[PATCH] ntp: prescale time_offset
[firewire-audio.git] / kernel / time / ntp.c
blob238ce47ef09d2b326b0d857a5f37ca8a9945e9a4
1 /*
2 * linux/kernel/time/ntp.c
4 * NTP state machine interfaces and logic.
6 * This code was mainly moved from kernel/timer.c and kernel/time.c
7 * Please see those files for relevant copyright info and historical
8 * changelogs.
9 */
11 #include <linux/mm.h>
12 #include <linux/time.h>
13 #include <linux/timex.h>
15 #include <asm/div64.h>
16 #include <asm/timex.h>
19 * Timekeeping variables
21 unsigned long tick_usec = TICK_USEC; /* USER_HZ period (usec) */
22 unsigned long tick_nsec; /* ACTHZ period (nsec) */
23 static u64 tick_length, tick_length_base;
25 /* Don't completely fail for HZ > 500. */
26 int tickadj = 500/HZ ? : 1; /* microsecs */
29 * phase-lock loop variables
31 /* TIME_ERROR prevents overwriting the CMOS clock */
32 int time_state = TIME_OK; /* clock synchronization status */
33 int time_status = STA_UNSYNC; /* clock status bits */
34 long time_offset; /* time adjustment (ns) */
35 long time_constant = 2; /* pll time constant */
36 long time_tolerance = MAXFREQ; /* frequency tolerance (ppm) */
37 long time_precision = 1; /* clock precision (us) */
38 long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */
39 long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */
40 long time_freq; /* frequency offset (scaled ppm)*/
41 long time_reftime; /* time at last adjustment (s) */
42 long time_adjust;
43 long time_next_adjust;
45 /**
46 * ntp_clear - Clears the NTP state variables
48 * Must be called while holding a write on the xtime_lock
50 void ntp_clear(void)
52 time_adjust = 0; /* stop active adjtime() */
53 time_status |= STA_UNSYNC;
54 time_maxerror = NTP_PHASE_LIMIT;
55 time_esterror = NTP_PHASE_LIMIT;
57 ntp_update_frequency();
59 tick_length = tick_length_base;
60 time_offset = 0;
63 #define CLOCK_TICK_OVERFLOW (LATCH * HZ - CLOCK_TICK_RATE)
64 #define CLOCK_TICK_ADJUST (((s64)CLOCK_TICK_OVERFLOW * NSEC_PER_SEC) / (s64)CLOCK_TICK_RATE)
66 void ntp_update_frequency(void)
68 tick_length_base = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ) << TICK_LENGTH_SHIFT;
69 tick_length_base += (s64)CLOCK_TICK_ADJUST << TICK_LENGTH_SHIFT;
70 tick_length_base += ((s64)time_freq * NSEC_PER_USEC) << (TICK_LENGTH_SHIFT - SHIFT_USEC);
72 do_div(tick_length_base, HZ);
74 tick_nsec = tick_length_base >> TICK_LENGTH_SHIFT;
78 * this routine handles the overflow of the microsecond field
80 * The tricky bits of code to handle the accurate clock support
81 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
82 * They were originally developed for SUN and DEC kernels.
83 * All the kudos should go to Dave for this stuff.
85 void second_overflow(void)
87 long time_adj;
89 /* Bump the maxerror field */
90 time_maxerror += time_tolerance >> SHIFT_USEC;
91 if (time_maxerror > NTP_PHASE_LIMIT) {
92 time_maxerror = NTP_PHASE_LIMIT;
93 time_status |= STA_UNSYNC;
97 * Leap second processing. If in leap-insert state at the end of the
98 * day, the system clock is set back one second; if in leap-delete
99 * state, the system clock is set ahead one second. The microtime()
100 * routine or external clock driver will insure that reported time is
101 * always monotonic. The ugly divides should be replaced.
103 switch (time_state) {
104 case TIME_OK:
105 if (time_status & STA_INS)
106 time_state = TIME_INS;
107 else if (time_status & STA_DEL)
108 time_state = TIME_DEL;
109 break;
110 case TIME_INS:
111 if (xtime.tv_sec % 86400 == 0) {
112 xtime.tv_sec--;
113 wall_to_monotonic.tv_sec++;
115 * The timer interpolator will make time change
116 * gradually instead of an immediate jump by one second
118 time_interpolator_update(-NSEC_PER_SEC);
119 time_state = TIME_OOP;
120 clock_was_set();
121 printk(KERN_NOTICE "Clock: inserting leap second "
122 "23:59:60 UTC\n");
124 break;
125 case TIME_DEL:
126 if ((xtime.tv_sec + 1) % 86400 == 0) {
127 xtime.tv_sec++;
128 wall_to_monotonic.tv_sec--;
130 * Use of time interpolator for a gradual change of
131 * time
133 time_interpolator_update(NSEC_PER_SEC);
134 time_state = TIME_WAIT;
135 clock_was_set();
136 printk(KERN_NOTICE "Clock: deleting leap second "
137 "23:59:59 UTC\n");
139 break;
140 case TIME_OOP:
141 time_state = TIME_WAIT;
142 break;
143 case TIME_WAIT:
144 if (!(time_status & (STA_INS | STA_DEL)))
145 time_state = TIME_OK;
149 * Compute the phase adjustment for the next second. In PLL mode, the
150 * offset is reduced by a fixed factor times the time constant. In FLL
151 * mode the offset is used directly. In either mode, the maximum phase
152 * adjustment for each second is clamped so as to spread the adjustment
153 * over not more than the number of seconds between updates.
