2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
24 * This file implements most of the debugging stuff which is compiled in only
25 * when it is enabled. But some debugging check functions are implemented in
26 * corresponding subsystem, just because they are closely related and utilize
27 * various local functions of those subsystems.
30 #define UBIFS_DBG_PRESERVE_UBI
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/debugfs.h>
36 #include <linux/math64.h>
38 #ifdef CONFIG_UBIFS_FS_DEBUG
40 DEFINE_SPINLOCK(dbg_lock
);
42 static char dbg_key_buf0
[128];
43 static char dbg_key_buf1
[128];
45 unsigned int ubifs_msg_flags
= UBIFS_MSG_FLAGS_DEFAULT
;
46 unsigned int ubifs_chk_flags
= UBIFS_CHK_FLAGS_DEFAULT
;
47 unsigned int ubifs_tst_flags
;
49 module_param_named(debug_msgs
, ubifs_msg_flags
, uint
, S_IRUGO
| S_IWUSR
);
50 module_param_named(debug_chks
, ubifs_chk_flags
, uint
, S_IRUGO
| S_IWUSR
);
51 module_param_named(debug_tsts
, ubifs_tst_flags
, uint
, S_IRUGO
| S_IWUSR
);
53 MODULE_PARM_DESC(debug_msgs
, "Debug message type flags");
54 MODULE_PARM_DESC(debug_chks
, "Debug check flags");
55 MODULE_PARM_DESC(debug_tsts
, "Debug special test flags");
57 static const char *get_key_fmt(int fmt
)
60 case UBIFS_SIMPLE_KEY_FMT
:
63 return "unknown/invalid format";
67 static const char *get_key_hash(int hash
)
70 case UBIFS_KEY_HASH_R5
:
72 case UBIFS_KEY_HASH_TEST
:
75 return "unknown/invalid name hash";
79 static const char *get_key_type(int type
)
93 return "unknown/invalid key";
97 static void sprintf_key(const struct ubifs_info
*c
, const union ubifs_key
*key
,
101 int type
= key_type(c
, key
);
103 if (c
->key_fmt
== UBIFS_SIMPLE_KEY_FMT
) {
106 sprintf(p
, "(%lu, %s)", (unsigned long)key_inum(c
, key
),
111 sprintf(p
, "(%lu, %s, %#08x)",
112 (unsigned long)key_inum(c
, key
),
113 get_key_type(type
), key_hash(c
, key
));
116 sprintf(p
, "(%lu, %s, %u)",
117 (unsigned long)key_inum(c
, key
),
118 get_key_type(type
), key_block(c
, key
));
121 sprintf(p
, "(%lu, %s)",
122 (unsigned long)key_inum(c
, key
),
126 sprintf(p
, "(bad key type: %#08x, %#08x)",
127 key
->u32
[0], key
->u32
[1]);
130 sprintf(p
, "bad key format %d", c
->key_fmt
);
133 const char *dbg_key_str0(const struct ubifs_info
*c
, const union ubifs_key
*key
)
135 /* dbg_lock must be held */
136 sprintf_key(c
, key
, dbg_key_buf0
);
140 const char *dbg_key_str1(const struct ubifs_info
*c
, const union ubifs_key
*key
)
142 /* dbg_lock must be held */
143 sprintf_key(c
, key
, dbg_key_buf1
);
147 const char *dbg_ntype(int type
)
151 return "padding node";
153 return "superblock node";
155 return "master node";
157 return "reference node";
160 case UBIFS_DENT_NODE
:
161 return "direntry node";
162 case UBIFS_XENT_NODE
:
163 return "xentry node";
164 case UBIFS_DATA_NODE
:
166 case UBIFS_TRUN_NODE
:
167 return "truncate node";
169 return "indexing node";
171 return "commit start node";
172 case UBIFS_ORPH_NODE
:
173 return "orphan node";
175 return "unknown node";
179 static const char *dbg_gtype(int type
)
182 case UBIFS_NO_NODE_GROUP
:
183 return "no node group";
184 case UBIFS_IN_NODE_GROUP
:
185 return "in node group";
186 case UBIFS_LAST_OF_NODE_GROUP
:
187 return "last of node group";
193 const char *dbg_cstate(int cmt_state
)
197 return "commit resting";
198 case COMMIT_BACKGROUND
:
199 return "background commit requested";
200 case COMMIT_REQUIRED
:
201 return "commit required";
202 case COMMIT_RUNNING_BACKGROUND
:
203 return "BACKGROUND commit running";
204 case COMMIT_RUNNING_REQUIRED
:
205 return "commit running and required";
207 return "broken commit";
209 return "unknown commit state";
213 const char *dbg_jhead(int jhead
)
223 return "unknown journal head";
227 static void dump_ch(const struct ubifs_ch
*ch
)
229 printk(KERN_DEBUG
"\tmagic %#x\n", le32_to_cpu(ch
->magic
));
230 printk(KERN_DEBUG
"\tcrc %#x\n", le32_to_cpu(ch
->crc
));
231 printk(KERN_DEBUG
"\tnode_type %d (%s)\n", ch
->node_type
,
232 dbg_ntype(ch
->node_type
));
233 printk(KERN_DEBUG
"\tgroup_type %d (%s)\n", ch
->group_type
,
234 dbg_gtype(ch
->group_type
));
235 printk(KERN_DEBUG
"\tsqnum %llu\n",
236 (unsigned long long)le64_to_cpu(ch
->sqnum
));
237 printk(KERN_DEBUG
"\tlen %u\n", le32_to_cpu(ch
->len
));
240 void dbg_dump_inode(const struct ubifs_info
*c
, const struct inode
*inode
)
242 const struct ubifs_inode
*ui
= ubifs_inode(inode
);
244 printk(KERN_DEBUG
"Dump in-memory inode:");
245 printk(KERN_DEBUG
"\tinode %lu\n", inode
->i_ino
);
246 printk(KERN_DEBUG
"\tsize %llu\n",
247 (unsigned long long)i_size_read(inode
));
248 printk(KERN_DEBUG
"\tnlink %u\n", inode
->i_nlink
);
249 printk(KERN_DEBUG
"\tuid %u\n", (unsigned int)inode
->i_uid
);
250 printk(KERN_DEBUG
"\tgid %u\n", (unsigned int)inode
->i_gid
);
251 printk(KERN_DEBUG
"\tatime %u.%u\n",
252 (unsigned int)inode
->i_atime
.tv_sec
,
253 (unsigned int)inode
->i_atime
.tv_nsec
);
254 printk(KERN_DEBUG
"\tmtime %u.%u\n",
255 (unsigned int)inode
->i_mtime
.tv_sec
,
256 (unsigned int)inode
->i_mtime
.tv_nsec
);
257 printk(KERN_DEBUG
"\tctime %u.%u\n",
258 (unsigned int)inode
->i_ctime
.tv_sec
,
259 (unsigned int)inode
->i_ctime
.tv_nsec
);
260 printk(KERN_DEBUG
"\tcreat_sqnum %llu\n", ui
->creat_sqnum
);
261 printk(KERN_DEBUG
"\txattr_size %u\n", ui
->xattr_size
);
262 printk(KERN_DEBUG
"\txattr_cnt %u\n", ui
->xattr_cnt
);
263 printk(KERN_DEBUG
"\txattr_names %u\n", ui
->xattr_names
);
264 printk(KERN_DEBUG
"\tdirty %u\n", ui
->dirty
);
265 printk(KERN_DEBUG
"\txattr %u\n", ui
->xattr
);
266 printk(KERN_DEBUG
"\tbulk_read %u\n", ui
->xattr
);
267 printk(KERN_DEBUG
"\tsynced_i_size %llu\n",
268 (unsigned long long)ui
->synced_i_size
);
269 printk(KERN_DEBUG
"\tui_size %llu\n",
270 (unsigned long long)ui
->ui_size
);
271 printk(KERN_DEBUG
"\tflags %d\n", ui
->flags
);
272 printk(KERN_DEBUG
"\tcompr_type %d\n", ui
->compr_type
);
273 printk(KERN_DEBUG
"\tlast_page_read %lu\n", ui
->last_page_read
);
274 printk(KERN_DEBUG
"\tread_in_a_row %lu\n", ui
->read_in_a_row
);
275 printk(KERN_DEBUG
"\tdata_len %d\n", ui
->data_len
);
278 void dbg_dump_node(const struct ubifs_info
*c
, const void *node
)
282 const struct ubifs_ch
*ch
= node
;
284 if (dbg_failure_mode
)
287 /* If the magic is incorrect, just hexdump the first bytes */
288 if (le32_to_cpu(ch
->magic
) != UBIFS_NODE_MAGIC
) {
289 printk(KERN_DEBUG
"Not a node, first %zu bytes:", UBIFS_CH_SZ
);
290 print_hex_dump(KERN_DEBUG
, "", DUMP_PREFIX_OFFSET
, 32, 1,
291 (void *)node
, UBIFS_CH_SZ
, 1);
295 spin_lock(&dbg_lock
);
298 switch (ch
->node_type
) {
301 const struct ubifs_pad_node
*pad
= node
;
303 printk(KERN_DEBUG
"\tpad_len %u\n",
304 le32_to_cpu(pad
->pad_len
));
309 const struct ubifs_sb_node
*sup
= node
;
310 unsigned int sup_flags
= le32_to_cpu(sup
->flags
);
312 printk(KERN_DEBUG
"\tkey_hash %d (%s)\n",
313 (int)sup
->key_hash
, get_key_hash(sup
->key_hash
));
314 printk(KERN_DEBUG
"\tkey_fmt %d (%s)\n",
315 (int)sup
->key_fmt
, get_key_fmt(sup
->key_fmt
));
316 printk(KERN_DEBUG
"\tflags %#x\n", sup_flags
);
317 printk(KERN_DEBUG
"\t big_lpt %u\n",
318 !!(sup_flags
& UBIFS_FLG_BIGLPT
));
319 printk(KERN_DEBUG
"\tmin_io_size %u\n",
320 le32_to_cpu(sup
->min_io_size
));
321 printk(KERN_DEBUG
"\tleb_size %u\n",
322 le32_to_cpu(sup
->leb_size
));
323 printk(KERN_DEBUG
"\tleb_cnt %u\n",
324 le32_to_cpu(sup
->leb_cnt
));
325 printk(KERN_DEBUG
"\tmax_leb_cnt %u\n",
326 le32_to_cpu(sup
->max_leb_cnt
));
327 printk(KERN_DEBUG
"\tmax_bud_bytes %llu\n",
328 (unsigned long long)le64_to_cpu(sup
->max_bud_bytes
));
329 printk(KERN_DEBUG
"\tlog_lebs %u\n",
330 le32_to_cpu(sup
->log_lebs
));
331 printk(KERN_DEBUG
"\tlpt_lebs %u\n",
332 le32_to_cpu(sup
->lpt_lebs
));
333 printk(KERN_DEBUG
"\torph_lebs %u\n",
334 le32_to_cpu(sup
->orph_lebs
));
335 printk(KERN_DEBUG
"\tjhead_cnt %u\n",
336 le32_to_cpu(sup
->jhead_cnt
));
337 printk(KERN_DEBUG
"\tfanout %u\n",
