[TCP]: less inline's
[firewire-audio.git] / net / ipv4 / tcp_output.c
bloba7623ead39a8b6a91fe34b81afd5193d9ed6cce3
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Version: $Id: tcp_output.c,v 1.146 2002/02/01 22:01:04 davem Exp $
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
24 * Changes: Pedro Roque : Retransmit queue handled by TCP.
25 * : Fragmentation on mtu decrease
26 * : Segment collapse on retransmit
27 * : AF independence
29 * Linus Torvalds : send_delayed_ack
30 * David S. Miller : Charge memory using the right skb
31 * during syn/ack processing.
32 * David S. Miller : Output engine completely rewritten.
33 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
34 * Cacophonix Gaul : draft-minshall-nagle-01
35 * J Hadi Salim : ECN support
39 #include <net/tcp.h>
41 #include <linux/compiler.h>
42 #include <linux/module.h>
43 #include <linux/smp_lock.h>
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse = 1;
48 /* This limits the percentage of the congestion window which we
49 * will allow a single TSO frame to consume. Building TSO frames
50 * which are too large can cause TCP streams to be bursty.
52 int sysctl_tcp_tso_win_divisor = 3;
54 static void update_send_head(struct sock *sk, struct tcp_sock *tp,
55 struct sk_buff *skb)
57 sk->sk_send_head = skb->next;
58 if (sk->sk_send_head == (struct sk_buff *)&sk->sk_write_queue)
59 sk->sk_send_head = NULL;
60 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
61 tcp_packets_out_inc(sk, tp, skb);
64 /* SND.NXT, if window was not shrunk.
65 * If window has been shrunk, what should we make? It is not clear at all.
66 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
67 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
68 * invalid. OK, let's make this for now:
70 static inline __u32 tcp_acceptable_seq(struct sock *sk, struct tcp_sock *tp)
72 if (!before(tp->snd_una+tp->snd_wnd, tp->snd_nxt))
73 return tp->snd_nxt;
74 else
75 return tp->snd_una+tp->snd_wnd;
78 /* Calculate mss to advertise in SYN segment.
79 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
81 * 1. It is independent of path mtu.
82 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
83 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
84 * attached devices, because some buggy hosts are confused by
85 * large MSS.
86 * 4. We do not make 3, we advertise MSS, calculated from first
87 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
88 * This may be overridden via information stored in routing table.
89 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
90 * probably even Jumbo".
92 static __u16 tcp_advertise_mss(struct sock *sk)
94 struct tcp_sock *tp = tcp_sk(sk);
95 struct dst_entry *dst = __sk_dst_get(sk);
96 int mss = tp->advmss;
98 if (dst && dst_metric(dst, RTAX_ADVMSS) < mss) {
99 mss = dst_metric(dst, RTAX_ADVMSS);
100 tp->advmss = mss;
103 return (__u16)mss;
106 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
107 * This is the first part of cwnd validation mechanism. */
108 static void tcp_cwnd_restart(struct sock *sk, struct dst_entry *dst)
110 struct tcp_sock *tp = tcp_sk(sk);
111 s32 delta = tcp_time_stamp - tp->lsndtime;
112 u32 restart_cwnd = tcp_init_cwnd(tp, dst);
113 u32 cwnd = tp->snd_cwnd;
115 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
117 tp->snd_ssthresh = tcp_current_ssthresh(sk);
118 restart_cwnd = min(restart_cwnd, cwnd);
120 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
121 cwnd >>= 1;
122 tp->snd_cwnd = max(cwnd, restart_cwnd);
123 tp->snd_cwnd_stamp = tcp_time_stamp;
124 tp->snd_cwnd_used = 0;
127 static void tcp_event_data_sent(struct tcp_sock *tp,
128 struct sk_buff *skb, struct sock *sk)
130 struct inet_connection_sock *icsk = inet_csk(sk);
131 const u32 now = tcp_time_stamp;
133 if (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto)
134 tcp_cwnd_restart(sk, __sk_dst_get(sk));
136 tp->lsndtime = now;
138 /* If it is a reply for ato after last received
139 * packet, enter pingpong mode.
141 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
142 icsk->icsk_ack.pingpong = 1;
145 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
147 tcp_dec_quickack_mode(sk, pkts);
148 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
151 /* Determine a window scaling and initial window to offer.
152 * Based on the assumption that the given amount of space
153 * will be offered. Store the results in the tp structure.
154 * NOTE: for smooth operation initial space offering should
155 * be a multiple of mss if possible. We assume here that mss >= 1.
156 * This MUST be enforced by all callers.
158 void tcp_select_initial_window(int __space, __u32 mss,
159 __u32 *rcv_wnd, __u32 *window_clamp,
160 int wscale_ok, __u8 *rcv_wscale)
162 unsigned int space = (__space < 0 ? 0 : __space);
164 /* If no clamp set the clamp to the max possible scaled window */
165 if (*window_clamp == 0)
166 (*window_clamp) = (65535 << 14);
167 space = min(*window_clamp, space);
169 /* Quantize space offering to a multiple of mss if possible. */
170 if (space > mss)
171 space = (space / mss) * mss;
173 /* NOTE: offering an initial window larger than 32767
174 * will break some buggy TCP stacks. We try to be nice.
175 * If we are not window scaling, then this truncates
176 * our initial window offering to 32k. There should also
177 * be a sysctl option to stop being nice.
179 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
180 (*rcv_wscale) = 0;
181 if (wscale_ok) {
182 /* Set window scaling on max possible window
183 * See RFC1323 for an explanation of the limit to 14
185 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
186 while (space > 65535 && (*rcv_wscale) < 14) {
187 space >>= 1;
188 (*rcv_wscale)++;
192 /* Set initial window to value enough for senders,
193 * following RFC2414. Senders, not following this RFC,
194 * will be satisfied with 2.
196 if (mss > (1<<*rcv_wscale)) {
197 int init_cwnd = 4;
198 if (mss > 1460*3)
199 init_cwnd = 2;
200 else if (mss > 1460)
201 init_cwnd = 3;
202 if (*rcv_wnd > init_cwnd*mss)
203 *rcv_wnd = init_cwnd*mss;
206 /* Set the clamp no higher than max representable value */
207 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
210 /* Chose a new window to advertise, update state in tcp_sock for the
211 * socket, and return result with RFC1323 scaling applied. The return
212 * value can be stuffed directly into th->window for an outgoing
213 * frame.
215 static u16 tcp_select_window(struct sock *sk)
217 struct tcp_sock *tp = tcp_sk(sk);
218 u32 cur_win = tcp_receive_window(tp);
219 u32 new_win = __tcp_select_window(sk);
221 /* Never shrink the offered window */
222 if(new_win < cur_win) {
223 /* Danger Will Robinson!
224 * Don't update rcv_wup/rcv_wnd here or else
225 * we will not be able to advertise a zero
226 * window in time. --DaveM
228 * Relax Will Robinson.
230 new_win = cur_win;
232 tp->rcv_wnd = new_win;
233 tp->rcv_wup = tp->rcv_nxt;
235 /* Make sure we do not exceed the maximum possible
236 * scaled window.
238 if (!tp->rx_opt.rcv_wscale)
239 new_win = min(new_win, MAX_TCP_WINDOW);
240 else
241 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
243 /* RFC1323 scaling applied */
244 new_win >>= tp->rx_opt.rcv_wscale;
246 /* If we advertise zero window, disable fast path. */
247 if (new_win == 0)
248 tp->pred_flags = 0;
250 return new_win;
253 static void tcp_build_and_update_options(__u32 *ptr, struct tcp_sock *tp,
254 __u32 tstamp)
256 if (tp->rx_opt.tstamp_ok) {
257 *ptr++ = __constant_htonl((TCPOPT_NOP << 24) |
258 (TCPOPT_NOP << 16) |
259 (TCPOPT_TIMESTAMP << 8) |
260 TCPOLEN_TIMESTAMP);
261 *ptr++ = htonl(tstamp);
262 *ptr++ = htonl(tp->rx_opt.ts_recent);
264 if (tp->rx_opt.eff_sacks) {
265 struct tcp_sack_block *sp = tp->rx_opt.dsack ? tp->duplicate_sack : tp->selective_acks;
266 int this_sack;
268 *ptr++ = htonl((TCPOPT_NOP << 24) |
269 (TCPOPT_NOP << 16) |
270 (TCPOPT_SACK << 8) |
271 (TCPOLEN_SACK_BASE + (tp->rx_opt.eff_sacks *
272 TCPOLEN_SACK_PERBLOCK)));
273 for(this_sack = 0; this_sack < tp->rx_opt.eff_sacks; this_sack++) {
274 *ptr++ = htonl(sp[this_sack].start_seq);
275 *ptr++ = htonl(sp[this_sack].end_seq);
277 if (tp->rx_opt.dsack) {
278 tp->rx_opt.dsack = 0;
279 tp->rx_opt.eff_sacks--;
284 /* Construct a tcp options header for a SYN or SYN_ACK packet.
285 * If this is every changed make sure to change the definition of
286 * MAX_SYN_SIZE to match the new maximum number of options that you
287 * can generate.
289 static void tcp_syn_build_options(__u32 *ptr, int mss, int ts, int sack,
290 int offer_wscale, int wscale, __u32 tstamp,
291 __u32 ts_recent)
293 /* We always get an MSS option.
