sched: cleanup cpuacct variable names
[firewire-audio.git] / kernel / sched.c
blobe2f85c7a7476291fb2f3228ecf13897dad359449
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
71 #include <asm/tlb.h>
72 #include <asm/irq_regs.h>
75 * Scheduler clock - returns current time in nanosec units.
76 * This is default implementation.
77 * Architectures and sub-architectures can override this.
79 unsigned long long __attribute__((weak)) sched_clock(void)
81 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
89 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
98 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
103 * Helpers for converting nanosecond timing to jiffy resolution
105 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
107 #define NICE_0_LOAD SCHED_LOAD_SCALE
108 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
111 * These are the 'tuning knobs' of the scheduler:
113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
114 * Timeslices get refilled after they expire.
116 #define DEF_TIMESLICE (100 * HZ / 1000)
119 * single value that denotes runtime == period, ie unlimited time.
121 #define RUNTIME_INF ((u64)~0ULL)
123 #ifdef CONFIG_SMP
125 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
126 * Since cpu_power is a 'constant', we can use a reciprocal divide.
128 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
130 return reciprocal_divide(load, sg->reciprocal_cpu_power);
134 * Each time a sched group cpu_power is changed,
135 * we must compute its reciprocal value
137 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
139 sg->__cpu_power += val;
140 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
142 #endif
144 static inline int rt_policy(int policy)
146 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
147 return 1;
148 return 0;
151 static inline int task_has_rt_policy(struct task_struct *p)
153 return rt_policy(p->policy);
157 * This is the priority-queue data structure of the RT scheduling class:
159 struct rt_prio_array {
160 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
161 struct list_head queue[MAX_RT_PRIO];
164 struct rt_bandwidth {
165 ktime_t rt_period;
166 u64 rt_runtime;
167 spinlock_t rt_runtime_lock;
168 struct hrtimer rt_period_timer;
171 static struct rt_bandwidth def_rt_bandwidth;
173 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
175 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
177 struct rt_bandwidth *rt_b =
178 container_of(timer, struct rt_bandwidth, rt_period_timer);
179 ktime_t now;
180 int overrun;
181 int idle = 0;
183 for (;;) {
184 now = hrtimer_cb_get_time(timer);
185 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
187 if (!overrun)
188 break;
190 idle = do_sched_rt_period_timer(rt_b, overrun);
193 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
196 static
197 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
199 rt_b->rt_period = ns_to_ktime(period);
200 rt_b->rt_runtime = runtime;
202 spin_lock_init(&rt_b->rt_runtime_lock);
204 hrtimer_init(&rt_b->rt_period_timer,
205 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
206 rt_b->rt_period_timer.function = sched_rt_period_timer;
207 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
210 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
212 ktime_t now;
214 if (rt_b->rt_runtime == RUNTIME_INF)
215 return;
217 if (hrtimer_active(&rt_b->rt_period_timer))
218 return;
220 spin_lock(&rt_b->rt_runtime_lock);
221 for (;;) {
222 if (hrtimer_active(&rt_b->rt_period_timer))
223 break;
225 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
226 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
227 hrtimer_start(&rt_b->rt_period_timer,
228 rt_b->rt_period_timer.expires,
229 HRTIMER_MODE_ABS);
231 spin_unlock(&rt_b->rt_runtime_lock);
234 #ifdef CONFIG_RT_GROUP_SCHED
235 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
237 hrtimer_cancel(&rt_b->rt_period_timer);
239 #endif
241 #ifdef CONFIG_GROUP_SCHED
243 #include <linux/cgroup.h>
245 struct cfs_rq;
247 static LIST_HEAD(task_groups);
249 /* task group related information */
250 struct task_group {
251 #ifdef CONFIG_CGROUP_SCHED
252 struct cgroup_subsys_state css;
253 #endif
255 #ifdef CONFIG_FAIR_GROUP_SCHED
256 /* schedulable entities of this group on each cpu */
257 struct sched_entity **se;
258 /* runqueue "owned" by this group on each cpu */
259 struct cfs_rq **cfs_rq;
260 unsigned long shares;
261 #endif
263 #ifdef CONFIG_RT_GROUP_SCHED
264 struct sched_rt_entity **rt_se;
265 struct rt_rq **rt_rq;
267 struct rt_bandwidth rt_bandwidth;
268 #endif
270 struct rcu_head rcu;
271 struct list_head list;
274 #ifdef CONFIG_FAIR_GROUP_SCHED
275 /* Default task group's sched entity on each cpu */
276 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
277 /* Default task group's cfs_rq on each cpu */
278 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
280 static struct sched_entity *init_sched_entity_p[NR_CPUS];
281 static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
282 #endif
284 #ifdef CONFIG_RT_GROUP_SCHED
285 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
286 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
288 static struct sched_rt_entity *init_sched_rt_entity_p[NR_CPUS];
289 static struct rt_rq *init_rt_rq_p[NR_CPUS];
290 #endif
292 /* task_group_lock serializes add/remove of task groups and also changes to
293 * a task group's cpu shares.
295 static DEFINE_SPINLOCK(task_group_lock);
297 /* doms_cur_mutex serializes access to doms_cur[] array */
298 static DEFINE_MUTEX(doms_cur_mutex);
300 #ifdef CONFIG_FAIR_GROUP_SCHED
301 #ifdef CONFIG_USER_SCHED
302 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
303 #else
304 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
305 #endif
307 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
308 #endif
310 /* Default task group.
311 * Every task in system belong to this group at bootup.
313 struct task_group init_task_group = {
314 #ifdef CONFIG_FAIR_GROUP_SCHED
315 .se = init_sched_entity_p,
316 .cfs_rq = init_cfs_rq_p,
317 #endif
319 #ifdef CONFIG_RT_GROUP_SCHED
320 .rt_se = init_sched_rt_entity_p,
321 .rt_rq = init_rt_rq_p,
322 #endif
325 /* return group to which a task belongs */
326 static inline struct task_group *task_group(struct task_struct *p)
328 struct task_group *tg;
330 #ifdef CONFIG_USER_SCHED
331 tg = p->user->tg;
332 #elif defined(CONFIG_CGROUP_SCHED)
333 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
334 struct task_group, css);
335 #else
336 tg = &init_task_group;
337 #endif
338 return tg;
341 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
342 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
344 #ifdef CONFIG_FAIR_GROUP_SCHED
345 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
346 p->se.parent = task_group(p)->se[cpu];
347 #endif
349 #ifdef CONFIG_RT_GROUP_SCHED
350 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
351 p->rt.parent = task_group(p)->rt_se[cpu];
352 #endif
355 static inline void lock_doms_cur(void)
357 mutex_lock(&doms_cur_mutex);
360 static inline void unlock_doms_cur(void)
362 mutex_unlock(&doms_cur_mutex);
365 #else
367 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
368 static inline void lock_doms_cur(void) { }
369 static inline void unlock_doms_cur(void) { }
371 #endif /* CONFIG_GROUP_SCHED */
373 /* CFS-related fields in a runqueue */
374 struct cfs_rq {
375 struct load_weight load;
376 unsigned long nr_running;
378 u64 exec_clock;
379 u64 min_vruntime;
381 struct rb_root tasks_timeline;
382 struct rb_node *rb_leftmost;
383 struct rb_node *rb_load_balance_curr;
384 /* 'curr' points to currently running entity on this cfs_rq.
385 * It is set to NULL otherwise (i.e when none are currently running).
387 struct sched_entity *curr, *next;
389 unsigned long nr_spread_over;
391 #ifdef CONFIG_FAIR_GROUP_SCHED
392 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
395 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
396 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
397 * (like users, containers etc.)
399 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
400 * list is used during load balance.
402 struct list_head leaf_cfs_rq_list;
403 struct task_group *tg; /* group that "owns" this runqueue */
404 #endif
407 /* Real-Time classes' related field in a runqueue: */
408 struct rt_rq {
409 struct rt_prio_array active;
410 unsigned long rt_nr_running;
411 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
412 int highest_prio; /* highest queued rt task prio */
413 #endif
414 #ifdef CONFIG_SMP
415 unsigned long rt_nr_migratory;
416 int overloaded;
417 #endif
418 int rt_throttled;
419 u64 rt_time;
420 u64 rt_runtime;
421 spinlock_t rt_runtime_lock;
423 #ifdef CONFIG_RT_GROUP_SCHED
424 unsigned long rt_nr_boosted;
426 struct rq *rq;
427 struct list_head leaf_rt_rq_list;
428 struct task_group *tg;
429 struct sched_rt_entity *rt_se;
430 #endif
433 #ifdef CONFIG_SMP
436 * We add the notion of a root-domain which will be used to define per-domain
437 * variables. Each exclusive cpuset essentially defines an island domain by
438 * fully partitioning the member cpus from any other cpuset. Whenever a new
439 * exclusive cpuset is created, we also create and attach a new root-domain
440 * object.
443 struct root_domain {
444 atomic_t refcount;
445 cpumask_t span;
446 cpumask_t online;
449 * The "RT overload" flag: it gets set if a CPU has more than
450 * one runnable RT task.
452 cpumask_t rto_mask;
453 atomic_t rto_count;
457 * By default the system creates a single root-domain with all cpus as
458 * members (mimicking the global state we have today).
460 static struct root_domain def_root_domain;
462 #endif
465 * This is the main, per-CPU runqueue data structure.
467 * Locking rule: those places that want to lock multiple runqueues
468 * (such as the load balancing or the thread migration code), lock
469 * acquire operations must be ordered by ascending &runqueue.
471 struct rq {
472 /* runqueue lock: */
473 spinlock_t lock;
476 * nr_running and cpu_load should be in the same cacheline because
477 * remote CPUs use both these fields when doing load calculation.
479 unsigned long nr_running;
480 #define CPU_LOAD_IDX_MAX 5
481 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
482 unsigned char idle_at_tick;
483 #ifdef CONFIG_NO_HZ
484 unsigned long last_tick_seen;
485 unsigned char in_nohz_recently;
486 #endif
487 /* capture load from *all* tasks on this cpu: */
488 struct load_weight load;
489 unsigned long nr_load_updates;
490 u64 nr_switches;
492 struct cfs_rq cfs;
493 struct rt_rq rt;
495 #ifdef CONFIG_FAIR_GROUP_SCHED
496 /* list of leaf cfs_rq on this cpu: */
497 struct list_head leaf_cfs_rq_list;
498 #endif
499 #ifdef CONFIG_RT_GROUP_SCHED
500 struct list_head leaf_rt_rq_list;
501 #endif
504 * This is part of a global counter where only the total sum
505 * over all CPUs matters. A task can increase this counter on
506 * one CPU and if it got migrated afterwards it may decrease
507 * it on another CPU. Always updated under the runqueue lock:
509 unsigned long nr_uninterruptible;
511 struct task_struct *curr, *idle;
512 unsigned long next_balance;
513 struct mm_struct *prev_mm;
515 u64 clock, prev_clock_raw;
516 s64 clock_max_delta;
518 unsigned int clock_warps, clock_overflows, clock_underflows;
519 u64 idle_clock;
520 unsigned int clock_deep_idle_events;
521 u64 tick_timestamp;
523 atomic_t nr_iowait;
525 #ifdef CONFIG_SMP
526 struct root_domain *rd;
527 struct sched_domain *sd;
529 /* For active balancing */
530 int active_balance;
531 int push_cpu;
532 /* cpu of this runqueue: */
533 int cpu;
535 struct task_struct *migration_thread;
536 struct list_head migration_queue;
537 #endif
539 #ifdef CONFIG_SCHED_HRTICK
540 unsigned long hrtick_flags;
541 ktime_t hrtick_expire;
542 struct hrtimer hrtick_timer;
543 #endif
545 #ifdef CONFIG_SCHEDSTATS
546 /* latency stats */
547 struct sched_info rq_sched_info;
549 /* sys_sched_yield() stats */
550 unsigned int yld_exp_empty;
551 unsigned int yld_act_empty;
552 unsigned int yld_both_empty;
553 unsigned int yld_count;
555 /* schedule() stats */
556 unsigned int sched_switch;
557 unsigned int sched_count;
558 unsigned int sched_goidle;
560 /* try_to_wake_up() stats */
561 unsigned int ttwu_count;
562 unsigned int ttwu_local;
564 /* BKL stats */
565 unsigned int bkl_count;
566 #endif
567 struct lock_class_key rq_lock_key;
570 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
572 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
574 rq->curr->sched_class->check_preempt_curr(rq, p);
577 static inline int cpu_of(struct rq *rq)
579 #ifdef CONFIG_SMP
580 return rq->cpu;
581 #else
582 return 0;
583 #endif
586 #ifdef CONFIG_NO_HZ
587 static inline bool nohz_on(int cpu)
589 return tick_get_tick_sched(cpu)->nohz_mode != NOHZ_MODE_INACTIVE;
592 static inline u64 max_skipped_ticks(struct rq *rq)
594 return nohz_on(cpu_of(rq)) ? jiffies - rq->last_tick_seen + 2 : 1;
597 static inline void update_last_tick_seen(struct rq *rq)
599 rq->last_tick_seen = jiffies;
601 #else
602 static inline u64 max_skipped_ticks(struct rq *rq)
604 return 1;
607 static inline void update_last_tick_seen(struct rq *rq)
610 #endif
613 * Update the per-runqueue clock, as finegrained as the platform can give
614 * us, but without assuming monotonicity, etc.:
616 static void __update_rq_clock(struct rq *rq)
618 u64 prev_raw = rq->prev_clock_raw;
619 u64 now = sched_clock();
620 s64 delta = now - prev_raw;
621 u64 clock = rq->clock;
623 #ifdef CONFIG_SCHED_DEBUG
624 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
625 #endif
627 * Protect against sched_clock() occasionally going backwards:
629 if (unlikely(delta < 0)) {
630 clock++;
631 rq->clock_warps++;
632 } else {
634 * Catch too large forward jumps too:
636 u64 max_jump = max_skipped_ticks(rq) * TICK_NSEC;
637 u64 max_time = rq->tick_timestamp + max_jump;
639 if (unlikely(clock + delta > max_time)) {
640 if (clock < max_time)
641 clock = max_time;
642 else
643 clock++;
644 rq->clock_overflows++;
645 } else {
646 if (unlikely(delta > rq->clock_max_delta))
647 rq->clock_max_delta = delta;
648 clock += delta;
652 rq->prev_clock_raw = now;
653 rq->clock = clock;
656 static void update_rq_clock(struct rq *rq)
658 if (likely(smp_processor_id() == cpu_of(rq)))
659 __update_rq_clock(rq);
663 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
664 * See detach_destroy_domains: synchronize_sched for details.
