hwmon/lm70: Make lm70_remove a __devexit function
[firewire-audio.git] / drivers / cpufreq / cpufreq_conservative.c
blobeef0270c6f3ddf98b23b3495628a60894199ec10
1 /*
2 * drivers/cpufreq/cpufreq_conservative.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 * (C) 2004 Alexander Clouter <alex-kernel@digriz.org.uk>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/smp.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/ctype.h>
20 #include <linux/cpufreq.h>
21 #include <linux/sysctl.h>
22 #include <linux/types.h>
23 #include <linux/fs.h>
24 #include <linux/sysfs.h>
25 #include <linux/cpu.h>
26 #include <linux/sched.h>
27 #include <linux/kmod.h>
28 #include <linux/workqueue.h>
29 #include <linux/jiffies.h>
30 #include <linux/kernel_stat.h>
31 #include <linux/percpu.h>
32 #include <linux/mutex.h>
34 * dbs is used in this file as a shortform for demandbased switching
35 * It helps to keep variable names smaller, simpler
38 #define DEF_FREQUENCY_UP_THRESHOLD (80)
39 #define DEF_FREQUENCY_DOWN_THRESHOLD (20)
41 /*
42 * The polling frequency of this governor depends on the capability of
43 * the processor. Default polling frequency is 1000 times the transition
44 * latency of the processor. The governor will work on any processor with
45 * transition latency <= 10mS, using appropriate sampling
46 * rate.
47 * For CPUs with transition latency > 10mS (mostly drivers
48 * with CPUFREQ_ETERNAL), this governor will not work.
49 * All times here are in uS.
51 static unsigned int def_sampling_rate;
52 #define MIN_SAMPLING_RATE_RATIO (2)
53 /* for correct statistics, we need at least 10 ticks between each measure */
54 #define MIN_STAT_SAMPLING_RATE \
55 (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
56 #define MIN_SAMPLING_RATE \
57 (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
58 #define MAX_SAMPLING_RATE (500 * def_sampling_rate)
59 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000)
60 #define DEF_SAMPLING_DOWN_FACTOR (1)
61 #define MAX_SAMPLING_DOWN_FACTOR (10)
62 #define TRANSITION_LATENCY_LIMIT (10 * 1000)
64 static void do_dbs_timer(struct work_struct *work);
66 struct cpu_dbs_info_s {
67 struct cpufreq_policy *cur_policy;
68 unsigned int prev_cpu_idle_up;
69 unsigned int prev_cpu_idle_down;
70 unsigned int enable;
71 unsigned int down_skip;
72 unsigned int requested_freq;
74 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
76 static unsigned int dbs_enable; /* number of CPUs using this policy */
79 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
80 * lock and dbs_mutex. cpu_hotplug lock should always be held before
81 * dbs_mutex. If any function that can potentially take cpu_hotplug lock
82 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
83 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
84 * is recursive for the same process. -Venki
86 static DEFINE_MUTEX (dbs_mutex);
87 static DECLARE_DELAYED_WORK(dbs_work, do_dbs_timer);
89 struct dbs_tuners {
90 unsigned int sampling_rate;
91 unsigned int sampling_down_factor;
92 unsigned int up_threshold;
93 unsigned int down_threshold;
94 unsigned int ignore_nice;
95 unsigned int freq_step;
98 static struct dbs_tuners dbs_tuners_ins = {
99 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
100 .down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
101 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
102 .ignore_nice = 0,
103 .freq_step = 5,
106 static inline unsigned int get_cpu_idle_time(unsigned int cpu)
108 unsigned int add_nice = 0, ret;
110 if (dbs_tuners_ins.ignore_nice)
111 add_nice = kstat_cpu(cpu).cpustat.nice;
113 ret = kstat_cpu(cpu).cpustat.idle +
114 kstat_cpu(cpu).cpustat.iowait +
115 add_nice;
117 return ret;
120 /************************** sysfs interface ************************/
121 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
123 return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
126 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
128 return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
131 #define define_one_ro(_name) \
132 static struct freq_attr _name = \
133 __ATTR(_name, 0444, show_##_name, NULL)
135 define_one_ro(sampling_rate_max);
136 define_one_ro(sampling_rate_min);
138 /* cpufreq_conservative Governor Tunables */
139 #define show_one(file_name, object) \
140 static ssize_t show_##file_name \
141 (struct cpufreq_policy *unused, char *buf) \
143 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
145 show_one(sampling_rate, sampling_rate);
146 show_one(sampling_down_factor, sampling_down_factor);
147 show_one(up_threshold, up_threshold);
