KVM: Remove redundant alloc_vmcs_cpu declaration
[firewire-audio.git] / drivers / kvm / vmx.c
bloba94eb205cecd559547381a94d97f9a8d8391dcbf
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
18 #include "kvm.h"
19 #include "x86_emulate.h"
20 #include "vmx.h"
21 #include "segment_descriptor.h"
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/profile.h>
28 #include <linux/sched.h>
30 #include <asm/io.h>
31 #include <asm/desc.h>
33 MODULE_AUTHOR("Qumranet");
34 MODULE_LICENSE("GPL");
36 struct vmcs {
37 u32 revision_id;
38 u32 abort;
39 char data[0];
42 struct vcpu_vmx {
43 struct kvm_vcpu vcpu;
44 int launched;
45 struct kvm_msr_entry *guest_msrs;
46 struct kvm_msr_entry *host_msrs;
47 int nmsrs;
48 int save_nmsrs;
49 int msr_offset_efer;
50 #ifdef CONFIG_X86_64
51 int msr_offset_kernel_gs_base;
52 #endif
53 struct vmcs *vmcs;
54 struct {
55 int loaded;
56 u16 fs_sel, gs_sel, ldt_sel;
57 int fs_gs_ldt_reload_needed;
58 }host_state;
62 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
64 return container_of(vcpu, struct vcpu_vmx, vcpu);
67 static int init_rmode_tss(struct kvm *kvm);
69 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
70 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
72 static struct page *vmx_io_bitmap_a;
73 static struct page *vmx_io_bitmap_b;
75 #define EFER_SAVE_RESTORE_BITS ((u64)EFER_SCE)
77 static struct vmcs_config {
78 int size;
79 int order;
80 u32 revision_id;
81 u32 pin_based_exec_ctrl;
82 u32 cpu_based_exec_ctrl;
83 u32 vmexit_ctrl;
84 u32 vmentry_ctrl;
85 } vmcs_config;
87 #define VMX_SEGMENT_FIELD(seg) \
88 [VCPU_SREG_##seg] = { \
89 .selector = GUEST_##seg##_SELECTOR, \
90 .base = GUEST_##seg##_BASE, \
91 .limit = GUEST_##seg##_LIMIT, \
92 .ar_bytes = GUEST_##seg##_AR_BYTES, \
95 static struct kvm_vmx_segment_field {
96 unsigned selector;
97 unsigned base;
98 unsigned limit;
99 unsigned ar_bytes;
100 } kvm_vmx_segment_fields[] = {
101 VMX_SEGMENT_FIELD(CS),
102 VMX_SEGMENT_FIELD(DS),
103 VMX_SEGMENT_FIELD(ES),
104 VMX_SEGMENT_FIELD(FS),
105 VMX_SEGMENT_FIELD(GS),
106 VMX_SEGMENT_FIELD(SS),
107 VMX_SEGMENT_FIELD(TR),
108 VMX_SEGMENT_FIELD(LDTR),
112 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
113 * away by decrementing the array size.
115 static const u32 vmx_msr_index[] = {
116 #ifdef CONFIG_X86_64
117 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
118 #endif
119 MSR_EFER, MSR_K6_STAR,
121 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
123 static void load_msrs(struct kvm_msr_entry *e, int n)
125 int i;
127 for (i = 0; i < n; ++i)
128 wrmsrl(e[i].index, e[i].data);
131 static void save_msrs(struct kvm_msr_entry *e, int n)
133 int i;
135 for (i = 0; i < n; ++i)
136 rdmsrl(e[i].index, e[i].data);
139 static inline u64 msr_efer_save_restore_bits(struct kvm_msr_entry msr)
141 return (u64)msr.data & EFER_SAVE_RESTORE_BITS;
144 static inline int msr_efer_need_save_restore(struct vcpu_vmx *vmx)
146 int efer_offset = vmx->msr_offset_efer;
147 return msr_efer_save_restore_bits(vmx->host_msrs[efer_offset]) !=
148 msr_efer_save_restore_bits(vmx->guest_msrs[efer_offset]);
151 static inline int is_page_fault(u32 intr_info)
153 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
154 INTR_INFO_VALID_MASK)) ==
155 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
158 static inline int is_no_device(u32 intr_info)
160 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
161 INTR_INFO_VALID_MASK)) ==
162 (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
165 static inline int is_external_interrupt(u32 intr_info)
167 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
168 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
171 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
173 int i;
175 for (i = 0; i < vmx->nmsrs; ++i)
176 if (vmx->guest_msrs[i].index == msr)
177 return i;
178 return -1;
181 static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
183 int i;
185 i = __find_msr_index(vmx, msr);
186 if (i >= 0)
187 return &vmx->guest_msrs[i];
188 return NULL;
191 static void vmcs_clear(struct vmcs *vmcs)
193 u64 phys_addr = __pa(vmcs);
194 u8 error;
196 asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
197 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
198 : "cc", "memory");
199 if (error)
200 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
201 vmcs, phys_addr);
204 static void __vcpu_clear(void *arg)
206 struct vcpu_vmx *vmx = arg;
207 int cpu = raw_smp_processor_id();
209 if (vmx->vcpu.cpu == cpu)
210 vmcs_clear(vmx->vmcs);
211 if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
212 per_cpu(current_vmcs, cpu) = NULL;
213 rdtscll(vmx->vcpu.host_tsc);
216 static void vcpu_clear(struct vcpu_vmx *vmx)
218 if (vmx->vcpu.cpu != raw_smp_processor_id() && vmx->vcpu.cpu != -1)
219 smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear,
220 vmx, 0, 1);
221 else
222 __vcpu_clear(vmx);
223 vmx->launched = 0;
226 static unsigned long vmcs_readl(unsigned long field)
228 unsigned long value;
230 asm volatile (ASM_VMX_VMREAD_RDX_RAX
231 : "=a"(value) : "d"(field) : "cc");
232 return value;
235 static u16 vmcs_read16(unsigned long field)
237 return vmcs_readl(field);
240 static u32 vmcs_read32(unsigned long field)
242 return vmcs_readl(field);
245 static u64 vmcs_read64(unsigned long field)
247 #ifdef CONFIG_X86_64
248 return vmcs_readl(field);
249 #else
250 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
251 #endif
254 static noinline void vmwrite_error(unsigned long field, unsigned long value)
256 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
257 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
258 dump_stack();
261 static void vmcs_writel(unsigned long field, unsigned long value)
263 u8 error;
265 asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
266 : "=q"(error) : "a"(value), "d"(field) : "cc" );
267 if (unlikely(error))
268 vmwrite_error(field, value);
271 static void vmcs_write16(unsigned long field, u16 value)
273 vmcs_writel(field, value);
276 static void vmcs_write32(unsigned long field, u32 value)
278 vmcs_writel(field, value);
281 static void vmcs_write64(unsigned long field, u64 value)
283 #ifdef CONFIG_X86_64
284 vmcs_writel(field, value);
285 #else
286 vmcs_writel(field, value);
287 asm volatile ("");
288 vmcs_writel(field+1, value >> 32);
289 #endif
292 static void vmcs_clear_bits(unsigned long field, u32 mask)
294 vmcs_writel(field, vmcs_readl(field) & ~mask);
297 static void vmcs_set_bits(unsigned long field, u32 mask)
299 vmcs_writel(field, vmcs_readl(field) | mask);
302 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
304 u32 eb;
306 eb = 1u << PF_VECTOR;
307 if (!vcpu->fpu_active)
308 eb |= 1u << NM_VECTOR;
309 if (vcpu->guest_debug.enabled)
310 eb |= 1u << 1;
311 if (vcpu->rmode.active)
312 eb = ~0;
313 vmcs_write32(EXCEPTION_BITMAP, eb);
316 static void reload_tss(void)
318 #ifndef CONFIG_X86_64
321 * VT restores TR but not its size. Useless.
323 struct descriptor_table gdt;
324 struct segment_descriptor *descs;
326 get_gdt(&gdt);
327 descs = (void *)gdt.base;
328 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
329 load_TR_desc();
330 #endif
333 static void load_transition_efer(struct vcpu_vmx *vmx)
335 u64 trans_efer;
336 int efer_offset = vmx->msr_offset_efer;
338 trans_efer = vmx->host_msrs[efer_offset].data;
339 trans_efer &= ~EFER_SAVE_RESTORE_BITS;
340 trans_efer |= msr_efer_save_restore_bits(vmx->guest_msrs[efer_offset]);
341 wrmsrl(MSR_EFER, trans_efer);
342 vmx->vcpu.stat.efer_reload++;
345 static void vmx_save_host_state(struct vcpu_vmx *vmx)
347 if (vmx->host_state.loaded)
348 return;
350 vmx->host_state.loaded = 1;
352 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
353 * allow segment selectors with cpl > 0 or ti == 1.