338 le32_to_cpu(sup
->fanout
));
339 printk(KERN_DEBUG
"\tlsave_cnt %u\n",
340 le32_to_cpu(sup
->lsave_cnt
));
341 printk(KERN_DEBUG
"\tdefault_compr %u\n",
342 (int)le16_to_cpu(sup
->default_compr
));
343 printk(KERN_DEBUG
"\trp_size %llu\n",
344 (unsigned long long)le64_to_cpu(sup
->rp_size
));
345 printk(KERN_DEBUG
"\trp_uid %u\n",
346 le32_to_cpu(sup
->rp_uid
));
347 printk(KERN_DEBUG
"\trp_gid %u\n",
348 le32_to_cpu(sup
->rp_gid
));
349 printk(KERN_DEBUG
"\tfmt_version %u\n",
350 le32_to_cpu(sup
->fmt_version
));
351 printk(KERN_DEBUG
"\ttime_gran %u\n",
352 le32_to_cpu(sup
->time_gran
));
353 printk(KERN_DEBUG
"\tUUID %pUB\n",
359 const struct ubifs_mst_node
*mst
= node
;
361 printk(KERN_DEBUG
"\thighest_inum %llu\n",
362 (unsigned long long)le64_to_cpu(mst
->highest_inum
));
363 printk(KERN_DEBUG
"\tcommit number %llu\n",
364 (unsigned long long)le64_to_cpu(mst
->cmt_no
));
365 printk(KERN_DEBUG
"\tflags %#x\n",
366 le32_to_cpu(mst
->flags
));
367 printk(KERN_DEBUG
"\tlog_lnum %u\n",
368 le32_to_cpu(mst
->log_lnum
));
369 printk(KERN_DEBUG
"\troot_lnum %u\n",
370 le32_to_cpu(mst
->root_lnum
));
371 printk(KERN_DEBUG
"\troot_offs %u\n",
372 le32_to_cpu(mst
->root_offs
));
373 printk(KERN_DEBUG
"\troot_len %u\n",
374 le32_to_cpu(mst
->root_len
));
375 printk(KERN_DEBUG
"\tgc_lnum %u\n",
376 le32_to_cpu(mst
->gc_lnum
));
377 printk(KERN_DEBUG
"\tihead_lnum %u\n",
378 le32_to_cpu(mst
->ihead_lnum
));
379 printk(KERN_DEBUG
"\tihead_offs %u\n",
380 le32_to_cpu(mst
->ihead_offs
));
381 printk(KERN_DEBUG
"\tindex_size %llu\n",
382 (unsigned long long)le64_to_cpu(mst
->index_size
));
383 printk(KERN_DEBUG
"\tlpt_lnum %u\n",
384 le32_to_cpu(mst
->lpt_lnum
));
385 printk(KERN_DEBUG
"\tlpt_offs %u\n",
386 le32_to_cpu(mst
->lpt_offs
));
387 printk(KERN_DEBUG
"\tnhead_lnum %u\n",
388 le32_to_cpu(mst
->nhead_lnum
));
389 printk(KERN_DEBUG
"\tnhead_offs %u\n",
390 le32_to_cpu(mst
->nhead_offs
));
391 printk(KERN_DEBUG
"\tltab_lnum %u\n",
392 le32_to_cpu(mst
->ltab_lnum
));
393 printk(KERN_DEBUG
"\tltab_offs %u\n",
394 le32_to_cpu(mst
->ltab_offs
));
395 printk(KERN_DEBUG
"\tlsave_lnum %u\n",
396 le32_to_cpu(mst
->lsave_lnum
));
397 printk(KERN_DEBUG
"\tlsave_offs %u\n",
398 le32_to_cpu(mst
->lsave_offs
));
399 printk(KERN_DEBUG
"\tlscan_lnum %u\n",
400 le32_to_cpu(mst
->lscan_lnum
));
401 printk(KERN_DEBUG
"\tleb_cnt %u\n",
402 le32_to_cpu(mst
->leb_cnt
));
403 printk(KERN_DEBUG
"\tempty_lebs %u\n",
404 le32_to_cpu(mst
->empty_lebs
));
405 printk(KERN_DEBUG
"\tidx_lebs %u\n",
406 le32_to_cpu(mst
->idx_lebs
));
407 printk(KERN_DEBUG
"\ttotal_free %llu\n",
408 (unsigned long long)le64_to_cpu(mst
->total_free
));
409 printk(KERN_DEBUG
"\ttotal_dirty %llu\n",
410 (unsigned long long)le64_to_cpu(mst
->total_dirty
));
411 printk(KERN_DEBUG
"\ttotal_used %llu\n",
412 (unsigned long long)le64_to_cpu(mst
->total_used
));
413 printk(KERN_DEBUG
"\ttotal_dead %llu\n",
414 (unsigned long long)le64_to_cpu(mst
->total_dead
));
415 printk(KERN_DEBUG
"\ttotal_dark %llu\n",
416 (unsigned long long)le64_to_cpu(mst
->total_dark
));
421 const struct ubifs_ref_node
*ref
= node
;
423 printk(KERN_DEBUG
"\tlnum %u\n",
424 le32_to_cpu(ref
->lnum
));
425 printk(KERN_DEBUG
"\toffs %u\n",
426 le32_to_cpu(ref
->offs
));
427 printk(KERN_DEBUG
"\tjhead %u\n",
428 le32_to_cpu(ref
->jhead
));
433 const struct ubifs_ino_node
*ino
= node
;
435 key_read(c
, &ino
->key
, &key
);
436 printk(KERN_DEBUG
"\tkey %s\n", DBGKEY(&key
));
437 printk(KERN_DEBUG
"\tcreat_sqnum %llu\n",
438 (unsigned long long)le64_to_cpu(ino
->creat_sqnum
));
439 printk(KERN_DEBUG
"\tsize %llu\n",
440 (unsigned long long)le64_to_cpu(ino
->size
));
441 printk(KERN_DEBUG
"\tnlink %u\n",
442 le32_to_cpu(ino
->nlink
));
443 printk(KERN_DEBUG
"\tatime %lld.%u\n",
444 (long long)le64_to_cpu(ino
->atime_sec
),
445 le32_to_cpu(ino
->atime_nsec
));
446 printk(KERN_DEBUG
"\tmtime %lld.%u\n",
447 (long long)le64_to_cpu(ino
->mtime_sec
),
448 le32_to_cpu(ino
->mtime_nsec
));
449 printk(KERN_DEBUG
"\tctime %lld.%u\n",
450 (long long)le64_to_cpu(ino
->ctime_sec
),
451 le32_to_cpu(ino
->ctime_nsec
));
452 printk(KERN_DEBUG
"\tuid %u\n",
453 le32_to_cpu(ino
->uid
));
454 printk(KERN_DEBUG
"\tgid %u\n",
455 le32_to_cpu(ino
->gid
));
456 printk(KERN_DEBUG
"\tmode %u\n",
457 le32_to_cpu(ino
->mode
));
458 printk(KERN_DEBUG
"\tflags %#x\n",
459 le32_to_cpu(ino
->flags
));
460 printk(KERN_DEBUG
"\txattr_cnt %u\n",
461 le32_to_cpu(ino
->xattr_cnt
));
462 printk(KERN_DEBUG
"\txattr_size %u\n",
463 le32_to_cpu(ino
->xattr_size
));
464 printk(KERN_DEBUG
"\txattr_names %u\n",
465 le32_to_cpu(ino
->xattr_names
));
466 printk(KERN_DEBUG
"\tcompr_type %#x\n",
467 (int)le16_to_cpu(ino
->compr_type
));
468 printk(KERN_DEBUG
"\tdata len %u\n",
469 le32_to_cpu(ino
->data_len
));
472 case UBIFS_DENT_NODE
:
473 case UBIFS_XENT_NODE
:
475 const struct ubifs_dent_node
*dent
= node
;
476 int nlen
= le16_to_cpu(dent
->nlen
);
478 key_read(c
, &dent
->key
, &key
);
479 printk(KERN_DEBUG
"\tkey %s\n", DBGKEY(&key
));
480 printk(KERN_DEBUG
"\tinum %llu\n",
481 (unsigned long long)le64_to_cpu(dent
->inum
));
482 printk(KERN_DEBUG
"\ttype %d\n", (int)dent
->type
);
483 printk(KERN_DEBUG
"\tnlen %d\n", nlen
);
484 printk(KERN_DEBUG
"\tname ");
486 if (nlen
> UBIFS_MAX_NLEN
)
487 printk(KERN_DEBUG
"(bad name length, not printing, "
488 "bad or corrupted node)");
490 for (i
= 0; i
< nlen
&& dent
->name
[i
]; i
++)
491 printk(KERN_CONT
"%c", dent
->name
[i
]);
493 printk(KERN_CONT
"\n");
497 case UBIFS_DATA_NODE
:
499 const struct ubifs_data_node
*dn
= node
;
500 int dlen
= le32_to_cpu(ch
->len
) - UBIFS_DATA_NODE_SZ
;
502 key_read(c
, &dn
->key
, &key
);
503 printk(KERN_DEBUG
"\tkey %s\n", DBGKEY(&key
));
504 printk(KERN_DEBUG
"\tsize %u\n",
505 le32_to_cpu(dn
->size
));
506 printk(KERN_DEBUG
"\tcompr_typ %d\n",
507 (int)le16_to_cpu(dn
->compr_type
));
508 printk(KERN_DEBUG
"\tdata size %d\n",
510 printk(KERN_DEBUG
"\tdata:\n");
511 print_hex_dump(KERN_DEBUG
, "\t", DUMP_PREFIX_OFFSET
, 32, 1,
512 (void *)&dn
->data
, dlen
, 0);
515 case UBIFS_TRUN_NODE
:
517 const struct ubifs_trun_node
*trun
= node
;
519 printk(KERN_DEBUG
"\tinum %u\n",
520 le32_to_cpu(trun
->inum
));
521 printk(KERN_DEBUG
"\told_size %llu\n",
522 (unsigned long long)le64_to_cpu(trun
->old_size
));
523 printk(KERN_DEBUG
"\tnew_size %llu\n",
524 (unsigned long long)le64_to_cpu(trun
->new_size
));
529 const struct ubifs_idx_node
*idx
= node
;
531 n
= le16_to_cpu(idx
->child_cnt
);
532 printk(KERN_DEBUG
"\tchild_cnt %d\n", n
);
533 printk(KERN_DEBUG
"\tlevel %d\n",
534 (int)le16_to_cpu(idx
->level
));
535 printk(KERN_DEBUG
"\tBranches:\n");
537 for (i
= 0; i
< n
&& i
< c
->fanout
- 1; i
++) {
538 const struct ubifs_branch
*br
;
540 br
= ubifs_idx_branch(c
, idx
, i
);
541 key_read(c
, &br
->key
, &key
);
542 printk(KERN_DEBUG
"\t%d: LEB %d:%d len %d key %s\n",
543 i
, le32_to_cpu(br
->lnum
), le32_to_cpu(br
->offs
),
544 le32_to_cpu(br
->len
), DBGKEY(&key
));
550 case UBIFS_ORPH_NODE
:
552 const struct ubifs_orph_node
*orph
= node
;
554 printk(KERN_DEBUG
"\tcommit number %llu\n",
556 le64_to_cpu(orph
->cmt_no
) & LLONG_MAX
);
557 printk(KERN_DEBUG
"\tlast node flag %llu\n",
558 (unsigned long long)(le64_to_cpu(orph
->cmt_no
)) >> 63);
559 n
= (le32_to_cpu(ch
->len
) - UBIFS_ORPH_NODE_SZ
) >> 3;
560 printk(KERN_DEBUG
"\t%d orphan inode numbers:\n", n
);
561 for (i
= 0; i
< n
; i
++)
562 printk(KERN_DEBUG
"\t ino %llu\n",
563 (unsigned long long)le64_to_cpu(orph
->inos
[i
]));
567 printk(KERN_DEBUG
"node type %d was not recognized\n",
570 spin_unlock(&dbg_lock
);
573 void dbg_dump_budget_req(const struct ubifs_budget_req
*req
)
575 spin_lock(&dbg_lock
);
576 printk(KERN_DEBUG
"Budgeting request: new_ino %d, dirtied_ino %d\n",
577 req
->new_ino
, req
->dirtied_ino
);
578 printk(KERN_DEBUG
"\tnew_ino_d %d, dirtied_ino_d %d\n",
579 req
->new_ino_d
, req
->dirtied_ino_d
);
580 printk(KERN_DEBUG