148 show_one(down_threshold, down_threshold);
149 show_one(ignore_nice_load, ignore_nice);
150 show_one(freq_step, freq_step);
152 static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
153 const char *buf, size_t count)
155 unsigned int input;
156 int ret;
157 ret = sscanf (buf, "%u", &input);
158 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
159 return -EINVAL;
161 mutex_lock(&dbs_mutex);
162 dbs_tuners_ins.sampling_down_factor = input;
163 mutex_unlock(&dbs_mutex);
165 return count;
168 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
169 const char *buf, size_t count)
171 unsigned int input;
172 int ret;
173 ret = sscanf (buf, "%u", &input);
175 mutex_lock(&dbs_mutex);
176 if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
177 mutex_unlock(&dbs_mutex);
178 return -EINVAL;
181 dbs_tuners_ins.sampling_rate = input;
182 mutex_unlock(&dbs_mutex);
184 return count;
187 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
188 const char *buf, size_t count)
190 unsigned int input;
191 int ret;
192 ret = sscanf (buf, "%u", &input);
194 mutex_lock(&dbs_mutex);
195 if (ret != 1 || input > 100 || input <= dbs_tuners_ins.down_threshold) {
196 mutex_unlock(&dbs_mutex);
197 return -EINVAL;
200 dbs_tuners_ins.up_threshold = input;
201 mutex_unlock(&dbs_mutex);
203 return count;
206 static ssize_t store_down_threshold(struct cpufreq_policy *unused,
207 const char *buf, size_t count)
209 unsigned int input;
210 int ret;
211 ret = sscanf (buf, "%u", &input);
213 mutex_lock(&dbs_mutex);
214 if (ret != 1 || input > 100 || input >= dbs_tuners_ins.up_threshold) {
215 mutex_unlock(&dbs_mutex);
216 return -EINVAL;
219 dbs_tuners_ins.down_threshold = input;
220 mutex_unlock(&dbs_mutex);
222 return count;
225 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
226 const char *buf, size_t count)
228 unsigned int input;
229 int ret;
231 unsigned int j;
233 ret = sscanf (buf, "%u", &input);
234 if ( ret != 1 )
235 return -EINVAL;
237 if ( input > 1 )
238 input = 1;
240 mutex_lock(&dbs_mutex);
241 if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
242 mutex_unlock(&dbs_mutex);
243 return count;
245 dbs_tuners_ins.ignore_nice = input;
247 /* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */
248 for_each_online_cpu(j) {
249 struct cpu_dbs_info_s *j_dbs_info;
250 j_dbs_info = &per_cpu(cpu_dbs_info, j);
251 j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
252 j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up;
254 mutex_unlock(&dbs_mutex);
256 return count;
259 static ssize_t store_freq_step(struct cpufreq_policy *policy,
260 const char *buf, size_t count)
262 unsigned int input;
263 int ret;
265 ret = sscanf (buf, "%u", &input);
267 if ( ret != 1 )
268 return -EINVAL;
270 if ( input > 100 )
271 input = 100;
273 /* no need to test here if freq_step is zero as the user might actually
274 * want this, they would be crazy though :) */
275 mutex_lock(&dbs_mutex);
276 dbs_tuners_ins.freq_step = input;
277 mutex_unlock(&dbs_mutex);
279 return count;
282 #define define_one_rw(_name) \
283 static struct freq_attr _name = \
284 __ATTR(_name, 0644, show_##_name, store_##_name)
286 define_one_rw(sampling_rate);
287 define_one_rw(sampling_down_factor);
288 define_one_rw(up_threshold);
289 define_one_rw(down_threshold);
290 define_one_rw(ignore_nice_load);
291 define_one_rw(freq_step);
293 static struct attribute * dbs_attributes[] = {
294 &sampling_rate_max.attr,
295 &sampling_rate_min.attr,
296 &sampling_rate.attr,
297 &sampling_down_factor.attr,
298 &up_threshold.attr,
299 &down_threshold.attr,
300 &ignore_nice_load.attr,
301 &freq_step.attr,
302 NULL
305 static struct attribute_group dbs_attr_group = {
306 .attrs = dbs_attributes,
307 .name = "conservative",
310 /************************** sysfs end ************************/
312 static void dbs_check_cpu(int cpu)
314 unsigned int idle_ticks, up_idle_ticks, down_idle_ticks;
315 unsigned int tmp_idle_ticks, total_idle_ticks;
316 unsigned int freq_step;
317 unsigned int freq_down_sampling_rate;
318 struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
319 struct cpufreq_policy *policy;
321 if (!this_dbs_info->enable)
322 return;
324 policy = this_dbs_info->cur_policy;
327 * The default safe range is 20% to 80%
328 * Every sampling_rate, we check
329 * - If current idle time is less than 20%, then we try to
330 * increase frequency
331 * Every sampling_rate*sampling_down_factor, we check
332 * - If current idle time is more than 80%, then we try to
333 * decrease frequency
335 * Any frequency increase takes it to the maximum frequency.