355 vmx->host_state.ldt_sel = read_ldt();
356 vmx->host_state.fs_gs_ldt_reload_needed = vmx->host_state.ldt_sel;
357 vmx->host_state.fs_sel = read_fs();
358 if (!(vmx->host_state.fs_sel & 7))
359 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
360 else {
361 vmcs_write16(HOST_FS_SELECTOR, 0);
362 vmx->host_state.fs_gs_ldt_reload_needed = 1;
364 vmx->host_state.gs_sel = read_gs();
365 if (!(vmx->host_state.gs_sel & 7))
366 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
367 else {
368 vmcs_write16(HOST_GS_SELECTOR, 0);
369 vmx->host_state.fs_gs_ldt_reload_needed = 1;
372 #ifdef CONFIG_X86_64
373 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
374 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
375 #else
376 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
377 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
378 #endif
380 #ifdef CONFIG_X86_64
381 if (is_long_mode(&vmx->vcpu)) {
382 save_msrs(vmx->host_msrs +
383 vmx->msr_offset_kernel_gs_base, 1);
385 #endif
386 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
387 if (msr_efer_need_save_restore(vmx))
388 load_transition_efer(vmx);
391 static void vmx_load_host_state(struct vcpu_vmx *vmx)
393 unsigned long flags;
395 if (!vmx->host_state.loaded)
396 return;
398 vmx->host_state.loaded = 0;
399 if (vmx->host_state.fs_gs_ldt_reload_needed) {
400 load_ldt(vmx->host_state.ldt_sel);
401 load_fs(vmx->host_state.fs_sel);
403 * If we have to reload gs, we must take care to
404 * preserve our gs base.
406 local_irq_save(flags);
407 load_gs(vmx->host_state.gs_sel);
408 #ifdef CONFIG_X86_64
409 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
410 #endif
411 local_irq_restore(flags);
413 reload_tss();
415 save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
416 load_msrs(vmx->host_msrs, vmx->save_nmsrs);
417 if (msr_efer_need_save_restore(vmx))
418 load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
422 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
423 * vcpu mutex is already taken.
425 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
427 struct vcpu_vmx *vmx = to_vmx(vcpu);
428 u64 phys_addr = __pa(vmx->vmcs);
429 u64 tsc_this, delta;
431 if (vcpu->cpu != cpu)
432 vcpu_clear(vmx);
434 if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
435 u8 error;
437 per_cpu(current_vmcs, cpu) = vmx->vmcs;
438 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
439 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
440 : "cc");
441 if (error)
442 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
443 vmx->vmcs, phys_addr);
446 if (vcpu->cpu != cpu) {
447 struct descriptor_table dt;
448 unsigned long sysenter_esp;
450 vcpu->cpu = cpu;
452 * Linux uses per-cpu TSS and GDT, so set these when switching
453 * processors.
455 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
456 get_gdt(&dt);
457 vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
459 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
460 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
463 * Make sure the time stamp counter is monotonous.
465 rdtscll(tsc_this);
466 delta = vcpu->host_tsc - tsc_this;
467 vmcs_write64(TSC_OFFSET, vmcs_read64(TSC_OFFSET) + delta);
471 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
473 vmx_load_host_state(to_vmx(vcpu));
474 kvm_put_guest_fpu(vcpu);
477 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
479 if (vcpu->fpu_active)
480 return;
481 vcpu->fpu_active = 1;
482 vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
483 if (vcpu->cr0 & X86_CR0_TS)
484 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
485 update_exception_bitmap(vcpu);
488 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
490 if (!vcpu->fpu_active)
491 return;
492 vcpu->fpu_active = 0;
493 vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
494 update_exception_bitmap(vcpu);
497 static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
499 vcpu_clear(to_vmx(vcpu));
502 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
504 return vmcs_readl(GUEST_RFLAGS);
507 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
509 vmcs_writel(GUEST_RFLAGS, rflags);
512 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
514 unsigned long rip;
515 u32 interruptibility;
517 rip = vmcs_readl(GUEST_RIP);
518 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
519 vmcs_writel(GUEST_RIP, rip);
522 * We emulated an instruction, so temporary interrupt blocking
523 * should be removed, if set.
525 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
526 if (interruptibility & 3)
527 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
528 interruptibility & ~3);
529 vcpu->interrupt_window_open = 1;
532 static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
534 printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
535 vmcs_readl(GUEST_RIP));
536 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
537 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
538 GP_VECTOR |
539 INTR_TYPE_EXCEPTION |
540 INTR_INFO_DELIEVER_CODE_MASK |
541 INTR_INFO_VALID_MASK);
545 * Swap MSR entry in host/guest MSR entry array.
547 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
549 struct kvm_msr_entry tmp;
551 tmp = vmx->guest_msrs[to];
552 vmx->guest_msrs[to] = vmx->guest_msrs[from];
553 vmx->guest_msrs[from] = tmp;
554 tmp = vmx->host_msrs[to];
555 vmx->host_msrs[to] = vmx->host_msrs[from];
556 vmx->host_msrs[from] = tmp;
560 * Set up the vmcs to automatically save and restore system
561 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
562 * mode, as fiddling with msrs is very expensive.
564 static void setup_msrs(struct vcpu_vmx *vmx)
566 int save_nmsrs;
568 save_nmsrs = 0;
569 #ifdef CONFIG_X86_64
570 if (is_long_mode(&vmx->vcpu)) {
571 int index;
573 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
574 if (index >= 0)
575 move_msr_up(vmx, index, save_nmsrs++);
576 index = __find_msr_index(vmx, MSR_LSTAR);
577 if (index >= 0)
578 move_msr_up(vmx, index, save_nmsrs++);
579 index = __find_msr_index(vmx, MSR_CSTAR);
580 if (index >= 0)
581 move_msr_up(vmx, index, save_nmsrs++);
582 index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
583 if (index >= 0)
584 move_msr_up(vmx, index, save_nmsrs++);
586 * MSR_K6_STAR is only needed on long mode guests, and only
587 * if efer.sce is enabled.
589 index = __find_msr_index(vmx, MSR_K6_STAR);
590 if ((index >= 0) && (vmx->vcpu.shadow_efer & EFER_SCE))
591 move_msr_up(vmx, index, save_nmsrs++);
593 #endif
594 vmx->save_nmsrs = save_nmsrs;
596 #ifdef CONFIG_X86_64
597 vmx->msr_offset_kernel_gs_base =
598 __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
599 #endif
600 vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
604 * reads and returns guest's timestamp counter "register"
605 * guest_tsc = host_tsc + tsc_offset -- 21.3
607 static u64 guest_read_tsc(void)
609 u64 host_tsc, tsc_offset;
611 rdtscll(host_tsc);
612 tsc_offset = vmcs_read64(TSC_OFFSET);
613 return host_tsc + tsc_offset;
617 * writes 'guest_tsc' into guest's timestamp counter "register"
618 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
620 static void guest_write_tsc(u64 guest_tsc)
622 u64 host_tsc;
624 rdtscll(host_tsc);
625 vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
629 * Reads an msr value (of 'msr_index') into 'pdata'.
630 * Returns 0 on success, non-0 otherwise.
631 * Assumes vcpu_load() was already called.
633 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
635 u64 data;
636 struct kvm_msr_entry *msr;
638 if (!pdata) {
639 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
640 return -EINVAL;
643 switch (msr_index) {
644 #ifdef CONFIG_X86_64
645 case MSR_FS_BASE:
646 data = vmcs_readl(GUEST_FS_BASE);
647 break;
648 case MSR_GS_BASE:
649 data = vmcs_readl(GUEST_GS_BASE);
650 break;
651 case MSR_EFER:
652 return kvm_get_msr_common(vcpu, msr_index, pdata);
653 #endif
654 case MSR_IA32_TIME_STAMP_COUNTER:
655 data = guest_read_tsc();
656 break;
657 case MSR_IA32_SYSENTER_CS:
658 data = vmcs_read32(GUEST_SYSENTER_CS);
659 break;
660 case MSR_IA32_SYSENTER_EIP:
661 data = vmcs_readl(GUEST_SYSENTER_EIP);
662 break;
663 case MSR_IA32_SYSENTER_ESP:
664 data = vmcs_readl(GUEST_SYSENTER_ESP);
665 break;
666 default:
667 msr = find_msr_entry(to_vmx(vcpu), msr_index);
668 if (msr) {
669 data = msr->data;
670 break;
672 return kvm_get_msr_common(vcpu, msr_index, pdata);
675 *pdata = data;
676 return 0;
680 * Writes msr value into into the appropriate "register".