666 * The domain tree of any CPU may only be accessed from within
667 * preempt-disabled sections.
669 #define for_each_domain(cpu, __sd) \
670 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
672 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
673 #define this_rq() (&__get_cpu_var(runqueues))
674 #define task_rq(p) cpu_rq(task_cpu(p))
675 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
678 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
680 #ifdef CONFIG_SCHED_DEBUG
681 # define const_debug __read_mostly
682 #else
683 # define const_debug static const
684 #endif
687 * Debugging: various feature bits
689 enum {
690 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
691 SCHED_FEAT_WAKEUP_PREEMPT = 2,
692 SCHED_FEAT_START_DEBIT = 4,
693 SCHED_FEAT_AFFINE_WAKEUPS = 8,
694 SCHED_FEAT_CACHE_HOT_BUDDY = 16,
695 SCHED_FEAT_SYNC_WAKEUPS = 32,
696 SCHED_FEAT_HRTICK = 64,
697 SCHED_FEAT_DOUBLE_TICK = 128,
700 const_debug unsigned int sysctl_sched_features =
701 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
702 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
703 SCHED_FEAT_START_DEBIT * 1 |
704 SCHED_FEAT_AFFINE_WAKEUPS * 1 |
705 SCHED_FEAT_CACHE_HOT_BUDDY * 1 |
706 SCHED_FEAT_SYNC_WAKEUPS * 1 |
707 SCHED_FEAT_HRTICK * 1 |
708 SCHED_FEAT_DOUBLE_TICK * 0;
710 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
713 * Number of tasks to iterate in a single balance run.
714 * Limited because this is done with IRQs disabled.
716 const_debug unsigned int sysctl_sched_nr_migrate = 32;
719 * period over which we measure -rt task cpu usage in us.
720 * default: 1s
722 unsigned int sysctl_sched_rt_period = 1000000;
724 static __read_mostly int scheduler_running;
727 * part of the period that we allow rt tasks to run in us.
728 * default: 0.95s
730 int sysctl_sched_rt_runtime = 950000;
732 static inline u64 global_rt_period(void)
734 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
737 static inline u64 global_rt_runtime(void)
739 if (sysctl_sched_rt_period < 0)
740 return RUNTIME_INF;
742 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
745 static const unsigned long long time_sync_thresh = 100000;
747 static DEFINE_PER_CPU(unsigned long long, time_offset);
748 static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
751 * Global lock which we take every now and then to synchronize
752 * the CPUs time. This method is not warp-safe, but it's good
753 * enough to synchronize slowly diverging time sources and thus
754 * it's good enough for tracing:
756 static DEFINE_SPINLOCK(time_sync_lock);
757 static unsigned long long prev_global_time;
759 static unsigned long long __sync_cpu_clock(cycles_t time, int cpu)
761 unsigned long flags;
763 spin_lock_irqsave(&time_sync_lock, flags);
765 if (time < prev_global_time) {
766 per_cpu(time_offset, cpu) += prev_global_time - time;
767 time = prev_global_time;
768 } else {
769 prev_global_time = time;
772 spin_unlock_irqrestore(&time_sync_lock, flags);
774 return time;
777 static unsigned long long __cpu_clock(int cpu)
779 unsigned long long now;
780 unsigned long flags;
781 struct rq *rq;
784 * Only call sched_clock() if the scheduler has already been
785 * initialized (some code might call cpu_clock() very early):
787 if (unlikely(!scheduler_running))
788 return 0;
790 local_irq_save(flags);
791 rq = cpu_rq(cpu);
792 update_rq_clock(rq);
793 now = rq->clock;
794 local_irq_restore(flags);
796 return now;
800 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
801 * clock constructed from sched_clock():
803 unsigned long long cpu_clock(int cpu)
805 unsigned long long prev_cpu_time, time, delta_time;
807 prev_cpu_time = per_cpu(prev_cpu_time, cpu);
808 time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
809 delta_time = time-prev_cpu_time;
811 if (unlikely(delta_time > time_sync_thresh))
812 time = __sync_cpu_clock(time, cpu);
814 return time;
816 EXPORT_SYMBOL_GPL(cpu_clock);
818 #ifndef prepare_arch_switch
819 # define prepare_arch_switch(next) do { } while (0)
820 #endif
821 #ifndef finish_arch_switch
822 # define finish_arch_switch(prev) do { } while (0)
823 #endif
825 static inline int task_current(struct rq *rq, struct task_struct *p)
827 return rq->curr == p;
830 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
831 static inline int task_running(struct rq *rq, struct task_struct *p)
833 return task_current(rq, p);
836 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
840 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
842 #ifdef CONFIG_DEBUG_SPINLOCK
843 /* this is a valid case when another task releases the spinlock */
844 rq->lock.owner = current;
845 #endif
847 * If we are tracking spinlock dependencies then we have to
848 * fix up the runqueue lock - which gets 'carried over' from
849 * prev into current:
851 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
853 spin_unlock_irq(&rq->lock);
856 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
857 static inline int task_running(struct rq *rq, struct task_struct *p)
859 #ifdef CONFIG_SMP
860 return p->oncpu;
861 #else
862 return task_current(rq, p);
863 #endif
866 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
868 #ifdef CONFIG_SMP
870 * We can optimise this out completely for !SMP, because the
871 * SMP rebalancing from interrupt is the only thing that cares
872 * here.
874 next->oncpu = 1;
875 #endif
876 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
877 spin_unlock_irq(&rq->lock);
878 #else
879 spin_unlock(&rq->lock);
880 #endif
883 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
885 #ifdef CONFIG_SMP
887 * After ->oncpu is cleared, the task can be moved to a different CPU.
888 * We must ensure this doesn't happen until the switch is completely
889 * finished.
891 smp_wmb();
892 prev->oncpu = 0;
893 #endif
894 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
895 local_irq_enable();
896 #endif
898 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
901 * __task_rq_lock - lock the runqueue a given task resides on.
902 * Must be called interrupts disabled.
904 static inline struct rq *__task_rq_lock(struct task_struct *p)
905 __acquires(rq->lock)
907 for (;;) {
908 struct rq *rq = task_rq(p);
909 spin_lock(&rq->lock);
910 if (likely(rq == task_rq(p)))
911 return rq;
912 spin_unlock(&rq->lock);
917 * task_rq_lock - lock the runqueue a given task resides on and disable
918 * interrupts. Note the ordering: we can safely lookup the task_rq without
919 * explicitly disabling preemption.
921 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
922 __acquires(rq->lock)
924 struct rq *rq;
926 for (;;) {
927 local_irq_save(*flags);
928 rq = task_rq(p);
929 spin_lock(&rq->lock);
930 if (likely(rq == task_rq(p)))
931 return rq;
932 spin_unlock_irqrestore(&rq->lock, *flags);
936 static void __task_rq_unlock(struct rq *rq)
937 __releases(rq->lock)
939 spin_unlock(&rq->lock);
942 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
943 __releases(rq->lock)
945 spin_unlock_irqrestore(&rq->lock, *flags);
949 * this_rq_lock - lock this runqueue and disable interrupts.
951 static struct rq *this_rq_lock(void)
952 __acquires(rq->lock)
954 struct rq *rq;
956 local_irq_disable();
957 rq = this_rq();
958 spin_lock(&rq->lock);
960 return rq;
964 * We are going deep-idle (irqs are disabled):
966 void sched_clock_idle_sleep_event(void)
968 struct rq *rq = cpu_rq(smp_processor_id());
970 spin_lock(&rq->lock);
971 __update_rq_clock(rq);
972 spin_unlock(&rq->lock);
973 rq->clock_deep_idle_events++;
975 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
978 * We just idled delta nanoseconds (called with irqs disabled):
980 void sched_clock_idle_wakeup_event(u64 delta_ns)
982 struct rq *rq = cpu_rq(smp_processor_id());
983 u64 now = sched_clock();
985 rq->idle_clock += delta_ns;
987 * Override the previous timestamp and ignore all
988 * sched_clock() deltas that occured while we idled,
989 * and use the PM-provided delta_ns to advance the
990 * rq clock:
992 spin_lock(&rq->lock);
993 rq->prev_clock_raw = now;
994 rq->clock += delta_ns;
995 spin_unlock(&rq->lock);
996 touch_softlockup_watchdog();
998 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1000 static void __resched_task(struct task_struct *p, int tif_bit);
1002 static inline void resched_task(struct task_struct *p)
1004 __resched_task(p, TIF_NEED_RESCHED);
1007 #ifdef CONFIG_SCHED_HRTICK
1009 * Use HR-timers to deliver accurate preemption points.
1011 * Its all a bit involved since we cannot program an hrt while holding the
1012 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1013 * reschedule event.
1015 * When we get rescheduled we reprogram the hrtick_timer outside of the
1016 * rq->lock.
1018 static inline void resched_hrt(struct task_struct *p)
1020 __resched_task(p, TIF_HRTICK_RESCHED);
1023 static inline void resched_rq(struct rq *rq)
1025 unsigned long flags;
1027 spin_lock_irqsave(&rq->lock, flags);
1028 resched_task(rq->curr);
1029 spin_unlock_irqrestore(&rq->lock, flags);
1032 enum {
1033 HRTICK_SET, /* re-programm hrtick_timer */
1034 HRTICK_RESET, /* not a new slice */
1038 * Use hrtick when:
1039 * - enabled by features
1040 * - hrtimer is actually high res
1042 static inline int hrtick_enabled(struct rq *rq)
1044 if (!sched_feat(HRTICK))
1045 return 0;
1046 return hrtimer_is_hres_active(&rq->hrtick_timer);
1050 * Called to set the hrtick timer state.
1052 * called with rq->lock held and irqs disabled
1054 static void hrtick_start(struct rq *rq, u64 delay, int reset)
1056 assert_spin_locked(&rq->lock);
1059 * preempt at: now + delay
1061 rq->hrtick_expire =
1062 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
1064 * indicate we need to program the timer
1066 __set_bit(HRTICK_SET, &rq->hrtick_flags);
1067 if (reset)
1068 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
1071 * New slices are called from the schedule path and don't need a
1072 * forced reschedule.
1074 if (reset)
1075 resched_hrt(rq->curr);
1078 static void hrtick_clear(struct rq *rq)
1080 if (hrtimer_active(&rq->hrtick_timer))
1081 hrtimer_cancel(&rq->hrtick_timer);
1085 * Update the timer from the possible pending state.
1087 static void hrtick_set(struct rq *rq)
1089 ktime_t time;
1090 int set, reset;
1091 unsigned long flags;
1093 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1095 spin_lock_irqsave(&rq->lock, flags);
1096 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1097 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1098 time = rq->hrtick_expire;
1099 clear_thread_flag(TIF_HRTICK_RESCHED);
1100 spin_unlock_irqrestore(&rq->lock, flags);
1102 if (set) {
1103 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1104 if (reset && !hrtimer_active(&rq->hrtick_timer))
1105 resched_rq(rq);
1106 } else
1107 hrtick_clear(rq);
1111 * High-resolution timer tick.
1112 * Runs from hardirq context with interrupts disabled.
1114 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1116 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1118 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1120 spin_lock(&rq->lock);
1121 __update_rq_clock(rq);
1122 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1123 spin_unlock(&rq->lock);
1125 return HRTIMER_NORESTART;
1128 static inline void init_rq_hrtick(struct rq *rq)
1130 rq->hrtick_flags = 0;
1131 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1132 rq->hrtick_timer.function = hrtick;
1133 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1136 void hrtick_resched(void)
1138 struct rq *rq;
1139 unsigned long flags;
1141 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1142 return;
1144 local_irq_save(flags);
1145 rq = cpu_rq(smp_processor_id());
1146 hrtick_set(rq);
1147 local_irq_restore(flags);
1149 #else
1150 static inline void hrtick_clear(struct rq *rq)
1154 static inline void hrtick_set(struct rq *rq)
1158 static inline void init_rq_hrtick(struct rq *rq)
1162 void hrtick_resched(void)
1165 #endif
1168 * resched_task - mark a task 'to be rescheduled now'.
1170 * On UP this means the setting of the need_resched flag, on SMP it
1171 * might also involve a cross-CPU call to trigger the scheduler on
1172 * the target CPU.
1174 #ifdef CONFIG_SMP
1176 #ifndef tsk_is_polling
1177 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1178 #endif
1180 static void __resched_task(struct task_struct *p, int tif_bit)
1182 int cpu;
1184 assert_spin_locked(&task_rq(p)->lock);
1186 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
1187 return;
1189 set_tsk_thread_flag(p, tif_bit);
1191 cpu = task_cpu(p);
1192 if (cpu == smp_processor_id())
1193 return;
1195 /* NEED_RESCHED must be visible before we test polling */
1196 smp_mb();
1197 if (!tsk_is_polling(p))
1198 smp_send_reschedule(cpu);
1201 static void resched_cpu(int cpu)
1203 struct rq *rq = cpu_rq(cpu);
1204 unsigned long flags;
1206 if (!spin_trylock_irqsave(&rq->lock, flags))
1207 return;
1208 resched_task(cpu_curr(cpu));
1209 spin_unlock_irqrestore(&rq->lock, flags);
1212 #ifdef CONFIG_NO_HZ
1214 * When add_timer_on() enqueues a timer into the timer wheel of an
1215 * idle CPU then this timer might expire before the next timer event
1216 * which is scheduled to wake up that CPU. In case of a completely
1217 * idle system the next event might even be infinite time into the
1218 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1219 * leaves the inner idle loop so the newly added timer is taken into
1220 * account when the CPU goes back to idle and evaluates the timer
1221 * wheel for the next timer event.
1223 void wake_up_idle_cpu(int cpu)
1225 struct rq *rq = cpu_rq(cpu);
1227 if (cpu == smp_processor_id())
1228 return;
1231 * This is safe, as this function is called with the timer
1232 * wheel base lock of (cpu) held. When the CPU is on the way
1233 * to idle and has not yet set rq->curr to idle then it will
1234 * be serialized on the timer wheel base lock and take the new
1235 * timer into account automatically.