294 * The option bytes which will be seen in normal data
295 * packets should timestamps be used, must be in the MSS
296 * advertised. But we subtract them from tp->mss_cache so
297 * that calculations in tcp_sendmsg are simpler etc.
298 * So account for this fact here if necessary. If we
299 * don't do this correctly, as a receiver we won't
300 * recognize data packets as being full sized when we
301 * should, and thus we won't abide by the delayed ACK
302 * rules correctly.
303 * SACKs don't matter, we never delay an ACK when we
304 * have any of those going out.
306 *ptr++ = htonl((TCPOPT_MSS << 24) | (TCPOLEN_MSS << 16) | mss);
307 if (ts) {
308 if(sack)
309 *ptr++ = __constant_htonl((TCPOPT_SACK_PERM << 24) | (TCPOLEN_SACK_PERM << 16) |
310 (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP);
311 else
312 *ptr++ = __constant_htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
313 (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP);
314 *ptr++ = htonl(tstamp); /* TSVAL */
315 *ptr++ = htonl(ts_recent); /* TSECR */
316 } else if(sack)
317 *ptr++ = __constant_htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
318 (TCPOPT_SACK_PERM << 8) | TCPOLEN_SACK_PERM);
319 if (offer_wscale)
320 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_WINDOW << 16) | (TCPOLEN_WINDOW << 8) | (wscale));
323 /* This routine actually transmits TCP packets queued in by
324 * tcp_do_sendmsg(). This is used by both the initial
325 * transmission and possible later retransmissions.
326 * All SKB's seen here are completely headerless. It is our
327 * job to build the TCP header, and pass the packet down to
328 * IP so it can do the same plus pass the packet off to the
329 * device.
331 * We are working here with either a clone of the original
332 * SKB, or a fresh unique copy made by the retransmit engine.
334 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, gfp_t gfp_mask)
336 const struct inet_connection_sock *icsk = inet_csk(sk);
337 struct inet_sock *inet;
338 struct tcp_sock *tp;
339 struct tcp_skb_cb *tcb;
340 int tcp_header_size;
341 struct tcphdr *th;
342 int sysctl_flags;
343 int err;
345 BUG_ON(!skb || !tcp_skb_pcount(skb));
347 /* If congestion control is doing timestamping, we must
348 * take such a timestamp before we potentially clone/copy.
350 if (icsk->icsk_ca_ops->rtt_sample)
351 __net_timestamp(skb);
353 if (likely(clone_it)) {
354 if (unlikely(skb_cloned(skb)))
355 skb = pskb_copy(skb, gfp_mask);
356 else
357 skb = skb_clone(skb, gfp_mask);
358 if (unlikely(!skb))
359 return -ENOBUFS;
362 inet = inet_sk(sk);
363 tp = tcp_sk(sk);
364 tcb = TCP_SKB_CB(skb);
365 tcp_header_size = tp->tcp_header_len;
367 #define SYSCTL_FLAG_TSTAMPS 0x1
368 #define SYSCTL_FLAG_WSCALE 0x2
369 #define SYSCTL_FLAG_SACK 0x4
371 sysctl_flags = 0;
372 if (unlikely(tcb->flags & TCPCB_FLAG_SYN)) {
373 tcp_header_size = sizeof(struct tcphdr) + TCPOLEN_MSS;
374 if(sysctl_tcp_timestamps) {
375 tcp_header_size += TCPOLEN_TSTAMP_ALIGNED;
376 sysctl_flags |= SYSCTL_FLAG_TSTAMPS;
378 if (sysctl_tcp_window_scaling) {
379 tcp_header_size += TCPOLEN_WSCALE_ALIGNED;
380 sysctl_flags |= SYSCTL_FLAG_WSCALE;
382 if (sysctl_tcp_sack) {
383 sysctl_flags |= SYSCTL_FLAG_SACK;
384 if (!(sysctl_flags & SYSCTL_FLAG_TSTAMPS))
385 tcp_header_size += TCPOLEN_SACKPERM_ALIGNED;
387 } else if (unlikely(tp->rx_opt.eff_sacks)) {
388 /* A SACK is 2 pad bytes, a 2 byte header, plus
389 * 2 32-bit sequence numbers for each SACK block.
391 tcp_header_size += (TCPOLEN_SACK_BASE_ALIGNED +
392 (tp->rx_opt.eff_sacks *
393 TCPOLEN_SACK_PERBLOCK));
396 if (tcp_packets_in_flight(tp) == 0)
397 tcp_ca_event(sk, CA_EVENT_TX_START);
399 th = (struct tcphdr *) skb_push(skb, tcp_header_size);
400 skb->h.th = th;
401 skb_set_owner_w(skb, sk);
403 /* Build TCP header and checksum it. */
404 th->source = inet->sport;
405 th->dest = inet->dport;
406 th->seq = htonl(tcb->seq);
407 th->ack_seq = htonl(tp->rcv_nxt);
408 *(((__u16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
409 tcb->flags);
411 if (unlikely(tcb->flags & TCPCB_FLAG_SYN)) {
412 /* RFC1323: The window in SYN & SYN/ACK segments
413 * is never scaled.
415 th->window = htons(tp->rcv_wnd);
416 } else {
417 th->window = htons(tcp_select_window(sk));
419 th->check = 0;
420 th->urg_ptr = 0;
422 if (unlikely(tp->urg_mode &&
423 between(tp->snd_up, tcb->seq+1, tcb->seq+0xFFFF))) {
424 th->urg_ptr = htons(tp->snd_up-tcb->seq);
425 th->urg = 1;
428 if (unlikely(tcb->flags & TCPCB_FLAG_SYN)) {
429 tcp_syn_build_options((__u32 *)(th + 1),
430 tcp_advertise_mss(sk),
431 (sysctl_flags & SYSCTL_FLAG_TSTAMPS),
432 (sysctl_flags & SYSCTL_FLAG_SACK),
433 (sysctl_flags & SYSCTL_FLAG_WSCALE),
434 tp->rx_opt.rcv_wscale,
435 tcb->when,
436 tp->rx_opt.ts_recent);
437 } else {
438 tcp_build_and_update_options((__u32 *)(th + 1),
439 tp, tcb->when);
440 TCP_ECN_send(sk, tp, skb, tcp_header_size);
443 icsk->icsk_af_ops->send_check(sk, skb->len, skb);
445 if (likely(tcb->flags & TCPCB_FLAG_ACK))
446 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
448 if (skb->len != tcp_header_size)
449 tcp_event_data_sent(tp, skb, sk);
451 TCP_INC_STATS(TCP_MIB_OUTSEGS);
453 err = icsk->icsk_af_ops->queue_xmit(skb, 0);
454 if (unlikely(err <= 0))
455 return err;
457 tcp_enter_cwr(sk);
459 /* NET_XMIT_CN is special. It does not guarantee,
460 * that this packet is lost. It tells that device
461 * is about to start to drop packets or already
462 * drops some packets of the same priority and
463 * invokes us to send less aggressively.
465 return err == NET_XMIT_CN ? 0 : err;
467 #undef SYSCTL_FLAG_TSTAMPS
468 #undef SYSCTL_FLAG_WSCALE
469 #undef SYSCTL_FLAG_SACK
473 /* This routine just queue's the buffer
475 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
476 * otherwise socket can stall.
478 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
480 struct tcp_sock *tp = tcp_sk(sk);
482 /* Advance write_seq and place onto the write_queue. */
483 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
484 skb_header_release(skb);
485 __skb_queue_tail(&sk->sk_write_queue, skb);
486 sk_charge_skb(sk, skb);
488 /* Queue it, remembering where we must start sending. */
489 if (sk->sk_send_head == NULL)
490 sk->sk_send_head = skb;
493 static void tcp_set_skb_tso_segs(struct sock *sk, struct sk_buff *skb, unsigned int mss_now)
495 if (skb->len <= mss_now ||
496 !(sk->sk_route_caps & NETIF_F_TSO)) {
497 /* Avoid the costly divide in the normal
498 * non-TSO case.
500 skb_shinfo(skb)->tso_segs = 1;
501 skb_shinfo(skb)->tso_size = 0;
502 } else {
503 unsigned int factor;
505 factor = skb->len + (mss_now - 1);
506 factor /= mss_now;
507 skb_shinfo(skb)->tso_segs = factor;
508 skb_shinfo(skb)->tso_size = mss_now;
512 /* Function to create two new TCP segments. Shrinks the given segment
513 * to the specified size and appends a new segment with the rest of the
514 * packet to the list. This won't be called frequently, I hope.
515 * Remember, these are still headerless SKBs at this point.