681 * Returns 0 on success, non-0 otherwise.
682 * Assumes vcpu_load() was already called.
684 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
686 struct vcpu_vmx *vmx = to_vmx(vcpu);
687 struct kvm_msr_entry *msr;
688 int ret = 0;
690 switch (msr_index) {
691 #ifdef CONFIG_X86_64
692 case MSR_EFER:
693 ret = kvm_set_msr_common(vcpu, msr_index, data);
694 if (vmx->host_state.loaded)
695 load_transition_efer(vmx);
696 break;
697 case MSR_FS_BASE:
698 vmcs_writel(GUEST_FS_BASE, data);
699 break;
700 case MSR_GS_BASE:
701 vmcs_writel(GUEST_GS_BASE, data);
702 break;
703 #endif
704 case MSR_IA32_SYSENTER_CS:
705 vmcs_write32(GUEST_SYSENTER_CS, data);
706 break;
707 case MSR_IA32_SYSENTER_EIP:
708 vmcs_writel(GUEST_SYSENTER_EIP, data);
709 break;
710 case MSR_IA32_SYSENTER_ESP:
711 vmcs_writel(GUEST_SYSENTER_ESP, data);
712 break;
713 case MSR_IA32_TIME_STAMP_COUNTER:
714 guest_write_tsc(data);
715 break;
716 default:
717 msr = find_msr_entry(vmx, msr_index);
718 if (msr) {
719 msr->data = data;
720 if (vmx->host_state.loaded)
721 load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
722 break;
724 ret = kvm_set_msr_common(vcpu, msr_index, data);
727 return ret;
731 * Sync the rsp and rip registers into the vcpu structure. This allows
732 * registers to be accessed by indexing vcpu->regs.
734 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
736 vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
737 vcpu->rip = vmcs_readl(GUEST_RIP);
741 * Syncs rsp and rip back into the vmcs. Should be called after possible
742 * modification.
744 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
746 vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
747 vmcs_writel(GUEST_RIP, vcpu->rip);
750 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
752 unsigned long dr7 = 0x400;
753 int old_singlestep;
755 old_singlestep = vcpu->guest_debug.singlestep;
757 vcpu->guest_debug.enabled = dbg->enabled;
758 if (vcpu->guest_debug.enabled) {
759 int i;
761 dr7 |= 0x200; /* exact */
762 for (i = 0; i < 4; ++i) {
763 if (!dbg->breakpoints[i].enabled)
764 continue;
765 vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
766 dr7 |= 2 << (i*2); /* global enable */
767 dr7 |= 0 << (i*4+16); /* execution breakpoint */
770 vcpu->guest_debug.singlestep = dbg->singlestep;
771 } else
772 vcpu->guest_debug.singlestep = 0;
774 if (old_singlestep && !vcpu->guest_debug.singlestep) {
775 unsigned long flags;
777 flags = vmcs_readl(GUEST_RFLAGS);
778 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
779 vmcs_writel(GUEST_RFLAGS, flags);
782 update_exception_bitmap(vcpu);
783 vmcs_writel(GUEST_DR7, dr7);
785 return 0;
788 static __init int cpu_has_kvm_support(void)
790 unsigned long ecx = cpuid_ecx(1);
791 return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
794 static __init int vmx_disabled_by_bios(void)
796 u64 msr;
798 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
799 return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
800 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
801 == MSR_IA32_FEATURE_CONTROL_LOCKED;
802 /* locked but not enabled */
805 static void hardware_enable(void *garbage)
807 int cpu = raw_smp_processor_id();
808 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
809 u64 old;
811 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
812 if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
813 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
814 != (MSR_IA32_FEATURE_CONTROL_LOCKED |
815 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
816 /* enable and lock */
817 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
818 MSR_IA32_FEATURE_CONTROL_LOCKED |
819 MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
820 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
821 asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
822 : "memory", "cc");
825 static void hardware_disable(void *garbage)
827 asm volatile (ASM_VMX_VMXOFF : : : "cc");
830 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
831 u32 msr, u32* result)
833 u32 vmx_msr_low, vmx_msr_high;
834 u32 ctl = ctl_min | ctl_opt;
836 rdmsr(msr, vmx_msr_low, vmx_msr_high);
838 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
839 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
841 /* Ensure minimum (required) set of control bits are supported. */
842 if (ctl_min & ~ctl)
843 return -EIO;
845 *result = ctl;
846 return 0;
849 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
851 u32 vmx_msr_low, vmx_msr_high;
852 u32 min, opt;
853 u32 _pin_based_exec_control = 0;
854 u32 _cpu_based_exec_control = 0;
855 u32 _vmexit_control = 0;
856 u32 _vmentry_control = 0;
858 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
859 opt = 0;
860 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
861 &_pin_based_exec_control) < 0)
862 return -EIO;
864 min = CPU_BASED_HLT_EXITING |
865 #ifdef CONFIG_X86_64
866 CPU_BASED_CR8_LOAD_EXITING |
867 CPU_BASED_CR8_STORE_EXITING |
868 #endif
869 CPU_BASED_USE_IO_BITMAPS |
870 CPU_BASED_MOV_DR_EXITING |
871 CPU_BASED_USE_TSC_OFFSETING;
872 opt = 0;
873 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
874 &_cpu_based_exec_control) < 0)
875 return -EIO;
877 min = 0;
878 #ifdef CONFIG_X86_64
879 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
880 #endif
881 opt = 0;
882 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
883 &_vmexit_control) < 0)
884 return -EIO;
886 min = opt = 0;
887 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
888 &_vmentry_control) < 0)
889 return -EIO;
891 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
893 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
894 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
895 return -EIO;
897 #ifdef CONFIG_X86_64
898 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
899 if (vmx_msr_high & (1u<<16))
900 return -EIO;
901 #endif
903 /* Require Write-Back (WB) memory type for VMCS accesses. */
904 if (((vmx_msr_high >> 18) & 15) != 6)
905 return -EIO;
907 vmcs_conf->size = vmx_msr_high & 0x1fff;
908 vmcs_conf->order = get_order(vmcs_config.size);
909 vmcs_conf->revision_id = vmx_msr_low;
911 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
912 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
913 vmcs_conf->vmexit_ctrl = _vmexit_control;
914 vmcs_conf->vmentry_ctrl = _vmentry_control;
916 return 0;
919 static struct vmcs *alloc_vmcs_cpu(int cpu)
921 int node = cpu_to_node(cpu);
922 struct page *pages;
923 struct vmcs *vmcs;
925 pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
926 if (!pages)
927 return NULL;
928 vmcs = page_address(pages);
929 memset(vmcs, 0, vmcs_config.size);
930 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
931 return vmcs;
934 static struct vmcs *alloc_vmcs(void)
936 return alloc_vmcs_cpu(raw_smp_processor_id());
939 static void free_vmcs(struct vmcs *vmcs)
941 free_pages((unsigned long)vmcs, vmcs_config.order);
944 static void free_kvm_area(void)
946 int cpu;
948 for_each_online_cpu(cpu)
949 free_vmcs(per_cpu(vmxarea, cpu));
952 static __init int alloc_kvm_area(void)
954 int cpu;
956 for_each_online_cpu(cpu) {
957 struct vmcs *vmcs;
959 vmcs = alloc_vmcs_cpu(cpu);
960 if (!vmcs) {
961 free_kvm_area();
962 return -ENOMEM;
965 per_cpu(vmxarea, cpu) = vmcs;
967 return 0;
970 static __init int hardware_setup(void)
972 if (setup_vmcs_config(&vmcs_config) < 0)
973 return -EIO;
974 return alloc_kvm_area();
977 static __exit void hardware_unsetup(void)
979 free_kvm_area();
982 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
984 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
986 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
987 vmcs_write16(sf->selector, save->selector);
988 vmcs_writel(sf->base, save->base);
989 vmcs_write32(sf->limit, save->limit);
990 vmcs_write32(sf->ar_bytes, save->ar);
991 } else {
992 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
993 << AR_DPL_SHIFT;
994 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
998 static void enter_pmode(struct kvm_vcpu *vcpu)
1000 unsigned long flags;
1002 vcpu->rmode.active = 0;
1004 vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
1005 vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
1006 vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
1008 flags = vmcs_readl(GUEST_RFLAGS);
1009 flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
1010 flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
1011 vmcs_writel(GUEST_RFLAGS, flags);
1013 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1014 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1016 update_exception_bitmap(vcpu);
1018 fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
1019 fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
1020 fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
1021 fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
1023 vmcs_write16(GUEST_SS_SELECTOR, 0);