1237 if (rq->curr != rq->idle)
1238 return;
1241 * We can set TIF_RESCHED on the idle task of the other CPU
1242 * lockless. The worst case is that the other CPU runs the
1243 * idle task through an additional NOOP schedule()
1245 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1247 /* NEED_RESCHED must be visible before we test polling */
1248 smp_mb();
1249 if (!tsk_is_polling(rq->idle))
1250 smp_send_reschedule(cpu);
1252 #endif
1254 #else
1255 static void __resched_task(struct task_struct *p, int tif_bit)
1257 assert_spin_locked(&task_rq(p)->lock);
1258 set_tsk_thread_flag(p, tif_bit);
1260 #endif
1262 #if BITS_PER_LONG == 32
1263 # define WMULT_CONST (~0UL)
1264 #else
1265 # define WMULT_CONST (1UL << 32)
1266 #endif
1268 #define WMULT_SHIFT 32
1271 * Shift right and round:
1273 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1275 static unsigned long
1276 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1277 struct load_weight *lw)
1279 u64 tmp;
1281 if (unlikely(!lw->inv_weight))
1282 lw->inv_weight = (WMULT_CONST-lw->weight/2) / (lw->weight+1);
1284 tmp = (u64)delta_exec * weight;
1286 * Check whether we'd overflow the 64-bit multiplication:
1288 if (unlikely(tmp > WMULT_CONST))
1289 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1290 WMULT_SHIFT/2);
1291 else
1292 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1294 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1297 static inline unsigned long
1298 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
1300 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
1303 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1305 lw->weight += inc;
1306 lw->inv_weight = 0;
1309 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1311 lw->weight -= dec;
1312 lw->inv_weight = 0;
1316 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1317 * of tasks with abnormal "nice" values across CPUs the contribution that
1318 * each task makes to its run queue's load is weighted according to its
1319 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1320 * scaled version of the new time slice allocation that they receive on time
1321 * slice expiry etc.
1324 #define WEIGHT_IDLEPRIO 2
1325 #define WMULT_IDLEPRIO (1 << 31)
1328 * Nice levels are multiplicative, with a gentle 10% change for every
1329 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1330 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1331 * that remained on nice 0.
1333 * The "10% effect" is relative and cumulative: from _any_ nice level,
1334 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1335 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1336 * If a task goes up by ~10% and another task goes down by ~10% then
1337 * the relative distance between them is ~25%.)
1339 static const int prio_to_weight[40] = {
1340 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1341 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1342 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1343 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1344 /* 0 */ 1024, 820, 655, 526, 423,
1345 /* 5 */ 335, 272, 215, 172, 137,
1346 /* 10 */ 110, 87, 70, 56, 45,
1347 /* 15 */ 36, 29, 23, 18, 15,
1351 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1353 * In cases where the weight does not change often, we can use the
1354 * precalculated inverse to speed up arithmetics by turning divisions
1355 * into multiplications:
1357 static const u32 prio_to_wmult[40] = {
1358 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1359 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1360 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1361 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1362 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1363 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1364 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1365 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1368 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1371 * runqueue iterator, to support SMP load-balancing between different
1372 * scheduling classes, without having to expose their internal data
1373 * structures to the load-balancing proper:
1375 struct rq_iterator {
1376 void *arg;
1377 struct task_struct *(*start)(void *);
1378 struct task_struct *(*next)(void *);
1381 #ifdef CONFIG_SMP
1382 static unsigned long
1383 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1384 unsigned long max_load_move, struct sched_domain *sd,
1385 enum cpu_idle_type idle, int *all_pinned,
1386 int *this_best_prio, struct rq_iterator *iterator);
1388 static int
1389 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1390 struct sched_domain *sd, enum cpu_idle_type idle,
1391 struct rq_iterator *iterator);
1392 #endif
1394 #ifdef CONFIG_CGROUP_CPUACCT
1395 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1396 #else
1397 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1398 #endif
1400 #ifdef CONFIG_SMP
1401 static unsigned long source_load(int cpu, int type);
1402 static unsigned long target_load(int cpu, int type);
1403 static unsigned long cpu_avg_load_per_task(int cpu);
1404 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1405 #endif /* CONFIG_SMP */
1407 #include "sched_stats.h"
1408 #include "sched_idletask.c"
1409 #include "sched_fair.c"
1410 #include "sched_rt.c"
1411 #ifdef CONFIG_SCHED_DEBUG
1412 # include "sched_debug.c"
1413 #endif
1415 #define sched_class_highest (&rt_sched_class)
1417 static inline void inc_load(struct rq *rq, const struct task_struct *p)
1419 update_load_add(&rq->load, p->se.load.weight);
1422 static inline void dec_load(struct rq *rq, const struct task_struct *p)
1424 update_load_sub(&rq->load, p->se.load.weight);
1427 static void inc_nr_running(struct task_struct *p, struct rq *rq)
1429 rq->nr_running++;
1430 inc_load(rq, p);
1433 static void dec_nr_running(struct task_struct *p, struct rq *rq)
1435 rq->nr_running--;
1436 dec_load(rq, p);
1439 static void set_load_weight(struct task_struct *p)
1441 if (task_has_rt_policy(p)) {
1442 p->se.load.weight = prio_to_weight[0] * 2;
1443 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1444 return;
1448 * SCHED_IDLE tasks get minimal weight:
1450 if (p->policy == SCHED_IDLE) {
1451 p->se.load.weight = WEIGHT_IDLEPRIO;
1452 p->se.load.inv_weight = WMULT_IDLEPRIO;
1453 return;
1456 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1457 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1460 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1462 sched_info_queued(p);
1463 p->sched_class->enqueue_task(rq, p, wakeup);
1464 p->se.on_rq = 1;
1467 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1469 p->sched_class->dequeue_task(rq, p, sleep);
1470 p->se.on_rq = 0;
1474 * __normal_prio - return the priority that is based on the static prio
1476 static inline int __normal_prio(struct task_struct *p)
1478 return p->static_prio;
1482 * Calculate the expected normal priority: i.e. priority
1483 * without taking RT-inheritance into account. Might be
1484 * boosted by interactivity modifiers. Changes upon fork,
1485 * setprio syscalls, and whenever the interactivity
1486 * estimator recalculates.
1488 static inline int normal_prio(struct task_struct *p)
1490 int prio;
1492 if (task_has_rt_policy(p))
1493 prio = MAX_RT_PRIO-1 - p->rt_priority;
1494 else
1495 prio = __normal_prio(p);
1496 return prio;
1500 * Calculate the current priority, i.e. the priority
1501 * taken into account by the scheduler. This value might
1502 * be boosted by RT tasks, or might be boosted by
1503 * interactivity modifiers. Will be RT if the task got
1504 * RT-boosted. If not then it returns p->normal_prio.
1506 static int effective_prio(struct task_struct *p)
1508 p->normal_prio = normal_prio(p);
1510 * If we are RT tasks or we were boosted to RT priority,
1511 * keep the priority unchanged. Otherwise, update priority
1512 * to the normal priority:
1514 if (!rt_prio(p->prio))
1515 return p->normal_prio;
1516 return p->prio;
1520 * activate_task - move a task to the runqueue.
1522 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1524 if (task_contributes_to_load(p))
1525 rq->nr_uninterruptible--;
1527 enqueue_task(rq, p, wakeup);
1528 inc_nr_running(p, rq);
1532 * deactivate_task - remove a task from the runqueue.
1534 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1536 if (task_contributes_to_load(p))
1537 rq->nr_uninterruptible++;
1539 dequeue_task(rq, p, sleep);
1540 dec_nr_running(p, rq);
1544 * task_curr - is this task currently executing on a CPU?
1545 * @p: the task in question.
1547 inline int task_curr(const struct task_struct *p)
1549 return cpu_curr(task_cpu(p)) == p;
1552 /* Used instead of source_load when we know the type == 0 */
1553 unsigned long weighted_cpuload(const int cpu)
1555 return cpu_rq(cpu)->load.weight;
1558 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1560 set_task_rq(p, cpu);
1561 #ifdef CONFIG_SMP
1563 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1564 * successfuly executed on another CPU. We must ensure that updates of
1565 * per-task data have been completed by this moment.
1567 smp_wmb();
1568 task_thread_info(p)->cpu = cpu;
1569 #endif
1572 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1573 const struct sched_class *prev_class,
1574 int oldprio, int running)
1576 if (prev_class != p->sched_class) {
1577 if (prev_class->switched_from)
1578 prev_class->switched_from(rq, p, running);
1579 p->sched_class->switched_to(rq, p, running);
1580 } else
1581 p->sched_class->prio_changed(rq, p, oldprio, running);
1584 #ifdef CONFIG_SMP
1587 * Is this task likely cache-hot:
1589 static int
1590 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1592 s64 delta;
1595 * Buddy candidates are cache hot:
1597 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1598 return 1;
1600 if (p->sched_class != &fair_sched_class)
1601 return 0;
1603 if (sysctl_sched_migration_cost == -1)
1604 return 1;
1605 if (sysctl_sched_migration_cost == 0)
1606 return 0;
1608 delta = now - p->se.exec_start;
1610 return delta < (s64)sysctl_sched_migration_cost;
1614 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1616 int old_cpu = task_cpu(p);
1617 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1618 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1619 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1620 u64 clock_offset;
1622 clock_offset = old_rq->clock - new_rq->clock;
1624 #ifdef CONFIG_SCHEDSTATS
1625 if (p->se.wait_start)
1626 p->se.wait_start -= clock_offset;
1627 if (p->se.sleep_start)
1628 p->se.sleep_start -= clock_offset;
1629 if (p->se.block_start)
1630 p->se.block_start -= clock_offset;
1631 if (old_cpu != new_cpu) {
1632 schedstat_inc(p, se.nr_migrations);
1633 if (task_hot(p, old_rq->clock, NULL))
1634 schedstat_inc(p, se.nr_forced2_migrations);
1636 #endif
1637 p->se.vruntime -= old_cfsrq->min_vruntime -
1638 new_cfsrq->min_vruntime;
1640 __set_task_cpu(p, new_cpu);
1643 struct migration_req {
1644 struct list_head list;
1646 struct task_struct *task;
1647 int dest_cpu;
1649 struct completion done;
1653 * The task's runqueue lock must be held.
1654 * Returns true if you have to wait for migration thread.
1656 static int
1657 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1659 struct rq *rq = task_rq(p);
1662 * If the task is not on a runqueue (and not running), then
1663 * it is sufficient to simply update the task's cpu field.
1665 if (!p->se.on_rq && !task_running(rq, p)) {
1666 set_task_cpu(p, dest_cpu);
1667 return 0;
1670 init_completion(&req->done);
1671 req->task = p;
1672 req->dest_cpu = dest_cpu;
1673 list_add(&req->list, &rq->migration_queue);
1675 return 1;
1679 * wait_task_inactive - wait for a thread to unschedule.
1681 * The caller must ensure that the task *will* unschedule sometime soon,
1682 * else this function might spin for a *long* time. This function can't
1683 * be called with interrupts off, or it may introduce deadlock with
1684 * smp_call_function() if an IPI is sent by the same process we are
1685 * waiting to become inactive.
1687 void wait_task_inactive(struct task_struct *p)
1689 unsigned long flags;
1690 int running, on_rq;
1691 struct rq *rq;
1693 for (;;) {
1695 * We do the initial early heuristics without holding
1696 * any task-queue locks at all. We'll only try to get
1697 * the runqueue lock when things look like they will
1698 * work out!
1700 rq = task_rq(p);
1703 * If the task is actively running on another CPU
1704 * still, just relax and busy-wait without holding
1705 * any locks.
1707 * NOTE! Since we don't hold any locks, it's not
1708 * even sure that "rq" stays as the right runqueue!
1709 * But we don't care, since "task_running()" will
1710 * return false if the runqueue has changed and p
1711 * is actually now running somewhere else!
1713 while (task_running(rq, p))
1714 cpu_relax();
1717 * Ok, time to look more closely! We need the rq
1718 * lock now, to be *sure*. If we're wrong, we'll
1719 * just go back and repeat.
1721 rq = task_rq_lock(p, &flags);
1722 running = task_running(rq, p);
1723 on_rq = p->se.on_rq;
1724 task_rq_unlock(rq, &flags);
1727 * Was it really running after all now that we
1728 * checked with the proper locks actually held?
1730 * Oops. Go back and try again..
1732 if (unlikely(running)) {
1733 cpu_relax();
1734 continue;
1738 * It's not enough that it's not actively running,
1739 * it must be off the runqueue _entirely_, and not
1740 * preempted!
1742 * So if it wa still runnable (but just not actively
1743 * running right now), it's preempted, and we should
1744 * yield - it could be a while.
1746 if (unlikely(on_rq)) {
1747 schedule_timeout_uninterruptible(1);
1748 continue;
1752 * Ahh, all good. It wasn't running, and it wasn't
1753 * runnable, which means that it will never become
1754 * running in the future either. We're all done!
1756 break;
1760 /***
1761 * kick_process - kick a running thread to enter/exit the kernel
1762 * @p: the to-be-kicked thread
1764 * Cause a process which is running on another CPU to enter
1765 * kernel-mode, without any delay. (to get signals handled.)
1767 * NOTE: this function doesnt have to take the runqueue lock,
1768 * because all it wants to ensure is that the remote task enters
1769 * the kernel. If the IPI races and the task has been migrated
1770 * to another CPU then no harm is done and the purpose has been
1771 * achieved as well.
1773 void kick_process(struct task_struct *p)
1775 int cpu;
1777 preempt_disable();
1778 cpu = task_cpu(p);
1779 if ((cpu != smp_processor_id()) && task_curr(p))
1780 smp_send_reschedule(cpu);
1781 preempt_enable();
1785 * Return a low guess at the load of a migration-source cpu weighted
1786 * according to the scheduling class and "nice" value.
1788 * We want to under-estimate the load of migration sources, to
1789 * balance conservatively.
1791 static unsigned long source_load(int cpu, int type)
1793 struct rq *rq = cpu_rq(cpu);
1794 unsigned long total = weighted_cpuload(cpu);
1796 if (type == 0)
1797 return total;
1799 return min(rq->cpu_load[type-1], total);
1803 * Return a high guess at the load of a migration-target cpu weighted
1804 * according to the scheduling class and "nice" value.
1806 static unsigned long target_load(int cpu, int type)
1808 struct rq *rq = cpu_rq(cpu);
1809 unsigned long total = weighted_cpuload(cpu);
1811 if (type == 0)
1812 return total;
1814 return max(rq->cpu_load[type-1], total);
1818 * Return the average load per task on the cpu's run queue
1820 static unsigned long cpu_avg_load_per_task(int cpu)
1822 struct rq *rq = cpu_rq(cpu);
1823 unsigned long total = weighted_cpuload(cpu);
1824 unsigned long n = rq->nr_running;
1826 return n ? total / n : SCHED_LOAD_SCALE;
1830 * find_idlest_group finds and returns the least busy CPU group within the
1831 * domain.