517 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len, unsigned int mss_now)
519 struct tcp_sock *tp = tcp_sk(sk);
520 struct sk_buff *buff;
521 int nsize, old_factor;
522 u16 flags;
524 BUG_ON(len > skb->len);
526 clear_all_retrans_hints(tp);
527 nsize = skb_headlen(skb) - len;
528 if (nsize < 0)
529 nsize = 0;
531 if (skb_cloned(skb) &&
532 skb_is_nonlinear(skb) &&
533 pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
534 return -ENOMEM;
536 /* Get a new skb... force flag on. */
537 buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC);
538 if (buff == NULL)
539 return -ENOMEM; /* We'll just try again later. */
540 sk_charge_skb(sk, buff);
542 /* Correct the sequence numbers. */
543 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
544 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
545 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
547 /* PSH and FIN should only be set in the second packet. */
548 flags = TCP_SKB_CB(skb)->flags;
549 TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH);
550 TCP_SKB_CB(buff)->flags = flags;
551 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
552 TCP_SKB_CB(skb)->sacked &= ~TCPCB_AT_TAIL;
554 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_HW) {
555 /* Copy and checksum data tail into the new buffer. */
556 buff->csum = csum_partial_copy_nocheck(skb->data + len, skb_put(buff, nsize),
557 nsize, 0);
559 skb_trim(skb, len);
561 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
562 } else {
563 skb->ip_summed = CHECKSUM_HW;
564 skb_split(skb, buff, len);
567 buff->ip_summed = skb->ip_summed;
569 /* Looks stupid, but our code really uses when of
570 * skbs, which it never sent before. --ANK
572 TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
573 buff->tstamp = skb->tstamp;
575 old_factor = tcp_skb_pcount(skb);
577 /* Fix up tso_factor for both original and new SKB. */
578 tcp_set_skb_tso_segs(sk, skb, mss_now);
579 tcp_set_skb_tso_segs(sk, buff, mss_now);
581 /* If this packet has been sent out already, we must
582 * adjust the various packet counters.
584 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
585 int diff = old_factor - tcp_skb_pcount(skb) -
586 tcp_skb_pcount(buff);
588 tp->packets_out -= diff;
590 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
591 tp->sacked_out -= diff;
592 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
593 tp->retrans_out -= diff;
595 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) {
596 tp->lost_out -= diff;
597 tp->left_out -= diff;
600 if (diff > 0) {
601 /* Adjust Reno SACK estimate. */
602 if (!tp->rx_opt.sack_ok) {
603 tp->sacked_out -= diff;
604 if ((int)tp->sacked_out < 0)
605 tp->sacked_out = 0;
606 tcp_sync_left_out(tp);
609 tp->fackets_out -= diff;
610 if ((int)tp->fackets_out < 0)
611 tp->fackets_out = 0;
615 /* Link BUFF into the send queue. */
616 skb_header_release(buff);
617 __skb_append(skb, buff, &sk->sk_write_queue);
619 return 0;
622 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
623 * eventually). The difference is that pulled data not copied, but
624 * immediately discarded.
626 static unsigned char *__pskb_trim_head(struct sk_buff *skb, int len)
628 int i, k, eat;
630 eat = len;
631 k = 0;
632 for (i=0; i<skb_shinfo(skb)->nr_frags; i++) {
633 if (skb_shinfo(skb)->frags[i].size <= eat) {
634 put_page(skb_shinfo(skb)->frags[i].page);
635 eat -= skb_shinfo(skb)->frags[i].size;
636 } else {
637 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
638 if (eat) {
639 skb_shinfo(skb)->frags[k].page_offset += eat;
640 skb_shinfo(skb)->frags[k].size -= eat;
641 eat = 0;
643 k++;
646 skb_shinfo(skb)->nr_frags = k;
648 skb->tail = skb->data;
649 skb->data_len -= len;
650 skb->len = skb->data_len;
651 return skb->tail;
654 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
656 if (skb_cloned(skb) &&
657 pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
658 return -ENOMEM;
660 if (len <= skb_headlen(skb)) {
661 __skb_pull(skb, len);
662 } else {
663 if (__pskb_trim_head(skb, len-skb_headlen(skb)) == NULL)
664 return -ENOMEM;
667 TCP_SKB_CB(skb)->seq += len;
668 skb->ip_summed = CHECKSUM_HW;
670 skb->truesize -= len;
671 sk->sk_wmem_queued -= len;
672 sk->sk_forward_alloc += len;
673 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
675 /* Any change of skb->len requires recalculation of tso
676 * factor and mss.
678 if (tcp_skb_pcount(skb) > 1)
679 tcp_set_skb_tso_segs(sk, skb, tcp_current_mss(sk, 1));
681 return 0;
684 /* This function synchronize snd mss to current pmtu/exthdr set.
686 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
687 for TCP options, but includes only bare TCP header.
689 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
690 It is minimum of user_mss and mss received with SYN.
691 It also does not include TCP options.
693 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
695 tp->mss_cache is current effective sending mss, including
696 all tcp options except for SACKs. It is evaluated,
697 taking into account current pmtu, but never exceeds
698 tp->rx_opt.mss_clamp.
700 NOTE1. rfc1122 clearly states that advertised MSS
701 DOES NOT include either tcp or ip options.
703 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
704 are READ ONLY outside this function. --ANK (980731)
707 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
709 struct tcp_sock *tp = tcp_sk(sk);
710 struct inet_connection_sock *icsk = inet_csk(sk);
711 /* Calculate base mss without TCP options:
712 It is MMS_S - sizeof(tcphdr) of rfc1122
714 int mss_now = (pmtu - icsk->icsk_af_ops->net_header_len -
715 sizeof(struct tcphdr));
717 /* Clamp it (mss_clamp does not include tcp options) */
718 if (mss_now > tp->rx_opt.mss_clamp)
719 mss_now = tp->rx_opt.mss_clamp;
721 /* Now subtract optional transport overhead */
722 mss_now -= icsk->icsk_ext_hdr_len;
724 /* Then reserve room for full set of TCP options and 8 bytes of data */
725 if (mss_now < 48)
726 mss_now = 48;
728 /* Now subtract TCP options size, not including SACKs */
729 mss_now -= tp->tcp_header_len - sizeof(struct tcphdr);
731 /* Bound mss with half of window */
732 if (tp->max_window && mss_now > (tp->max_window>>1))
733 mss_now = max((tp->max_window>>1), 68U - tp->tcp_header_len);
735 /* And store cached results */
736 icsk->icsk_pmtu_cookie = pmtu;
737 tp->mss_cache = mss_now;
739 return mss_now;
742 /* Compute the current effective MSS, taking SACKs and IP options,
743 * and even PMTU discovery events into account.
745 * LARGESEND note: !urg_mode is overkill, only frames up to snd_up
746 * cannot be large. However, taking into account rare use of URG, this
747 * is not a big flaw.
749 unsigned int tcp_current_mss(struct sock *sk, int large_allowed)
751 struct tcp_sock *tp = tcp_sk(sk);
752 struct dst_entry *dst = __sk_dst_get(sk);
753 u32 mss_now;
754 u16 xmit_size_goal;
755 int doing_tso = 0;
757 mss_now = tp->mss_cache;
759 if (large_allowed &&
760 (sk->sk_route_caps & NETIF_F_TSO) &&
761 !tp->urg_mode)
762 doing_tso = 1;
764 if (dst) {
765 u32 mtu = dst_mtu(dst);
766 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
767 mss_now = tcp_sync_mss(sk, mtu);
770 if (tp->rx_opt.eff_sacks)
771 mss_now -= (TCPOLEN_SACK_BASE_ALIGNED +
772 (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK));
774 xmit_size_goal = mss_now;
776 if (doing_tso) {
777 xmit_size_goal = (65535 -
778 inet_csk(sk)->icsk_af_ops->net_header_len -
779 inet_csk(sk)->icsk_ext_hdr_len -
780 tp->tcp_header_len);
782 if (tp->max_window &&
783 (xmit_size_goal > (tp->max_window >> 1)))
784 xmit_size_goal = max((tp->max_window >> 1),
785 68U - tp->tcp_header_len);
787 xmit_size_goal -= (xmit_size_goal % mss_now);
789 tp->xmit_size_goal = xmit_size_goal;
791 return mss_now;
794 /* Congestion window validation. (RFC2861) */
796 static void tcp_cwnd_validate(struct sock *sk, struct tcp_sock *tp)
798 __u32 packets_out = tp->packets_out;
800 if (packets_out >= tp->snd_cwnd) {
801 /* Network is feed fully. */
802 tp->snd_cwnd_used = 0;
803 tp->snd_cwnd_stamp = tcp_time_stamp;
804 } else {
805 /* Network starves. */
806 if (tp->packets_out > tp->snd_cwnd_used)
807 tp->snd_cwnd_used = tp->packets_out;
809 if ((s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
810 tcp_cwnd_application_limited(sk);
814 static unsigned int tcp_window_allows(struct tcp_sock *tp, struct sk_buff *skb, unsigned int mss_now, unsigned int cwnd)
816 u32 window, cwnd_len;
818 window = (tp->snd_una + tp->snd_wnd - TCP_SKB_CB(skb)->seq);
819 cwnd_len = mss_now * cwnd;
820 return min(window, cwnd_len);
823 /* Can at least one segment of SKB be sent right now, according to the
824 * congestion window rules? If so, return how many segments are allowed.
826 static inline unsigned int tcp_cwnd_test(struct tcp_sock *tp, struct sk_buff *skb)
828 u32 in_flight, cwnd;
830 /* Don't be strict about the congestion window for the final FIN. */
831 if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN)
832 return 1;
834 in_flight = tcp_packets_in_flight(tp);
835 cwnd = tp->snd_cwnd;
836 if (in_flight < cwnd)
837 return (cwnd - in_flight);
839 return 0;
842 /* This must be invoked the first time we consider transmitting
843 * SKB onto the wire.