"\tnew_page %d, dirtied_page %d\n",
581 req
->new_page
, req
->dirtied_page
);
582 printk(KERN_DEBUG
"\tnew_dent %d, mod_dent %d\n",
583 req
->new_dent
, req
->mod_dent
);
584 printk(KERN_DEBUG
"\tidx_growth %d\n", req
->idx_growth
);
585 printk(KERN_DEBUG
"\tdata_growth %d dd_growth %d\n",
586 req
->data_growth
, req
->dd_growth
);
587 spin_unlock(&dbg_lock
);
590 void dbg_dump_lstats(const struct ubifs_lp_stats
*lst
)
592 spin_lock(&dbg_lock
);
593 printk(KERN_DEBUG
"(pid %d) Lprops statistics: empty_lebs %d, "
594 "idx_lebs %d\n", current
->pid
, lst
->empty_lebs
, lst
->idx_lebs
);
595 printk(KERN_DEBUG
"\ttaken_empty_lebs %d, total_free %lld, "
596 "total_dirty %lld\n", lst
->taken_empty_lebs
, lst
->total_free
,
598 printk(KERN_DEBUG
"\ttotal_used %lld, total_dark %lld, "
599 "total_dead %lld\n", lst
->total_used
, lst
->total_dark
,
601 spin_unlock(&dbg_lock
);
604 void dbg_dump_budg(struct ubifs_info
*c
)
608 struct ubifs_bud
*bud
;
609 struct ubifs_gced_idx_leb
*idx_gc
;
610 long long available
, outstanding
, free
;
612 ubifs_assert(spin_is_locked(&c
->space_lock
));
613 spin_lock(&dbg_lock
);
614 printk(KERN_DEBUG
"(pid %d) Budgeting info: budg_data_growth %lld, "
615 "budg_dd_growth %lld, budg_idx_growth %lld\n", current
->pid
,
616 c
->budg_data_growth
, c
->budg_dd_growth
, c
->budg_idx_growth
);
617 printk(KERN_DEBUG
"\tdata budget sum %lld, total budget sum %lld, "
618 "freeable_cnt %d\n", c
->budg_data_growth
+ c
->budg_dd_growth
,
619 c
->budg_data_growth
+ c
->budg_dd_growth
+ c
->budg_idx_growth
,
621 printk(KERN_DEBUG
"\tmin_idx_lebs %d, old_idx_sz %lld, "
622 "calc_idx_sz %lld, idx_gc_cnt %d\n", c
->min_idx_lebs
,
623 c
->old_idx_sz
, c
->calc_idx_sz
, c
->idx_gc_cnt
);
624 printk(KERN_DEBUG
"\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
625 "clean_zn_cnt %ld\n", atomic_long_read(&c
->dirty_pg_cnt
),
626 atomic_long_read(&c
->dirty_zn_cnt
),
627 atomic_long_read(&c
->clean_zn_cnt
));
628 printk(KERN_DEBUG
"\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
629 c
->dark_wm
, c
->dead_wm
, c
->max_idx_node_sz
);
630 printk(KERN_DEBUG
"\tgc_lnum %d, ihead_lnum %d\n",
631 c
->gc_lnum
, c
->ihead_lnum
);
632 /* If we are in R/O mode, journal heads do not exist */
634 for (i
= 0; i
< c
->jhead_cnt
; i
++)
635 printk(KERN_DEBUG
"\tjhead %s\t LEB %d\n",
636 dbg_jhead(c
->jheads
[i
].wbuf
.jhead
),
637 c
->jheads
[i
].wbuf
.lnum
);
638 for (rb
= rb_first(&c
->buds
); rb
; rb
= rb_next(rb
)) {
639 bud
= rb_entry(rb
, struct ubifs_bud
, rb
);
640 printk(KERN_DEBUG
"\tbud LEB %d\n", bud
->lnum
);
642 list_for_each_entry(bud
, &c
->old_buds
, list
)
643 printk(KERN_DEBUG
"\told bud LEB %d\n", bud
->lnum
);
644 list_for_each_entry(idx_gc
, &c
->idx_gc
, list
)
645 printk(KERN_DEBUG
"\tGC'ed idx LEB %d unmap %d\n",
646 idx_gc
->lnum
, idx_gc
->unmap
);
647 printk(KERN_DEBUG
"\tcommit state %d\n", c
->cmt_state
);
649 /* Print budgeting predictions */
650 available
= ubifs_calc_available(c
, c
->min_idx_lebs
);
651 outstanding
= c
->budg_data_growth
+ c
->budg_dd_growth
;
652 free
= ubifs_get_free_space_nolock(c
);
653 printk(KERN_DEBUG
"Budgeting predictions:\n");
654 printk(KERN_DEBUG
"\tavailable: %lld, outstanding %lld, free %lld\n",
655 available
, outstanding
, free
);
656 spin_unlock(&dbg_lock
);
659 void dbg_dump_lprop(const struct ubifs_info
*c
, const struct ubifs_lprops
*lp
)
661 int i
, spc
, dark
= 0, dead
= 0;
663 struct ubifs_bud
*bud
;
665 spc
= lp
->free
+ lp
->dirty
;
666 if (spc
< c
->dead_wm
)
669 dark
= ubifs_calc_dark(c
, spc
);
671 if (lp
->flags
& LPROPS_INDEX
)
672 printk(KERN_DEBUG
"LEB %-7d free %-8d dirty %-8d used %-8d "
673 "free + dirty %-8d flags %#x (", lp
->lnum
, lp
->free
,
674 lp
->dirty
, c
->leb_size
- spc
, spc
, lp
->flags
);
676 printk(KERN_DEBUG
"LEB %-7d free %-8d dirty %-8d used %-8d "
677 "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
678 "flags %#-4x (", lp
->lnum
, lp
->free
, lp
->dirty
,
679 c
->leb_size
- spc
, spc
, dark
, dead
,
680 (int)(spc
/ UBIFS_MAX_NODE_SZ
), lp
->flags
);
682 if (lp
->flags
& LPROPS_TAKEN
) {
683 if (lp
->flags
& LPROPS_INDEX
)
684 printk(KERN_CONT
"index, taken");
686 printk(KERN_CONT
"taken");
690 if (lp
->flags
& LPROPS_INDEX
) {
691 switch (lp
->flags
& LPROPS_CAT_MASK
) {
692 case LPROPS_DIRTY_IDX
:
695 case LPROPS_FRDI_IDX
:
696 s
= "freeable index";
702 switch (lp
->flags
& LPROPS_CAT_MASK
) {
704 s
= "not categorized";
715 case LPROPS_FREEABLE
:
723 printk(KERN_CONT
"%s", s
);
726 for (rb
= rb_first((struct rb_root
*)&c
->buds
); rb
; rb
= rb_next(rb
)) {
727 bud
= rb_entry(rb
, struct ubifs_bud
, rb
);
728 if (bud
->lnum
== lp
->lnum
) {
730 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
731 if (lp
->lnum
== c
->jheads
[i
].wbuf
.lnum
) {
732 printk(KERN_CONT
", jhead %s",
738 printk(KERN_CONT
", bud of jhead %s",
739 dbg_jhead(bud
->jhead
));
742 if (lp
->lnum
== c
->gc_lnum
)
743 printk(KERN_CONT
", GC LEB");
744 printk(KERN_CONT
")\n");
747 void dbg_dump_lprops(struct ubifs_info
*c
)
750 struct ubifs_lprops lp
;
751 struct ubifs_lp_stats lst
;
753 printk(KERN_DEBUG
"(pid %d) start dumping LEB properties\n",
755 ubifs_get_lp_stats(c
, &lst
);
756 dbg_dump_lstats(&lst
);
758 for (lnum
= c
->main_first
; lnum
< c
->leb_cnt
; lnum
++) {
759 err
= ubifs_read_one_lp(c
, lnum
, &lp
);
761 ubifs_err("cannot read lprops for LEB %d", lnum
);
763 dbg_dump_lprop(c
, &lp
);
765 printk(KERN_DEBUG
"(pid %d) finish dumping LEB properties\n",
769 void dbg_dump_lpt_info(struct ubifs_info
*c
)
773 spin_lock(&dbg_lock
);
774 printk(KERN_DEBUG
"(pid %d) dumping LPT information\n", current
->pid
);
775 printk(KERN_DEBUG
"\tlpt_sz: %lld\n", c
->lpt_sz
);
776 printk(KERN_DEBUG
"\tpnode_sz: %d\n", c
->pnode_sz
);
777 printk(KERN_DEBUG
"\tnnode_sz: %d\n", c
->nnode_sz
);
778 printk(KERN_DEBUG
"\tltab_sz: %d\n", c
->ltab_sz
);
779 printk(KERN_DEBUG
"\tlsave_sz: %d\n", c
->lsave_sz
);
780 printk(KERN_DEBUG
"\tbig_lpt: %d\n", c
->big_lpt
);
781 printk(KERN_DEBUG
"\tlpt_hght: %d\n", c
->lpt_hght
);
782 printk(KERN_DEBUG
"\tpnode_cnt: %d\n", c
->pnode_cnt
);
783 printk(KERN_DEBUG
"\tnnode_cnt: %d\n", c
->nnode_cnt
);
784 printk(KERN_DEBUG
"\tdirty_pn_cnt: %d\n", c
->dirty_pn_cnt
);
785 printk(KERN_DEBUG
"\tdirty_nn_cnt: %d\n", c
->dirty_nn_cnt
);
786 printk(KERN_DEBUG
"\tlsave_cnt: %d\n", c
->lsave_cnt
);
787 printk(KERN_DEBUG
"\tspace_bits: %d\n", c
->space_bits
);
788 printk(KERN_DEBUG
"\tlpt_lnum_bits: %d\n", c
->lpt_lnum_bits
);
789 printk(KERN_DEBUG
"\tlpt_offs_bits: %d\n", c
->lpt_offs_bits
);
790 printk(KERN_DEBUG
"\tlpt_spc_bits: %d\n", c
->lpt_spc_bits
);
791 printk(KERN_DEBUG
"\tpcnt_bits: %d\n", c
->pcnt_bits
);
792 printk(KERN_DEBUG
"\tlnum_bits: %d\n", c
->lnum_bits
);
793 printk(KERN_DEBUG
"\tLPT root is at %d:%d\n", c
->lpt_lnum
, c
->lpt_offs
);
794 printk(KERN_DEBUG
"\tLPT head is at %d:%d\n",
795 c
->nhead_lnum
, c
->nhead_offs
);
796 printk(KERN_DEBUG
"\tLPT ltab is at %d:%d\n",
797 c
->ltab_lnum
, c
->ltab_offs
);
799 printk(KERN_DEBUG
"\tLPT lsave is at %d:%d\n",
800 c
->lsave_lnum
, c
->lsave_offs
);
801 for (i
= 0; i
< c
->lpt_lebs
; i
++)
802 printk(KERN_DEBUG
"\tLPT LEB %d free %d dirty %d tgc %d "
803 "cmt %d\n", i
+ c
->lpt_first
, c
->ltab
[i
].free
,
804 c
->ltab
[i
].dirty
, c
->ltab
[i
].tgc
, c
->ltab
[i
].cmt
);
805 spin_unlock(&dbg_lock
);
808 void dbg_dump_leb(const struct ubifs_info
*c
, int lnum
)
810 struct ubifs_scan_leb
*sleb
;
811 struct ubifs_scan_node
*snod
;
813 if (dbg_failure_mode
)
816 printk(KERN_DEBUG
"(pid %d) start dumping LEB %d\n",
818 sleb
= ubifs_scan(c
, lnum
, 0, c
->dbg
->buf
, 0);
820 ubifs_err("scan error %d", (int)PTR_ERR(sleb
));
824 printk(KERN_DEBUG
"LEB %d has %d nodes ending at %d\n", lnum
,
825 sleb
->nodes_cnt
, sleb
->endpt
);
827 list_for_each_entry(snod
, &sleb
->nodes
, list
) {
829 printk(KERN_DEBUG
"Dumping node at LEB %d:%d len %d\n", lnum
,
830 snod
->offs