1833 static struct sched_group *
1834 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1836 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1837 unsigned long min_load = ULONG_MAX, this_load = 0;
1838 int load_idx = sd->forkexec_idx;
1839 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1841 do {
1842 unsigned long load, avg_load;
1843 int local_group;
1844 int i;
1846 /* Skip over this group if it has no CPUs allowed */
1847 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1848 continue;
1850 local_group = cpu_isset(this_cpu, group->cpumask);
1852 /* Tally up the load of all CPUs in the group */
1853 avg_load = 0;
1855 for_each_cpu_mask(i, group->cpumask) {
1856 /* Bias balancing toward cpus of our domain */
1857 if (local_group)
1858 load = source_load(i, load_idx);
1859 else
1860 load = target_load(i, load_idx);
1862 avg_load += load;
1865 /* Adjust by relative CPU power of the group */
1866 avg_load = sg_div_cpu_power(group,
1867 avg_load * SCHED_LOAD_SCALE);
1869 if (local_group) {
1870 this_load = avg_load;
1871 this = group;
1872 } else if (avg_load < min_load) {
1873 min_load = avg_load;
1874 idlest = group;
1876 } while (group = group->next, group != sd->groups);
1878 if (!idlest || 100*this_load < imbalance*min_load)
1879 return NULL;
1880 return idlest;
1884 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1886 static int
1887 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1889 cpumask_t tmp;
1890 unsigned long load, min_load = ULONG_MAX;
1891 int idlest = -1;
1892 int i;
1894 /* Traverse only the allowed CPUs */
1895 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1897 for_each_cpu_mask(i, tmp) {
1898 load = weighted_cpuload(i);
1900 if (load < min_load || (load == min_load && i == this_cpu)) {
1901 min_load = load;
1902 idlest = i;
1906 return idlest;
1910 * sched_balance_self: balance the current task (running on cpu) in domains
1911 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1912 * SD_BALANCE_EXEC.
1914 * Balance, ie. select the least loaded group.
1916 * Returns the target CPU number, or the same CPU if no balancing is needed.
1918 * preempt must be disabled.
1920 static int sched_balance_self(int cpu, int flag)
1922 struct task_struct *t = current;
1923 struct sched_domain *tmp, *sd = NULL;
1925 for_each_domain(cpu, tmp) {
1927 * If power savings logic is enabled for a domain, stop there.
1929 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1930 break;
1931 if (tmp->flags & flag)
1932 sd = tmp;
1935 while (sd) {
1936 cpumask_t span;
1937 struct sched_group *group;
1938 int new_cpu, weight;
1940 if (!(sd->flags & flag)) {
1941 sd = sd->child;
1942 continue;
1945 span = sd->span;
1946 group = find_idlest_group(sd, t, cpu);
1947 if (!group) {
1948 sd = sd->child;
1949 continue;
1952 new_cpu = find_idlest_cpu(group, t, cpu);
1953 if (new_cpu == -1 || new_cpu == cpu) {
1954 /* Now try balancing at a lower domain level of cpu */
1955 sd = sd->child;
1956 continue;
1959 /* Now try balancing at a lower domain level of new_cpu */
1960 cpu = new_cpu;
1961 sd = NULL;
1962 weight = cpus_weight(span);
1963 for_each_domain(cpu, tmp) {
1964 if (weight <= cpus_weight(tmp->span))
1965 break;
1966 if (tmp->flags & flag)
1967 sd = tmp;
1969 /* while loop will break here if sd == NULL */
1972 return cpu;
1975 #endif /* CONFIG_SMP */
1977 /***
1978 * try_to_wake_up - wake up a thread
1979 * @p: the to-be-woken-up thread
1980 * @state: the mask of task states that can be woken
1981 * @sync: do a synchronous wakeup?
1983 * Put it on the run-queue if it's not already there. The "current"
1984 * thread is always on the run-queue (except when the actual
1985 * re-schedule is in progress), and as such you're allowed to do
1986 * the simpler "current->state = TASK_RUNNING" to mark yourself
1987 * runnable without the overhead of this.
1989 * returns failure only if the task is already active.
1991 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1993 int cpu, orig_cpu, this_cpu, success = 0;
1994 unsigned long flags;
1995 long old_state;
1996 struct rq *rq;
1998 if (!sched_feat(SYNC_WAKEUPS))
1999 sync = 0;
2001 smp_wmb();
2002 rq = task_rq_lock(p, &flags);
2003 old_state = p->state;
2004 if (!(old_state & state))
2005 goto out;
2007 if (p->se.on_rq)
2008 goto out_running;
2010 cpu = task_cpu(p);
2011 orig_cpu = cpu;
2012 this_cpu = smp_processor_id();
2014 #ifdef CONFIG_SMP
2015 if (unlikely(task_running(rq, p)))
2016 goto out_activate;
2018 cpu = p->sched_class->select_task_rq(p, sync);
2019 if (cpu != orig_cpu) {
2020 set_task_cpu(p, cpu);
2021 task_rq_unlock(rq, &flags);
2022 /* might preempt at this point */
2023 rq = task_rq_lock(p, &flags);
2024 old_state = p->state;
2025 if (!(old_state & state))
2026 goto out;
2027 if (p->se.on_rq)
2028 goto out_running;
2030 this_cpu = smp_processor_id();
2031 cpu = task_cpu(p);
2034 #ifdef CONFIG_SCHEDSTATS
2035 schedstat_inc(rq, ttwu_count);
2036 if (cpu == this_cpu)
2037 schedstat_inc(rq, ttwu_local);
2038 else {
2039 struct sched_domain *sd;
2040 for_each_domain(this_cpu, sd) {
2041 if (cpu_isset(cpu, sd->span)) {
2042 schedstat_inc(sd, ttwu_wake_remote);
2043 break;
2047 #endif
2049 out_activate:
2050 #endif /* CONFIG_SMP */
2051 schedstat_inc(p, se.nr_wakeups);
2052 if (sync)
2053 schedstat_inc(p, se.nr_wakeups_sync);
2054 if (orig_cpu != cpu)
2055 schedstat_inc(p, se.nr_wakeups_migrate);
2056 if (cpu == this_cpu)
2057 schedstat_inc(p, se.nr_wakeups_local);
2058 else
2059 schedstat_inc(p, se.nr_wakeups_remote);
2060 update_rq_clock(rq);
2061 activate_task(rq, p, 1);
2062 success = 1;
2064 out_running:
2065 check_preempt_curr(rq, p);
2067 p->state = TASK_RUNNING;
2068 #ifdef CONFIG_SMP
2069 if (p->sched_class->task_wake_up)
2070 p->sched_class->task_wake_up(rq, p);
2071 #endif
2072 out:
2073 task_rq_unlock(rq, &flags);
2075 return success;
2078 int wake_up_process(struct task_struct *p)
2080 return try_to_wake_up(p, TASK_ALL, 0);
2082 EXPORT_SYMBOL(wake_up_process);
2084 int wake_up_state(struct task_struct *p, unsigned int state)
2086 return try_to_wake_up(p, state, 0);
2090 * Perform scheduler related setup for a newly forked process p.
2091 * p is forked by current.
2093 * __sched_fork() is basic setup used by init_idle() too:
2095 static void __sched_fork(struct task_struct *p)
2097 p->se.exec_start = 0;
2098 p->se.sum_exec_runtime = 0;
2099 p->se.prev_sum_exec_runtime = 0;
2100 p->se.last_wakeup = 0;
2101 p->se.avg_overlap = 0;
2103 #ifdef CONFIG_SCHEDSTATS
2104 p->se.wait_start = 0;
2105 p->se.sum_sleep_runtime = 0;
2106 p->se.sleep_start = 0;
2107 p->se.block_start = 0;
2108 p->se.sleep_max = 0;
2109 p->se.block_max = 0;
2110 p->se.exec_max = 0;
2111 p->se.slice_max = 0;
2112 p->se.wait_max = 0;
2113 #endif
2115 INIT_LIST_HEAD(&p->rt.run_list);
2116 p->se.on_rq = 0;
2118 #ifdef CONFIG_PREEMPT_NOTIFIERS
2119 INIT_HLIST_HEAD(&p->preempt_notifiers);
2120 #endif
2123 * We mark the process as running here, but have not actually
2124 * inserted it onto the runqueue yet. This guarantees that
2125 * nobody will actually run it, and a signal or other external
2126 * event cannot wake it up and insert it on the runqueue either.
2128 p->state = TASK_RUNNING;
2132 * fork()/clone()-time setup:
2134 void sched_fork(struct task_struct *p, int clone_flags)
2136 int cpu = get_cpu();
2138 __sched_fork(p);
2140 #ifdef CONFIG_SMP
2141 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2142 #endif
2143 set_task_cpu(p, cpu);
2146 * Make sure we do not leak PI boosting priority to the child:
2148 p->prio = current->normal_prio;
2149 if (!rt_prio(p->prio))
2150 p->sched_class = &fair_sched_class;
2152 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2153 if (likely(sched_info_on()))
2154 memset(&p->sched_info, 0, sizeof(p->sched_info));
2155 #endif
2156 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2157 p->oncpu = 0;
2158 #endif
2159 #ifdef CONFIG_PREEMPT
2160 /* Want to start with kernel preemption disabled. */
2161 task_thread_info(p)->preempt_count = 1;
2162 #endif
2163 put_cpu();
2167 * wake_up_new_task - wake up a newly created task for the first time.
2169 * This function will do some initial scheduler statistics housekeeping
2170 * that must be done for every newly created context, then puts the task
2171 * on the runqueue and wakes it.
2173 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2175 unsigned long flags;
2176 struct rq *rq;
2178 rq = task_rq_lock(p, &flags);
2179 BUG_ON(p->state != TASK_RUNNING);
2180 update_rq_clock(rq);
2182 p->prio = effective_prio(p);
2184 if (!p->sched_class->task_new || !current->se.on_rq) {
2185 activate_task(rq, p, 0);
2186 } else {
2188 * Let the scheduling class do new task startup
2189 * management (if any):
2191 p->sched_class->task_new(rq, p);
2192 inc_nr_running(p, rq);
2194 check_preempt_curr(rq, p);
2195 #ifdef CONFIG_SMP
2196 if (p->sched_class->task_wake_up)
2197 p->sched_class->task_wake_up(rq, p);
2198 #endif
2199 task_rq_unlock(rq, &flags);
2202 #ifdef CONFIG_PREEMPT_NOTIFIERS
2205 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2206 * @notifier: notifier struct to register
2208 void preempt_notifier_register(struct preempt_notifier *notifier)
2210 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2212 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2215 * preempt_notifier_unregister - no longer interested in preemption notifications
2216 * @notifier: notifier struct to unregister
2218 * This is safe to call from within a preemption notifier.
2220 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2222 hlist_del(&notifier->link);
2224 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2226 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2228 struct preempt_notifier *notifier;
2229 struct hlist_node *node;
2231 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2232 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2235 static void
2236 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2237 struct task_struct *next)
2239 struct preempt_notifier *notifier;
2240 struct hlist_node *node;
2242 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2243 notifier->ops->sched_out(notifier, next);
2246 #else
2248 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2252 static void
2253 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2254 struct task_struct *next)
2258 #endif
2261 * prepare_task_switch - prepare to switch tasks
2262 * @rq: the runqueue preparing to switch
2263 * @prev: the current task that is being switched out
2264 * @next: the task we are going to switch to.
2266 * This is called with the rq lock held and interrupts off. It must
2267 * be paired with a subsequent finish_task_switch after the context
2268 * switch.
2270 * prepare_task_switch sets up locking and calls architecture specific
2271 * hooks.
2273 static inline void
2274 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2275 struct task_struct *next)
2277 fire_sched_out_preempt_notifiers(prev, next);
2278 prepare_lock_switch(rq, next);
2279 prepare_arch_switch(next);
2283 * finish_task_switch - clean up after a task-switch
2284 * @rq: runqueue associated with task-switch
2285 * @prev: the thread we just switched away from.
2287 * finish_task_switch must be called after the context switch, paired
2288 * with a prepare_task_switch call before the context switch.
2289 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2290 * and do any other architecture-specific cleanup actions.
2292 * Note that we may have delayed dropping an mm in context_switch(). If
2293 * so, we finish that here outside of the runqueue lock. (Doing it
2294 * with the lock held can cause deadlocks; see schedule() for
2295 * details.)
2297 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2298 __releases(rq->lock)
2300 struct mm_struct *mm = rq->prev_mm;
2301 long prev_state;
2303 rq->prev_mm = NULL;
2306 * A task struct has one reference for the use as "current".
2307 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2308 * schedule one last time. The schedule call will never return, and
2309 * the scheduled task must drop that reference.
2310 * The test for TASK_DEAD must occur while the runqueue locks are
2311 * still held, otherwise prev could be scheduled on another cpu, die
2312 * there before we look at prev->state, and then the reference would
2313 * be dropped twice.
2314 * Manfred Spraul <manfred@colorfullife.com>
2316 prev_state = prev->state;
2317 finish_arch_switch(prev);
2318 finish_lock_switch(rq, prev);
2319 #ifdef CONFIG_SMP
2320 if (current->sched_class->post_schedule)
2321 current->sched_class->post_schedule(rq);
2322 #endif
2324 fire_sched_in_preempt_notifiers(current);
2325 if (mm)
2326 mmdrop(mm);
2327 if (unlikely(prev_state == TASK_DEAD)) {
2329 * Remove function-return probe instances associated with this
2330 * task and put them back on the free list.
2332 kprobe_flush_task(prev);
2333 put_task_struct(prev);
2338 * schedule_tail - first thing a freshly forked thread must call.
2339 * @prev: the thread we just switched away from.
2341 asmlinkage void schedule_tail(struct task_struct *prev)
2342 __releases(rq->lock)
2344 struct rq *rq = this_rq();
2346 finish_task_switch(rq, prev);
2347 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2348 /* In this case, finish_task_switch does not reenable preemption */
2349 preempt_enable();
2350 #endif
2351 if (current->set_child_tid)
2352 put_user(task_pid_vnr(current), current->set_child_tid);
2356 * context_switch - switch to the new MM and the new
2357 * thread's register state.
2359 static inline void
2360 context_switch(struct rq *rq, struct task_struct *prev,
2361 struct task_struct *next)
2363 struct mm_struct *mm, *oldmm;
2365 prepare_task_switch(rq, prev, next);
2366 mm = next->mm;
2367 oldmm = prev->active_mm;
2369 * For paravirt, this is coupled with an exit in switch_to to
2370 * combine the page table reload and the switch backend into
2371 * one hypercall.