1024 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1026 vmcs_write16(GUEST_CS_SELECTOR,
1027 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1028 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1031 static int rmode_tss_base(struct kvm* kvm)
1033 gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
1034 return base_gfn << PAGE_SHIFT;
1037 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1039 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1041 save->selector = vmcs_read16(sf->selector);
1042 save->base = vmcs_readl(sf->base);
1043 save->limit = vmcs_read32(sf->limit);
1044 save->ar = vmcs_read32(sf->ar_bytes);
1045 vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
1046 vmcs_write32(sf->limit, 0xffff);
1047 vmcs_write32(sf->ar_bytes, 0xf3);
1050 static void enter_rmode(struct kvm_vcpu *vcpu)
1052 unsigned long flags;
1054 vcpu->rmode.active = 1;
1056 vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1057 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1059 vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1060 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1062 vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1063 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1065 flags = vmcs_readl(GUEST_RFLAGS);
1066 vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
1068 flags |= IOPL_MASK | X86_EFLAGS_VM;
1070 vmcs_writel(GUEST_RFLAGS, flags);
1071 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1072 update_exception_bitmap(vcpu);
1074 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1075 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1076 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1078 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1079 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1080 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1081 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1082 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1084 fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
1085 fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
1086 fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
1087 fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
1089 init_rmode_tss(vcpu->kvm);
1092 #ifdef CONFIG_X86_64
1094 static void enter_lmode(struct kvm_vcpu *vcpu)
1096 u32 guest_tr_ar;
1098 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1099 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1100 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1101 __FUNCTION__);
1102 vmcs_write32(GUEST_TR_AR_BYTES,
1103 (guest_tr_ar & ~AR_TYPE_MASK)
1104 | AR_TYPE_BUSY_64_TSS);
1107 vcpu->shadow_efer |= EFER_LMA;
1109 find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
1110 vmcs_write32(VM_ENTRY_CONTROLS,
1111 vmcs_read32(VM_ENTRY_CONTROLS)
1112 | VM_ENTRY_CONTROLS_IA32E_MASK);
1115 static void exit_lmode(struct kvm_vcpu *vcpu)
1117 vcpu->shadow_efer &= ~EFER_LMA;
1119 vmcs_write32(VM_ENTRY_CONTROLS,
1120 vmcs_read32(VM_ENTRY_CONTROLS)
1121 & ~VM_ENTRY_CONTROLS_IA32E_MASK);
1124 #endif
1126 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1128 vcpu->cr4 &= KVM_GUEST_CR4_MASK;
1129 vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
1132 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1134 vmx_fpu_deactivate(vcpu);
1136 if (vcpu->rmode.active && (cr0 & X86_CR0_PE))
1137 enter_pmode(vcpu);
1139 if (!vcpu->rmode.active && !(cr0 & X86_CR0_PE))
1140 enter_rmode(vcpu);
1142 #ifdef CONFIG_X86_64
1143 if (vcpu->shadow_efer & EFER_LME) {
1144 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1145 enter_lmode(vcpu);
1146 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1147 exit_lmode(vcpu);
1149 #endif
1151 vmcs_writel(CR0_READ_SHADOW, cr0);
1152 vmcs_writel(GUEST_CR0,
1153 (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
1154 vcpu->cr0 = cr0;
1156 if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
1157 vmx_fpu_activate(vcpu);
1160 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1162 vmcs_writel(GUEST_CR3, cr3);
1163 if (vcpu->cr0 & X86_CR0_PE)
1164 vmx_fpu_deactivate(vcpu);
1167 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1169 vmcs_writel(CR4_READ_SHADOW, cr4);
1170 vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
1171 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
1172 vcpu->cr4 = cr4;
1175 #ifdef CONFIG_X86_64
1177 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1179 struct vcpu_vmx *vmx = to_vmx(vcpu);
1180 struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1182 vcpu->shadow_efer = efer;
1183 if (efer & EFER_LMA) {
1184 vmcs_write32(VM_ENTRY_CONTROLS,
1185 vmcs_read32(VM_ENTRY_CONTROLS) |
1186 VM_ENTRY_CONTROLS_IA32E_MASK);
1187 msr->data = efer;
1189 } else {
1190 vmcs_write32(VM_ENTRY_CONTROLS,
1191 vmcs_read32(VM_ENTRY_CONTROLS) &
1192 ~VM_ENTRY_CONTROLS_IA32E_MASK);
1194 msr->data = efer & ~EFER_LME;
1196 setup_msrs(vmx);
1199 #endif
1201 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1203 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1205 return vmcs_readl(sf->base);
1208 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1209 struct kvm_segment *var, int seg)
1211 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1212 u32 ar;
1214 var->base = vmcs_readl(sf->base);
1215 var->limit = vmcs_read32(sf->limit);
1216 var->selector = vmcs_read16(sf->selector);
1217 ar = vmcs_read32(sf->ar_bytes);
1218 if (ar & AR_UNUSABLE_MASK)
1219 ar = 0;
1220 var->type = ar & 15;
1221 var->s = (ar >> 4) & 1;
1222 var->dpl = (ar >> 5) & 3;
1223 var->present = (ar >> 7) & 1;
1224 var->avl = (ar >> 12) & 1;
1225 var->l = (ar >> 13) & 1;
1226 var->db = (ar >> 14) & 1;
1227 var->g = (ar >> 15) & 1;
1228 var->unusable = (ar >> 16) & 1;
1231 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1233 u32 ar;
1235 if (var->unusable)
1236 ar = 1 << 16;
1237 else {
1238 ar = var->type & 15;
1239 ar |= (var->s & 1) << 4;
1240 ar |= (var->dpl & 3) << 5;
1241 ar |= (var->present & 1) << 7;
1242 ar |= (var->avl & 1) << 12;
1243 ar |= (var->l & 1) << 13;
1244 ar |= (var->db & 1) << 14;
1245 ar |= (var->g & 1) << 15;
1247 if (ar == 0) /* a 0 value means unusable */
1248 ar = AR_UNUSABLE_MASK;
1250 return ar;
1253 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1254 struct kvm_segment *var, int seg)
1256 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1257 u32 ar;
1259 if (vcpu->rmode.active && seg == VCPU_SREG_TR) {
1260 vcpu->rmode.tr.selector = var->selector;
1261 vcpu->rmode.tr.base = var->base;
1262 vcpu->rmode.tr.limit = var->limit;
1263 vcpu->rmode.tr.ar = vmx_segment_access_rights(var);
1264 return;
1266 vmcs_writel(sf->base, var->base);
1267 vmcs_write32(sf->limit, var->limit);
1268 vmcs_write16(sf->selector, var->selector);
1269 if (vcpu->rmode.active && var->s) {
1271 * Hack real-mode segments into vm86 compatibility.
1273 if (var->base == 0xffff0000 && var->selector == 0xf000)
1274 vmcs_writel(sf->base, 0xf0000);
1275 ar = 0xf3;
1276 } else
1277 ar = vmx_segment_access_rights(var);
1278 vmcs_write32(sf->ar_bytes, ar);
1281 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1283 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1285 *db = (ar >> 14) & 1;
1286 *l = (ar >> 13) & 1;
1289 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1291 dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1292 dt->base = vmcs_readl(GUEST_IDTR_BASE);
1295 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1297 vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1298 vmcs_writel(GUEST_IDTR_BASE, dt->base);
1301 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1303 dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1304 dt->base = vmcs_readl(GUEST_GDTR_BASE);
1307 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1309 vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1310 vmcs_writel(GUEST_GDTR_BASE, dt->base);
1313 static int init_rmode_tss(struct kvm* kvm)
1315 struct page *p1, *p2, *p3;
1316 gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1317 char *page;
1319 p1 = gfn_to_page(kvm, fn++);
1320 p2 = gfn_to_page(kvm, fn++);
1321 p3 = gfn_to_page(kvm, fn);
1323 if (!p1 || !p2 || !p3) {
1324 kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
1325 return 0;
1328 page = kmap_atomic(p1, KM_USER0);
1329 clear_page(page);
1330 *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1331 kunmap_atomic(page, KM_USER0);
1333 page = kmap_atomic(p2, KM_USER0);
1334 clear_page(page);
1335 kunmap_atomic(page, KM_USER0);
1337 page = kmap_atomic(p3, KM_USER0);
1338 clear_page(page);
1339 *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
1340 kunmap_atomic(page, KM_USER0);
1342 return 1;
1345 static void seg_setup(int seg)
1347 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1349 vmcs_write16(sf->selector, 0);
1350 vmcs_writel(sf->base, 0);
1351 vmcs_write32(sf->limit, 0xffff);
1352 vmcs_write32(sf->ar_bytes, 0x93);
1356 * Sets up the vmcs for emulated real mode.