845 static int tcp_init_tso_segs(struct sock *sk, struct sk_buff *skb, unsigned int mss_now)
847 int tso_segs = tcp_skb_pcount(skb);
849 if (!tso_segs ||
850 (tso_segs > 1 &&
851 skb_shinfo(skb)->tso_size != mss_now)) {
852 tcp_set_skb_tso_segs(sk, skb, mss_now);
853 tso_segs = tcp_skb_pcount(skb);
855 return tso_segs;
858 static inline int tcp_minshall_check(const struct tcp_sock *tp)
860 return after(tp->snd_sml,tp->snd_una) &&
861 !after(tp->snd_sml, tp->snd_nxt);
864 /* Return 0, if packet can be sent now without violation Nagle's rules:
865 * 1. It is full sized.
866 * 2. Or it contains FIN. (already checked by caller)
867 * 3. Or TCP_NODELAY was set.
868 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
869 * With Minshall's modification: all sent small packets are ACKed.
872 static inline int tcp_nagle_check(const struct tcp_sock *tp,
873 const struct sk_buff *skb,
874 unsigned mss_now, int nonagle)
876 return (skb->len < mss_now &&
877 ((nonagle&TCP_NAGLE_CORK) ||
878 (!nonagle &&
879 tp->packets_out &&
880 tcp_minshall_check(tp))));
883 /* Return non-zero if the Nagle test allows this packet to be
884 * sent now.
886 static inline int tcp_nagle_test(struct tcp_sock *tp, struct sk_buff *skb,
887 unsigned int cur_mss, int nonagle)
889 /* Nagle rule does not apply to frames, which sit in the middle of the
890 * write_queue (they have no chances to get new data).
892 * This is implemented in the callers, where they modify the 'nonagle'
893 * argument based upon the location of SKB in the send queue.
895 if (nonagle & TCP_NAGLE_PUSH)
896 return 1;
898 /* Don't use the nagle rule for urgent data (or for the final FIN). */
899 if (tp->urg_mode ||
900 (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN))
901 return 1;
903 if (!tcp_nagle_check(tp, skb, cur_mss, nonagle))
904 return 1;
906 return 0;
909 /* Does at least the first segment of SKB fit into the send window? */
910 static inline int tcp_snd_wnd_test(struct tcp_sock *tp, struct sk_buff *skb, unsigned int cur_mss)
912 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
914 if (skb->len > cur_mss)
915 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
917 return !after(end_seq, tp->snd_una + tp->snd_wnd);
920 /* This checks if the data bearing packet SKB (usually sk->sk_send_head)
921 * should be put on the wire right now. If so, it returns the number of
922 * packets allowed by the congestion window.
924 static unsigned int tcp_snd_test(struct sock *sk, struct sk_buff *skb,
925 unsigned int cur_mss, int nonagle)
927 struct tcp_sock *tp = tcp_sk(sk);
928 unsigned int cwnd_quota;
930 tcp_init_tso_segs(sk, skb, cur_mss);
932 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
933 return 0;
935 cwnd_quota = tcp_cwnd_test(tp, skb);
936 if (cwnd_quota &&
937 !tcp_snd_wnd_test(tp, skb, cur_mss))
938 cwnd_quota = 0;
940 return cwnd_quota;
943 static inline int tcp_skb_is_last(const struct sock *sk,
944 const struct sk_buff *skb)
946 return skb->next == (struct sk_buff *)&sk->sk_write_queue;
949 int tcp_may_send_now(struct sock *sk, struct tcp_sock *tp)
951 struct sk_buff *skb = sk->sk_send_head;
953 return (skb &&
954 tcp_snd_test(sk, skb, tcp_current_mss(sk, 1),
955 (tcp_skb_is_last(sk, skb) ?
956 TCP_NAGLE_PUSH :
957 tp->nonagle)));
960 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
961 * which is put after SKB on the list. It is very much like
962 * tcp_fragment() except that it may make several kinds of assumptions
963 * in order to speed up the splitting operation. In particular, we
964 * know that all the data is in scatter-gather pages, and that the
965 * packet has never been sent out before (and thus is not cloned).
967 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, unsigned int mss_now)
969 struct sk_buff *buff;
970 int nlen = skb->len - len;
971 u16 flags;
973 /* All of a TSO frame must be composed of paged data. */
974 if (skb->len != skb->data_len)
975 return tcp_fragment(sk, skb, len, mss_now);
977 buff = sk_stream_alloc_pskb(sk, 0, 0, GFP_ATOMIC);
978 if (unlikely(buff == NULL))
979 return -ENOMEM;
981 buff->truesize = nlen;
982 skb->truesize -= nlen;
984 /* Correct the sequence numbers. */
985 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
986 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
987 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
989 /* PSH and FIN should only be set in the second packet. */
990 flags = TCP_SKB_CB(skb)->flags;
991 TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH);
992 TCP_SKB_CB(buff)->flags = flags;
994 /* This packet was never sent out yet, so no SACK bits. */
995 TCP_SKB_CB(buff)->sacked = 0;
997 buff->ip_summed = skb->ip_summed = CHECKSUM_HW;
998 skb_split(skb, buff, len);
1000 /* Fix up tso_factor for both original and new SKB. */
1001 tcp_set_skb_tso_segs(sk, skb, mss_now);
1002 tcp_set_skb_tso_segs(sk, buff, mss_now);
1004 /* Link BUFF into the send queue. */
1005 skb_header_release(buff);
1006 __skb_append(skb, buff, &sk->sk_write_queue);
1008 return 0;
1011 /* Try to defer sending, if possible, in order to minimize the amount
1012 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1014 * This algorithm is from John Heffner.
1016 static int tcp_tso_should_defer(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
1018 const struct inet_connection_sock *icsk = inet_csk(sk);
1019 u32 send_win, cong_win, limit, in_flight;
1021 if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN)
1022 return 0;
1024 if (icsk->icsk_ca_state != TCP_CA_Open)
1025 return 0;
1027 in_flight = tcp_packets_in_flight(tp);
1029 BUG_ON(tcp_skb_pcount(skb) <= 1 ||
1030 (tp->snd_cwnd <= in_flight));
1032 send_win = (tp->snd_una + tp->snd_wnd) - TCP_SKB_CB(skb)->seq;
1034 /* From in_flight test above, we know that cwnd > in_flight. */
1035 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1037 limit = min(send_win, cong_win);
1039 if (sysctl_tcp_tso_win_divisor) {
1040 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1042 /* If at least some fraction of a window is available,
1043 * just use it.
1045 chunk /= sysctl_tcp_tso_win_divisor;
1046 if (limit >= chunk)
1047 return 0;
1048 } else {
1049 /* Different approach, try not to defer past a single
1050 * ACK. Receiver should ACK every other full sized
1051 * frame, so if we have space for more than 3 frames
1052 * then send now.
1054 if (limit > tcp_max_burst(tp) * tp->mss_cache)
1055 return 0;
1058 /* Ok, it looks like it is advisable to defer. */
1059 return 1;
1062 /* This routine writes packets to the network. It advances the
1063 * send_head. This happens as incoming acks open up the remote
1064 * window for us.
1066 * Returns 1, if no segments are in flight and we have queued segments, but
1067 * cannot send anything now because of SWS or another problem.
1069 static int tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle)
1071 struct tcp_sock *tp = tcp_sk(sk);
1072 struct sk_buff *skb;
1073 unsigned int tso_segs, sent_pkts;
1074 int cwnd_quota;
1076 /* If we are closed, the bytes will have to remain here.
1077 * In time closedown will finish, we empty the write queue and all
1078 * will be happy.
1080 if (unlikely(sk->sk_state == TCP_CLOSE))
1081 return 0;
1083 sent_pkts = 0;
1084 while ((skb = sk->sk_send_head)) {
1085 unsigned int limit;
1087 tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1088 BUG_ON(!tso_segs);
1090 cwnd_quota = tcp_cwnd_test(tp, skb);
1091 if (!cwnd_quota)
1092 break;
1094 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
1095 break;
1097 if (tso_segs == 1) {
1098 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
1099 (tcp_skb_is_last(sk, skb) ?
1100 nonagle : TCP_NAGLE_PUSH))))
1101 break;
1102 } else {
1103 if (tcp_tso_should_defer(sk, tp, skb))
1104 break;
1107 limit = mss_now;
1108 if (tso_segs > 1) {
1109 limit = tcp_window_allows(tp, skb,
1110 mss_now, cwnd_quota);
1112 if (skb->len < limit) {
1113 unsigned int trim = skb->len % mss_now;
1115 if (trim)
1116 limit = skb->len - trim;
1120 if (skb->len > limit &&
1121 unlikely(tso_fragment(sk, skb, limit, mss_now)))
1122 break;
1124 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1126 if (unlikely(tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC)))
1127 break;
1129 /* Advance the send_head. This one is sent out.
1130 * This call will increment packets_out.