2373 arch_enter_lazy_cpu_mode();
2375 if (unlikely(!mm)) {
2376 next->active_mm = oldmm;
2377 atomic_inc(&oldmm->mm_count);
2378 enter_lazy_tlb(oldmm, next);
2379 } else
2380 switch_mm(oldmm, mm, next);
2382 if (unlikely(!prev->mm)) {
2383 prev->active_mm = NULL;
2384 rq->prev_mm = oldmm;
2387 * Since the runqueue lock will be released by the next
2388 * task (which is an invalid locking op but in the case
2389 * of the scheduler it's an obvious special-case), so we
2390 * do an early lockdep release here:
2392 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2393 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2394 #endif
2396 /* Here we just switch the register state and the stack. */
2397 switch_to(prev, next, prev);
2399 barrier();
2401 * this_rq must be evaluated again because prev may have moved
2402 * CPUs since it called schedule(), thus the 'rq' on its stack
2403 * frame will be invalid.
2405 finish_task_switch(this_rq(), prev);
2409 * nr_running, nr_uninterruptible and nr_context_switches:
2411 * externally visible scheduler statistics: current number of runnable
2412 * threads, current number of uninterruptible-sleeping threads, total
2413 * number of context switches performed since bootup.
2415 unsigned long nr_running(void)
2417 unsigned long i, sum = 0;
2419 for_each_online_cpu(i)
2420 sum += cpu_rq(i)->nr_running;
2422 return sum;
2425 unsigned long nr_uninterruptible(void)
2427 unsigned long i, sum = 0;
2429 for_each_possible_cpu(i)
2430 sum += cpu_rq(i)->nr_uninterruptible;
2433 * Since we read the counters lockless, it might be slightly
2434 * inaccurate. Do not allow it to go below zero though:
2436 if (unlikely((long)sum < 0))
2437 sum = 0;
2439 return sum;
2442 unsigned long long nr_context_switches(void)
2444 int i;
2445 unsigned long long sum = 0;
2447 for_each_possible_cpu(i)
2448 sum += cpu_rq(i)->nr_switches;
2450 return sum;
2453 unsigned long nr_iowait(void)
2455 unsigned long i, sum = 0;
2457 for_each_possible_cpu(i)
2458 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2460 return sum;
2463 unsigned long nr_active(void)
2465 unsigned long i, running = 0, uninterruptible = 0;
2467 for_each_online_cpu(i) {
2468 running += cpu_rq(i)->nr_running;
2469 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2472 if (unlikely((long)uninterruptible < 0))
2473 uninterruptible = 0;
2475 return running + uninterruptible;
2479 * Update rq->cpu_load[] statistics. This function is usually called every
2480 * scheduler tick (TICK_NSEC).
2482 static void update_cpu_load(struct rq *this_rq)
2484 unsigned long this_load = this_rq->load.weight;
2485 int i, scale;
2487 this_rq->nr_load_updates++;
2489 /* Update our load: */
2490 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2491 unsigned long old_load, new_load;
2493 /* scale is effectively 1 << i now, and >> i divides by scale */
2495 old_load = this_rq->cpu_load[i];
2496 new_load = this_load;
2498 * Round up the averaging division if load is increasing. This
2499 * prevents us from getting stuck on 9 if the load is 10, for
2500 * example.
2502 if (new_load > old_load)
2503 new_load += scale-1;
2504 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2508 #ifdef CONFIG_SMP
2511 * double_rq_lock - safely lock two runqueues
2513 * Note this does not disable interrupts like task_rq_lock,
2514 * you need to do so manually before calling.
2516 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2517 __acquires(rq1->lock)
2518 __acquires(rq2->lock)
2520 BUG_ON(!irqs_disabled());
2521 if (rq1 == rq2) {
2522 spin_lock(&rq1->lock);
2523 __acquire(rq2->lock); /* Fake it out ;) */
2524 } else {
2525 if (rq1 < rq2) {
2526 spin_lock(&rq1->lock);
2527 spin_lock(&rq2->lock);
2528 } else {
2529 spin_lock(&rq2->lock);
2530 spin_lock(&rq1->lock);
2533 update_rq_clock(rq1);
2534 update_rq_clock(rq2);
2538 * double_rq_unlock - safely unlock two runqueues
2540 * Note this does not restore interrupts like task_rq_unlock,
2541 * you need to do so manually after calling.
2543 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2544 __releases(rq1->lock)
2545 __releases(rq2->lock)
2547 spin_unlock(&rq1->lock);
2548 if (rq1 != rq2)
2549 spin_unlock(&rq2->lock);
2550 else
2551 __release(rq2->lock);
2555 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2557 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2558 __releases(this_rq->lock)
2559 __acquires(busiest->lock)
2560 __acquires(this_rq->lock)
2562 int ret = 0;
2564 if (unlikely(!irqs_disabled())) {
2565 /* printk() doesn't work good under rq->lock */
2566 spin_unlock(&this_rq->lock);
2567 BUG_ON(1);
2569 if (unlikely(!spin_trylock(&busiest->lock))) {
2570 if (busiest < this_rq) {
2571 spin_unlock(&this_rq->lock);
2572 spin_lock(&busiest->lock);
2573 spin_lock(&this_rq->lock);
2574 ret = 1;
2575 } else
2576 spin_lock(&busiest->lock);
2578 return ret;
2582 * If dest_cpu is allowed for this process, migrate the task to it.
2583 * This is accomplished by forcing the cpu_allowed mask to only
2584 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2585 * the cpu_allowed mask is restored.
2587 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2589 struct migration_req req;
2590 unsigned long flags;
2591 struct rq *rq;
2593 rq = task_rq_lock(p, &flags);
2594 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2595 || unlikely(cpu_is_offline(dest_cpu)))
2596 goto out;
2598 /* force the process onto the specified CPU */
2599 if (migrate_task(p, dest_cpu, &req)) {
2600 /* Need to wait for migration thread (might exit: take ref). */
2601 struct task_struct *mt = rq->migration_thread;
2603 get_task_struct(mt);
2604 task_rq_unlock(rq, &flags);
2605 wake_up_process(mt);
2606 put_task_struct(mt);
2607 wait_for_completion(&req.done);
2609 return;
2611 out:
2612 task_rq_unlock(rq, &flags);
2616 * sched_exec - execve() is a valuable balancing opportunity, because at
2617 * this point the task has the smallest effective memory and cache footprint.
2619 void sched_exec(void)
2621 int new_cpu, this_cpu = get_cpu();
2622 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2623 put_cpu();
2624 if (new_cpu != this_cpu)
2625 sched_migrate_task(current, new_cpu);
2629 * pull_task - move a task from a remote runqueue to the local runqueue.
2630 * Both runqueues must be locked.
2632 static void pull_task(struct rq *src_rq, struct task_struct *p,
2633 struct rq *this_rq, int this_cpu)
2635 deactivate_task(src_rq, p, 0);
2636 set_task_cpu(p, this_cpu);
2637 activate_task(this_rq, p, 0);
2639 * Note that idle threads have a prio of MAX_PRIO, for this test
2640 * to be always true for them.
2642 check_preempt_curr(this_rq, p);
2646 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2648 static
2649 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2650 struct sched_domain *sd, enum cpu_idle_type idle,
2651 int *all_pinned)
2654 * We do not migrate tasks that are:
2655 * 1) running (obviously), or
2656 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2657 * 3) are cache-hot on their current CPU.
2659 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2660 schedstat_inc(p, se.nr_failed_migrations_affine);
2661 return 0;
2663 *all_pinned = 0;
2665 if (task_running(rq, p)) {
2666 schedstat_inc(p, se.nr_failed_migrations_running);
2667 return 0;
2671 * Aggressive migration if:
2672 * 1) task is cache cold, or
2673 * 2) too many balance attempts have failed.
2676 if (!task_hot(p, rq->clock, sd) ||
2677 sd->nr_balance_failed > sd->cache_nice_tries) {
2678 #ifdef CONFIG_SCHEDSTATS
2679 if (task_hot(p, rq->clock, sd)) {
2680 schedstat_inc(sd, lb_hot_gained[idle]);
2681 schedstat_inc(p, se.nr_forced_migrations);
2683 #endif
2684 return 1;
2687 if (task_hot(p, rq->clock, sd)) {
2688 schedstat_inc(p, se.nr_failed_migrations_hot);
2689 return 0;
2691 return 1;
2694 static unsigned long
2695 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2696 unsigned long max_load_move, struct sched_domain *sd,
2697 enum cpu_idle_type idle, int *all_pinned,
2698 int *this_best_prio, struct rq_iterator *iterator)
2700 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
2701 struct task_struct *p;
2702 long rem_load_move = max_load_move;
2704 if (max_load_move == 0)
2705 goto out;
2707 pinned = 1;
2710 * Start the load-balancing iterator:
2712 p = iterator->start(iterator->arg);
2713 next:
2714 if (!p || loops++ > sysctl_sched_nr_migrate)
2715 goto out;
2717 * To help distribute high priority tasks across CPUs we don't
2718 * skip a task if it will be the highest priority task (i.e. smallest
2719 * prio value) on its new queue regardless of its load weight
2721 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2722 SCHED_LOAD_SCALE_FUZZ;
2723 if ((skip_for_load && p->prio >= *this_best_prio) ||
2724 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2725 p = iterator->next(iterator->arg);
2726 goto next;
2729 pull_task(busiest, p, this_rq, this_cpu);
2730 pulled++;
2731 rem_load_move -= p->se.load.weight;
2734 * We only want to steal up to the prescribed amount of weighted load.
2736 if (rem_load_move > 0) {
2737 if (p->prio < *this_best_prio)
2738 *this_best_prio = p->prio;
2739 p = iterator->next(iterator->arg);
2740 goto next;
2742 out:
2744 * Right now, this is one of only two places pull_task() is called,
2745 * so we can safely collect pull_task() stats here rather than
2746 * inside pull_task().
2748 schedstat_add(sd, lb_gained[idle], pulled);
2750 if (all_pinned)
2751 *all_pinned = pinned;
2753 return max_load_move - rem_load_move;
2757 * move_tasks tries to move up to max_load_move weighted load from busiest to
2758 * this_rq, as part of a balancing operation within domain "sd".
2759 * Returns 1 if successful and 0 otherwise.
2761 * Called with both runqueues locked.
2763 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2764 unsigned long max_load_move,
2765 struct sched_domain *sd, enum cpu_idle_type idle,
2766 int *all_pinned)
2768 const struct sched_class *class = sched_class_highest;
2769 unsigned long total_load_moved = 0;
2770 int this_best_prio = this_rq->curr->prio;
2772 do {
2773 total_load_moved +=
2774 class->load_balance(this_rq, this_cpu, busiest,
2775 max_load_move - total_load_moved,
2776 sd, idle, all_pinned, &this_best_prio);
2777 class = class->next;
2778 } while (class && max_load_move > total_load_moved);
2780 return total_load_moved > 0;
2783 static int
2784 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2785 struct sched_domain *sd, enum cpu_idle_type idle,
2786 struct rq_iterator *iterator)
2788 struct task_struct *p = iterator->start(iterator->arg);
2789 int pinned = 0;
2791 while (p) {
2792 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2793 pull_task(busiest, p, this_rq, this_cpu);
2795 * Right now, this is only the second place pull_task()
2796 * is called, so we can safely collect pull_task()
2797 * stats here rather than inside pull_task().
2799 schedstat_inc(sd, lb_gained[idle]);
2801 return 1;
2803 p = iterator->next(iterator->arg);
2806 return 0;
2810 * move_one_task tries to move exactly one task from busiest to this_rq, as
2811 * part of active balancing operations within "domain".
2812 * Returns 1 if successful and 0 otherwise.
2814 * Called with both runqueues locked.
2816 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2817 struct sched_domain *sd, enum cpu_idle_type idle)
2819 const struct sched_class *class;
2821 for (class = sched_class_highest; class; class = class->next)
2822 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
2823 return 1;
2825 return 0;
2829 * find_busiest_group finds and returns the busiest CPU group within the
2830 * domain. It calculates and returns the amount of weighted load which
2831 * should be moved to restore balance via the imbalance parameter.
2833 static struct sched_group *
2834 find_busiest_group(struct sched_domain *sd, int this_cpu,
2835 unsigned long *imbalance, enum cpu_idle_type idle,
2836 int *sd_idle, cpumask_t *cpus, int *balance)
2838 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2839 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2840 unsigned long max_pull;
2841 unsigned long busiest_load_per_task, busiest_nr_running;
2842 unsigned long this_load_per_task, this_nr_running;
2843 int load_idx, group_imb = 0;
2844 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2845 int power_savings_balance = 1;
2846 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2847 unsigned long min_nr_running = ULONG_MAX;
2848 struct sched_group *group_min = NULL, *group_leader = NULL;
2849 #endif
2851 max_load = this_load = total_load = total_pwr = 0;
2852 busiest_load_per_task = busiest_nr_running = 0;
2853 this_load_per_task = this_nr_running = 0;
2854 if (idle == CPU_NOT_IDLE)
2855 load_idx = sd->busy_idx;
2856 else if (idle == CPU_NEWLY_IDLE)
2857 load_idx = sd->newidle_idx;
2858 else
2859 load_idx = sd->idle_idx;
2861 do {
2862 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
2863 int local_group;
2864 int i;
2865 int __group_imb = 0;
2866 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2867 unsigned long sum_nr_running, sum_weighted_load;
2869 local_group = cpu_isset(this_cpu, group->cpumask);
2871 if (local_group)
2872 balance_cpu = first_cpu(group->cpumask);
2874 /* Tally up the load of all CPUs in the group */
2875 sum_weighted_load = sum_nr_running = avg_load = 0;
2876 max_cpu_load = 0;
2877 min_cpu_load = ~0UL;
2879 for_each_cpu_mask(i, group->cpumask) {
2880 struct rq *rq;
2882 if (!cpu_isset(i, *cpus))
2883 continue;
2885 rq = cpu_rq(i);
2887 if (*sd_idle && rq->nr_running)
2888 *sd_idle = 0;
2890 /* Bias balancing toward cpus of our domain */
2891 if (local_group) {
2892 if (idle_cpu(i) && !first_idle_cpu) {
2893 first_idle_cpu = 1;
2894 balance_cpu = i;
2897 load = target_load(i, load_idx);
2898 } else {
2899 load = source_load(i, load_idx);
2900 if (load > max_cpu_load)
2901 max_cpu_load = load;
2902 if (min_cpu_load > load)
2903 min_cpu_load = load;
2906 avg_load += load;
2907 sum_nr_running += rq->nr_running;
2908 sum_weighted_load += weighted_cpuload(i);
2912 * First idle cpu or the first cpu(busiest) in this sched group
2913 * is eligible for doing load balancing at this and above
2914 * domains. In the newly idle case, we will allow all the cpu's
2915 * to do the newly idle load balance.