1358 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
1360 u32 host_sysenter_cs;
1361 u32 junk;
1362 unsigned long a;
1363 struct descriptor_table dt;
1364 int i;
1365 int ret = 0;
1366 unsigned long kvm_vmx_return;
1368 if (!init_rmode_tss(vmx->vcpu.kvm)) {
1369 ret = -ENOMEM;
1370 goto out;
1373 vmx->vcpu.regs[VCPU_REGS_RDX] = get_rdx_init_val();
1374 vmx->vcpu.cr8 = 0;
1375 vmx->vcpu.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1376 if (vmx->vcpu.vcpu_id == 0)
1377 vmx->vcpu.apic_base |= MSR_IA32_APICBASE_BSP;
1379 fx_init(&vmx->vcpu);
1382 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
1383 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
1385 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
1386 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
1387 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1388 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1390 seg_setup(VCPU_SREG_DS);
1391 seg_setup(VCPU_SREG_ES);
1392 seg_setup(VCPU_SREG_FS);
1393 seg_setup(VCPU_SREG_GS);
1394 seg_setup(VCPU_SREG_SS);
1396 vmcs_write16(GUEST_TR_SELECTOR, 0);
1397 vmcs_writel(GUEST_TR_BASE, 0);
1398 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
1399 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1401 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
1402 vmcs_writel(GUEST_LDTR_BASE, 0);
1403 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
1404 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
1406 vmcs_write32(GUEST_SYSENTER_CS, 0);
1407 vmcs_writel(GUEST_SYSENTER_ESP, 0);
1408 vmcs_writel(GUEST_SYSENTER_EIP, 0);
1410 vmcs_writel(GUEST_RFLAGS, 0x02);
1411 vmcs_writel(GUEST_RIP, 0xfff0);
1412 vmcs_writel(GUEST_RSP, 0);
1414 //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
1415 vmcs_writel(GUEST_DR7, 0x400);
1417 vmcs_writel(GUEST_GDTR_BASE, 0);
1418 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
1420 vmcs_writel(GUEST_IDTR_BASE, 0);
1421 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
1423 vmcs_write32(GUEST_ACTIVITY_STATE, 0);
1424 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1425 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1427 /* I/O */
1428 vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
1429 vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
1431 guest_write_tsc(0);
1433 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1435 /* Special registers */
1436 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1438 /* Control */
1439 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
1440 vmcs_config.pin_based_exec_ctrl);
1441 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1442 vmcs_config.cpu_based_exec_ctrl);
1444 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
1445 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
1446 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
1448 vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
1449 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
1450 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
1452 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
1453 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1454 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1455 vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
1456 vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
1457 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
1458 #ifdef CONFIG_X86_64
1459 rdmsrl(MSR_FS_BASE, a);
1460 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1461 rdmsrl(MSR_GS_BASE, a);
1462 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1463 #else
1464 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1465 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1466 #endif
1468 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
1470 get_idt(&dt);
1471 vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
1473 asm ("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
1474 vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
1475 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
1476 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
1477 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
1479 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1480 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1481 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1482 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
1483 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1484 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
1486 for (i = 0; i < NR_VMX_MSR; ++i) {
1487 u32 index = vmx_msr_index[i];
1488 u32 data_low, data_high;
1489 u64 data;
1490 int j = vmx->nmsrs;
1492 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1493 continue;
1494 if (wrmsr_safe(index, data_low, data_high) < 0)
1495 continue;
1496 data = data_low | ((u64)data_high << 32);
1497 vmx->host_msrs[j].index = index;
1498 vmx->host_msrs[j].reserved = 0;
1499 vmx->host_msrs[j].data = data;
1500 vmx->guest_msrs[j] = vmx->host_msrs[j];
1501 ++vmx->nmsrs;
1504 setup_msrs(vmx);
1506 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
1508 /* 22.2.1, 20.8.1 */
1509 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
1511 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
1513 #ifdef CONFIG_X86_64
1514 vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
1515 vmcs_writel(TPR_THRESHOLD, 0);
1516 #endif
1518 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
1519 vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1521 vmx->vcpu.cr0 = 0x60000010;
1522 vmx_set_cr0(&vmx->vcpu, vmx->vcpu.cr0); // enter rmode
1523 vmx_set_cr4(&vmx->vcpu, 0);
1524 #ifdef CONFIG_X86_64
1525 vmx_set_efer(&vmx->vcpu, 0);
1526 #endif
1527 vmx_fpu_activate(&vmx->vcpu);
1528 update_exception_bitmap(&vmx->vcpu);
1530 return 0;
1532 out:
1533 return ret;
1536 static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
1538 u16 ent[2];
1539 u16 cs;
1540 u16 ip;
1541 unsigned long flags;
1542 unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
1543 u16 sp = vmcs_readl(GUEST_RSP);
1544 u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
1546 if (sp > ss_limit || sp < 6 ) {
1547 vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
1548 __FUNCTION__,
1549 vmcs_readl(GUEST_RSP),
1550 vmcs_readl(GUEST_SS_BASE),
1551 vmcs_read32(GUEST_SS_LIMIT));
1552 return;
1555 if (emulator_read_std(irq * sizeof(ent), &ent, sizeof(ent), vcpu) !=
1556 X86EMUL_CONTINUE) {
1557 vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
1558 return;
1561 flags = vmcs_readl(GUEST_RFLAGS);
1562 cs = vmcs_readl(GUEST_CS_BASE) >> 4;
1563 ip = vmcs_readl(GUEST_RIP);
1566 if (emulator_write_emulated(ss_base + sp - 2, &flags, 2, vcpu) != X86EMUL_CONTINUE ||
1567 emulator_write_emulated(ss_base + sp - 4, &cs, 2, vcpu) != X86EMUL_CONTINUE ||
1568 emulator_write_emulated(ss_base + sp - 6, &ip, 2, vcpu) != X86EMUL_CONTINUE) {
1569 vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
1570 return;
1573 vmcs_writel(GUEST_RFLAGS, flags &
1574 ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
1575 vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
1576 vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
1577 vmcs_writel(GUEST_RIP, ent[0]);
1578 vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
1581 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1583 int word_index = __ffs(vcpu->irq_summary);
1584 int bit_index = __ffs(vcpu->irq_pending[word_index]);
1585 int irq = word_index * BITS_PER_LONG + bit_index;
1587 clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1588 if (!vcpu->irq_pending[word_index])
1589 clear_bit(word_index, &vcpu->irq_summary);
1591 if (vcpu->rmode.active) {
1592 inject_rmode_irq(vcpu, irq);
1593 return;
1595 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1596 irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1600 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1601 struct kvm_run *kvm_run)
1603 u32 cpu_based_vm_exec_control;
1605 vcpu->interrupt_window_open =
1606 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
1607 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
1609 if (vcpu->interrupt_window_open &&
1610 vcpu->irq_summary &&
1611 !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
1613 * If interrupts enabled, and not blocked by sti or mov ss. Good.
1615 kvm_do_inject_irq(vcpu);
1617 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
1618 if (!vcpu->interrupt_window_open &&
1619 (vcpu->irq_summary || kvm_run->request_interrupt_window))
1621 * Interrupts blocked. Wait for unblock.
1623 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
1624 else
1625 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
1626 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
1629 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
1631 struct kvm_guest_debug *dbg = &vcpu->guest_debug;
1633 set_debugreg(dbg->bp[0], 0);
1634 set_debugreg(dbg->bp[1], 1);
1635 set_debugreg(dbg->bp[2], 2);
1636 set_debugreg(dbg->bp[3], 3);
1638 if (dbg->singlestep) {
1639 unsigned long flags;
1641 flags = vmcs_readl(GUEST_RFLAGS);
1642 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1643 vmcs_writel(GUEST_RFLAGS, flags);
1647 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
1648 int vec, u32 err_code)
1650 if (!vcpu->rmode.active)
1651 return 0;
1654 * Instruction with address size override prefix opcode 0x67
1655 * Cause the #SS fault with 0 error code in VM86 mode.