1132 update_send_head(sk, tp, skb);
1134 tcp_minshall_update(tp, mss_now, skb);
1135 sent_pkts++;
1138 if (likely(sent_pkts)) {
1139 tcp_cwnd_validate(sk, tp);
1140 return 0;
1142 return !tp->packets_out && sk->sk_send_head;
1145 /* Push out any pending frames which were held back due to
1146 * TCP_CORK or attempt at coalescing tiny packets.
1147 * The socket must be locked by the caller.
1149 void __tcp_push_pending_frames(struct sock *sk, struct tcp_sock *tp,
1150 unsigned int cur_mss, int nonagle)
1152 struct sk_buff *skb = sk->sk_send_head;
1154 if (skb) {
1155 if (tcp_write_xmit(sk, cur_mss, nonagle))
1156 tcp_check_probe_timer(sk, tp);
1160 /* Send _single_ skb sitting at the send head. This function requires
1161 * true push pending frames to setup probe timer etc.
1163 void tcp_push_one(struct sock *sk, unsigned int mss_now)
1165 struct tcp_sock *tp = tcp_sk(sk);
1166 struct sk_buff *skb = sk->sk_send_head;
1167 unsigned int tso_segs, cwnd_quota;
1169 BUG_ON(!skb || skb->len < mss_now);
1171 tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1172 cwnd_quota = tcp_snd_test(sk, skb, mss_now, TCP_NAGLE_PUSH);
1174 if (likely(cwnd_quota)) {
1175 unsigned int limit;
1177 BUG_ON(!tso_segs);
1179 limit = mss_now;
1180 if (tso_segs > 1) {
1181 limit = tcp_window_allows(tp, skb,
1182 mss_now, cwnd_quota);
1184 if (skb->len < limit) {
1185 unsigned int trim = skb->len % mss_now;
1187 if (trim)
1188 limit = skb->len - trim;
1192 if (skb->len > limit &&
1193 unlikely(tso_fragment(sk, skb, limit, mss_now)))
1194 return;
1196 /* Send it out now. */
1197 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1199 if (likely(!tcp_transmit_skb(sk, skb, 1, sk->sk_allocation))) {
1200 update_send_head(sk, tp, skb);
1201 tcp_cwnd_validate(sk, tp);
1202 return;
1207 /* This function returns the amount that we can raise the
1208 * usable window based on the following constraints
1210 * 1. The window can never be shrunk once it is offered (RFC 793)
1211 * 2. We limit memory per socket
1213 * RFC 1122:
1214 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
1215 * RECV.NEXT + RCV.WIN fixed until:
1216 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
1218 * i.e. don't raise the right edge of the window until you can raise
1219 * it at least MSS bytes.
1221 * Unfortunately, the recommended algorithm breaks header prediction,
1222 * since header prediction assumes th->window stays fixed.
1224 * Strictly speaking, keeping th->window fixed violates the receiver
1225 * side SWS prevention criteria. The problem is that under this rule
1226 * a stream of single byte packets will cause the right side of the
1227 * window to always advance by a single byte.
1229 * Of course, if the sender implements sender side SWS prevention
1230 * then this will not be a problem.
1232 * BSD seems to make the following compromise:
1234 * If the free space is less than the 1/4 of the maximum
1235 * space available and the free space is less than 1/2 mss,
1236 * then set the window to 0.
1237 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
1238 * Otherwise, just prevent the window from shrinking
1239 * and from being larger than the largest representable value.
1241 * This prevents incremental opening of the window in the regime
1242 * where TCP is limited by the speed of the reader side taking
1243 * data out of the TCP receive queue. It does nothing about
1244 * those cases where the window is constrained on the sender side
1245 * because the pipeline is full.
1247 * BSD also seems to "accidentally" limit itself to windows that are a
1248 * multiple of MSS, at least until the free space gets quite small.
1249 * This would appear to be a side effect of the mbuf implementation.
1250 * Combining these two algorithms results in the observed behavior
1251 * of having a fixed window size at almost all times.
1253 * Below we obtain similar behavior by forcing the offered window to
1254 * a multiple of the mss when it is feasible to do so.
1256 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
1257 * Regular options like TIMESTAMP are taken into account.
1259 u32 __tcp_select_window(struct sock *sk)
1261 struct inet_connection_sock *icsk = inet_csk(sk);
1262 struct tcp_sock *tp = tcp_sk(sk);
1263 /* MSS for the peer's data. Previous versions used mss_clamp
1264 * here. I don't know if the value based on our guesses
1265 * of peer's MSS is better for the performance. It's more correct
1266 * but may be worse for the performance because of rcv_mss
1267 * fluctuations. --SAW 1998/11/1
1269 int mss = icsk->icsk_ack.rcv_mss;
1270 int free_space = tcp_space(sk);
1271 int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk));
1272 int window;
1274 if (mss > full_space)
1275 mss = full_space;
1277 if (free_space < full_space/2) {
1278 icsk->icsk_ack.quick = 0;
1280 if (tcp_memory_pressure)
1281 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U*tp->advmss);
1283 if (free_space < mss)
1284 return 0;
1287 if (free_space > tp->rcv_ssthresh)
1288 free_space = tp->rcv_ssthresh;
1290 /* Don't do rounding if we are using window scaling, since the
1291 * scaled window will not line up with the MSS boundary anyway.
1293 window = tp->rcv_wnd;
1294 if (tp->rx_opt.rcv_wscale) {
1295 window = free_space;
1297 /* Advertise enough space so that it won't get scaled away.
1298 * Import case: prevent zero window announcement if
1299 * 1<<rcv_wscale > mss.
1301 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
1302 window = (((window >> tp->rx_opt.rcv_wscale) + 1)
1303 << tp->rx_opt.rcv_wscale);
1304 } else {
1305 /* Get the largest window that is a nice multiple of mss.
1306 * Window clamp already applied above.
1307 * If our current window offering is within 1 mss of the
1308 * free space we just keep it. This prevents the divide
1309 * and multiply from happening most of the time.
1310 * We also don't do any window rounding when the free space
1311 * is too small.
1313 if (window <= free_space - mss || window > free_space)
1314 window = (free_space/mss)*mss;
1317 return window;
1320 /* Attempt to collapse two adjacent SKB's during retransmission. */
1321 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *skb, int mss_now)
1323 struct tcp_sock *tp = tcp_sk(sk);
1324 struct sk_buff *next_skb = skb->next;
1326 /* The first test we must make is that neither of these two
1327 * SKB's are still referenced by someone else.
1329 if (!skb_cloned(skb) && !skb_cloned(next_skb)) {
1330 int skb_size = skb->len, next_skb_size = next_skb->len;
1331 u16 flags = TCP_SKB_CB(skb)->flags;
1333 /* Also punt if next skb has been SACK'd. */
1334 if(TCP_SKB_CB(next_skb)->sacked & TCPCB_SACKED_ACKED)
1335 return;
1337 /* Next skb is out of window. */
1338 if (after(TCP_SKB_CB(next_skb)->end_seq, tp->snd_una+tp->snd_wnd))
1339 return;
1341 /* Punt if not enough space exists in the first SKB for
1342 * the data in the second, or the total combined payload
1343 * would exceed the MSS.
1345 if ((next_skb_size > skb_tailroom(skb)) ||
1346 ((skb_size + next_skb_size) > mss_now))
1347 return;
1349 BUG_ON(tcp_skb_pcount(skb) != 1 ||
1350 tcp_skb_pcount(next_skb) != 1);
1352 /* changing transmit queue under us so clear hints */
1353 clear_all_retrans_hints(tp);
1355 /* Ok. We will be able to collapse the packet. */
1356 __skb_unlink(next_skb, &sk->sk_write_queue);
1358 memcpy(skb_put(skb, next_skb_size), next_skb->data, next_skb_size);
1360 if (next_skb->ip_summed == CHECKSUM_HW)
1361 skb->ip_summed = CHECKSUM_HW;
1363 if (skb->ip_summed != CHECKSUM_HW)
1364 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
1366 /* Update sequence range on original skb. */
1367 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
1369 /* Merge over control information. */
1370 flags |= TCP_SKB_CB(next_skb)->flags; /* This moves PSH/FIN etc. over */
1371 TCP_SKB_CB(skb)->flags = flags;
1373 /* All done, get rid of second SKB and account for it so
1374 * packet counting does not break.
1376 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked&(TCPCB_EVER_RETRANS|TCPCB_AT_TAIL);
1377 if (TCP_SKB_CB(next_skb)->sacked&TCPCB_SACKED_RETRANS)
1378 tp->retrans_out -= tcp_skb_pcount(next_skb);
1379 if (TCP_SKB_CB(next_skb)->sacked&TCPCB_LOST) {
1380 tp->lost_out -= tcp_skb_pcount(next_skb);
1381 tp->left_out -= tcp_skb_pcount(next_skb);
1383 /* Reno case is special. Sigh... */
1384 if (!tp->rx_opt.sack_ok && tp->sacked_out) {
1385 tcp_dec_pcount_approx(&tp->sacked_out, next_skb);
1386 tp->left_out -= tcp_skb_pcount(next_skb);
1389 /* Not quite right: it can be > snd.fack, but
1390 * it is better to underestimate fackets.
1392 tcp_dec_pcount_approx(&tp->fackets_out, next_skb);
1393 tcp_packets_out_dec(tp, next_skb);
1394 sk_stream_free_skb(sk, next_skb);
1398 /* Do a simple retransmit without using the backoff mechanisms in
1399 * tcp_timer. This is used for path mtu discovery.