, snod
->len
);
831 dbg_dump_node(c
, snod
->node
);
834 printk(KERN_DEBUG
"(pid %d) finish dumping LEB %d\n",
836 ubifs_scan_destroy(sleb
);
840 void dbg_dump_znode(const struct ubifs_info
*c
,
841 const struct ubifs_znode
*znode
)
844 const struct ubifs_zbranch
*zbr
;
846 spin_lock(&dbg_lock
);
848 zbr
= &znode
->parent
->zbranch
[znode
->iip
];
852 printk(KERN_DEBUG
"znode %p, LEB %d:%d len %d parent %p iip %d level %d"
853 " child_cnt %d flags %lx\n", znode
, zbr
->lnum
, zbr
->offs
,
854 zbr
->len
, znode
->parent
, znode
->iip
, znode
->level
,
855 znode
->child_cnt
, znode
->flags
);
857 if (znode
->child_cnt
<= 0 || znode
->child_cnt
> c
->fanout
) {
858 spin_unlock(&dbg_lock
);
862 printk(KERN_DEBUG
"zbranches:\n");
863 for (n
= 0; n
< znode
->child_cnt
; n
++) {
864 zbr
= &znode
->zbranch
[n
];
865 if (znode
->level
> 0)
866 printk(KERN_DEBUG
"\t%d: znode %p LEB %d:%d len %d key "
867 "%s\n", n
, zbr
->znode
, zbr
->lnum
,
871 printk(KERN_DEBUG
"\t%d: LNC %p LEB %d:%d len %d key "
872 "%s\n", n
, zbr
->znode
, zbr
->lnum
,
876 spin_unlock(&dbg_lock
);
879 void dbg_dump_heap(struct ubifs_info
*c
, struct ubifs_lpt_heap
*heap
, int cat
)
883 printk(KERN_DEBUG
"(pid %d) start dumping heap cat %d (%d elements)\n",
884 current
->pid
, cat
, heap
->cnt
);
885 for (i
= 0; i
< heap
->cnt
; i
++) {
886 struct ubifs_lprops
*lprops
= heap
->arr
[i
];
888 printk(KERN_DEBUG
"\t%d. LEB %d hpos %d free %d dirty %d "
889 "flags %d\n", i
, lprops
->lnum
, lprops
->hpos
,
890 lprops
->free
, lprops
->dirty
, lprops
->flags
);
892 printk(KERN_DEBUG
"(pid %d) finish dumping heap\n", current
->pid
);
895 void dbg_dump_pnode(struct ubifs_info
*c
, struct ubifs_pnode
*pnode
,
896 struct ubifs_nnode
*parent
, int iip
)
900 printk(KERN_DEBUG
"(pid %d) dumping pnode:\n", current
->pid
);
901 printk(KERN_DEBUG
"\taddress %zx parent %zx cnext %zx\n",
902 (size_t)pnode
, (size_t)parent
, (size_t)pnode
->cnext
);
903 printk(KERN_DEBUG
"\tflags %lu iip %d level %d num %d\n",
904 pnode
->flags
, iip
, pnode
->level
, pnode
->num
);
905 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
906 struct ubifs_lprops
*lp
= &pnode
->lprops
[i
];
908 printk(KERN_DEBUG
"\t%d: free %d dirty %d flags %d lnum %d\n",
909 i
, lp
->free
, lp
->dirty
, lp
->flags
, lp
->lnum
);
913 void dbg_dump_tnc(struct ubifs_info
*c
)
915 struct ubifs_znode
*znode
;
918 printk(KERN_DEBUG
"\n");
919 printk(KERN_DEBUG
"(pid %d) start dumping TNC tree\n", current
->pid
);
920 znode
= ubifs_tnc_levelorder_next(c
->zroot
.znode
, NULL
);
921 level
= znode
->level
;
922 printk(KERN_DEBUG
"== Level %d ==\n", level
);
924 if (level
!= znode
->level
) {
925 level
= znode
->level
;
926 printk(KERN_DEBUG
"== Level %d ==\n", level
);
928 dbg_dump_znode(c
, znode
);
929 znode
= ubifs_tnc_levelorder_next(c
->zroot
.znode
, znode
);
931 printk(KERN_DEBUG
"(pid %d) finish dumping TNC tree\n", current
->pid
);
934 static int dump_znode(struct ubifs_info
*c
, struct ubifs_znode
*znode
,
937 dbg_dump_znode(c
, znode
);
942 * dbg_dump_index - dump the on-flash index.
943 * @c: UBIFS file-system description object
945 * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
946 * which dumps only in-memory znodes and does not read znodes which from flash.
948 void dbg_dump_index(struct ubifs_info
*c
)
950 dbg_walk_index(c
, NULL
, dump_znode
, NULL
);
954 * dbg_save_space_info - save information about flash space.
955 * @c: UBIFS file-system description object
957 * This function saves information about UBIFS free space, dirty space, etc, in
958 * order to check it later.
960 void dbg_save_space_info(struct ubifs_info
*c
)
962 struct ubifs_debug_info
*d
= c
->dbg
;
964 ubifs_get_lp_stats(c
, &d
->saved_lst
);
966 spin_lock(&c
->space_lock
);
967 d
->saved_free
= ubifs_get_free_space_nolock(c
);
968 spin_unlock(&c
->space_lock
);
972 * dbg_check_space_info - check flash space information.
973 * @c: UBIFS file-system description object
975 * This function compares current flash space information with the information
976 * which was saved when the 'dbg_save_space_info()' function was called.
977 * Returns zero if the information has not changed, and %-EINVAL it it has
980 int dbg_check_space_info(struct ubifs_info
*c
)
982 struct ubifs_debug_info
*d
= c
->dbg
;
983 struct ubifs_lp_stats lst
;
984 long long avail
, free
;
986 spin_lock(&c
->space_lock
);
987 avail
= ubifs_calc_available(c
, c
->min_idx_lebs
);
988 spin_unlock(&c
->space_lock
);
989 free
= ubifs_get_free_space(c
);
991 if (free
!= d
->saved_free
) {
992 ubifs_err("free space changed from %lld to %lld",
993 d
->saved_free
, free
);
1000 ubifs_msg("saved lprops statistics dump");
1001 dbg_dump_lstats(&d
->saved_lst
);
1002 ubifs_get_lp_stats(c
, &lst
);
1004 ubifs_msg("current lprops statistics dump");
1005 dbg_dump_lstats(&lst
);
1007 spin_lock(&c
->space_lock
);
1009 spin_unlock(&c
->space_lock
);
1015 * dbg_check_synced_i_size - check synchronized inode size.
1016 * @inode: inode to check
1018 * If inode is clean, synchronized inode size has to be equivalent to current
1019 * inode size. This function has to be called only for locked inodes (@i_mutex
1020 * has to be locked). Returns %0 if synchronized inode size if correct, and
1023 int dbg_check_synced_i_size(struct inode
*inode
)
1026 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1028 if (!(ubifs_chk_flags
& UBIFS_CHK_GEN
))
1030 if (!S_ISREG(inode
->i_mode
))
1033 mutex_lock(&ui
->ui_mutex
);
1034 spin_lock(&ui
->ui_lock
);
1035 if (ui
->ui_size
!= ui
->synced_i_size
&& !ui
->dirty
) {
1036 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
1037 "is clean", ui
->ui_size
, ui
->synced_i_size
);
1038 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode
->i_ino
,
1039 inode
->i_mode
, i_size_read(inode
));
1043 spin_unlock(&ui
->ui_lock
);
1044 mutex_unlock(&ui
->ui_mutex
);
1049 * dbg_check_dir - check directory inode size and link count.
1050 * @c: UBIFS file-system description object
1051 * @dir: the directory to calculate size for
1052 * @size: the result is returned here
1054 * This function makes sure that directory size and link count are correct.
1055 * Returns zero in case of success and a negative error code in case of
1058 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1059 * calling this function.
1061 int dbg_check_dir_size(struct ubifs_info
*c
, const struct inode
*dir
)
1063 unsigned int nlink
= 2;
1064 union ubifs_key key
;
1065 struct ubifs_dent_node
*dent
, *pdent
= NULL
;
1066 struct qstr nm
= { .name
= NULL
};
1067 loff_t size
= UBIFS_INO_NODE_SZ
;
1069 if (!(ubifs_chk_flags
& UBIFS_CHK_GEN
))
1072 if (!S_ISDIR(dir
->i_mode
))
1075 lowest_dent_key(c
, &key
, dir
->i_ino
);
1079 dent
= ubifs_tnc_next_ent(c
, &key
, &nm
);
1081 err
= PTR_ERR(dent
);
1087 nm
.name
= dent
->name
;
1088 nm
.len
= le16_to_cpu(dent
->nlen
);
1089 size
+= CALC_DENT_SIZE(nm
.len
);
1090 if (dent
->type
== UBIFS_ITYPE_DIR
)
1094 key_read(c
, &dent
->key
, &key
);
1098 if (i_size_read(dir
) != size
) {
1099 ubifs_err("directory inode %lu has size %llu, "
1100 "but calculated size is %llu", dir
->i_ino
,
1101 (unsigned long long)i_size_read(dir
),
1102 (unsigned long long)size
);
1106 if (dir
->i_nlink
!= nlink
) {
1107 ubifs_err("directory inode %lu has nlink %u, but calculated "
1108 "nlink is %u", dir
->i_ino
, dir
->i_nlink
, nlink
);
1117 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1118 * @c: UBIFS file-system description object
1119 * @zbr1: first zbranch
1120 * @zbr2: following zbranch
1122 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1123 * names of the direntries/xentries which are referred by the keys. This
1124 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1125 * sure the name of direntry/xentry referred by @zbr1 is less than
1126 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1127 * and a negative error code in case of failure.