2917 if (idle != CPU_NEWLY_IDLE && local_group &&
2918 balance_cpu != this_cpu && balance) {
2919 *balance = 0;
2920 goto ret;
2923 total_load += avg_load;
2924 total_pwr += group->__cpu_power;
2926 /* Adjust by relative CPU power of the group */
2927 avg_load = sg_div_cpu_power(group,
2928 avg_load * SCHED_LOAD_SCALE);
2930 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2931 __group_imb = 1;
2933 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2935 if (local_group) {
2936 this_load = avg_load;
2937 this = group;
2938 this_nr_running = sum_nr_running;
2939 this_load_per_task = sum_weighted_load;
2940 } else if (avg_load > max_load &&
2941 (sum_nr_running > group_capacity || __group_imb)) {
2942 max_load = avg_load;
2943 busiest = group;
2944 busiest_nr_running = sum_nr_running;
2945 busiest_load_per_task = sum_weighted_load;
2946 group_imb = __group_imb;
2949 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2951 * Busy processors will not participate in power savings
2952 * balance.
2954 if (idle == CPU_NOT_IDLE ||
2955 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2956 goto group_next;
2959 * If the local group is idle or completely loaded
2960 * no need to do power savings balance at this domain
2962 if (local_group && (this_nr_running >= group_capacity ||
2963 !this_nr_running))
2964 power_savings_balance = 0;
2967 * If a group is already running at full capacity or idle,
2968 * don't include that group in power savings calculations
2970 if (!power_savings_balance || sum_nr_running >= group_capacity
2971 || !sum_nr_running)
2972 goto group_next;
2975 * Calculate the group which has the least non-idle load.
2976 * This is the group from where we need to pick up the load
2977 * for saving power
2979 if ((sum_nr_running < min_nr_running) ||
2980 (sum_nr_running == min_nr_running &&
2981 first_cpu(group->cpumask) <
2982 first_cpu(group_min->cpumask))) {
2983 group_min = group;
2984 min_nr_running = sum_nr_running;
2985 min_load_per_task = sum_weighted_load /
2986 sum_nr_running;
2990 * Calculate the group which is almost near its
2991 * capacity but still has some space to pick up some load
2992 * from other group and save more power
2994 if (sum_nr_running <= group_capacity - 1) {
2995 if (sum_nr_running > leader_nr_running ||
2996 (sum_nr_running == leader_nr_running &&
2997 first_cpu(group->cpumask) >
2998 first_cpu(group_leader->cpumask))) {
2999 group_leader = group;
3000 leader_nr_running = sum_nr_running;
3003 group_next:
3004 #endif
3005 group = group->next;
3006 } while (group != sd->groups);
3008 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3009 goto out_balanced;
3011 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3013 if (this_load >= avg_load ||
3014 100*max_load <= sd->imbalance_pct*this_load)
3015 goto out_balanced;
3017 busiest_load_per_task /= busiest_nr_running;
3018 if (group_imb)
3019 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3022 * We're trying to get all the cpus to the average_load, so we don't
3023 * want to push ourselves above the average load, nor do we wish to
3024 * reduce the max loaded cpu below the average load, as either of these
3025 * actions would just result in more rebalancing later, and ping-pong
3026 * tasks around. Thus we look for the minimum possible imbalance.
3027 * Negative imbalances (*we* are more loaded than anyone else) will
3028 * be counted as no imbalance for these purposes -- we can't fix that
3029 * by pulling tasks to us. Be careful of negative numbers as they'll
3030 * appear as very large values with unsigned longs.
3032 if (max_load <= busiest_load_per_task)
3033 goto out_balanced;
3036 * In the presence of smp nice balancing, certain scenarios can have
3037 * max load less than avg load(as we skip the groups at or below
3038 * its cpu_power, while calculating max_load..)
3040 if (max_load < avg_load) {
3041 *imbalance = 0;
3042 goto small_imbalance;
3045 /* Don't want to pull so many tasks that a group would go idle */
3046 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3048 /* How much load to actually move to equalise the imbalance */
3049 *imbalance = min(max_pull * busiest->__cpu_power,
3050 (avg_load - this_load) * this->__cpu_power)
3051 / SCHED_LOAD_SCALE;
3054 * if *imbalance is less than the average load per runnable task
3055 * there is no gaurantee that any tasks will be moved so we'll have
3056 * a think about bumping its value to force at least one task to be
3057 * moved
3059 if (*imbalance < busiest_load_per_task) {
3060 unsigned long tmp, pwr_now, pwr_move;
3061 unsigned int imbn;
3063 small_imbalance:
3064 pwr_move = pwr_now = 0;
3065 imbn = 2;
3066 if (this_nr_running) {
3067 this_load_per_task /= this_nr_running;
3068 if (busiest_load_per_task > this_load_per_task)
3069 imbn = 1;
3070 } else
3071 this_load_per_task = SCHED_LOAD_SCALE;
3073 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
3074 busiest_load_per_task * imbn) {
3075 *imbalance = busiest_load_per_task;
3076 return busiest;
3080 * OK, we don't have enough imbalance to justify moving tasks,
3081 * however we may be able to increase total CPU power used by
3082 * moving them.
3085 pwr_now += busiest->__cpu_power *
3086 min(busiest_load_per_task, max_load);
3087 pwr_now += this->__cpu_power *
3088 min(this_load_per_task, this_load);
3089 pwr_now /= SCHED_LOAD_SCALE;
3091 /* Amount of load we'd subtract */
3092 tmp = sg_div_cpu_power(busiest,
3093 busiest_load_per_task * SCHED_LOAD_SCALE);
3094 if (max_load > tmp)
3095 pwr_move += busiest->__cpu_power *
3096 min(busiest_load_per_task, max_load - tmp);
3098 /* Amount of load we'd add */
3099 if (max_load * busiest->__cpu_power <
3100 busiest_load_per_task * SCHED_LOAD_SCALE)
3101 tmp = sg_div_cpu_power(this,
3102 max_load * busiest->__cpu_power);
3103 else
3104 tmp = sg_div_cpu_power(this,
3105 busiest_load_per_task * SCHED_LOAD_SCALE);
3106 pwr_move += this->__cpu_power *
3107 min(this_load_per_task, this_load + tmp);
3108 pwr_move /= SCHED_LOAD_SCALE;
3110 /* Move if we gain throughput */
3111 if (pwr_move > pwr_now)
3112 *imbalance = busiest_load_per_task;
3115 return busiest;
3117 out_balanced:
3118 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3119 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3120 goto ret;
3122 if (this == group_leader && group_leader != group_min) {
3123 *imbalance = min_load_per_task;
3124 return group_min;
3126 #endif
3127 ret:
3128 *imbalance = 0;
3129 return NULL;
3133 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3135 static struct rq *
3136 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3137 unsigned long imbalance, cpumask_t *cpus)
3139 struct rq *busiest = NULL, *rq;
3140 unsigned long max_load = 0;
3141 int i;
3143 for_each_cpu_mask(i, group->cpumask) {
3144 unsigned long wl;
3146 if (!cpu_isset(i, *cpus))
3147 continue;
3149 rq = cpu_rq(i);
3150 wl = weighted_cpuload(i);
3152 if (rq->nr_running == 1 && wl > imbalance)
3153 continue;
3155 if (wl > max_load) {
3156 max_load = wl;
3157 busiest = rq;
3161 return busiest;
3165 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3166 * so long as it is large enough.
3168 #define MAX_PINNED_INTERVAL 512
3171 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3172 * tasks if there is an imbalance.
3174 static int load_balance(int this_cpu, struct rq *this_rq,
3175 struct sched_domain *sd, enum cpu_idle_type idle,
3176 int *balance)
3178 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3179 struct sched_group *group;
3180 unsigned long imbalance;
3181 struct rq *busiest;
3182 cpumask_t cpus = CPU_MASK_ALL;
3183 unsigned long flags;
3186 * When power savings policy is enabled for the parent domain, idle
3187 * sibling can pick up load irrespective of busy siblings. In this case,
3188 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3189 * portraying it as CPU_NOT_IDLE.
3191 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3192 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3193 sd_idle = 1;
3195 schedstat_inc(sd, lb_count[idle]);
3197 redo:
3198 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3199 &cpus, balance);
3201 if (*balance == 0)
3202 goto out_balanced;
3204 if (!group) {
3205 schedstat_inc(sd, lb_nobusyg[idle]);
3206 goto out_balanced;
3209 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
3210 if (!busiest) {
3211 schedstat_inc(sd, lb_nobusyq[idle]);
3212 goto out_balanced;
3215 BUG_ON(busiest == this_rq);
3217 schedstat_add(sd, lb_imbalance[idle], imbalance);
3219 ld_moved = 0;
3220 if (busiest->nr_running > 1) {
3222 * Attempt to move tasks. If find_busiest_group has found
3223 * an imbalance but busiest->nr_running <= 1, the group is
3224 * still unbalanced. ld_moved simply stays zero, so it is
3225 * correctly treated as an imbalance.
3227 local_irq_save(flags);
3228 double_rq_lock(this_rq, busiest);
3229 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3230 imbalance, sd, idle, &all_pinned);
3231 double_rq_unlock(this_rq, busiest);
3232 local_irq_restore(flags);
3235 * some other cpu did the load balance for us.
3237 if (ld_moved && this_cpu != smp_processor_id())
3238 resched_cpu(this_cpu);
3240 /* All tasks on this runqueue were pinned by CPU affinity */
3241 if (unlikely(all_pinned)) {
3242 cpu_clear(cpu_of(busiest), cpus);
3243 if (!cpus_empty(cpus))
3244 goto redo;
3245 goto out_balanced;
3249 if (!ld_moved) {
3250 schedstat_inc(sd, lb_failed[idle]);
3251 sd->nr_balance_failed++;
3253 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3255 spin_lock_irqsave(&busiest->lock, flags);
3257 /* don't kick the migration_thread, if the curr
3258 * task on busiest cpu can't be moved to this_cpu
3260 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3261 spin_unlock_irqrestore(&busiest->lock, flags);
3262 all_pinned = 1;
3263 goto out_one_pinned;
3266 if (!busiest->active_balance) {
3267 busiest->active_balance = 1;
3268 busiest->push_cpu = this_cpu;
3269 active_balance = 1;
3271 spin_unlock_irqrestore(&busiest->lock, flags);
3272 if (active_balance)
3273 wake_up_process(busiest->migration_thread);
3276 * We've kicked active balancing, reset the failure
3277 * counter.
3279 sd->nr_balance_failed = sd->cache_nice_tries+1;
3281 } else
3282 sd->nr_balance_failed = 0;
3284 if (likely(!active_balance)) {
3285 /* We were unbalanced, so reset the balancing interval */
3286 sd->balance_interval = sd->min_interval;
3287 } else {
3289 * If we've begun active balancing, start to back off. This
3290 * case may not be covered by the all_pinned logic if there
3291 * is only 1 task on the busy runqueue (because we don't call
3292 * move_tasks).
3294 if (sd->balance_interval < sd->max_interval)
3295 sd->balance_interval *= 2;
3298 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3299 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3300 return -1;
3301 return ld_moved;
3303 out_balanced:
3304 schedstat_inc(sd, lb_balanced[idle]);
3306 sd->nr_balance_failed = 0;
3308 out_one_pinned:
3309 /* tune up the balancing interval */
3310 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3311 (sd->balance_interval < sd->max_interval))
3312 sd->balance_interval *= 2;
3314 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3315 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3316 return -1;
3317 return 0;
3321 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3322 * tasks if there is an imbalance.
3324 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3325 * this_rq is locked.
3327 static int
3328 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
3330 struct sched_group *group;
3331 struct rq *busiest = NULL;
3332 unsigned long imbalance;
3333 int ld_moved = 0;
3334 int sd_idle = 0;
3335 int all_pinned = 0;
3336 cpumask_t cpus = CPU_MASK_ALL;
3339 * When power savings policy is enabled for the parent domain, idle
3340 * sibling can pick up load irrespective of busy siblings. In this case,
3341 * let the state of idle sibling percolate up as IDLE, instead of
3342 * portraying it as CPU_NOT_IDLE.
3344 if (sd->flags & SD_SHARE_CPUPOWER &&
3345 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3346 sd_idle = 1;
3348 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3349 redo:
3350 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3351 &sd_idle, &cpus, NULL);
3352 if (!group) {
3353 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3354 goto out_balanced;
3357 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
3358 &cpus);
3359 if (!busiest) {
3360 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3361 goto out_balanced;
3364 BUG_ON(busiest == this_rq);
3366 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3368 ld_moved = 0;
3369 if (busiest->nr_running > 1) {
3370 /* Attempt to move tasks */
3371 double_lock_balance(this_rq, busiest);
3372 /* this_rq->clock is already updated */
3373 update_rq_clock(busiest);
3374 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3375 imbalance, sd, CPU_NEWLY_IDLE,
3376 &all_pinned);
3377 spin_unlock(&busiest->lock);
3379 if (unlikely(all_pinned)) {
3380 cpu_clear(cpu_of(busiest), cpus);
3381 if (!cpus_empty(cpus))
3382 goto redo;
3386 if (!ld_moved) {
3387 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3388 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3389 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3390 return -1;
3391 } else
3392 sd->nr_balance_failed = 0;
3394 return ld_moved;
3396 out_balanced:
3397 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3398 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3399 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3400 return -1;
3401 sd->nr_balance_failed = 0;
3403 return 0;
3407 * idle_balance is called by schedule() if this_cpu is about to become
3408 * idle. Attempts to pull tasks from other CPUs.
3410 static void idle_balance(int this_cpu, struct rq *this_rq)
3412 struct sched_domain *sd;
3413 int pulled_task = -1;
3414 unsigned long next_balance = jiffies + HZ;
3416 for_each_domain(this_cpu, sd) {
3417 unsigned long interval;
3419 if (!(sd->flags & SD_LOAD_BALANCE))
3420 continue;
3422 if (sd->flags & SD_BALANCE_NEWIDLE)
3423 /* If we've pulled tasks over stop searching: */
3424 pulled_task = load_balance_newidle(this_cpu,
3425 this_rq, sd);
3427 interval = msecs_to_jiffies(sd->balance_interval);
3428 if (time_after(next_balance, sd->last_balance + interval))
3429 next_balance = sd->last_balance + interval;
3430 if (pulled_task)
3431 break;
3433 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3435 * We are going idle. next_balance may be set based on
3436 * a busy processor. So reset next_balance.