1400 * The socket is already locked here.
1402 void tcp_simple_retransmit(struct sock *sk)
1404 const struct inet_connection_sock *icsk = inet_csk(sk);
1405 struct tcp_sock *tp = tcp_sk(sk);
1406 struct sk_buff *skb;
1407 unsigned int mss = tcp_current_mss(sk, 0);
1408 int lost = 0;
1410 sk_stream_for_retrans_queue(skb, sk) {
1411 if (skb->len > mss &&
1412 !(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1413 if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) {
1414 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1415 tp->retrans_out -= tcp_skb_pcount(skb);
1417 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_LOST)) {
1418 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1419 tp->lost_out += tcp_skb_pcount(skb);
1420 lost = 1;
1425 clear_all_retrans_hints(tp);
1427 if (!lost)
1428 return;
1430 tcp_sync_left_out(tp);
1432 /* Don't muck with the congestion window here.
1433 * Reason is that we do not increase amount of _data_
1434 * in network, but units changed and effective
1435 * cwnd/ssthresh really reduced now.
1437 if (icsk->icsk_ca_state != TCP_CA_Loss) {
1438 tp->high_seq = tp->snd_nxt;
1439 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1440 tp->prior_ssthresh = 0;
1441 tp->undo_marker = 0;
1442 tcp_set_ca_state(sk, TCP_CA_Loss);
1444 tcp_xmit_retransmit_queue(sk);
1447 /* This retransmits one SKB. Policy decisions and retransmit queue
1448 * state updates are done by the caller. Returns non-zero if an
1449 * error occurred which prevented the send.
1451 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
1453 struct tcp_sock *tp = tcp_sk(sk);
1454 unsigned int cur_mss = tcp_current_mss(sk, 0);
1455 int err;
1457 /* Do not sent more than we queued. 1/4 is reserved for possible
1458 * copying overhead: fragmentation, tunneling, mangling etc.
1460 if (atomic_read(&sk->sk_wmem_alloc) >
1461 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
1462 return -EAGAIN;
1464 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
1465 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1466 BUG();
1467 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
1468 return -ENOMEM;
1471 /* If receiver has shrunk his window, and skb is out of
1472 * new window, do not retransmit it. The exception is the
1473 * case, when window is shrunk to zero. In this case
1474 * our retransmit serves as a zero window probe.
1476 if (!before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd)
1477 && TCP_SKB_CB(skb)->seq != tp->snd_una)
1478 return -EAGAIN;
1480 if (skb->len > cur_mss) {
1481 if (tcp_fragment(sk, skb, cur_mss, cur_mss))
1482 return -ENOMEM; /* We'll try again later. */
1485 /* Collapse two adjacent packets if worthwhile and we can. */
1486 if(!(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN) &&
1487 (skb->len < (cur_mss >> 1)) &&
1488 (skb->next != sk->sk_send_head) &&
1489 (skb->next != (struct sk_buff *)&sk->sk_write_queue) &&
1490 (skb_shinfo(skb)->nr_frags == 0 && skb_shinfo(skb->next)->nr_frags == 0) &&
1491 (tcp_skb_pcount(skb) == 1 && tcp_skb_pcount(skb->next) == 1) &&
1492 (sysctl_tcp_retrans_collapse != 0))
1493 tcp_retrans_try_collapse(sk, skb, cur_mss);
1495 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
1496 return -EHOSTUNREACH; /* Routing failure or similar. */
1498 /* Some Solaris stacks overoptimize and ignore the FIN on a
1499 * retransmit when old data is attached. So strip it off
1500 * since it is cheap to do so and saves bytes on the network.
1502 if(skb->len > 0 &&
1503 (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) &&
1504 tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) {
1505 if (!pskb_trim(skb, 0)) {
1506 TCP_SKB_CB(skb)->seq = TCP_SKB_CB(skb)->end_seq - 1;
1507 skb_shinfo(skb)->tso_segs = 1;
1508 skb_shinfo(skb)->tso_size = 0;
1509 skb->ip_summed = CHECKSUM_NONE;
1510 skb->csum = 0;
1514 /* Make a copy, if the first transmission SKB clone we made
1515 * is still in somebody's hands, else make a clone.
1517 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1519 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
1521 if (err == 0) {
1522 /* Update global TCP statistics. */
1523 TCP_INC_STATS(TCP_MIB_RETRANSSEGS);
1525 tp->total_retrans++;
1527 #if FASTRETRANS_DEBUG > 0
1528 if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) {
1529 if (net_ratelimit())
1530 printk(KERN_DEBUG "retrans_out leaked.\n");
1532 #endif
1533 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
1534 tp->retrans_out += tcp_skb_pcount(skb);
1536 /* Save stamp of the first retransmit. */
1537 if (!tp->retrans_stamp)
1538 tp->retrans_stamp = TCP_SKB_CB(skb)->when;
1540 tp->undo_retrans++;
1542 /* snd_nxt is stored to detect loss of retransmitted segment,
1543 * see tcp_input.c tcp_sacktag_write_queue().
1545 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
1547 return err;
1550 /* This gets called after a retransmit timeout, and the initially
1551 * retransmitted data is acknowledged. It tries to continue
1552 * resending the rest of the retransmit queue, until either
1553 * we've sent it all or the congestion window limit is reached.
1554 * If doing SACK, the first ACK which comes back for a timeout
1555 * based retransmit packet might feed us FACK information again.
1556 * If so, we use it to avoid unnecessarily retransmissions.
1558 void tcp_xmit_retransmit_queue(struct sock *sk)
1560 const struct inet_connection_sock *icsk = inet_csk(sk);
1561 struct tcp_sock *tp = tcp_sk(sk);
1562 struct sk_buff *skb;
1563 int packet_cnt;
1565 if (tp->retransmit_skb_hint) {
1566 skb = tp->retransmit_skb_hint;
1567 packet_cnt = tp->retransmit_cnt_hint;
1568 }else{
1569 skb = sk->sk_write_queue.next;
1570 packet_cnt = 0;
1573 /* First pass: retransmit lost packets. */
1574 if (tp->lost_out) {
1575 sk_stream_for_retrans_queue_from(skb, sk) {
1576 __u8 sacked = TCP_SKB_CB(skb)->sacked;
1578 /* we could do better than to assign each time */
1579 tp->retransmit_skb_hint = skb;
1580 tp->retransmit_cnt_hint = packet_cnt;
1582 /* Assume this retransmit will generate
1583 * only one packet for congestion window
1584 * calculation purposes. This works because
1585 * tcp_retransmit_skb() will chop up the
1586 * packet to be MSS sized and all the
1587 * packet counting works out.
1589 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
1590 return;
1592 if (sacked & TCPCB_LOST) {
1593 if (!(sacked&(TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))) {
1594 if (tcp_retransmit_skb(sk, skb)) {
1595 tp->retransmit_skb_hint = NULL;
1596 return;
1598 if (icsk->icsk_ca_state != TCP_CA_Loss)
1599 NET_INC_STATS_BH(LINUX_MIB_TCPFASTRETRANS);
1600 else
1601 NET_INC_STATS_BH(LINUX_MIB_TCPSLOWSTARTRETRANS);
1603 if (skb ==
1604 skb_peek(&sk->sk_write_queue))
1605 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1606 inet_csk(sk)->icsk_rto,
1607 TCP_RTO_MAX);
1610 packet_cnt += tcp_skb_pcount(skb);
1611 if (packet_cnt >= tp->lost_out)
1612 break;
1617 /* OK, demanded retransmission is finished. */
1619 /* Forward retransmissions are possible only during Recovery. */
1620 if (icsk->icsk_ca_state != TCP_CA_Recovery)
1621 return;
1623 /* No forward retransmissions in Reno are possible. */
1624 if (!tp->rx_opt.sack_ok)
1625 return;
1627 /* Yeah, we have to make difficult choice between forward transmission
1628 * and retransmission... Both ways have their merits...
1630 * For now we do not retransmit anything, while we have some new
1631 * segments to send.
1634 if (tcp_may_send_now(sk, tp))
1635 return;
1637 if (tp->forward_skb_hint) {
1638 skb = tp->forward_skb_hint;
1639 packet_cnt = tp->forward_cnt_hint;
1640 } else{
1641 skb = sk->sk_write_queue.next;
1642 packet_cnt = 0;
1645 sk_stream_for_retrans_queue_from(skb, sk) {
1646 tp->forward_cnt_hint = packet_cnt;
1647 tp->forward_skb_hint = skb;
1649 /* Similar to the retransmit loop above we
1650 * can pretend that the retransmitted SKB
1651 * we send out here will be composed of one
1652 * real MSS sized packet because tcp_retransmit_skb()
1653 * will fragment it if necessary.
1655 if (++packet_cnt > tp->fackets_out)
1656 break;
1658 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
1659 break;
1661 if (TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS)
1662 continue;
1664 /* Ok, retransmit it. */
1665 if (tcp_retransmit_skb(sk, skb)) {
1666 tp->forward_skb_hint = NULL;
1667 break;
1670 if (skb == skb_peek(&sk->sk_write_queue))
1671 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1672 inet_csk(sk)->icsk_rto,
1673 TCP_RTO_MAX);
1675 NET_INC_STATS_BH(LINUX_MIB_TCPFORWARDRETRANS);
1680 /* Send a fin. The caller locks the socket for us. This cannot be
1681 * allowed to fail queueing a FIN frame under any circumstances.