1129 static int dbg_check_key_order(struct ubifs_info
*c
, struct ubifs_zbranch
*zbr1
,
1130 struct ubifs_zbranch
*zbr2
)
1132 int err
, nlen1
, nlen2
, cmp
;
1133 struct ubifs_dent_node
*dent1
, *dent2
;
1134 union ubifs_key key
;
1136 ubifs_assert(!keys_cmp(c
, &zbr1
->key
, &zbr2
->key
));
1137 dent1
= kmalloc(UBIFS_MAX_DENT_NODE_SZ
, GFP_NOFS
);
1140 dent2
= kmalloc(UBIFS_MAX_DENT_NODE_SZ
, GFP_NOFS
);
1146 err
= ubifs_tnc_read_node(c
, zbr1
, dent1
);
1149 err
= ubifs_validate_entry(c
, dent1
);
1153 err
= ubifs_tnc_read_node(c
, zbr2
, dent2
);
1156 err
= ubifs_validate_entry(c
, dent2
);
1160 /* Make sure node keys are the same as in zbranch */
1162 key_read(c
, &dent1
->key
, &key
);
1163 if (keys_cmp(c
, &zbr1
->key
, &key
)) {
1164 dbg_err("1st entry at %d:%d has key %s", zbr1
->lnum
,
1165 zbr1
->offs
, DBGKEY(&key
));
1166 dbg_err("but it should have key %s according to tnc",
1167 DBGKEY(&zbr1
->key
));
1168 dbg_dump_node(c
, dent1
);
1172 key_read(c
, &dent2
->key
, &key
);
1173 if (keys_cmp(c
, &zbr2
->key
, &key
)) {
1174 dbg_err("2nd entry at %d:%d has key %s", zbr1
->lnum
,
1175 zbr1
->offs
, DBGKEY(&key
));
1176 dbg_err("but it should have key %s according to tnc",
1177 DBGKEY(&zbr2
->key
));
1178 dbg_dump_node(c
, dent2
);
1182 nlen1
= le16_to_cpu(dent1
->nlen
);
1183 nlen2
= le16_to_cpu(dent2
->nlen
);
1185 cmp
= memcmp(dent1
->name
, dent2
->name
, min_t(int, nlen1
, nlen2
));
1186 if (cmp
< 0 || (cmp
== 0 && nlen1
< nlen2
)) {
1190 if (cmp
== 0 && nlen1
== nlen2
)
1191 dbg_err("2 xent/dent nodes with the same name");
1193 dbg_err("bad order of colliding key %s",
1196 ubifs_msg("first node at %d:%d\n", zbr1
->lnum
, zbr1
->offs
);
1197 dbg_dump_node(c
, dent1
);
1198 ubifs_msg("second node at %d:%d\n", zbr2
->lnum
, zbr2
->offs
);
1199 dbg_dump_node(c
, dent2
);
1208 * dbg_check_znode - check if znode is all right.
1209 * @c: UBIFS file-system description object
1210 * @zbr: zbranch which points to this znode
1212 * This function makes sure that znode referred to by @zbr is all right.
1213 * Returns zero if it is, and %-EINVAL if it is not.
1215 static int dbg_check_znode(struct ubifs_info
*c
, struct ubifs_zbranch
*zbr
)
1217 struct ubifs_znode
*znode
= zbr
->znode
;
1218 struct ubifs_znode
*zp
= znode
->parent
;
1221 if (znode
->child_cnt
<= 0 || znode
->child_cnt
> c
->fanout
) {
1225 if (znode
->level
< 0) {
1229 if (znode
->iip
< 0 || znode
->iip
>= c
->fanout
) {
1235 /* Only dirty zbranch may have no on-flash nodes */
1236 if (!ubifs_zn_dirty(znode
)) {
1241 if (ubifs_zn_dirty(znode
)) {
1243 * If znode is dirty, its parent has to be dirty as well. The
1244 * order of the operation is important, so we have to have
1248 if (zp
&& !ubifs_zn_dirty(zp
)) {
1250 * The dirty flag is atomic and is cleared outside the
1251 * TNC mutex, so znode's dirty flag may now have
1252 * been cleared. The child is always cleared before the
1253 * parent, so we just need to check again.
1256 if (ubifs_zn_dirty(znode
)) {
1264 const union ubifs_key
*min
, *max
;
1266 if (znode
->level
!= zp
->level
- 1) {
1271 /* Make sure the 'parent' pointer in our znode is correct */
1272 err
= ubifs_search_zbranch(c
, zp
, &zbr
->key
, &n
);
1274 /* This zbranch does not exist in the parent */
1279 if (znode
->iip
>= zp
->child_cnt
) {
1284 if (znode
->iip
!= n
) {
1285 /* This may happen only in case of collisions */
1286 if (keys_cmp(c
, &zp
->zbranch
[n
].key
,
1287 &zp
->zbranch
[znode
->iip
].key
)) {
1295 * Make sure that the first key in our znode is greater than or
1296 * equal to the key in the pointing zbranch.
1299 cmp
= keys_cmp(c
, min
, &znode
->zbranch
[0].key
);
1305 if (n
+ 1 < zp
->child_cnt
) {
1306 max
= &zp
->zbranch
[n
+ 1].key
;
1309 * Make sure the last key in our znode is less or
1310 * equivalent than the key in the zbranch which goes
1311 * after our pointing zbranch.
1313 cmp
= keys_cmp(c
, max
,
1314 &znode
->zbranch
[znode
->child_cnt
- 1].key
);
1321 /* This may only be root znode */
1322 if (zbr
!= &c
->zroot
) {
1329 * Make sure that next key is greater or equivalent then the previous
1332 for (n
= 1; n
< znode
->child_cnt
; n
++) {
1333 cmp
= keys_cmp(c
, &znode
->zbranch
[n
- 1].key
,
1334 &znode
->zbranch
[n
].key
);
1340 /* This can only be keys with colliding hash */
1341 if (!is_hash_key(c
, &znode
->zbranch
[n
].key
)) {
1346 if (znode
->level
!= 0 || c
->replaying
)
1350 * Colliding keys should follow binary order of
1351 * corresponding xentry/dentry names.
1353 err
= dbg_check_key_order(c
, &znode
->zbranch
[n
- 1],
1354 &znode
->zbranch
[n
]);
1364 for (n
= 0; n
< znode
->child_cnt
; n
++) {
1365 if (!znode
->zbranch
[n
].znode
&&
1366 (znode
->zbranch
[n
].lnum
== 0 ||
1367 znode
->zbranch
[n
].len
== 0)) {
1372 if (znode
->zbranch
[n
].lnum
!= 0 &&
1373 znode
->zbranch
[n
].len
== 0) {
1378 if (znode
->zbranch
[n
].lnum
== 0 &&
1379 znode
->zbranch
[n
].len
!= 0) {
1384 if (znode
->zbranch
[n
].lnum
== 0 &&
1385 znode
->zbranch
[n
].offs
!= 0) {
1390 if (znode
->level
!= 0 && znode
->zbranch
[n
].znode
)
1391 if (znode
->zbranch
[n
].znode
->parent
!= znode
) {
1400 ubifs_err("failed, error %d", err
);
1401 ubifs_msg("dump of the znode");
1402 dbg_dump_znode(c
, znode
);
1404 ubifs_msg("dump of the parent znode");
1405 dbg_dump_znode(c
, zp
);
1412 * dbg_check_tnc - check TNC tree.
1413 * @c: UBIFS file-system description object
1414 * @extra: do extra checks that are possible at start commit
1416 * This function traverses whole TNC tree and checks every znode. Returns zero
1417 * if everything is all right and %-EINVAL if something is wrong with TNC.
1419 int dbg_check_tnc(struct ubifs_info
*c
, int extra
)
1421 struct ubifs_znode
*znode
;
1422 long clean_cnt
= 0, dirty_cnt
= 0;
1425 if (!(ubifs_chk_flags
& UBIFS_CHK_TNC
))
1428 ubifs_assert(mutex_is_locked(&c
->tnc_mutex
));
1429 if (!c
->zroot
.znode
)
1432 znode
= ubifs_tnc_postorder_first(c
->zroot
.znode
);
1434 struct ubifs_znode
*prev
;
1435 struct ubifs_zbranch
*zbr
;
1440 zbr
= &znode
->parent
->zbranch
[znode
->iip
];
1442 err
= dbg_check_znode(c
, zbr
);
1447 if (ubifs_zn_dirty(znode
))
1454 znode
= ubifs_tnc_postorder_next(znode
);
1459 * If the last key of this znode is equivalent to the first key
1460 * of the next znode (collision), then check order of the keys.
1462 last
= prev
->child_cnt
- 1;
1463 if (prev
->level
== 0 && znode
->level
== 0 && !c
->replaying
&&
1464 !keys_cmp(c
, &prev
->zbranch
[last
].key
,
1465 &znode
->zbranch
[0].key
)) {
1466 err
= dbg_check_key_order(c
, &prev
->zbranch
[last
],
1467 &znode
->zbranch
[0]);
1471 ubifs_msg("first znode");
1472 dbg_dump_znode(c
, prev
);
1473 ubifs_msg("second znode");
1474 dbg_dump_znode(c
, znode
);
1481 if (clean_cnt
!= atomic_long_read(&c
->clean_zn_cnt
)) {
1482 ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1483 atomic_long_read(&c
->clean_zn_cnt
),
1487 if (dirty_cnt
!= atomic_long_read(&c
->dirty_zn_cnt
)) {
1488 ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1489 atomic_long_read(&c
->dirty_zn_cnt
),
1499 * dbg_walk_index - walk the on-flash index.
1500 * @c: UBIFS file-system description object
1501 * @leaf_cb: called for each leaf node
1502 * @znode_cb: called for each indexing node
1503 * @priv: private data which is passed to callbacks
1505 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1506 * node and @znode_cb for each indexing node. Returns zero in case of success
1507 * and a negative error code in case of failure.