3438 this_rq->next_balance = next_balance;
3443 * active_load_balance is run by migration threads. It pushes running tasks
3444 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3445 * running on each physical CPU where possible, and avoids physical /
3446 * logical imbalances.
3448 * Called with busiest_rq locked.
3450 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3452 int target_cpu = busiest_rq->push_cpu;
3453 struct sched_domain *sd;
3454 struct rq *target_rq;
3456 /* Is there any task to move? */
3457 if (busiest_rq->nr_running <= 1)
3458 return;
3460 target_rq = cpu_rq(target_cpu);
3463 * This condition is "impossible", if it occurs
3464 * we need to fix it. Originally reported by
3465 * Bjorn Helgaas on a 128-cpu setup.
3467 BUG_ON(busiest_rq == target_rq);
3469 /* move a task from busiest_rq to target_rq */
3470 double_lock_balance(busiest_rq, target_rq);
3471 update_rq_clock(busiest_rq);
3472 update_rq_clock(target_rq);
3474 /* Search for an sd spanning us and the target CPU. */
3475 for_each_domain(target_cpu, sd) {
3476 if ((sd->flags & SD_LOAD_BALANCE) &&
3477 cpu_isset(busiest_cpu, sd->span))
3478 break;
3481 if (likely(sd)) {
3482 schedstat_inc(sd, alb_count);
3484 if (move_one_task(target_rq, target_cpu, busiest_rq,
3485 sd, CPU_IDLE))
3486 schedstat_inc(sd, alb_pushed);
3487 else
3488 schedstat_inc(sd, alb_failed);
3490 spin_unlock(&target_rq->lock);
3493 #ifdef CONFIG_NO_HZ
3494 static struct {
3495 atomic_t load_balancer;
3496 cpumask_t cpu_mask;
3497 } nohz ____cacheline_aligned = {
3498 .load_balancer = ATOMIC_INIT(-1),
3499 .cpu_mask = CPU_MASK_NONE,
3503 * This routine will try to nominate the ilb (idle load balancing)
3504 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3505 * load balancing on behalf of all those cpus. If all the cpus in the system
3506 * go into this tickless mode, then there will be no ilb owner (as there is
3507 * no need for one) and all the cpus will sleep till the next wakeup event
3508 * arrives...
3510 * For the ilb owner, tick is not stopped. And this tick will be used
3511 * for idle load balancing. ilb owner will still be part of
3512 * nohz.cpu_mask..
3514 * While stopping the tick, this cpu will become the ilb owner if there
3515 * is no other owner. And will be the owner till that cpu becomes busy
3516 * or if all cpus in the system stop their ticks at which point
3517 * there is no need for ilb owner.
3519 * When the ilb owner becomes busy, it nominates another owner, during the
3520 * next busy scheduler_tick()
3522 int select_nohz_load_balancer(int stop_tick)
3524 int cpu = smp_processor_id();
3526 if (stop_tick) {
3527 cpu_set(cpu, nohz.cpu_mask);
3528 cpu_rq(cpu)->in_nohz_recently = 1;
3531 * If we are going offline and still the leader, give up!
3533 if (cpu_is_offline(cpu) &&
3534 atomic_read(&nohz.load_balancer) == cpu) {
3535 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3536 BUG();
3537 return 0;
3540 /* time for ilb owner also to sleep */
3541 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3542 if (atomic_read(&nohz.load_balancer) == cpu)
3543 atomic_set(&nohz.load_balancer, -1);
3544 return 0;
3547 if (atomic_read(&nohz.load_balancer) == -1) {
3548 /* make me the ilb owner */
3549 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3550 return 1;
3551 } else if (atomic_read(&nohz.load_balancer) == cpu)
3552 return 1;
3553 } else {
3554 if (!cpu_isset(cpu, nohz.cpu_mask))
3555 return 0;
3557 cpu_clear(cpu, nohz.cpu_mask);
3559 if (atomic_read(&nohz.load_balancer) == cpu)
3560 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3561 BUG();
3563 return 0;
3565 #endif
3567 static DEFINE_SPINLOCK(balancing);
3570 * It checks each scheduling domain to see if it is due to be balanced,
3571 * and initiates a balancing operation if so.
3573 * Balancing parameters are set up in arch_init_sched_domains.
3575 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3577 int balance = 1;
3578 struct rq *rq = cpu_rq(cpu);
3579 unsigned long interval;
3580 struct sched_domain *sd;
3581 /* Earliest time when we have to do rebalance again */
3582 unsigned long next_balance = jiffies + 60*HZ;
3583 int update_next_balance = 0;
3585 for_each_domain(cpu, sd) {
3586 if (!(sd->flags & SD_LOAD_BALANCE))
3587 continue;
3589 interval = sd->balance_interval;
3590 if (idle != CPU_IDLE)
3591 interval *= sd->busy_factor;
3593 /* scale ms to jiffies */
3594 interval = msecs_to_jiffies(interval);
3595 if (unlikely(!interval))
3596 interval = 1;
3597 if (interval > HZ*NR_CPUS/10)
3598 interval = HZ*NR_CPUS/10;
3601 if (sd->flags & SD_SERIALIZE) {
3602 if (!spin_trylock(&balancing))
3603 goto out;
3606 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3607 if (load_balance(cpu, rq, sd, idle, &balance)) {
3609 * We've pulled tasks over so either we're no
3610 * longer idle, or one of our SMT siblings is
3611 * not idle.
3613 idle = CPU_NOT_IDLE;
3615 sd->last_balance = jiffies;
3617 if (sd->flags & SD_SERIALIZE)
3618 spin_unlock(&balancing);
3619 out:
3620 if (time_after(next_balance, sd->last_balance + interval)) {
3621 next_balance = sd->last_balance + interval;
3622 update_next_balance = 1;
3626 * Stop the load balance at this level. There is another
3627 * CPU in our sched group which is doing load balancing more
3628 * actively.
3630 if (!balance)
3631 break;
3635 * next_balance will be updated only when there is a need.
3636 * When the cpu is attached to null domain for ex, it will not be
3637 * updated.
3639 if (likely(update_next_balance))
3640 rq->next_balance = next_balance;
3644 * run_rebalance_domains is triggered when needed from the scheduler tick.
3645 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3646 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3648 static void run_rebalance_domains(struct softirq_action *h)
3650 int this_cpu = smp_processor_id();
3651 struct rq *this_rq = cpu_rq(this_cpu);
3652 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3653 CPU_IDLE : CPU_NOT_IDLE;
3655 rebalance_domains(this_cpu, idle);
3657 #ifdef CONFIG_NO_HZ
3659 * If this cpu is the owner for idle load balancing, then do the
3660 * balancing on behalf of the other idle cpus whose ticks are
3661 * stopped.
3663 if (this_rq->idle_at_tick &&
3664 atomic_read(&nohz.load_balancer) == this_cpu) {
3665 cpumask_t cpus = nohz.cpu_mask;
3666 struct rq *rq;
3667 int balance_cpu;
3669 cpu_clear(this_cpu, cpus);
3670 for_each_cpu_mask(balance_cpu, cpus) {
3672 * If this cpu gets work to do, stop the load balancing
3673 * work being done for other cpus. Next load
3674 * balancing owner will pick it up.
3676 if (need_resched())
3677 break;
3679 rebalance_domains(balance_cpu, CPU_IDLE);
3681 rq = cpu_rq(balance_cpu);
3682 if (time_after(this_rq->next_balance, rq->next_balance))
3683 this_rq->next_balance = rq->next_balance;
3686 #endif
3690 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3692 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3693 * idle load balancing owner or decide to stop the periodic load balancing,
3694 * if the whole system is idle.
3696 static inline void trigger_load_balance(struct rq *rq, int cpu)
3698 #ifdef CONFIG_NO_HZ
3700 * If we were in the nohz mode recently and busy at the current
3701 * scheduler tick, then check if we need to nominate new idle
3702 * load balancer.
3704 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3705 rq->in_nohz_recently = 0;
3707 if (atomic_read(&nohz.load_balancer) == cpu) {
3708 cpu_clear(cpu, nohz.cpu_mask);
3709 atomic_set(&nohz.load_balancer, -1);
3712 if (atomic_read(&nohz.load_balancer) == -1) {
3714 * simple selection for now: Nominate the
3715 * first cpu in the nohz list to be the next
3716 * ilb owner.
3718 * TBD: Traverse the sched domains and nominate
3719 * the nearest cpu in the nohz.cpu_mask.
3721 int ilb = first_cpu(nohz.cpu_mask);
3723 if (ilb != NR_CPUS)
3724 resched_cpu(ilb);
3729 * If this cpu is idle and doing idle load balancing for all the
3730 * cpus with ticks stopped, is it time for that to stop?
3732 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3733 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3734 resched_cpu(cpu);
3735 return;
3739 * If this cpu is idle and the idle load balancing is done by
3740 * someone else, then no need raise the SCHED_SOFTIRQ
3742 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3743 cpu_isset(cpu, nohz.cpu_mask))
3744 return;
3745 #endif
3746 if (time_after_eq(jiffies, rq->next_balance))
3747 raise_softirq(SCHED_SOFTIRQ);
3750 #else /* CONFIG_SMP */
3753 * on UP we do not need to balance between CPUs:
3755 static inline void idle_balance(int cpu, struct rq *rq)
3759 #endif
3761 DEFINE_PER_CPU(struct kernel_stat, kstat);
3763 EXPORT_PER_CPU_SYMBOL(kstat);
3766 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3767 * that have not yet been banked in case the task is currently running.
3769 unsigned long long task_sched_runtime(struct task_struct *p)
3771 unsigned long flags;
3772 u64 ns, delta_exec;
3773 struct rq *rq;
3775 rq = task_rq_lock(p, &flags);
3776 ns = p->se.sum_exec_runtime;
3777 if (task_current(rq, p)) {
3778 update_rq_clock(rq);
3779 delta_exec = rq->clock - p->se.exec_start;
3780 if ((s64)delta_exec > 0)
3781 ns += delta_exec;
3783 task_rq_unlock(rq, &flags);
3785 return ns;
3789 * Account user cpu time to a process.
3790 * @p: the process that the cpu time gets accounted to
3791 * @cputime: the cpu time spent in user space since the last update
3793 void account_user_time(struct task_struct *p, cputime_t cputime)
3795 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3796 cputime64_t tmp;
3798 p->utime = cputime_add(p->utime, cputime);
3800 /* Add user time to cpustat. */
3801 tmp = cputime_to_cputime64(cputime);
3802 if (TASK_NICE(p) > 0)
3803 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3804 else
3805 cpustat->user = cputime64_add(cpustat->user, tmp);
3809 * Account guest cpu time to a process.
3810 * @p: the process that the cpu time gets accounted to
3811 * @cputime: the cpu time spent in virtual machine since the last update
3813 static void account_guest_time(struct task_struct *p, cputime_t cputime)
3815 cputime64_t tmp;
3816 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3818 tmp = cputime_to_cputime64(cputime);
3820 p->utime = cputime_add(p->utime, cputime);
3821 p->gtime = cputime_add(p->gtime, cputime);
3823 cpustat->user = cputime64_add(cpustat->user, tmp);
3824 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3828 * Account scaled user cpu time to a process.
3829 * @p: the process that the cpu time gets accounted to
3830 * @cputime: the cpu time spent in user space since the last update
3832 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3834 p->utimescaled = cputime_add(p->utimescaled, cputime);
3838 * Account system cpu time to a process.
3839 * @p: the process that the cpu time gets accounted to
3840 * @hardirq_offset: the offset to subtract from hardirq_count()
3841 * @cputime: the cpu time spent in kernel space since the last update
3843 void account_system_time(struct task_struct *p, int hardirq_offset,
3844 cputime_t cputime)
3846 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3847 struct rq *rq = this_rq();
3848 cputime64_t tmp;
3850 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3851 return account_guest_time(p, cputime);
3853 p->stime = cputime_add(p->stime, cputime);
3855 /* Add system time to cpustat. */
3856 tmp = cputime_to_cputime64(cputime);
3857 if (hardirq_count() - hardirq_offset)
3858 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3859 else if (softirq_count())
3860 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3861 else if (p != rq->idle)
3862 cpustat->system = cputime64_add(cpustat->system, tmp);
3863 else if (atomic_read(&rq->nr_iowait) > 0)
3864 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3865 else
3866 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3867 /* Account for system time used */
3868 acct_update_integrals(p);
3872 * Account scaled system cpu time to a process.
3873 * @p: the process that the cpu time gets accounted to
3874 * @hardirq_offset: the offset to subtract from hardirq_count()
3875 * @cputime: the cpu time spent in kernel space since the last update
3877 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3879 p->stimescaled = cputime_add(p->stimescaled, cputime);
3883 * Account for involuntary wait time.
3884 * @p: the process from which the cpu time has been stolen
3885 * @steal: the cpu time spent in involuntary wait
3887 void account_steal_time(struct task_struct *p, cputime_t steal)
3889 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3890 cputime64_t tmp = cputime_to_cputime64(steal);
3891 struct rq *rq = this_rq();
3893 if (p == rq->idle) {
3894 p->stime = cputime_add(p->stime, steal);
3895 if (atomic_read(&rq->nr_iowait) > 0)
3896 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3897 else
3898 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3899 } else
3900 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3904 * This function gets called by the timer code, with HZ frequency.
3905 * We call it with interrupts disabled.
3907 * It also gets called by the fork code, when changing the parent's
3908 * timeslices.
3910 void scheduler_tick(void)
3912 int cpu = smp_processor_id();
3913 struct rq *rq = cpu_rq(cpu);
3914 struct task_struct *curr = rq->curr;
3915 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3917 spin_lock(&rq->lock);
3918 __update_rq_clock(rq);
3920 * Let rq->clock advance by at least TICK_NSEC:
3922 if (unlikely(rq->clock < next_tick)) {
3923 rq->clock = next_tick;
3924 rq->clock_underflows++;
3926 rq->tick_timestamp = rq->clock;
3927 update_last_tick_seen(rq);
3928 update_cpu_load(rq);
3929 curr->sched_class->task_tick(rq, curr, 0);
3930 spin_unlock(&rq->lock);
3932 #ifdef CONFIG_SMP
3933 rq->idle_at_tick = idle_cpu(cpu);
3934 trigger_load_balance(rq, cpu);
3935 #endif
3938 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3940 void __kprobes add_preempt_count(int val)
3943 * Underflow?
