
->ki_retry
= aio_fsync
;
1513 dprintk("EINVAL: io_submit: no operation provided\n");
1517 if (!kiocb
->ki_retry
)
1524 * aio_wake_function:
1525 * wait queue callback function for aio notification,
1526 * Simply triggers a retry of the operation via kick_iocb.
1528 * This callback is specified in the wait queue entry in
1532 * This routine is executed with the wait queue lock held.
1533 * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
1534 * the ioctx lock inside the wait queue lock. This is safe
1535 * because this callback isn't used for wait queues which
1536 * are nested inside ioctx lock (i.e. ctx->wait)
1538 static int aio_wake_function(wait_queue_t
*wait
, unsigned mode
,
1539 int sync
, void *key
)
1541 struct kiocb
*iocb
= container_of(wait
, struct kiocb
, ki_wait
);
1543 list_del_init(&wait
->task_list
);
1548 static void aio_batch_add(struct address_space
*mapping
,
1549 struct hlist_head
*batch_hash
)
1551 struct aio_batch_entry
*abe
;
1552 struct hlist_node
*pos
;
1555 bucket
= hash_ptr(mapping
, AIO_BATCH_HASH_BITS
);
1556 hlist_for_each_entry(abe
, pos
, &batch_hash
[bucket
], list
) {
1557 if (abe
->mapping
== mapping
)
1561 abe
= mempool_alloc(abe_pool
, GFP_KERNEL
);
1562 BUG_ON(!igrab(mapping
->host
));
1563 abe
->mapping
= mapping
;
1564 hlist_add_head(&abe
->list
, &batch_hash
[bucket
]);
1568 static void aio_batch_free(struct hlist_head
*batch_hash
)
1570 struct aio_batch_entry
*abe
;
1571 struct hlist_node
*pos
, *n
;
1574 for (i
= 0; i
< AIO_BATCH_HASH_SIZE
; i
++) {
1575 hlist_for_each_entry_safe(abe
, pos
, n
, &batch_hash
[i
], list
) {
1576 blk_run_address_space(abe
->mapping
);
1577 iput(abe
->mapping
->host
);
1578 hlist_del(&abe
->list
);
1579 mempool_free(abe
, abe_pool
);
1584 static int io_submit_one(struct kioctx
*ctx
, struct iocb __user
*user_iocb
,
1585 struct iocb
*iocb
, struct hlist_head
*batch_hash
)
1591 /* enforce forwards compatibility on users */
1592 if (unlikely(iocb
->aio_reserved1
|| iocb
->aio_reserved2
)) {
1593 pr_debug("EINVAL: io_submit: reserve field set\n");
1597 /* prevent overflows */
1599 (iocb
->aio_buf
!= (unsigned long)iocb
->aio_buf
) ||
1600 (iocb
->aio_nbytes
!= (size_t)iocb
->aio_nbytes
) ||
1601 ((ssize_t
)iocb
->aio_nbytes
< 0)
1603 pr_debug("EINVAL: io_submit: overflow check\n");
1607 file
= fget(iocb
->aio_fildes
);
1608 if (unlikely(!file
))
1611 req
= aio_get_req(ctx
); /* returns with 2 references to req */
1612 if (unlikely(!req
)) {
1616 req
->ki_filp
= file
;
1617 if (iocb
->aio_flags
& IOCB_FLAG_RESFD
) {
1619 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1620 * instance of the file* now. The file descriptor must be
1621 * an eventfd() fd, and will be signaled for each completed
1622 * event using the eventfd_signal() function.
1624 req
->ki_eventfd
= eventfd_ctx_fdget((int) iocb
->aio_resfd
);
1625 if (IS_ERR(req
->ki_eventfd
)) {
1626 ret
= PTR_ERR(req
->ki_eventfd
);
1627 req
->ki_eventfd
= NULL
;
1632 ret
= put_user(req
->ki_key
, &user_iocb
->aio_key
);
1633 if (unlikely(ret
)) {
1634 dprintk("EFAULT: aio_key\n");
1638 req
->ki_obj
.user
= user_iocb
;
1639 req
->ki_user_data
= iocb
->aio_data
;
1640 req
->ki_pos
= iocb
->aio_offset
;
1642 req
->ki_buf
= (char __user
*)(unsigned long)iocb
->aio_buf
;
1643 req
->ki_left
= req
->ki_nbytes
= iocb
->aio_nbytes
;
1644 req
->ki_opcode
= iocb
->aio_lio_opcode
;
1645 init_waitqueue_func_entry(&req
->ki_wait
, aio_wake_function
);
1646 INIT_LIST_HEAD(&req
->ki_wait
.task_list
);
1648 ret
= aio_setup_iocb(req
);
1653 spin_lock_irq(&ctx
->ctx_lock
);
1655 if (!list_empty(&ctx
->run_list
)) {
1656 /* drain the run list */
1657 while (__aio_run_iocbs(ctx
))
1660 spin_unlock_irq(&ctx
->ctx_lock
);
1661 if (req
->ki_opcode
== IOCB_CMD_PREAD
||
1662 req
->ki_opcode
== IOCB_CMD_PREADV
||
1663 req
->ki_opcode
== IOCB_CMD_PWRITE
||
1664 req
->ki_opcode
== IOCB_CMD_PWRITEV
)
1665 aio_batch_add(file
->f_mapping
, batch_hash
);
1667 aio_put_req(req
); /* drop extra ref to req */
1671 aio_put_req(req
); /* drop extra ref to req */
1672 aio_put_req(req
); /* drop i/o ref to req */
1677 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1678 * the number of iocbs queued. May return -EINVAL if the aio_context
1679 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1680 * *iocbpp[0] is not properly initialized, if the operation specified
1681 * is invalid for the file descriptor in the iocb. May fail with
1682 * -EFAULT if any of the data structures point to invalid data. May
1683 * fail with -EBADF if the file descriptor specified in the first
1684 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1685 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1686 * fail with -ENOSYS if not implemented.