1509 * It would be better if this function removed every znode it pulled to into
1510 * the TNC, so that the behavior more closely matched the non-debugging
1513 int dbg_walk_index(struct ubifs_info
*c
, dbg_leaf_callback leaf_cb
,
1514 dbg_znode_callback znode_cb
, void *priv
)
1517 struct ubifs_zbranch
*zbr
;
1518 struct ubifs_znode
*znode
, *child
;
1520 mutex_lock(&c
->tnc_mutex
);
1521 /* If the root indexing node is not in TNC - pull it */
1522 if (!c
->zroot
.znode
) {
1523 c
->zroot
.znode
= ubifs_load_znode(c
, &c
->zroot
, NULL
, 0);
1524 if (IS_ERR(c
->zroot
.znode
)) {
1525 err
= PTR_ERR(c
->zroot
.znode
);
1526 c
->zroot
.znode
= NULL
;
1532 * We are going to traverse the indexing tree in the postorder manner.
1533 * Go down and find the leftmost indexing node where we are going to
1536 znode
= c
->zroot
.znode
;
1537 while (znode
->level
> 0) {
1538 zbr
= &znode
->zbranch
[0];
1541 child
= ubifs_load_znode(c
, zbr
, znode
, 0);
1542 if (IS_ERR(child
)) {
1543 err
= PTR_ERR(child
);
1552 /* Iterate over all indexing nodes */
1559 err
= znode_cb(c
, znode
, priv
);
1561 ubifs_err("znode checking function returned "
1563 dbg_dump_znode(c
, znode
);
1567 if (leaf_cb
&& znode
->level
== 0) {
1568 for (idx
= 0; idx
< znode
->child_cnt
; idx
++) {
1569 zbr
= &znode
->zbranch
[idx
];
1570 err
= leaf_cb(c
, zbr
, priv
);
1572 ubifs_err("leaf checking function "
1573 "returned error %d, for leaf "
1575 err
, zbr
->lnum
, zbr
->offs
);
1584 idx
= znode
->iip
+ 1;
1585 znode
= znode
->parent
;
1586 if (idx
< znode
->child_cnt
) {
1587 /* Switch to the next index in the parent */
1588 zbr
= &znode
->zbranch
[idx
];
1591 child
= ubifs_load_znode(c
, zbr
, znode
, idx
);
1592 if (IS_ERR(child
)) {
1593 err
= PTR_ERR(child
);
1601 * This is the last child, switch to the parent and
1606 /* Go to the lowest leftmost znode in the new sub-tree */
1607 while (znode
->level
> 0) {
1608 zbr
= &znode
->zbranch
[0];
1611 child
= ubifs_load_znode(c
, zbr
, znode
, 0);
1612 if (IS_ERR(child
)) {
1613 err
= PTR_ERR(child
);
1622 mutex_unlock(&c
->tnc_mutex
);
1627 zbr
= &znode
->parent
->zbranch
[znode
->iip
];
1630 ubifs_msg("dump of znode at LEB %d:%d", zbr
->lnum
, zbr
->offs
);
1631 dbg_dump_znode(c
, znode
);
1633 mutex_unlock(&c
->tnc_mutex
);
1638 * add_size - add znode size to partially calculated index size.
1639 * @c: UBIFS file-system description object
1640 * @znode: znode to add size for
1641 * @priv: partially calculated index size
1643 * This is a helper function for 'dbg_check_idx_size()' which is called for
1644 * every indexing node and adds its size to the 'long long' variable pointed to
1647 static int add_size(struct ubifs_info
*c
, struct ubifs_znode
*znode
, void *priv
)
1649 long long *idx_size
= priv
;
1652 add
= ubifs_idx_node_sz(c
, znode
->child_cnt
);
1653 add
= ALIGN(add
, 8);
1659 * dbg_check_idx_size - check index size.
1660 * @c: UBIFS file-system description object
1661 * @idx_size: size to check
1663 * This function walks the UBIFS index, calculates its size and checks that the
1664 * size is equivalent to @idx_size. Returns zero in case of success and a
1665 * negative error code in case of failure.
1667 int dbg_check_idx_size(struct ubifs_info
*c
, long long idx_size
)
1672 if (!(ubifs_chk_flags
& UBIFS_CHK_IDX_SZ
))
1675 err
= dbg_walk_index(c
, NULL
, add_size
, &calc
);
1677 ubifs_err("error %d while walking the index", err
);
1681 if (calc
!= idx_size
) {
1682 ubifs_err("index size check failed: calculated size is %lld, "
1683 "should be %lld", calc
, idx_size
);
1692 * struct fsck_inode - information about an inode used when checking the file-system.
1693 * @rb: link in the RB-tree of inodes
1694 * @inum: inode number
1695 * @mode: inode type, permissions, etc
1696 * @nlink: inode link count
1697 * @xattr_cnt: count of extended attributes
1698 * @references: how many directory/xattr entries refer this inode (calculated
1699 * while walking the index)
1700 * @calc_cnt: for directory inode count of child directories
1701 * @size: inode size (read from on-flash inode)
1702 * @xattr_sz: summary size of all extended attributes (read from on-flash
1704 * @calc_sz: for directories calculated directory size
1705 * @calc_xcnt: count of extended attributes
1706 * @calc_xsz: calculated summary size of all extended attributes
1707 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1708 * inode (read from on-flash inode)
1709 * @calc_xnms: calculated sum of lengths of all extended attribute names
1716 unsigned int xattr_cnt
;
1720 unsigned int xattr_sz
;
1722 long long calc_xcnt
;
1724 unsigned int xattr_nms
;
1725 long long calc_xnms
;
1729 * struct fsck_data - private FS checking information.
1730 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1733 struct rb_root inodes
;
1737 * add_inode - add inode information to RB-tree of inodes.
1738 * @c: UBIFS file-system description object
1739 * @fsckd: FS checking information
1740 * @ino: raw UBIFS inode to add
1742 * This is a helper function for 'check_leaf()' which adds information about
1743 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1744 * case of success and a negative error code in case of failure.
1746 static struct fsck_inode
*add_inode(struct ubifs_info
*c
,
1747 struct fsck_data
*fsckd
,
1748 struct ubifs_ino_node
*ino
)
1750 struct rb_node
**p
, *parent
= NULL
;
1751 struct fsck_inode
*fscki
;
1752 ino_t inum
= key_inum_flash(c
, &ino
->key
);
1754 p
= &fsckd
->inodes
.rb_node
;
1757 fscki
= rb_entry(parent
, struct fsck_inode
, rb
);
1758 if (inum
< fscki
->inum
)
1760 else if (inum
> fscki
->inum
)
1761 p
= &(*p
)->rb_right
;
1766 if (inum
> c
->highest_inum
) {
1767 ubifs_err("too high inode number, max. is %lu",
1768 (unsigned long)c
->highest_inum
);
1769 return ERR_PTR(-EINVAL
);
1772 fscki
= kzalloc(sizeof(struct fsck_inode
), GFP_NOFS
);
1774 return ERR_PTR(-ENOMEM
);
1777 fscki
->nlink
= le32_to_cpu(ino
->nlink
);
1778 fscki
->size
= le64_to_cpu(ino
->size
);
1779 fscki
->xattr_cnt
= le32_to_cpu(ino
->xattr_cnt
);
1780 fscki
->xattr_sz
= le32_to_cpu(ino
->xattr_size
);
1781 fscki
->xattr_nms
= le32_to_cpu(ino
->xattr_names
);
1782 fscki
->mode
= le32_to_cpu(ino
->mode
);
1783 if (S_ISDIR(fscki
->mode
)) {
1784 fscki
->calc_sz
= UBIFS_INO_NODE_SZ
;
1785 fscki
->calc_cnt
= 2;
1787 rb_link_node(&fscki
->rb
, parent
, p
);
1788 rb_insert_color(&fscki
->rb
, &fsckd
->inodes
);
1793 * search_inode - search inode in the RB-tree of inodes.
1794 * @fsckd: FS checking information
1795 * @inum: inode number to search
1797 * This is a helper function for 'check_leaf()' which searches inode @inum in
1798 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1799 * the inode was not found.
1801 static struct fsck_inode
*search_inode(struct fsck_data
*fsckd
, ino_t inum
)
1804 struct fsck_inode
*fscki
;
1806 p
= fsckd
->inodes
.rb_node
;
1808 fscki
= rb_entry(p
, struct fsck_inode
, rb
);
1809 if (inum
< fscki
->inum
)
1811 else if (inum
> fscki
->inum
)
1820 * read_add_inode - read inode node and add it to RB-tree of inodes.
1821 * @c: UBIFS file-system description object
1822 * @fsckd: FS checking information
1823 * @inum: inode number to read
1825 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1826 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1827 * information pointer in case of success and a negative error code in case of
1830 static struct fsck_inode
*read_add_inode(struct ubifs_info
*c
,
1831 struct fsck_data
*fsckd
, ino_t inum
)
1834 union ubifs_key key
;
1835 struct ubifs_znode
*znode
;
1836 struct ubifs_zbranch
*zbr
;
1837 struct ubifs_ino_node
*ino
;
1838 struct fsck_inode
*fscki
;
1840 fscki
= search_inode(fsckd
, inum
);
1844 ino_key_init(c
, &key
, inum
);
1845 err
= ubifs_lookup_level0(c
, &key
, &znode
, &n
);
1847 ubifs_err("inode %lu not found in index", (unsigned long)inum
);
1848 return ERR_PTR(-ENOENT
);
1849 } else if (err
< 0) {
1850 ubifs_err("error %d while looking up inode %lu",
1851 err
, (unsigned long)inum
);
1852 return ERR_PTR(err
);
1855 zbr
= &znode
->zbranch
[n
];
1856 if (zbr
->len
< UBIFS_INO_NODE_SZ
) {
1857 ubifs_err("bad node %lu node length %d",
1858 (unsigned long)inum
, zbr
->len
);
1859 return ERR_PTR(-EINVAL
);
1862 ino
= kmalloc(zbr
->len
, GFP_NOFS
);
1864 return ERR_PTR(-ENOMEM
);
1866 err
= ubifs_tnc_read_node(c
, zbr
, ino
);
1868 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
1869 zbr
->lnum
, zbr
->offs
, err
);
1871 return ERR_PTR(err
);
1874 fscki
= add_inode(c
, fsckd
, ino
);
1876 if (IS_ERR(fscki
)) {
1877 ubifs_err("error %ld while adding inode %lu node",
1878 PTR_ERR(fscki
), (unsigned long)inum
);
1886 * check_leaf - check leaf node.
1887 * @c: UBIFS file-system description object
1888 * @zbr: zbranch of the leaf node to check
1889 * @priv: FS checking information
1891 * This is a helper function for 'dbg_check_filesystem()' which is called for
1892 * every single leaf node while walking the indexing tree. It checks that the
1893 * leaf node referred from the indexing tree exists, has correct CRC, and does
1894 * some other basic validation. This function is also responsible for building
1895 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1896 * calculates reference count, size, etc for each inode in order to later
1897 * compare them to the information stored inside the inodes and detect possible
1898 * inconsistencies. Returns zero in case of success and a negative error code
1899 * in case of failure.