336 * Frequency reduction happens at minimum steps of
337 * 5% (default) of max_frequency
340 /* Check for frequency increase */
341 idle_ticks = UINT_MAX;
343 /* Check for frequency increase */
344 total_idle_ticks = get_cpu_idle_time(cpu);
345 tmp_idle_ticks = total_idle_ticks -
346 this_dbs_info->prev_cpu_idle_up;
347 this_dbs_info->prev_cpu_idle_up = total_idle_ticks;
349 if (tmp_idle_ticks < idle_ticks)
350 idle_ticks = tmp_idle_ticks;
352 /* Scale idle ticks by 100 and compare with up and down ticks */
353 idle_ticks *= 100;
354 up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) *
355 usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
357 if (idle_ticks < up_idle_ticks) {
358 this_dbs_info->down_skip = 0;
359 this_dbs_info->prev_cpu_idle_down =
360 this_dbs_info->prev_cpu_idle_up;
362 /* if we are already at full speed then break out early */
363 if (this_dbs_info->requested_freq == policy->max)
364 return;
366 freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100;
368 /* max freq cannot be less than 100. But who knows.... */
369 if (unlikely(freq_step == 0))
370 freq_step = 5;
372 this_dbs_info->requested_freq += freq_step;
373 if (this_dbs_info->requested_freq > policy->max)
374 this_dbs_info->requested_freq = policy->max;
376 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
377 CPUFREQ_RELATION_H);
378 return;
381 /* Check for frequency decrease */
382 this_dbs_info->down_skip++;
383 if (this_dbs_info->down_skip < dbs_tuners_ins.sampling_down_factor)
384 return;
386 /* Check for frequency decrease */
387 total_idle_ticks = this_dbs_info->prev_cpu_idle_up;
388 tmp_idle_ticks = total_idle_ticks -
389 this_dbs_info->prev_cpu_idle_down;
390 this_dbs_info->prev_cpu_idle_down = total_idle_ticks;
392 if (tmp_idle_ticks < idle_ticks)
393 idle_ticks = tmp_idle_ticks;
395 /* Scale idle ticks by 100 and compare with up and down ticks */
396 idle_ticks *= 100;
397 this_dbs_info->down_skip = 0;
399 freq_down_sampling_rate = dbs_tuners_ins.sampling_rate *
400 dbs_tuners_ins.sampling_down_factor;
401 down_idle_ticks = (100 - dbs_tuners_ins.down_threshold) *
402 usecs_to_jiffies(freq_down_sampling_rate);
404 if (idle_ticks > down_idle_ticks) {
406 * if we are already at the lowest speed then break out early
407 * or if we 'cannot' reduce the speed as the user might want
408 * freq_step to be zero
410 if (this_dbs_info->requested_freq == policy->min
411 || dbs_tuners_ins.freq_step == 0)
412 return;
414 freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100;
416 /* max freq cannot be less than 100. But who knows.... */
417 if (unlikely(freq_step == 0))
418 freq_step = 5;
420 this_dbs_info->requested_freq -= freq_step;
421 if (this_dbs_info->requested_freq < policy->min)
422 this_dbs_info->requested_freq = policy->min;
424 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
425 CPUFREQ_RELATION_H);
426 return;
430 static void do_dbs_timer(struct work_struct *work)
432 int i;
433 lock_cpu_hotplug();
434 mutex_lock(&dbs_mutex);
435 for_each_online_cpu(i)
436 dbs_check_cpu(i);
437 schedule_delayed_work(&dbs_work,
438 usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
439 mutex_unlock(&dbs_mutex);
440 unlock_cpu_hotplug();
443 static inline void dbs_timer_init(void)
445 schedule_delayed_work(&dbs_work,
446 usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
447 return;