1683 void tcp_send_fin(struct sock *sk)
1685 struct tcp_sock *tp = tcp_sk(sk);
1686 struct sk_buff *skb = skb_peek_tail(&sk->sk_write_queue);
1687 int mss_now;
1689 /* Optimization, tack on the FIN if we have a queue of
1690 * unsent frames. But be careful about outgoing SACKS
1691 * and IP options.
1693 mss_now = tcp_current_mss(sk, 1);
1695 if (sk->sk_send_head != NULL) {
1696 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_FIN;
1697 TCP_SKB_CB(skb)->end_seq++;
1698 tp->write_seq++;
1699 } else {
1700 /* Socket is locked, keep trying until memory is available. */
1701 for (;;) {
1702 skb = alloc_skb_fclone(MAX_TCP_HEADER, GFP_KERNEL);
1703 if (skb)
1704 break;
1705 yield();
1708 /* Reserve space for headers and prepare control bits. */
1709 skb_reserve(skb, MAX_TCP_HEADER);
1710 skb->csum = 0;
1711 TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_FIN);
1712 TCP_SKB_CB(skb)->sacked = 0;
1713 skb_shinfo(skb)->tso_segs = 1;
1714 skb_shinfo(skb)->tso_size = 0;
1716 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
1717 TCP_SKB_CB(skb)->seq = tp->write_seq;
1718 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1;
1719 tcp_queue_skb(sk, skb);
1721 __tcp_push_pending_frames(sk, tp, mss_now, TCP_NAGLE_OFF);
1724 /* We get here when a process closes a file descriptor (either due to
1725 * an explicit close() or as a byproduct of exit()'ing) and there
1726 * was unread data in the receive queue. This behavior is recommended
1727 * by draft-ietf-tcpimpl-prob-03.txt section 3.10. -DaveM
1729 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
1731 struct tcp_sock *tp = tcp_sk(sk);
1732 struct sk_buff *skb;
1734 /* NOTE: No TCP options attached and we never retransmit this. */
1735 skb = alloc_skb(MAX_TCP_HEADER, priority);
1736 if (!skb) {
1737 NET_INC_STATS(LINUX_MIB_TCPABORTFAILED);
1738 return;
1741 /* Reserve space for headers and prepare control bits. */
1742 skb_reserve(skb, MAX_TCP_HEADER);
1743 skb->csum = 0;
1744 TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_RST);
1745 TCP_SKB_CB(skb)->sacked = 0;
1746 skb_shinfo(skb)->tso_segs = 1;
1747 skb_shinfo(skb)->tso_size = 0;
1749 /* Send it off. */
1750 TCP_SKB_CB(skb)->seq = tcp_acceptable_seq(sk, tp);
1751 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq;
1752 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1753 if (tcp_transmit_skb(sk, skb, 0, priority))
1754 NET_INC_STATS(LINUX_MIB_TCPABORTFAILED);
1757 /* WARNING: This routine must only be called when we have already sent
1758 * a SYN packet that crossed the incoming SYN that caused this routine
1759 * to get called. If this assumption fails then the initial rcv_wnd
1760 * and rcv_wscale values will not be correct.
1762 int tcp_send_synack(struct sock *sk)
1764 struct sk_buff* skb;
1766 skb = skb_peek(&sk->sk_write_queue);
1767 if (skb == NULL || !(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_SYN)) {
1768 printk(KERN_DEBUG "tcp_send_synack: wrong queue state\n");
1769 return -EFAULT;
1771 if (!(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_ACK)) {
1772 if (skb_cloned(skb)) {
1773 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
1774 if (nskb == NULL)
1775 return -ENOMEM;
1776 __skb_unlink(skb, &sk->sk_write_queue);
1777 skb_header_release(nskb);
1778 __skb_queue_head(&sk->sk_write_queue, nskb);
1779 sk_stream_free_skb(sk, skb);
1780 sk_charge_skb(sk, nskb);
1781 skb = nskb;
1784 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_ACK;
1785 TCP_ECN_send_synack(tcp_sk(sk), skb);
1787 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1788 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
1792 * Prepare a SYN-ACK.
1794 struct sk_buff * tcp_make_synack(struct sock *sk, struct dst_entry *dst,
1795 struct request_sock *req)
1797 struct inet_request_sock *ireq = inet_rsk(req);
1798 struct tcp_sock *tp = tcp_sk(sk);
1799 struct tcphdr *th;
1800 int tcp_header_size;
1801 struct sk_buff *skb;
1803 skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15, 1, GFP_ATOMIC);
1804 if (skb == NULL)
1805 return NULL;
1807 /* Reserve space for headers. */
1808 skb_reserve(skb, MAX_TCP_HEADER);
1810 skb->dst = dst_clone(dst);
1812 tcp_header_size = (sizeof(struct tcphdr) + TCPOLEN_MSS +
1813 (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0) +
1814 (ireq->wscale_ok ? TCPOLEN_WSCALE_ALIGNED : 0) +
1815 /* SACK_PERM is in the place of NOP NOP of TS */
1816 ((ireq->sack_ok && !ireq->tstamp_ok) ? TCPOLEN_SACKPERM_ALIGNED : 0));
1817 skb->h.th = th = (struct tcphdr *) skb_push(skb, tcp_header_size);
1819 memset(th, 0, sizeof(struct tcphdr));
1820 th->syn = 1;
1821 th->ack = 1;
1822 if (dst->dev->features&NETIF_F_TSO)
1823 ireq->ecn_ok = 0;
1824 TCP_ECN_make_synack(req, th);
1825 th->source = inet_sk(sk)->sport;
1826 th->dest = ireq->rmt_port;
1827 TCP_SKB_CB(skb)->seq = tcp_rsk(req)->snt_isn;
1828 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1;
1829 TCP_SKB_CB(skb)->sacked = 0;
1830 skb_shinfo(skb)->tso_segs = 1;
1831 skb_shinfo(skb)->tso_size = 0;
1832 th->seq = htonl(TCP_SKB_CB(skb)->seq);
1833 th->ack_seq = htonl(tcp_rsk(req)->rcv_isn + 1);
1834 if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */
1835 __u8 rcv_wscale;
1836 /* Set this up on the first call only */
1837 req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
1838 /* tcp_full_space because it is guaranteed to be the first packet */
1839 tcp_select_initial_window(tcp_full_space(sk),
1840 dst_metric(dst, RTAX_ADVMSS) - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
1841 &req->rcv_wnd,
1842 &req->window_clamp,
1843 ireq->wscale_ok,
1844 &rcv_wscale);
1845 ireq->rcv_wscale = rcv_wscale;
1848 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
1849 th->window = htons(req->rcv_wnd);
1851 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1852 tcp_syn_build_options((__u32 *)(th + 1), dst_metric(dst, RTAX_ADVMSS), ireq->tstamp_ok,
1853 ireq->sack_ok, ireq->wscale_ok, ireq->rcv_wscale,
1854 TCP_SKB_CB(skb)->when,
1855 req->ts_recent);
1857 skb->csum = 0;
1858 th->doff = (tcp_header_size >> 2);
1859 TCP_INC_STATS(TCP_MIB_OUTSEGS);
1860 return skb;
1864 * Do all connect socket setups that can be done AF independent.
1866 static void tcp_connect_init(struct sock *sk)
1868 struct dst_entry *dst = __sk_dst_get(sk);
1869 struct tcp_sock *tp = tcp_sk(sk);
1870 __u8 rcv_wscale;
1872 /* We'll fix this up when we get a response from the other end.
1873 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
1875 tp->tcp_header_len = sizeof(struct tcphdr) +
1876 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
1878 /* If user gave his TCP_MAXSEG, record it to clamp */
1879 if (tp->rx_opt.user_mss)
1880 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
1881 tp->max_window = 0;
1882 tcp_sync_mss(sk, dst_mtu(dst));
1884 if (!tp->window_clamp)
1885 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
1886 tp->advmss = dst_metric(dst, RTAX_ADVMSS);
1887 tcp_initialize_rcv_mss(sk);
1889 tcp_select_initial_window(tcp_full_space(sk),
1890 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
1891 &tp->rcv_wnd,
1892 &tp->window_clamp,
1893 sysctl_tcp_window_scaling,
1894 &rcv_wscale);
1896 tp->rx_opt.rcv_wscale = rcv_wscale;
1897 tp->rcv_ssthresh = tp->rcv_wnd;
1899 sk->sk_err = 0;
1900 sock_reset_flag(sk, SOCK_DONE);
1901 tp->snd_wnd = 0;
1902 tcp_init_wl(tp, tp->write_seq, 0);
1903 tp->snd_una = tp->write_seq;
1904 tp->snd_sml = tp->write_seq;
1905 tp->rcv_nxt = 0;
1906 tp->rcv_wup = 0;
1907 tp->copied_seq = 0;
1909 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
1910 inet_csk(sk)->icsk_retransmits = 0;
1911 tcp_clear_retrans(tp);
1915 * Build a SYN and send it off.