1688 SYSCALL_DEFINE3(io_submit
, aio_context_t
, ctx_id
, long, nr
,
1689 struct iocb __user
* __user
*, iocbpp
)
1694 struct hlist_head batch_hash
[AIO_BATCH_HASH_SIZE
] = { { 0, }, };
1696 if (unlikely(nr
< 0))
1699 if (unlikely(!access_ok(VERIFY_READ
, iocbpp
, (nr
*sizeof(*iocbpp
)))))
1702 ctx
= lookup_ioctx(ctx_id
);
1703 if (unlikely(!ctx
)) {
1704 pr_debug("EINVAL: io_submit: invalid context id\n");
1709 * AKPM: should this return a partial result if some of the IOs were
1710 * successfully submitted?
1712 for (i
=0; i
<nr
; i
++) {
1713 struct iocb __user
*user_iocb
;
1716 if (unlikely(__get_user(user_iocb
, iocbpp
+ i
))) {
1721 if (unlikely(copy_from_user(&tmp
, user_iocb
, sizeof(tmp
)))) {
1726 ret
= io_submit_one(ctx
, user_iocb
, &tmp
, batch_hash
);
1730 aio_batch_free(batch_hash
);
1737 * Finds a given iocb for cancellation.
1739 static struct kiocb
*lookup_kiocb(struct kioctx
*ctx
, struct iocb __user
*iocb
,
1742 struct list_head
*pos
;
1744 assert_spin_locked(&ctx
->ctx_lock
);
1746 /* TODO: use a hash or array, this sucks. */
1747 list_for_each(pos
, &ctx
->active_reqs
) {
1748 struct kiocb
*kiocb
= list_kiocb(pos
);
1749 if (kiocb
->ki_obj
.user
== iocb
&& kiocb
->ki_key
== key
)
1756 * Attempts to cancel an iocb previously passed to io_submit. If
1757 * the operation is successfully cancelled, the resulting event is
1758 * copied into the memory pointed to by result without being placed
1759 * into the completion queue and 0 is returned. May fail with
1760 * -EFAULT if any of the data structures pointed to are invalid.
1761 * May fail with -EINVAL if aio_context specified by ctx_id is
1762 * invalid. May fail with -EAGAIN if the iocb specified was not
1763 * cancelled. Will fail with -ENOSYS if not implemented.
1765 SYSCALL_DEFINE3(io_cancel
, aio_context_t
, ctx_id
, struct iocb __user
*, iocb
,
1766 struct io_event __user
*, result
)
1768 int (*cancel
)(struct kiocb
*iocb
, struct io_event
*res
);
1770 struct kiocb
*kiocb
;
1774 ret
= get_user(key
, &iocb
->aio_key
);
1778 ctx
= lookup_ioctx(ctx_id
);
1782 spin_lock_irq(&ctx
->ctx_lock
);
1784 kiocb
= lookup_kiocb(ctx
, iocb
, key
);
1785 if (kiocb
&& kiocb
->ki_cancel
) {
1786 cancel
= kiocb
->ki_cancel
;
1788 kiocbSetCancelled(kiocb
);
1791 spin_unlock_irq(&ctx
->ctx_lock
);
1793 if (NULL
!= cancel
) {
1794 struct io_event tmp
;
1795 pr_debug("calling cancel\n");
1796 memset(&tmp
, 0, sizeof(tmp
));
1797 tmp
.obj
= (u64
)(unsigned long)kiocb
->ki_obj
.user
;
1798 tmp
.data
= kiocb
->ki_user_data
;
1799 ret
= cancel(kiocb
, &tmp
);
1801 /* Cancellation succeeded -- copy the result
1802 * into the user's buffer.
1804 if (copy_to_user(result
, &tmp
, sizeof(tmp
)))
1816 * Attempts to read at least min_nr events and up to nr events from
1817 * the completion queue for the aio_context specified by ctx_id. May
1818 * fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1819 * if nr is out of range, if when is out of range. May fail with
1820 * -EFAULT if any of the memory specified to is invalid. May return
1821 * 0 or < min_nr if no events are available and the timeout specified
1822 * by when has elapsed, where when == NULL specifies an infinite
1823 * timeout. Note that the timeout pointed to by when is relative and
1824 * will be updated if not NULL and the operation blocks. Will fail
1825 * with -ENOSYS if not implemented.
1827 SYSCALL_DEFINE5(io_getevents
, aio_context_t
, ctx_id
,
1830 struct io_event __user
*, events
,
1831 struct timespec __user
*, timeout
)
1833 struct kioctx
*ioctx
= lookup_ioctx(ctx_id
);
1836 if (likely(ioctx
)) {
1837 if (likely(min_nr
<= nr
&& min_nr
>= 0 && nr
>= 0))
1838 ret
= read_events(ioctx
, min_nr
, nr
, events
, timeout
);
1842 asmlinkage_protect(5, ret
, ctx_id
, min_nr
, nr
, events
, timeout
);