450 static inline void dbs_timer_exit(void)
452 cancel_delayed_work(&dbs_work);
453 return;
456 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
457 unsigned int event)
459 unsigned int cpu = policy->cpu;
460 struct cpu_dbs_info_s *this_dbs_info;
461 unsigned int j;
462 int rc;
464 this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
466 switch (event) {
467 case CPUFREQ_GOV_START:
468 if ((!cpu_online(cpu)) ||
469 (!policy->cur))
470 return -EINVAL;
472 if (policy->cpuinfo.transition_latency >
473 (TRANSITION_LATENCY_LIMIT * 1000))
474 return -EINVAL;
475 if (this_dbs_info->enable) /* Already enabled */
476 break;
478 mutex_lock(&dbs_mutex);
480 rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
481 if (rc) {
482 mutex_unlock(&dbs_mutex);
483 return rc;
486 for_each_cpu_mask(j, policy->cpus) {
487 struct cpu_dbs_info_s *j_dbs_info;
488 j_dbs_info = &per_cpu(cpu_dbs_info, j);
489 j_dbs_info->cur_policy = policy;
491 j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(cpu);
492 j_dbs_info->prev_cpu_idle_down
493 = j_dbs_info->prev_cpu_idle_up;
495 this_dbs_info->enable = 1;
496 this_dbs_info->down_skip = 0;
497 this_dbs_info->requested_freq = policy->cur;
499 dbs_enable++;
501 * Start the timerschedule work, when this governor
502 * is used for first time
504 if (dbs_enable == 1) {
505 unsigned int latency;
506 /* policy latency is in nS. Convert it to uS first */
507 latency = policy->cpuinfo.transition_latency / 1000;
508 if (latency == 0)
509 latency = 1;
511 def_sampling_rate = 10 * latency *
512 DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
514 if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
515 def_sampling_rate = MIN_STAT_SAMPLING_RATE;
517 dbs_tuners_ins.sampling_rate = def_sampling_rate;
519 dbs_timer_init();
522 mutex_unlock(&dbs_mutex);
523 break;
525 case CPUFREQ_GOV_STOP:
526 mutex_lock(&dbs_mutex);
527 this_dbs_info->enable = 0;
528 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
529 dbs_enable--;
531 * Stop the timerschedule work, when this governor
532 * is used for first time
534 if (dbs_enable == 0)
535 dbs_timer_exit();
537 mutex_unlock(&dbs_mutex);
539 break;
541 case CPUFREQ_GOV_LIMITS:
542 mutex_lock(&dbs_mutex);
543 if (policy->max < this_dbs_info->cur_policy->cur)
544 __cpufreq_driver_target(
545 this_dbs_info->cur_policy,
546 policy->max, CPUFREQ_RELATION_H);
547 else if (policy->min > this_dbs_info->cur_policy->cur)
548 __cpufreq_driver_target(
549 this_dbs_info->cur_policy,
550 policy->min, CPUFREQ_RELATION_L);
551 mutex_unlock(&dbs_mutex);
552 break;
554 return 0;
557 static struct cpufreq_governor cpufreq_gov_dbs = {
558 .name = "conservative",
559 .governor = cpufreq_governor_dbs,
560 .owner = THIS_MODULE,
563 static int __init cpufreq_gov_dbs_init(void)
565 return cpufreq_register_governor(&cpufreq_gov_dbs);
568 static void __exit cpufreq_gov_dbs_exit(void)
570 /* Make sure that the scheduled work is indeed not running */
571 flush_scheduled_work();
573 cpufreq_unregister_governor(&cpufreq_gov_dbs);
577 MODULE_AUTHOR ("Alexander Clouter <alex-kernel@digriz.org.uk>");
578 MODULE_DESCRIPTION ("'cpufreq_conservative' - A dynamic cpufreq governor for "
579 "Low Latency Frequency Transition capable processors "
580 "optimised for use in a battery environment");
581 MODULE_LICENSE ("GPL");
583 module_init(cpufreq_gov_dbs_init);
584 module_exit(cpufreq_gov_dbs_exit);