1657 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
1658 if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
1659 return 1;
1660 return 0;
1663 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1665 u32 intr_info, error_code;
1666 unsigned long cr2, rip;
1667 u32 vect_info;
1668 enum emulation_result er;
1669 int r;
1671 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1672 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
1674 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
1675 !is_page_fault(intr_info)) {
1676 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
1677 "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
1680 if (is_external_interrupt(vect_info)) {
1681 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
1682 set_bit(irq, vcpu->irq_pending);
1683 set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
1686 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
1687 asm ("int $2");
1688 return 1;
1691 if (is_no_device(intr_info)) {
1692 vmx_fpu_activate(vcpu);
1693 return 1;
1696 error_code = 0;
1697 rip = vmcs_readl(GUEST_RIP);
1698 if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
1699 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
1700 if (is_page_fault(intr_info)) {
1701 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1703 mutex_lock(&vcpu->kvm->lock);
1704 r = kvm_mmu_page_fault(vcpu, cr2, error_code);
1705 if (r < 0) {
1706 mutex_unlock(&vcpu->kvm->lock);
1707 return r;
1709 if (!r) {
1710 mutex_unlock(&vcpu->kvm->lock);
1711 return 1;
1714 er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
1715 mutex_unlock(&vcpu->kvm->lock);
1717 switch (er) {
1718 case EMULATE_DONE:
1719 return 1;
1720 case EMULATE_DO_MMIO:
1721 ++vcpu->stat.mmio_exits;
1722 return 0;
1723 case EMULATE_FAIL:
1724 vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
1725 break;
1726 default:
1727 BUG();
1731 if (vcpu->rmode.active &&
1732 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
1733 error_code)) {
1734 if (vcpu->halt_request) {
1735 vcpu->halt_request = 0;
1736 return kvm_emulate_halt(vcpu);
1738 return 1;
1741 if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
1742 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1743 return 0;
1745 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
1746 kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1747 kvm_run->ex.error_code = error_code;
1748 return 0;
1751 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
1752 struct kvm_run *kvm_run)
1754 ++vcpu->stat.irq_exits;
1755 return 1;
1758 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1760 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1761 return 0;
1764 static int get_io_count(struct kvm_vcpu *vcpu, unsigned long *count)
1766 u64 inst;
1767 gva_t rip;
1768 int countr_size;
1769 int i;
1771 if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
1772 countr_size = 2;
1773 } else {
1774 u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
1776 countr_size = (cs_ar & AR_L_MASK) ? 8:
1777 (cs_ar & AR_DB_MASK) ? 4: 2;
1780 rip = vmcs_readl(GUEST_RIP);
1781 if (countr_size != 8)
1782 rip += vmcs_readl(GUEST_CS_BASE);
1784 if (emulator_read_std(rip, &inst, sizeof(inst), vcpu) !=
1785 X86EMUL_CONTINUE)
1786 return 0;
1788 for (i = 0; i < sizeof(inst); i++) {
1789 switch (((u8*)&inst)[i]) {
1790 case 0xf0:
1791 case 0xf2:
1792 case 0xf3:
1793 case 0x2e:
1794 case 0x36:
1795 case 0x3e:
1796 case 0x26:
1797 case 0x64:
1798 case 0x65:
1799 case 0x66:
1800 break;
1801 case 0x67:
1802 countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
1803 default:
1804 goto done;
1807 return 0;
1808 done:
1809 countr_size *= 8;
1810 *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
1811 //printk("cx: %lx\n", vcpu->regs[VCPU_REGS_RCX]);
1812 return 1;
1815 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1817 u64 exit_qualification;
1818 int size, down, in, string, rep;
1819 unsigned port;
1820 unsigned long count;
1821 gva_t address;
1823 ++vcpu->stat.io_exits;
1824 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1825 in = (exit_qualification & 8) != 0;
1826 size = (exit_qualification & 7) + 1;
1827 string = (exit_qualification & 16) != 0;
1828 down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
1829 count = 1;
1830 rep = (exit_qualification & 32) != 0;
1831 port = exit_qualification >> 16;
1832 address = 0;
1833 if (string) {
1834 if (rep && !get_io_count(vcpu, &count))
1835 return 1;
1836 address = vmcs_readl(GUEST_LINEAR_ADDRESS);
1838 return kvm_setup_pio(vcpu, kvm_run, in, size, count, string, down,
1839 address, rep, port);
1842 static void
1843 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1846 * Patch in the VMCALL instruction:
1848 hypercall[0] = 0x0f;
1849 hypercall[1] = 0x01;
1850 hypercall[2] = 0xc1;
1851 hypercall[3] = 0xc3;
1854 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1856 u64 exit_qualification;
1857 int cr;
1858 int reg;
1860 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1861 cr = exit_qualification & 15;
1862 reg = (exit_qualification >> 8) & 15;
1863 switch ((exit_qualification >> 4) & 3) {
1864 case 0: /* mov to cr */
1865 switch (cr) {
1866 case 0:
1867 vcpu_load_rsp_rip(vcpu);
1868 set_cr0(vcpu, vcpu->regs[reg]);
1869 skip_emulated_instruction(vcpu);
1870 return 1;
1871 case 3:
1872 vcpu_load_rsp_rip(vcpu);
1873 set_cr3(vcpu, vcpu->regs[reg]);
1874 skip_emulated_instruction(vcpu);
1875 return 1;
1876 case 4:
1877 vcpu_load_rsp_rip(vcpu);
1878 set_cr4(vcpu, vcpu->regs[reg]);
1879 skip_emulated_instruction(vcpu);
1880 return 1;
1881 case 8:
1882 vcpu_load_rsp_rip(vcpu);
1883 set_cr8(vcpu, vcpu->regs[reg]);
1884 skip_emulated_instruction(vcpu);
1885 return 1;
1887 break;
1888 case 2: /* clts */
1889 vcpu_load_rsp_rip(vcpu);
1890 vmx_fpu_deactivate(vcpu);
1891 vcpu->cr0 &= ~X86_CR0_TS;
1892 vmcs_writel(CR0_READ_SHADOW, vcpu->cr0);
1893 vmx_fpu_activate(vcpu);
1894 skip_emulated_instruction(vcpu);
1895 return 1;
1896 case 1: /*mov from cr*/
1897 switch (cr) {
1898 case 3:
1899 vcpu_load_rsp_rip(vcpu);
1900 vcpu->regs[reg] = vcpu->cr3;
1901 vcpu_put_rsp_rip(vcpu);
1902 skip_emulated_instruction(vcpu);
1903 return 1;
1904 case 8:
1905 vcpu_load_rsp_rip(vcpu);
1906 vcpu->regs[reg] = vcpu->cr8;
1907 vcpu_put_rsp_rip(vcpu);
1908 skip_emulated_instruction(vcpu);
1909 return 1;
1911 break;
1912 case 3: /* lmsw */
1913 lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
1915 skip_emulated_instruction(vcpu);
1916 return 1;
1917 default:
1918 break;
1920 kvm_run->exit_reason = 0;
1921 printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
1922 (int)(exit_qualification >> 4) & 3, cr);
1923 return 0;
1926 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1928 u64 exit_qualification;
1929 unsigned long val;
1930 int dr, reg;
1933 * FIXME: this code assumes the host is debugging the guest.
1934 * need to deal with guest debugging itself too.
1936 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1937 dr = exit_qualification & 7;
1938 reg = (exit_qualification >> 8) & 15;
1939 vcpu_load_rsp_rip(vcpu);
1940 if (exit_qualification & 16) {
1941 /* mov from dr */
1942 switch (dr) {
1943 case 6:
1944 val = 0xffff0ff0;
1945 break;
1946 case 7:
1947 val = 0x400;
1948 break;
1949 default:
1950 val = 0;
1952 vcpu->regs[reg] = val;
1953 } else {
1954 /* mov to dr */
1956 vcpu_put_rsp_rip(vcpu);
1957 skip_emulated_instruction(vcpu);
1958 return 1;
1961 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1963 kvm_emulate_cpuid(vcpu);
1964 return 1;
1967 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1969 u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1970 u64 data;
1972 if (vmx_get_msr(vcpu, ecx, &data)) {
1973 vmx_inject_gp(vcpu, 0);
1974 return 1;
1977 /* FIXME: handling of bits 32:63 of rax, rdx */
1978 vcpu->regs[VCPU_REGS_RAX] = data & -1u;
1979 vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
1980 skip_emulated_instruction(vcpu);
1981 return 1;
1984 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1986 u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1987 u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
1988 | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
1990 if (vmx_set_msr(vcpu, ecx, data) != 0) {
1991 vmx_inject_gp(vcpu, 0);
1992 return 1;
1995 skip_emulated_instruction(vcpu);
1996 return 1;
1999 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
2000 struct kvm_run *kvm_run)
2002 kvm_run->if_flag = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) != 0;
2003 kvm_run->cr8 = vcpu->cr8;
2004 kvm_run->apic_base = vcpu->apic_base;
2005 kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
2006 vcpu->irq_summary == 0);
2009 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
2010 struct kvm_run *kvm_run)
2013 * If the user space waits to inject interrupts, exit as soon as
2014 * possible
2016 if (kvm_run->request_interrupt_window &&
2017 !vcpu->irq_summary) {
2018 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2019 ++vcpu->stat.irq_window_exits;
2020 return 0;
2022 return 1;
2025 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2027 skip_emulated_instruction(vcpu);
2028 return kvm_emulate_halt(vcpu);
2031 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2033 skip_emulated_instruction(vcpu);
2034 return kvm_hypercall(vcpu, kvm_run);
2038 * The exit handlers return 1 if the exit was handled fully and guest execution
2039 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
2040 * to be done to userspace and return 0.