1917 int tcp_connect(struct sock *sk)
1919 struct tcp_sock *tp = tcp_sk(sk);
1920 struct sk_buff *buff;
1922 tcp_connect_init(sk);
1924 buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation);
1925 if (unlikely(buff == NULL))
1926 return -ENOBUFS;
1928 /* Reserve space for headers. */
1929 skb_reserve(buff, MAX_TCP_HEADER);
1931 TCP_SKB_CB(buff)->flags = TCPCB_FLAG_SYN;
1932 TCP_ECN_send_syn(sk, tp, buff);
1933 TCP_SKB_CB(buff)->sacked = 0;
1934 skb_shinfo(buff)->tso_segs = 1;
1935 skb_shinfo(buff)->tso_size = 0;
1936 buff->csum = 0;
1937 TCP_SKB_CB(buff)->seq = tp->write_seq++;
1938 TCP_SKB_CB(buff)->end_seq = tp->write_seq;
1939 tp->snd_nxt = tp->write_seq;
1940 tp->pushed_seq = tp->write_seq;
1942 /* Send it off. */
1943 TCP_SKB_CB(buff)->when = tcp_time_stamp;
1944 tp->retrans_stamp = TCP_SKB_CB(buff)->when;
1945 skb_header_release(buff);
1946 __skb_queue_tail(&sk->sk_write_queue, buff);
1947 sk_charge_skb(sk, buff);
1948 tp->packets_out += tcp_skb_pcount(buff);
1949 tcp_transmit_skb(sk, buff, 1, GFP_KERNEL);
1950 TCP_INC_STATS(TCP_MIB_ACTIVEOPENS);
1952 /* Timer for repeating the SYN until an answer. */
1953 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1954 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
1955 return 0;
1958 /* Send out a delayed ack, the caller does the policy checking
1959 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
1960 * for details.
1962 void tcp_send_delayed_ack(struct sock *sk)
1964 struct inet_connection_sock *icsk = inet_csk(sk);
1965 int ato = icsk->icsk_ack.ato;
1966 unsigned long timeout;
1968 if (ato > TCP_DELACK_MIN) {
1969 const struct tcp_sock *tp = tcp_sk(sk);
1970 int max_ato = HZ/2;
1972 if (icsk->icsk_ack.pingpong || (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
1973 max_ato = TCP_DELACK_MAX;
1975 /* Slow path, intersegment interval is "high". */
1977 /* If some rtt estimate is known, use it to bound delayed ack.
1978 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
1979 * directly.
1981 if (tp->srtt) {
1982 int rtt = max(tp->srtt>>3, TCP_DELACK_MIN);
1984 if (rtt < max_ato)
1985 max_ato = rtt;
1988 ato = min(ato, max_ato);
1991 /* Stay within the limit we were given */
1992 timeout = jiffies + ato;
1994 /* Use new timeout only if there wasn't a older one earlier. */
1995 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
1996 /* If delack timer was blocked or is about to expire,
1997 * send ACK now.
1999 if (icsk->icsk_ack.blocked ||
2000 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
2001 tcp_send_ack(sk);
2002 return;
2005 if (!time_before(timeout, icsk->icsk_ack.timeout))
2006 timeout = icsk->icsk_ack.timeout;
2008 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
2009 icsk->icsk_ack.timeout = timeout;
2010 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
2013 /* This routine sends an ack and also updates the window. */
2014 void tcp_send_ack(struct sock *sk)
2016 /* If we have been reset, we may not send again. */
2017 if (sk->sk_state != TCP_CLOSE) {
2018 struct tcp_sock *tp = tcp_sk(sk);
2019 struct sk_buff *buff;
2021 /* We are not putting this on the write queue, so
2022 * tcp_transmit_skb() will set the ownership to this
2023 * sock.
2025 buff = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
2026 if (buff == NULL) {
2027 inet_csk_schedule_ack(sk);
2028 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
2029 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
2030 TCP_DELACK_MAX, TCP_RTO_MAX);
2031 return;
2034 /* Reserve space for headers and prepare control bits. */
2035 skb_reserve(buff, MAX_TCP_HEADER);
2036 buff->csum = 0;
2037 TCP_SKB_CB(buff)->flags = TCPCB_FLAG_ACK;
2038 TCP_SKB_CB(buff)->sacked = 0;
2039 skb_shinfo(buff)->tso_segs = 1;
2040 skb_shinfo(buff)->tso_size = 0;
2042 /* Send it off, this clears delayed acks for us. */
2043 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(buff)->end_seq = tcp_acceptable_seq(sk, tp);
2044 TCP_SKB_CB(buff)->when = tcp_time_stamp;
2045 tcp_transmit_skb(sk, buff, 0, GFP_ATOMIC);
2049 /* This routine sends a packet with an out of date sequence
2050 * number. It assumes the other end will try to ack it.
2052 * Question: what should we make while urgent mode?
2053 * 4.4BSD forces sending single byte of data. We cannot send
2054 * out of window data, because we have SND.NXT==SND.MAX...
2056 * Current solution: to send TWO zero-length segments in urgent mode:
2057 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
2058 * out-of-date with SND.UNA-1 to probe window.
2060 static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
2062 struct tcp_sock *tp = tcp_sk(sk);
2063 struct sk_buff *skb;
2065 /* We don't queue it, tcp_transmit_skb() sets ownership. */
2066 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
2067 if (skb == NULL)
2068 return -1;
2070 /* Reserve space for headers and set control bits. */
2071 skb_reserve(skb, MAX_TCP_HEADER);
2072 skb->csum = 0;
2073 TCP_SKB_CB(skb)->flags = TCPCB_FLAG_ACK;
2074 TCP_SKB_CB(skb)->sacked = urgent;
2075 skb_shinfo(skb)->tso_segs = 1;
2076 skb_shinfo(skb)->tso_size = 0;
2078 /* Use a previous sequence. This should cause the other
2079 * end to send an ack. Don't queue or clone SKB, just
2080 * send it.
2082 TCP_SKB_CB(skb)->seq = urgent ? tp->snd_una : tp->snd_una - 1;
2083 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq;
2084 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2085 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
2088 int tcp_write_wakeup(struct sock *sk)
2090 if (sk->sk_state != TCP_CLOSE) {
2091 struct tcp_sock *tp = tcp_sk(sk);
2092 struct sk_buff *skb;
2094 if ((skb = sk->sk_send_head) != NULL &&
2095 before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd)) {
2096 int err;
2097 unsigned int mss = tcp_current_mss(sk, 0);
2098 unsigned int seg_size = tp->snd_una+tp->snd_wnd-TCP_SKB_CB(skb)->seq;
2100 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
2101 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
2103 /* We are probing the opening of a window
2104 * but the window size is != 0
2105 * must have been a result SWS avoidance ( sender )
2107 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
2108 skb->len > mss) {
2109 seg_size = min(seg_size, mss);
2110 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
2111 if (tcp_fragment(sk, skb, seg_size, mss))
2112 return -1;
2113 } else if (!tcp_skb_pcount(skb))
2114 tcp_set_skb_tso_segs(sk, skb, mss);
2116 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
2117 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2118 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2119 if (!err) {
2120 update_send_head(sk, tp, skb);
2122 return err;
2123 } else {
2124 if (tp->urg_mode &&
2125 between(tp->snd_up, tp->snd_una+1, tp->snd_una+0xFFFF))
2126 tcp_xmit_probe_skb(sk, TCPCB_URG);
2127 return tcp_xmit_probe_skb(sk, 0);
2130 return -1;
2133 /* A window probe timeout has occurred. If window is not closed send
2134 * a partial packet else a zero probe.
2136 void tcp_send_probe0(struct sock *sk)
2138 struct inet_connection_sock *icsk = inet_csk(sk);
2139 struct tcp_sock *tp = tcp_sk(sk);
2140 int err;
2142 err = tcp_write_wakeup(sk);
2144 if (tp->packets_out || !sk->sk_send_head) {
2145 /* Cancel probe timer, if it is not required. */
2146 icsk->icsk_probes_out = 0;
2147 icsk->icsk_backoff = 0;
2148 return;
2151 if (err <= 0) {
2152 if (icsk->icsk_backoff < sysctl_tcp_retries2)
2153 icsk->icsk_backoff++;
2154 icsk->icsk_probes_out++;
2155 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2156 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2157 TCP_RTO_MAX);
2158 } else {
2159 /* If packet was not sent due to local congestion,
2160 * do not backoff and do not remember icsk_probes_out.
2161 * Let local senders to fight for local resources.
2163 * Use accumulated backoff yet.
2165 if (!icsk->icsk_probes_out)
2166 icsk->icsk_probes_out = 1;
2167 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2168 min(icsk->icsk_rto << icsk->icsk_backoff,
2169 TCP_RESOURCE_PROBE_INTERVAL),
2170 TCP_RTO_MAX);
2174 EXPORT_SYMBOL(tcp_connect);
2175 EXPORT_SYMBOL(tcp_make_synack);
2176 EXPORT_SYMBOL(tcp_simple_retransmit);
2177 EXPORT_SYMBOL(tcp_sync_mss);
2178 EXPORT_SYMBOL(sysctl_tcp_tso_win_divisor);