1901 static int check_leaf(struct ubifs_info
*c
, struct ubifs_zbranch
*zbr
,
1906 struct ubifs_ch
*ch
;
1907 int err
, type
= key_type(c
, &zbr
->key
);
1908 struct fsck_inode
*fscki
;
1910 if (zbr
->len
< UBIFS_CH_SZ
) {
1911 ubifs_err("bad leaf length %d (LEB %d:%d)",
1912 zbr
->len
, zbr
->lnum
, zbr
->offs
);
1916 node
= kmalloc(zbr
->len
, GFP_NOFS
);
1920 err
= ubifs_tnc_read_node(c
, zbr
, node
);
1922 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
1923 zbr
->lnum
, zbr
->offs
, err
);
1927 /* If this is an inode node, add it to RB-tree of inodes */
1928 if (type
== UBIFS_INO_KEY
) {
1929 fscki
= add_inode(c
, priv
, node
);
1930 if (IS_ERR(fscki
)) {
1931 err
= PTR_ERR(fscki
);
1932 ubifs_err("error %d while adding inode node", err
);
1938 if (type
!= UBIFS_DENT_KEY
&& type
!= UBIFS_XENT_KEY
&&
1939 type
!= UBIFS_DATA_KEY
) {
1940 ubifs_err("unexpected node type %d at LEB %d:%d",
1941 type
, zbr
->lnum
, zbr
->offs
);
1947 if (le64_to_cpu(ch
->sqnum
) > c
->max_sqnum
) {
1948 ubifs_err("too high sequence number, max. is %llu",
1954 if (type
== UBIFS_DATA_KEY
) {
1956 struct ubifs_data_node
*dn
= node
;
1959 * Search the inode node this data node belongs to and insert
1960 * it to the RB-tree of inodes.
1962 inum
= key_inum_flash(c
, &dn
->key
);
1963 fscki
= read_add_inode(c
, priv
, inum
);
1964 if (IS_ERR(fscki
)) {
1965 err
= PTR_ERR(fscki
);
1966 ubifs_err("error %d while processing data node and "
1967 "trying to find inode node %lu",
1968 err
, (unsigned long)inum
);
1972 /* Make sure the data node is within inode size */
1973 blk_offs
= key_block_flash(c
, &dn
->key
);
1974 blk_offs
<<= UBIFS_BLOCK_SHIFT
;
1975 blk_offs
+= le32_to_cpu(dn
->size
);
1976 if (blk_offs
> fscki
->size
) {
1977 ubifs_err("data node at LEB %d:%d is not within inode "
1978 "size %lld", zbr
->lnum
, zbr
->offs
,
1985 struct ubifs_dent_node
*dent
= node
;
1986 struct fsck_inode
*fscki1
;
1988 err
= ubifs_validate_entry(c
, dent
);
1993 * Search the inode node this entry refers to and the parent
1994 * inode node and insert them to the RB-tree of inodes.
1996 inum
= le64_to_cpu(dent
->inum
);
1997 fscki
= read_add_inode(c
, priv
, inum
);
1998 if (IS_ERR(fscki
)) {
1999 err
= PTR_ERR(fscki
);
2000 ubifs_err("error %d while processing entry node and "
2001 "trying to find inode node %lu",
2002 err
, (unsigned long)inum
);
2006 /* Count how many direntries or xentries refers this inode */
2007 fscki
->references
+= 1;
2009 inum
= key_inum_flash(c
, &dent
->key
);
2010 fscki1
= read_add_inode(c
, priv
, inum
);
2011 if (IS_ERR(fscki1
)) {
2012 err
= PTR_ERR(fscki1
);
2013 ubifs_err("error %d while processing entry node and "
2014 "trying to find parent inode node %lu",
2015 err
, (unsigned long)inum
);
2019 nlen
= le16_to_cpu(dent
->nlen
);
2020 if (type
== UBIFS_XENT_KEY
) {
2021 fscki1
->calc_xcnt
+= 1;
2022 fscki1
->calc_xsz
+= CALC_DENT_SIZE(nlen
);
2023 fscki1
->calc_xsz
+= CALC_XATTR_BYTES(fscki
->size
);
2024 fscki1
->calc_xnms
+= nlen
;
2026 fscki1
->calc_sz
+= CALC_DENT_SIZE(nlen
);
2027 if (dent
->type
== UBIFS_ITYPE_DIR
)
2028 fscki1
->calc_cnt
+= 1;
2037 ubifs_msg("dump of node at LEB %d:%d", zbr
->lnum
, zbr
->offs
);
2038 dbg_dump_node(c
, node
);
2045 * free_inodes - free RB-tree of inodes.
2046 * @fsckd: FS checking information
2048 static void free_inodes(struct fsck_data
*fsckd
)
2050 struct rb_node
*this = fsckd
->inodes
.rb_node
;
2051 struct fsck_inode
*fscki
;
2055 this = this->rb_left
;
2056 else if (this->rb_right
)
2057 this = this->rb_right
;
2059 fscki
= rb_entry(this, struct fsck_inode
, rb
);
2060 this = rb_parent(this);
2062 if (this->rb_left
== &fscki
->rb
)
2063 this->rb_left
= NULL
;
2065 this->rb_right
= NULL
;
2073 * check_inodes - checks all inodes.
2074 * @c: UBIFS file-system description object
2075 * @fsckd: FS checking information
2077 * This is a helper function for 'dbg_check_filesystem()' which walks the
2078 * RB-tree of inodes after the index scan has been finished, and checks that
2079 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2080 * %-EINVAL if not, and a negative error code in case of failure.
2082 static int check_inodes(struct ubifs_info
*c
, struct fsck_data
*fsckd
)
2085 union ubifs_key key
;
2086 struct ubifs_znode
*znode
;
2087 struct ubifs_zbranch
*zbr
;
2088 struct ubifs_ino_node
*ino
;
2089 struct fsck_inode
*fscki
;
2090 struct rb_node
*this = rb_first(&fsckd
->inodes
);
2093 fscki
= rb_entry(this, struct fsck_inode
, rb
);
2094 this = rb_next(this);
2096 if (S_ISDIR(fscki
->mode
)) {
2098 * Directories have to have exactly one reference (they
2099 * cannot have hardlinks), although root inode is an
2102 if (fscki
->inum
!= UBIFS_ROOT_INO
&&
2103 fscki
->references
!= 1) {
2104 ubifs_err("directory inode %lu has %d "
2105 "direntries which refer it, but "
2107 (unsigned long)fscki
->inum
,
2111 if (fscki
->inum
== UBIFS_ROOT_INO
&&
2112 fscki
->references
!= 0) {
2113 ubifs_err("root inode %lu has non-zero (%d) "
2114 "direntries which refer it",
2115 (unsigned long)fscki
->inum
,
2119 if (fscki
->calc_sz
!= fscki
->size
) {
2120 ubifs_err("directory inode %lu size is %lld, "
2121 "but calculated size is %lld",
2122 (unsigned long)fscki
->inum
,
2123 fscki
->size
, fscki
->calc_sz
);
2126 if (fscki
->calc_cnt
!= fscki
->nlink
) {
2127 ubifs_err("directory inode %lu nlink is %d, "
2128 "but calculated nlink is %d",
2129 (unsigned long)fscki
->inum
,
2130 fscki
->nlink
, fscki
->calc_cnt
);
2134 if (fscki
->references
!= fscki
->nlink
) {
2135 ubifs_err("inode %lu nlink is %d, but "
2136 "calculated nlink is %d",
2137 (unsigned long)fscki
->inum
,
2138 fscki
->nlink
, fscki
->references
);
2142 if (fscki
->xattr_sz
!= fscki
->calc_xsz
) {
2143 ubifs_err("inode %lu has xattr size %u, but "
2144 "calculated size is %lld",
2145 (unsigned long)fscki
->inum
, fscki
->xattr_sz
,
2149 if (fscki
->xattr_cnt
!= fscki
->calc_xcnt
) {
2150 ubifs_err("inode %lu has %u xattrs, but "
2151 "calculated count is %lld",
2152 (unsigned long)fscki
->inum
,
2153 fscki
->xattr_cnt
, fscki
->calc_xcnt
);
2156 if (fscki
->xattr_nms
!= fscki
->calc_xnms
) {
2157 ubifs_err("inode %lu has xattr names' size %u, but "
2158 "calculated names' size is %lld",
2159 (unsigned long)fscki
->inum
, fscki
->xattr_nms
,
2168 /* Read the bad inode and dump it */
2169 ino_key_init(c
, &key
, fscki
->inum
);
2170 err
= ubifs_lookup_level0(c
, &key
, &znode
, &n
);
2172 ubifs_err("inode %lu not found in index",
2173 (unsigned long)fscki
->inum
);
2175 } else if (err
< 0) {
2176 ubifs_err("error %d while looking up inode %lu",
2177 err
, (unsigned long)fscki
->inum
);
2181 zbr
= &znode
->zbranch
[n
];
2182 ino
= kmalloc(zbr
->len
, GFP_NOFS
);
2186 err
= ubifs_tnc_read_node(c
, zbr
, ino
);
2188 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2189 zbr
->lnum
, zbr
->offs
, err
);
2194 ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2195 (unsigned long)fscki
->inum
, zbr
->lnum
, zbr
->offs
);
2196 dbg_dump_node(c
, ino
);
2202 * dbg_check_filesystem - check the file-system.
2203 * @c: UBIFS file-system description object
2205 * This function checks the file system, namely:
2206 * o makes sure that all leaf nodes exist and their CRCs are correct;
2207 * o makes sure inode nlink, size, xattr size/count are correct (for all
2210 * The function reads whole indexing tree and all nodes, so it is pretty
2211 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2212 * not, and a negative error code in case of failure.