2042 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
2043 struct kvm_run *kvm_run) = {
2044 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
2045 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
2046 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
2047 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
2048 [EXIT_REASON_CR_ACCESS] = handle_cr,
2049 [EXIT_REASON_DR_ACCESS] = handle_dr,
2050 [EXIT_REASON_CPUID] = handle_cpuid,
2051 [EXIT_REASON_MSR_READ] = handle_rdmsr,
2052 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
2053 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
2054 [EXIT_REASON_HLT] = handle_halt,
2055 [EXIT_REASON_VMCALL] = handle_vmcall,
2058 static const int kvm_vmx_max_exit_handlers =
2059 ARRAY_SIZE(kvm_vmx_exit_handlers);
2062 * The guest has exited. See if we can fix it or if we need userspace
2063 * assistance.
2065 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2067 u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2068 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
2070 if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
2071 exit_reason != EXIT_REASON_EXCEPTION_NMI )
2072 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
2073 "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
2074 if (exit_reason < kvm_vmx_max_exit_handlers
2075 && kvm_vmx_exit_handlers[exit_reason])
2076 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
2077 else {
2078 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2079 kvm_run->hw.hardware_exit_reason = exit_reason;
2081 return 0;
2085 * Check if userspace requested an interrupt window, and that the
2086 * interrupt window is open.
2088 * No need to exit to userspace if we already have an interrupt queued.
2090 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
2091 struct kvm_run *kvm_run)
2093 return (!vcpu->irq_summary &&
2094 kvm_run->request_interrupt_window &&
2095 vcpu->interrupt_window_open &&
2096 (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
2099 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2103 static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2105 struct vcpu_vmx *vmx = to_vmx(vcpu);
2106 u8 fail;
2107 int r;
2109 preempted:
2110 if (vcpu->guest_debug.enabled)
2111 kvm_guest_debug_pre(vcpu);
2113 again:
2114 r = kvm_mmu_reload(vcpu);
2115 if (unlikely(r))
2116 goto out;
2118 preempt_disable();
2120 if (!vcpu->mmio_read_completed)
2121 do_interrupt_requests(vcpu, kvm_run);
2123 vmx_save_host_state(vmx);
2124 kvm_load_guest_fpu(vcpu);
2127 * Loading guest fpu may have cleared host cr0.ts
2129 vmcs_writel(HOST_CR0, read_cr0());
2131 local_irq_disable();
2133 vcpu->guest_mode = 1;
2134 if (vcpu->requests)
2135 if (test_and_clear_bit(KVM_TLB_FLUSH, &vcpu->requests))
2136 vmx_flush_tlb(vcpu);
2138 asm (
2139 /* Store host registers */
2140 #ifdef CONFIG_X86_64
2141 "push %%rax; push %%rbx; push %%rdx;"
2142 "push %%rsi; push %%rdi; push %%rbp;"
2143 "push %%r8; push %%r9; push %%r10; push %%r11;"
2144 "push %%r12; push %%r13; push %%r14; push %%r15;"
2145 "push %%rcx \n\t"
2146 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
2147 #else
2148 "pusha; push %%ecx \n\t"
2149 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
2150 #endif
2151 /* Check if vmlaunch of vmresume is needed */
2152 "cmp $0, %1 \n\t"
2153 /* Load guest registers. Don't clobber flags. */
2154 #ifdef CONFIG_X86_64
2155 "mov %c[cr2](%3), %%rax \n\t"
2156 "mov %%rax, %%cr2 \n\t"
2157 "mov %c[rax](%3), %%rax \n\t"
2158 "mov %c[rbx](%3), %%rbx \n\t"
2159 "mov %c[rdx](%3), %%rdx \n\t"
2160 "mov %c[rsi](%3), %%rsi \n\t"
2161 "mov %c[rdi](%3), %%rdi \n\t"
2162 "mov %c[rbp](%3), %%rbp \n\t"
2163 "mov %c[r8](%3), %%r8 \n\t"
2164 "mov %c[r9](%3), %%r9 \n\t"
2165 "mov %c[r10](%3), %%r10 \n\t"
2166 "mov %c[r11](%3), %%r11 \n\t"
2167 "mov %c[r12](%3), %%r12 \n\t"
2168 "mov %c[r13](%3), %%r13 \n\t"
2169 "mov %c[r14](%3), %%r14 \n\t"
2170 "mov %c[r15](%3), %%r15 \n\t"
2171 "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
2172 #else
2173 "mov %c[cr2](%3), %%eax \n\t"
2174 "mov %%eax, %%cr2 \n\t"
2175 "mov %c[rax](%3), %%eax \n\t"
2176 "mov %c[rbx](%3), %%ebx \n\t"
2177 "mov %c[rdx](%3), %%edx \n\t"
2178 "mov %c[rsi](%3), %%esi \n\t"
2179 "mov %c[rdi](%3), %%edi \n\t"
2180 "mov %c[rbp](%3), %%ebp \n\t"
2181 "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
2182 #endif
2183 /* Enter guest mode */
2184 "jne .Llaunched \n\t"
2185 ASM_VMX_VMLAUNCH "\n\t"
2186 "jmp .Lkvm_vmx_return \n\t"
2187 ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
2188 ".Lkvm_vmx_return: "
2189 /* Save guest registers, load host registers, keep flags */
2190 #ifdef CONFIG_X86_64
2191 "xchg %3, (%%rsp) \n\t"
2192 "mov %%rax, %c[rax](%3) \n\t"
2193 "mov %%rbx, %c[rbx](%3) \n\t"
2194 "pushq (%%rsp); popq %c[rcx](%3) \n\t"
2195 "mov %%rdx, %c[rdx](%3) \n\t"
2196 "mov %%rsi, %c[rsi](%3) \n\t"
2197 "mov %%rdi, %c[rdi](%3) \n\t"
2198 "mov %%rbp, %c[rbp](%3) \n\t"
2199 "mov %%r8, %c[r8](%3) \n\t"
2200 "mov %%r9, %c[r9](%3) \n\t"
2201 "mov %%r10, %c[r10](%3) \n\t"
2202 "mov %%r11, %c[r11](%3) \n\t"
2203 "mov %%r12, %c[r12](%3) \n\t"
2204 "mov %%r13, %c[r13](%3) \n\t"
2205 "mov %%r14, %c[r14](%3) \n\t"
2206 "mov %%r15, %c[r15](%3) \n\t"
2207 "mov %%cr2, %%rax \n\t"
2208 "mov %%rax, %c[cr2](%3) \n\t"
2209 "mov (%%rsp), %3 \n\t"
2211 "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
2212 "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
2213 "pop %%rbp; pop %%rdi; pop %%rsi;"
2214 "pop %%rdx; pop %%rbx; pop %%rax \n\t"
2215 #else
2216 "xchg %3, (%%esp) \n\t"
2217 "mov %%eax, %c[rax](%3) \n\t"
2218 "mov %%ebx, %c[rbx](%3) \n\t"
2219 "pushl (%%esp); popl %c[rcx](%3) \n\t"
2220 "mov %%edx, %c[rdx](%3) \n\t"
2221 "mov %%esi, %c[rsi](%3) \n\t"
2222 "mov %%edi, %c[rdi](%3) \n\t"
2223 "mov %%ebp, %c[rbp](%3) \n\t"
2224 "mov %%cr2, %%eax \n\t"
2225 "mov %%eax, %c[cr2](%3) \n\t"
2226 "mov (%%esp), %3 \n\t"
2228 "pop %%ecx; popa \n\t"
2229 #endif
2230 "setbe %0 \n\t"
2231 : "=q" (fail)
2232 : "r"(vmx->launched), "d"((unsigned long)HOST_RSP),
2233 "c"(vcpu),
2234 [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
2235 [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
2236 [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
2237 [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
2238 [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
2239 [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
2240 [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
2241 #ifdef CONFIG_X86_64
2242 [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
2243 [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
2244 [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
2245 [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
2246 [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