155 tick_length = tick_length_base;
156 time_adj = time_offset;
157 if (!(time_status & STA_FLL))
158 time_adj = shift_right(time_adj, SHIFT_KG + time_constant);
159 time_adj = min(time_adj, -((MAXPHASE / HZ) << SHIFT_UPDATE) / MINSEC);
160 time_adj = max(time_adj, ((MAXPHASE / HZ) << SHIFT_UPDATE) / MINSEC);
161 time_offset -= time_adj;
162 tick_length += (s64)time_adj << (TICK_LENGTH_SHIFT - SHIFT_UPDATE);
166 * Returns how many microseconds we need to add to xtime this tick
167 * in doing an adjustment requested with adjtime.
169 static long adjtime_adjustment(void)
171 long time_adjust_step;
173 time_adjust_step = time_adjust;
174 if (time_adjust_step) {
176 * We are doing an adjtime thing. Prepare time_adjust_step to
177 * be within bounds. Note that a positive time_adjust means we
178 * want the clock to run faster.
180 * Limit the amount of the step to be in the range
181 * -tickadj .. +tickadj
183 time_adjust_step = min(time_adjust_step, (long)tickadj);
184 time_adjust_step = max(time_adjust_step, (long)-tickadj);
186 return time_adjust_step;
189 /* in the NTP reference this is called "hardclock()" */
190 void update_ntp_one_tick(void)
192 long time_adjust_step;
194 time_adjust_step = adjtime_adjustment();
195 if (time_adjust_step)
196 /* Reduce by this step the amount of time left */
197 time_adjust -= time_adjust_step;
199 /* Changes by adjtime() do not take effect till next tick. */
200 if (time_next_adjust != 0) {
201 time_adjust = time_next_adjust;
202 time_next_adjust = 0;
207 * Return how long ticks are at the moment, that is, how much time
208 * update_wall_time_one_tick will add to xtime next time we call it
209 * (assuming no calls to do_adjtimex in the meantime).
210 * The return value is in fixed-point nanoseconds shifted by the
211 * specified number of bits to the right of the binary point.
212 * This function has no side-effects.
214 u64 current_tick_length(void)
216 u64 ret;
218 /* calculate the finest interval NTP will allow.
220 ret = tick_length;
221 ret += (u64)(adjtime_adjustment() * 1000) << TICK_LENGTH_SHIFT;
223 return ret;
227 void __attribute__ ((weak)) notify_arch_cmos_timer(void)
229 return;
232 /* adjtimex mainly allows reading (and writing, if superuser) of
233 * kernel time-keeping variables. used by xntpd.