2214 int dbg_check_filesystem(struct ubifs_info
*c
)
2217 struct fsck_data fsckd
;
2219 if (!(ubifs_chk_flags
& UBIFS_CHK_FS
))
2222 fsckd
.inodes
= RB_ROOT
;
2223 err
= dbg_walk_index(c
, check_leaf
, NULL
, &fsckd
);
2227 err
= check_inodes(c
, &fsckd
);
2231 free_inodes(&fsckd
);
2235 ubifs_err("file-system check failed with error %d", err
);
2237 free_inodes(&fsckd
);
2241 static int invocation_cnt
;
2243 int dbg_force_in_the_gaps(void)
2245 if (!dbg_force_in_the_gaps_enabled
)
2247 /* Force in-the-gaps every 8th commit */
2248 return !((invocation_cnt
++) & 0x7);
2251 /* Failure mode for recovery testing */
2253 #define chance(n, d) (simple_rand() <= (n) * 32768LL / (d))
2255 struct failure_mode_info
{
2256 struct list_head list
;
2257 struct ubifs_info
*c
;
2260 static LIST_HEAD(fmi_list
);
2261 static DEFINE_SPINLOCK(fmi_lock
);
2263 static unsigned int next
;
2265 static int simple_rand(void)
2268 next
= current
->pid
;
2269 next
= next
* 1103515245 + 12345;
2270 return (next
>> 16) & 32767;
2273 static void failure_mode_init(struct ubifs_info
*c
)
2275 struct failure_mode_info
*fmi
;
2277 fmi
= kmalloc(sizeof(struct failure_mode_info
), GFP_NOFS
);
2279 ubifs_err("Failed to register failure mode - no memory");
2283 spin_lock(&fmi_lock
);
2284 list_add_tail(&fmi
->list
, &fmi_list
);
2285 spin_unlock(&fmi_lock
);
2288 static void failure_mode_exit(struct ubifs_info
*c
)
2290 struct failure_mode_info
*fmi
, *tmp
;
2292 spin_lock(&fmi_lock
);
2293 list_for_each_entry_safe(fmi
, tmp
, &fmi_list
, list
)
2295 list_del(&fmi
->list
);
2298 spin_unlock(&fmi_lock
);
2301 static struct ubifs_info
*dbg_find_info(struct ubi_volume_desc
*desc
)
2303 struct failure_mode_info
*fmi
;
2305 spin_lock(&fmi_lock
);
2306 list_for_each_entry(fmi
, &fmi_list
, list
)
2307 if (fmi
->c
->ubi
== desc
) {
2308 struct ubifs_info
*c
= fmi
->c
;
2310 spin_unlock(&fmi_lock
);
2313 spin_unlock(&fmi_lock
);
2317 static int in_failure_mode(struct ubi_volume_desc
*desc
)
2319 struct ubifs_info
*c
= dbg_find_info(desc
);
2321 if (c
&& dbg_failure_mode
)
2322 return c
->dbg
->failure_mode
;
2326 static int do_fail(struct ubi_volume_desc
*desc
, int lnum
, int write
)
2328 struct ubifs_info
*c
= dbg_find_info(desc
);
2329 struct ubifs_debug_info
*d
;
2331 if (!c
|| !dbg_failure_mode
)
2334 if (d
->failure_mode
)
2337 /* First call - decide delay to failure */
2339 unsigned int delay
= 1 << (simple_rand() >> 11);
2343 d
->fail_timeout
= jiffies
+
2344 msecs_to_jiffies(delay
);
2345 dbg_rcvry("failing after %ums", delay
);
2348 d
->fail_cnt_max
= delay
;
2349 dbg_rcvry("failing after %u calls", delay
);
2354 /* Determine if failure delay has expired */
2355 if (d
->fail_delay
== 1) {
2356 if (time_before(jiffies
, d
->fail_timeout
))
2358 } else if (d
->fail_delay
== 2)
2359 if (d
->fail_cnt
++ < d
->fail_cnt_max
)
2361 if (lnum
== UBIFS_SB_LNUM
) {
2365 } else if (chance(19, 20))
2367 dbg_rcvry("failing in super block LEB %d", lnum
);
2368 } else if (lnum
== UBIFS_MST_LNUM
|| lnum
== UBIFS_MST_LNUM
+ 1) {
2371 dbg_rcvry("failing in master LEB %d", lnum
);
2372 } else if (lnum
>= UBIFS_LOG_LNUM
&& lnum
<= c
->log_last
) {
2374 if (chance(99, 100))
2376 } else if (chance(399, 400))
2378 dbg_rcvry("failing in log LEB %d", lnum
);
2379 } else if (lnum
>= c
->lpt_first
&& lnum
<= c
->lpt_last
) {
2383 } else if (chance(19, 20))
2385 dbg_rcvry("failing in LPT LEB %d", lnum
);
2386 } else if (lnum
>= c
->orph_first
&& lnum
<= c
->orph_last
) {
2390 } else if (chance(9, 10))
2392 dbg_rcvry("failing in orphan LEB %d", lnum
);
2393 } else if (lnum
== c
->ihead_lnum
) {
2394 if (chance(99, 100))
2396 dbg_rcvry("failing in index head LEB %d", lnum
);
2397 } else if (c
->jheads
&& lnum
== c
->jheads
[GCHD
].wbuf
.lnum
) {
2400 dbg_rcvry("failing in GC head LEB %d", lnum
);
2401 } else if (write
&& !RB_EMPTY_ROOT(&c
->buds
) &&
2402 !ubifs_search_bud(c
, lnum
)) {
2405 dbg_rcvry("failing in non-bud LEB %d", lnum
);
2406 } else if (c
->cmt_state
== COMMIT_RUNNING_BACKGROUND
||
2407 c
->cmt_state
== COMMIT_RUNNING_REQUIRED
) {
2408 if (chance(999, 1000))
2410 dbg_rcvry("failing in bud LEB %d commit running", lnum
);
2412 if (chance(9999, 10000))
2414 dbg_rcvry("failing in bud LEB %d commit not running", lnum
);
2416 ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum
);
2417 d
->failure_mode
= 1;
2422 static void cut_data(const void *buf
, int len
)
2425 unsigned char *p
= (void *)buf
;
2427 flen
= (len
* (long long)simple_rand()) >> 15;
2428 for (i
= flen
; i
< len
; i
++)
2432 int dbg_leb_read(struct ubi_volume_desc
*desc
, int lnum
, char *buf
, int offset
,
2435 if (in_failure_mode(desc
))
2437 return ubi_leb_read(desc
, lnum
, buf
, offset
, len
, check
);
2440 int dbg_leb_write(struct ubi_volume_desc
*desc
, int lnum
, const void *buf
,
2441 int offset
, int len
, int dtype
)
2445 if (in_failure_mode(desc
))
2447 failing
= do_fail(desc
, lnum
, 1);
2450 err
= ubi_leb_write(desc
, lnum
, buf
, offset
, len
, dtype
);
2458 int dbg_leb_change(struct ubi_volume_desc
*desc
, int lnum
, const void *buf
,
2463 if (do_fail(desc
, lnum
, 1))
2465 err
= ubi_leb_change(desc
, lnum
, buf
, len
, dtype
);
2468 if (do_fail(desc
, lnum
, 1))
2473 int dbg_leb_erase(struct ubi_volume_desc
*desc
, int lnum
)
2477 if (do_fail(desc
, lnum
, 0))
2479 err
= ubi_leb_erase(desc
, lnum
);
2482 if (do_fail(desc
, lnum
, 0))
2487 int dbg_leb_unmap(struct ubi_volume_desc
*desc
, int lnum
)
2491 if (do_fail(desc
, lnum
, 0))
2493 err
= ubi_leb_unmap(desc
, lnum
);
2496 if (do_fail(desc
, lnum
, 0))
2501 int dbg_is_mapped(struct ubi_volume_desc
*desc
, int lnum
)
2503 if (in_failure_mode(desc
))
2505 return ubi_is_mapped(desc
, lnum
);
2508 int dbg_leb_map(struct ubi_volume_desc
*desc
, int lnum
, int dtype
)
2512 if (do_fail(desc
, lnum
, 0))
2514 err
= ubi_leb_map(desc
, lnum
, dtype
);
2517 if (do_fail(desc
, lnum
, 0))
2523 * ubifs_debugging_init - initialize UBIFS debugging.
2524 * @c: UBIFS file-system description object
2526 * This function initializes debugging-related data for the file system.
2527 * Returns zero in case of success and a negative error code in case of
2530 int ubifs_debugging_init(struct ubifs_info
*c
)
2532 c
->dbg
= kzalloc(sizeof(struct ubifs_debug_info
), GFP_KERNEL
);
2536 c
->dbg
->buf
= vmalloc(c
->leb_size
);
2540 failure_mode_init(c
);
2549 * ubifs_debugging_exit - free debugging data.
2550 * @c: UBIFS file-system description object
2552 void ubifs_debugging_exit(struct ubifs_info
*c
)
2554 failure_mode_exit(c
);
2560 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2561 * contain the stuff specific to particular file-system mounts.
2563 static struct dentry
*dfs_rootdir
;
2566 * dbg_debugfs_init - initialize debugfs file-system.
2568 * UBIFS uses debugfs file-system to expose various debugging knobs to
2569 * user-space. This function creates "ubifs" directory in the debugfs
2570 * file-system. Returns zero in case of success and a negative error code in
2573 int dbg_debugfs_init(void)
2575 dfs_rootdir
= debugfs_create_dir("ubifs", NULL
);
2576 if (IS_ERR(dfs_rootdir
)) {
2577 int err
= PTR_ERR(dfs_rootdir
);
2578 ubifs_err("cannot create \"ubifs\" debugfs directory, "
2587 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2589 void dbg_debugfs_exit(void)
2591 debugfs_remove(dfs_rootdir
);
2594 static int open_debugfs_file(struct inode
*inode
, struct file
*file
)
2596 file
->private_data
= inode
->i_private
;
2600 static ssize_t
write_debugfs_file(struct file
*file
, const char __user
*buf
,
2601 size_t count
, loff_t
*ppos
)
2603 struct ubifs_info
*c
= file
->private_data
;
2604 struct ubifs_debug_info
*d
= c
->dbg
;
2606 if (file
->f_path
.dentry
== d
->dfs_dump_lprops
)
2608 else if (file
->f_path
.dentry
== d
->dfs_dump_budg
) {
2609 spin_lock(&c
->space_lock
);
2611 spin_unlock(&c
->space_lock
);
2612 } else if (file
->f_path
.dentry
== d
->dfs_dump_tnc
) {
2613 mutex_lock(&c
->tnc_mutex
);
2615 mutex_unlock(&c
->tnc_mutex
);
2623 static const struct file_operations dfs_fops
= {
2624 .open
= open_debugfs_file
,
2625 .write
= write_debugfs_file
,
2626 .owner
= THIS_MODULE
,
2630 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2631 * @c: UBIFS file-system description object
2633 * This function creates all debugfs files for this instance of UBIFS. Returns
2634 * zero in case of success and a negative error code in case of failure.
2636 * Note, the only reason we have not merged this function with the
2637 * 'ubifs_debugging_init()' function is because it is better to initialize
2638 * debugfs interfaces at the very end of the mount process, and remove them at
2639 * the very beginning of the mount process.
2641 int dbg_debugfs_init_fs(struct ubifs_info
*c
)
2645 struct dentry
*dent
;
2646 struct ubifs_debug_info
*d
= c
->dbg
;
2648 sprintf(d
->dfs_dir_name
, "ubi%d_%d", c
->vi
.ubi_num
, c
->vi
.vol_id
);
2649 d
->dfs_dir
= debugfs_create_dir(d
->dfs_dir_name
, dfs_rootdir
);
2650 if (IS_ERR(d
->dfs_dir
)) {
2651 err
= PTR_ERR(d
->dfs_dir
);
2652 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2653 d
->dfs_dir_name
, err
);
2657 fname
= "dump_lprops";
2658 dent
= debugfs_create_file(fname
, S_IWUGO
, d
->dfs_dir
, c
, &dfs_fops
);
2661 d
->dfs_dump_lprops
= dent
;
2663 fname
= "dump_budg";
2664 dent
= debugfs_create_file(fname
, S_IWUGO
, d
->dfs_dir
, c
, &dfs_fops
);
2667 d
->dfs_dump_budg
= dent
;
2670 dent
= debugfs_create_file(fname
, S_IWUGO
, d
->dfs_dir
, c
, &dfs_fops
);
2673 d
->dfs_dump_tnc
= dent
;
2678 err
= PTR_ERR(dent
);
2679 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2681 debugfs_remove_recursive(d
->dfs_dir
);
2687 * dbg_debugfs_exit_fs - remove all debugfs files.
2688 * @c: UBIFS file-system description object
2690 void dbg_debugfs_exit_fs(struct ubifs_info
*c
)
2692 debugfs_remove_recursive(c
->dbg
->dfs_dir
);
2695 #endif /* CONFIG_UBIFS_FS_DEBUG */