2247 [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
2248 [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
2249 [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
2250 #endif
2251 [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
2252 : "cc", "memory" );
2254 vcpu->guest_mode = 0;
2255 local_irq_enable();
2257 ++vcpu->stat.exits;
2259 vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
2261 asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
2262 vmx->launched = 1;
2264 preempt_enable();
2266 if (unlikely(fail)) {
2267 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2268 kvm_run->fail_entry.hardware_entry_failure_reason
2269 = vmcs_read32(VM_INSTRUCTION_ERROR);
2270 r = 0;
2271 goto out;
2274 * Profile KVM exit RIPs:
2276 if (unlikely(prof_on == KVM_PROFILING))
2277 profile_hit(KVM_PROFILING, (void *)vmcs_readl(GUEST_RIP));
2279 r = kvm_handle_exit(kvm_run, vcpu);
2280 if (r > 0) {
2281 /* Give scheduler a change to reschedule. */
2282 if (signal_pending(current)) {
2283 r = -EINTR;
2284 kvm_run->exit_reason = KVM_EXIT_INTR;
2285 ++vcpu->stat.signal_exits;
2286 goto out;
2289 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
2290 r = -EINTR;
2291 kvm_run->exit_reason = KVM_EXIT_INTR;
2292 ++vcpu->stat.request_irq_exits;
2293 goto out;
2295 if (!need_resched()) {
2296 ++vcpu->stat.light_exits;
2297 goto again;
2301 out:
2302 if (r > 0) {
2303 kvm_resched(vcpu);
2304 goto preempted;
2307 post_kvm_run_save(vcpu, kvm_run);
2308 return r;
2311 static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
2312 unsigned long addr,
2313 u32 err_code)
2315 u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2317 ++vcpu->stat.pf_guest;
2319 if (is_page_fault(vect_info)) {
2320 printk(KERN_DEBUG "inject_page_fault: "
2321 "double fault 0x%lx @ 0x%lx\n",
2322 addr, vmcs_readl(GUEST_RIP));
2323 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
2324 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2325 DF_VECTOR |
2326 INTR_TYPE_EXCEPTION |
2327 INTR_INFO_DELIEVER_CODE_MASK |
2328 INTR_INFO_VALID_MASK);
2329 return;
2331 vcpu->cr2 = addr;
2332 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
2333 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2334 PF_VECTOR |
2335 INTR_TYPE_EXCEPTION |
2336 INTR_INFO_DELIEVER_CODE_MASK |
2337 INTR_INFO_VALID_MASK);
2341 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
2343 struct vcpu_vmx *vmx = to_vmx(vcpu);
2345 if (vmx->vmcs) {
2346 on_each_cpu(__vcpu_clear, vmx, 0, 1);
2347 free_vmcs(vmx->vmcs);
2348 vmx->vmcs = NULL;
2352 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
2354 struct vcpu_vmx *vmx = to_vmx(vcpu);
2356 vmx_free_vmcs(vcpu);
2357 kfree(vmx->host_msrs);
2358 kfree(vmx->guest_msrs);
2359 kvm_vcpu_uninit(vcpu);
2360 kfree(vmx);
2363 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
2365 int err;
2366 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2367 int cpu;
2369 if (!vmx)
2370 return ERR_PTR(-ENOMEM);
2372 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
2373 if (err)
2374 goto free_vcpu;
2376 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2377 if (!vmx->guest_msrs) {
2378 err = -ENOMEM;
2379 goto uninit_vcpu;
2382 vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2383 if (!vmx->host_msrs)
2384 goto free_guest_msrs;
2386 vmx->vmcs = alloc_vmcs();
2387 if (!vmx->vmcs)
2388 goto free_msrs;
2390 vmcs_clear(vmx->vmcs);
2392 cpu = get_cpu();
2393 vmx_vcpu_load(&vmx->vcpu, cpu);
2394 err = vmx_vcpu_setup(vmx);
2395 vmx_vcpu_put(&vmx->vcpu);
2396 put_cpu();
2397 if (err)
2398 goto free_vmcs;
2400 return &vmx->vcpu;
2402 free_vmcs:
2403 free_vmcs(vmx->vmcs);
2404 free_msrs:
2405 kfree(vmx->host_msrs);
2406 free_guest_msrs:
2407 kfree(vmx->guest_msrs);
2408 uninit_vcpu:
2409 kvm_vcpu_uninit(&vmx->vcpu);
2410 free_vcpu:
2411 kfree(vmx);
2412 return ERR_PTR(err);
2415 static void __init vmx_check_processor_compat(void *rtn)
2417 struct vmcs_config vmcs_conf;
2419 *(int *)rtn = 0;
2420 if (setup_vmcs_config(&vmcs_conf) < 0)
2421 *(int *)rtn = -EIO;
2422 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
2423 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
2424 smp_processor_id());
2425 *(int *)rtn = -EIO;
2429 static struct kvm_arch_ops vmx_arch_ops = {
2430 .cpu_has_kvm_support = cpu_has_kvm_support,
2431 .disabled_by_bios = vmx_disabled_by_bios,
2432 .hardware_setup = hardware_setup,
2433 .hardware_unsetup = hardware_unsetup,
2434 .check_processor_compatibility = vmx_check_processor_compat,
2435 .hardware_enable = hardware_enable,
2436 .hardware_disable = hardware_disable,
2438 .vcpu_create = vmx_create_vcpu,
2439 .vcpu_free = vmx_free_vcpu,
2441 .vcpu_load = vmx_vcpu_load,
2442 .vcpu_put = vmx_vcpu_put,
2443 .vcpu_decache = vmx_vcpu_decache,
2445 .set_guest_debug = set_guest_debug,
2446 .get_msr = vmx_get_msr,
2447 .set_msr = vmx_set_msr,
2448 .get_segment_base = vmx_get_segment_base,
2449 .get_segment = vmx_get_segment,
2450 .set_segment = vmx_set_segment,
2451 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
2452 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
2453 .set_cr0 = vmx_set_cr0,
2454 .set_cr3 = vmx_set_cr3,
2455 .set_cr4 = vmx_set_cr4,
2456 #ifdef CONFIG_X86_64
2457 .set_efer = vmx_set_efer,
2458 #endif
2459 .get_idt = vmx_get_idt,
2460 .set_idt = vmx_set_idt,
2461 .get_gdt = vmx_get_gdt,
2462 .set_gdt = vmx_set_gdt,
2463 .cache_regs = vcpu_load_rsp_rip,
2464 .decache_regs = vcpu_put_rsp_rip,
2465 .get_rflags = vmx_get_rflags,
2466 .set_rflags = vmx_set_rflags,
2468 .tlb_flush = vmx_flush_tlb,
2469 .inject_page_fault = vmx_inject_page_fault,
2471 .inject_gp = vmx_inject_gp,
2473 .run = vmx_vcpu_run,
2474 .skip_emulated_instruction = skip_emulated_instruction,
2475 .patch_hypercall = vmx_patch_hypercall,
2478 static int __init vmx_init(void)
2480 void *iova;
2481 int r;
2483 vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2484 if (!vmx_io_bitmap_a)
2485 return -ENOMEM;
2487 vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2488 if (!vmx_io_bitmap_b) {
2489 r = -ENOMEM;
2490 goto out;
2494 * Allow direct access to the PC debug port (it is often used for I/O
2495 * delays, but the vmexits simply slow things down).
2497 iova = kmap(vmx_io_bitmap_a);
2498 memset(iova, 0xff, PAGE_SIZE);
2499 clear_bit(0x80, iova);
2500 kunmap(vmx_io_bitmap_a);
2502 iova = kmap(vmx_io_bitmap_b);
2503 memset(iova, 0xff, PAGE_SIZE);
2504 kunmap(vmx_io_bitmap_b);
2506 r = kvm_init_arch(&vmx_arch_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
2507 if (r)
2508 goto out1;
2510 return 0;
2512 out1:
2513 __free_page(vmx_io_bitmap_b);
2514 out:
2515 __free_page(vmx_io_bitmap_a);
2516 return r;
2519 static void __exit vmx_exit(void)
2521 __free_page(vmx_io_bitmap_b);
2522 __free_page(vmx_io_bitmap_a);
2524 kvm_exit_arch();
2527 module_init(vmx_init)
2528 module_exit(vmx_exit)