235 int do_adjtimex(struct timex *txc)
237 long ltemp, mtemp, save_adjust;
238 int result;
240 /* In order to modify anything, you gotta be super-user! */
241 if (txc->modes && !capable(CAP_SYS_TIME))
242 return -EPERM;
244 /* Now we validate the data before disabling interrupts */
246 if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT)
247 /* singleshot must not be used with any other mode bits */
248 if (txc->modes != ADJ_OFFSET_SINGLESHOT)
249 return -EINVAL;
251 if (txc->modes != ADJ_OFFSET_SINGLESHOT && (txc->modes & ADJ_OFFSET))
252 /* adjustment Offset limited to +- .512 seconds */
253 if (txc->offset <= - MAXPHASE || txc->offset >= MAXPHASE )
254 return -EINVAL;
256 /* if the quartz is off by more than 10% something is VERY wrong ! */
257 if (txc->modes & ADJ_TICK)
258 if (txc->tick < 900000/USER_HZ ||
259 txc->tick > 1100000/USER_HZ)
260 return -EINVAL;
262 write_seqlock_irq(&xtime_lock);
263 result = time_state; /* mostly `TIME_OK' */
265 /* Save for later - semantics of adjtime is to return old value */
266 save_adjust = time_next_adjust ? time_next_adjust : time_adjust;
268 #if 0 /* STA_CLOCKERR is never set yet */
269 time_status &= ~STA_CLOCKERR; /* reset STA_CLOCKERR */
270 #endif
271 /* If there are input parameters, then process them */
272 if (txc->modes)
274 if (txc->modes & ADJ_STATUS) /* only set allowed bits */
275 time_status = (txc->status & ~STA_RONLY) |
276 (time_status & STA_RONLY);
278 if (txc->modes & ADJ_FREQUENCY) { /* p. 22 */
279 if (txc->freq > MAXFREQ || txc->freq < -MAXFREQ) {
280 result = -EINVAL;
281 goto leave;
283 time_freq = txc->freq;
286 if (txc->modes & ADJ_MAXERROR) {
287 if (txc->maxerror < 0 || txc->maxerror >= NTP_PHASE_LIMIT) {
288 result = -EINVAL;
289 goto leave;
291 time_maxerror = txc->maxerror;
294 if (txc->modes & ADJ_ESTERROR) {
295 if (txc->esterror < 0 || txc->esterror >= NTP_PHASE_LIMIT) {
296 result = -EINVAL;
297 goto leave;
299 time_esterror = txc->esterror;
302 if (txc->modes & ADJ_TIMECONST) { /* p. 24 */
303 if (txc->constant < 0) { /* NTP v4 uses values > 6 */
304 result = -EINVAL;
305 goto leave;
307 time_constant = txc->constant;
310 if (txc->modes & ADJ_OFFSET) { /* values checked earlier */
311 if (txc->modes == ADJ_OFFSET_SINGLESHOT) {
312 /* adjtime() is independent from ntp_adjtime() */
313 if ((time_next_adjust = txc->offset) == 0)
314 time_adjust = 0;
316 else if (time_status & STA_PLL) {
317 ltemp = txc->offset;
320 * Scale the phase adjustment and
321 * clamp to the operating range.
323 time_offset = min(ltemp, MAXPHASE);
324 time_offset = max(time_offset, -MAXPHASE);
327 * Select whether the frequency is to be controlled
328 * and in which mode (PLL or FLL). Clamp to the operating
329 * range. Ugly multiply/divide should be replaced someday.
332 if (time_status & STA_FREQHOLD || time_reftime == 0)
333 time_reftime = xtime.tv_sec;
334 mtemp = xtime.tv_sec - time_reftime;
335 time_reftime = xtime.tv_sec;
336 if (time_status & STA_FLL) {
337 if (mtemp >= MINSEC) {
338 ltemp = ((time_offset << 12) / mtemp) << (SHIFT_USEC - 12);
339 time_freq += shift_right(ltemp, SHIFT_KH);
340 } else /* calibration interval too short (p. 12) */
341 result = TIME_ERROR;
342 } else { /* PLL mode */
343 if (mtemp < MAXSEC) {
344 ltemp *= mtemp;
345 time_freq += shift_right(ltemp,(time_constant +
346 time_constant +
347 SHIFT_KF - SHIFT_USEC));
348 } else /* calibration interval too long (p. 12) */
349 result = TIME_ERROR;
351 time_freq = min(time_freq, time_tolerance);
352 time_freq = max(time_freq, -time_tolerance);
353 time_offset = (time_offset * NSEC_PER_USEC / HZ) << SHIFT_UPDATE;
354 } /* STA_PLL */
355 } /* txc->modes & ADJ_OFFSET */
356 if (txc->modes & ADJ_TICK)
357 tick_usec = txc->tick;
359 if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
360 ntp_update_frequency();
361 } /* txc->modes */
362 leave: if ((time_status & (STA_UNSYNC|STA_CLOCKERR)) != 0)
363 result = TIME_ERROR;
365 if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT)
366 txc->offset = save_adjust;
367 else
368 txc->offset = shift_right(time_offset, SHIFT_UPDATE) * HZ / 1000;
369 txc->freq = time_freq;
370 txc->maxerror = time_maxerror;
371 txc->esterror = time_esterror;
372 txc->status = time_status;
373 txc->constant = time_constant;
374 txc->precision = time_precision;
375 txc->tolerance = time_tolerance;
376 txc->tick = tick_usec;
378 /* PPS is not implemented, so these are zero */
379 txc->ppsfreq = 0;
380 txc->jitter = 0;
381 txc->shift = 0;
382 txc->stabil = 0;
383 txc->jitcnt = 0;
384 txc->calcnt = 0;
385 txc->errcnt = 0;
386 txc->stbcnt = 0;
387 write_sequnlock_irq(&xtime_lock);
388 do_gettimeofday(&txc->time);
389 notify_arch_cmos_timer();
390 return(result);