3945 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3946 return;
3947 preempt_count() += val;
3949 * Spinlock count overflowing soon?
3951 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3952 PREEMPT_MASK - 10);
3954 EXPORT_SYMBOL(add_preempt_count);
3956 void __kprobes sub_preempt_count(int val)
3959 * Underflow?
3961 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3962 return;
3964 * Is the spinlock portion underflowing?
3966 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3967 !(preempt_count() & PREEMPT_MASK)))
3968 return;
3970 preempt_count() -= val;
3972 EXPORT_SYMBOL(sub_preempt_count);
3974 #endif
3977 * Print scheduling while atomic bug:
3979 static noinline void __schedule_bug(struct task_struct *prev)
3981 struct pt_regs *regs = get_irq_regs();
3983 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3984 prev->comm, prev->pid, preempt_count());
3986 debug_show_held_locks(prev);
3987 if (irqs_disabled())
3988 print_irqtrace_events(prev);
3990 if (regs)
3991 show_regs(regs);
3992 else
3993 dump_stack();
3997 * Various schedule()-time debugging checks and statistics:
3999 static inline void schedule_debug(struct task_struct *prev)
4002 * Test if we are atomic. Since do_exit() needs to call into
4003 * schedule() atomically, we ignore that path for now.
4004 * Otherwise, whine if we are scheduling when we should not be.
4006 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
4007 __schedule_bug(prev);
4009 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4011 schedstat_inc(this_rq(), sched_count);
4012 #ifdef CONFIG_SCHEDSTATS
4013 if (unlikely(prev->lock_depth >= 0)) {
4014 schedstat_inc(this_rq(), bkl_count);
4015 schedstat_inc(prev, sched_info.bkl_count);
4017 #endif
4021 * Pick up the highest-prio task:
4023 static inline struct task_struct *
4024 pick_next_task(struct rq *rq, struct task_struct *prev)
4026 const struct sched_class *class;
4027 struct task_struct *p;
4030 * Optimization: we know that if all tasks are in
4031 * the fair class we can call that function directly:
4033 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4034 p = fair_sched_class.pick_next_task(rq);
4035 if (likely(p))
4036 return p;
4039 class = sched_class_highest;
4040 for ( ; ; ) {
4041 p = class->pick_next_task(rq);
4042 if (p)
4043 return p;
4045 * Will never be NULL as the idle class always
4046 * returns a non-NULL p:
4048 class = class->next;
4053 * schedule() is the main scheduler function.
4055 asmlinkage void __sched schedule(void)
4057 struct task_struct *prev, *next;
4058 unsigned long *switch_count;
4059 struct rq *rq;
4060 int cpu;
4062 need_resched:
4063 preempt_disable();
4064 cpu = smp_processor_id();
4065 rq = cpu_rq(cpu);
4066 rcu_qsctr_inc(cpu);
4067 prev = rq->curr;
4068 switch_count = &prev->nivcsw;
4070 release_kernel_lock(prev);
4071 need_resched_nonpreemptible:
4073 schedule_debug(prev);
4075 hrtick_clear(rq);
4078 * Do the rq-clock update outside the rq lock:
4080 local_irq_disable();
4081 __update_rq_clock(rq);
4082 spin_lock(&rq->lock);
4083 clear_tsk_need_resched(prev);
4085 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4086 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
4087 signal_pending(prev))) {
4088 prev->state = TASK_RUNNING;
4089 } else {
4090 deactivate_task(rq, prev, 1);
4092 switch_count = &prev->nvcsw;
4095 #ifdef CONFIG_SMP
4096 if (prev->sched_class->pre_schedule)
4097 prev->sched_class->pre_schedule(rq, prev);
4098 #endif
4100 if (unlikely(!rq->nr_running))
4101 idle_balance(cpu, rq);
4103 prev->sched_class->put_prev_task(rq, prev);
4104 next = pick_next_task(rq, prev);
4106 sched_info_switch(prev, next);
4108 if (likely(prev != next)) {
4109 rq->nr_switches++;
4110 rq->curr = next;
4111 ++*switch_count;
4113 context_switch(rq, prev, next); /* unlocks the rq */
4115 * the context switch might have flipped the stack from under
4116 * us, hence refresh the local variables.
4118 cpu = smp_processor_id();
4119 rq = cpu_rq(cpu);
4120 } else
4121 spin_unlock_irq(&rq->lock);
4123 hrtick_set(rq);
4125 if (unlikely(reacquire_kernel_lock(current) < 0))
4126 goto need_resched_nonpreemptible;
4128 preempt_enable_no_resched();
4129 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4130 goto need_resched;
4132 EXPORT_SYMBOL(schedule);
4134 #ifdef CONFIG_PREEMPT
4136 * this is the entry point to schedule() from in-kernel preemption
4137 * off of preempt_enable. Kernel preemptions off return from interrupt
4138 * occur there and call schedule directly.
4140 asmlinkage void __sched preempt_schedule(void)
4142 struct thread_info *ti = current_thread_info();
4143 struct task_struct *task = current;
4144 int saved_lock_depth;
4147 * If there is a non-zero preempt_count or interrupts are disabled,
4148 * we do not want to preempt the current task. Just return..
4150 if (likely(ti->preempt_count || irqs_disabled()))
4151 return;
4153 do {
4154 add_preempt_count(PREEMPT_ACTIVE);
4157 * We keep the big kernel semaphore locked, but we
4158 * clear ->lock_depth so that schedule() doesnt
4159 * auto-release the semaphore:
4161 saved_lock_depth = task->lock_depth;
4162 task->lock_depth = -1;
4163 schedule();
4164 task->lock_depth = saved_lock_depth;
4165 sub_preempt_count(PREEMPT_ACTIVE);
4168 * Check again in case we missed a preemption opportunity
4169 * between schedule and now.
4171 barrier();
4172 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4174 EXPORT_SYMBOL(preempt_schedule);
4177 * this is the entry point to schedule() from kernel preemption
4178 * off of irq context.
4179 * Note, that this is called and return with irqs disabled. This will
4180 * protect us against recursive calling from irq.
4182 asmlinkage void __sched preempt_schedule_irq(void)
4184 struct thread_info *ti = current_thread_info();
4185 struct task_struct *task = current;
4186 int saved_lock_depth;
4188 /* Catch callers which need to be fixed */
4189 BUG_ON(ti->preempt_count || !irqs_disabled());
4191 do {
4192 add_preempt_count(PREEMPT_ACTIVE);
4195 * We keep the big kernel semaphore locked, but we
4196 * clear ->lock_depth so that schedule() doesnt
4197 * auto-release the semaphore:
4199 saved_lock_depth = task->lock_depth;
4200 task->lock_depth = -1;
4201 local_irq_enable();
4202 schedule();
4203 local_irq_disable();
4204 task->lock_depth = saved_lock_depth;
4205 sub_preempt_count(PREEMPT_ACTIVE);
4208 * Check again in case we missed a preemption opportunity
4209 * between schedule and now.
4211 barrier();
4212 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4215 #endif /* CONFIG_PREEMPT */
4217 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4218 void *key)
4220 return try_to_wake_up(curr->private, mode, sync);
4222 EXPORT_SYMBOL(default_wake_function);
4225 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4226 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4227 * number) then we wake all the non-exclusive tasks and one exclusive task.
4229 * There are circumstances in which we can try to wake a task which has already
4230 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4231 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4233 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4234 int nr_exclusive, int sync, void *key)
4236 wait_queue_t *curr, *next;
4238 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4239 unsigned flags = curr->flags;
4241 if (curr->func(curr, mode, sync, key) &&
4242 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4243 break;
4248 * __wake_up - wake up threads blocked on a waitqueue.
4249 * @q: the waitqueue
4250 * @mode: which threads
4251 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4252 * @key: is directly passed to the wakeup function
4254 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4255 int nr_exclusive, void *key)
4257 unsigned long flags;
4259 spin_lock_irqsave(&q->lock, flags);
4260 __wake_up_common(q, mode, nr_exclusive, 0, key);
4261 spin_unlock_irqrestore(&q->lock, flags);
4263 EXPORT_SYMBOL(__wake_up);
4266 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4268 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4270 __wake_up_common(q, mode, 1, 0, NULL);
4274 * __wake_up_sync - wake up threads blocked on a waitqueue.
4275 * @q: the waitqueue
4276 * @mode: which threads
4277 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4279 * The sync wakeup differs that the waker knows that it will schedule
4280 * away soon, so while the target thread will be woken up, it will not
4281 * be migrated to another CPU - ie. the two threads are 'synchronized'
4282 * with each other. This can prevent needless bouncing between CPUs.
4284 * On UP it can prevent extra preemption.
4286 void
4287 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4289 unsigned long flags;
4290 int sync = 1;
4292 if (unlikely(!q))
4293 return;
4295 if (unlikely(!nr_exclusive))
4296 sync = 0;
4298 spin_lock_irqsave(&q->lock, flags);
4299 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4300 spin_unlock_irqrestore(&q->lock, flags);
4302 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4304 void complete(struct completion *x)
4306 unsigned long flags;
4308 spin_lock_irqsave(&x->wait.lock, flags);
4309 x->done++;
4310 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4311 spin_unlock_irqrestore(&x->wait.lock, flags);
4313 EXPORT_SYMBOL(complete);
4315 void complete_all(struct completion *x)
4317 unsigned long flags;
4319 spin_lock_irqsave(&x->wait.lock, flags);
4320 x->done += UINT_MAX/2;
4321 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4322 spin_unlock_irqrestore(&x->wait.lock, flags);
4324 EXPORT_SYMBOL(complete_all);
4326 static inline long __sched
4327 do_wait_for_common(struct completion *x, long timeout, int state)
4329 if (!x->done) {
4330 DECLARE_WAITQUEUE(wait, current);
4332 wait.flags |= WQ_FLAG_EXCLUSIVE;
4333 __add_wait_queue_tail(&x->wait, &wait);
4334 do {
4335 if ((state == TASK_INTERRUPTIBLE &&
4336 signal_pending(current)) ||
4337 (state == TASK_KILLABLE &&
4338 fatal_signal_pending(current))) {
4339 __remove_wait_queue(&x->wait, &wait);
4340 return -ERESTARTSYS;
4342 __set_current_state(state);
4343 spin_unlock_irq(&x->wait.lock);
4344 timeout = schedule_timeout(timeout);
4345 spin_lock_irq(&x->wait.lock);
4346 if (!timeout) {
4347 __remove_wait_queue(&x->wait, &wait);
4348 return timeout;
4350 } while (!x->done);
4351 __remove_wait_queue(&x->wait, &wait);
4353 x->done--;
4354 return timeout;
4357 static long __sched
4358 wait_for_common(struct completion *x, long timeout, int state)
4360 might_sleep();
4362 spin_lock_irq(&x->wait.lock);
4363 timeout = do_wait_for_common(x, timeout, state);
4364 spin_unlock_irq(&x->wait.lock);
4365 return timeout;
4368 void __sched wait_for_completion(struct completion *x)
4370 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4372 EXPORT_SYMBOL(wait_for_completion);
4374 unsigned long __sched
4375 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4377 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4379 EXPORT_SYMBOL(wait_for_completion_timeout);
4381 int __sched wait_for_completion_interruptible(struct completion *x)
4383 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4384 if (t == -ERESTARTSYS)
4385 return t;
4386 return 0;
4388 EXPORT_SYMBOL(wait_for_completion_interruptible);
4390 unsigned long __sched
4391 wait_for_completion_interruptible_timeout(struct completion *x,
4392 unsigned long timeout)
4394 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4396 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4398 int __sched wait_for_completion_killable(struct completion *x)
4400 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4401 if (t == -ERESTARTSYS)
4402 return t;
4403 return 0;
4405 EXPORT_SYMBOL(wait_for_completion_killable);
4407 static long __sched
4408 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4410 unsigned long flags;
4411 wait_queue_t wait;
4413 init_waitqueue_entry(&wait, current);
4415 __set_current_state(state);
4417 spin_lock_irqsave(&q->lock, flags);
4418 __add_wait_queue(q, &wait);
4419 spin_unlock(&q->lock);
4420 timeout = schedule_timeout(timeout);
4421 spin_lock_irq(&q->lock);
4422 __remove_wait_queue(q, &wait);
4423 spin_unlock_irqrestore(&q->lock, flags);
4425 return timeout;
4428 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4430 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4432 EXPORT_SYMBOL(interruptible_sleep_on);
4434 long __sched
4435 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4437 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4439 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4441 void __sched sleep_on(wait_queue_head_t *q)
4443 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4445 EXPORT_SYMBOL(sleep_on);
4447 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4449 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4451 EXPORT_SYMBOL(sleep_on_timeout);
4453 #ifdef CONFIG_RT_MUTEXES
4456 * rt_mutex_setprio - set the current priority of a task
4457 * @p: task
4458 * @prio: prio value (kernel-internal form)
4460 * This function changes the 'effective' priority of a task. It does
4461 * not touch ->normal_prio like __setscheduler().
4463 * Used by the rt_mutex code to implement priority inheritance logic.
4465 void rt_mutex_setprio(struct task_struct *p, int prio)
4467 unsigned long flags;
4468 int oldprio, on_rq, running;
4469 struct rq *rq;
4470 const struct sched_class *prev_class = p->sched_class;
4472 BUG_ON(prio < 0 || prio > MAX_PRIO);
4474 rq = task_rq_lock(p, &flags);
4475 update_rq_clock(rq);
4477 oldprio = p->prio;
4478 on_rq = p->se.on_rq;
4479 running = task_current(rq, p);
4480 if (on_rq)
4481 dequeue_task(rq, p, 0);
4482 if (running)
4483 p->sched_class->put_prev_task(rq, p);
4485 if (rt_prio(prio))
4486 p->sched_class = &rt_sched_class;
4487 else
4488 p->sched_class = &fair_sched_class;
4490 p->prio = prio;
4492 if (running)
4493 p->sched_class->set_curr_task(rq);
4494 if (on_rq) {
4495 enqueue_task(rq, p, 0);
4497 check_class_changed(rq, p, prev_class, oldprio, running);
4499 task_rq_unlock(rq, &flags);
4502 #endif
4504 void set_user_nice(struct task_struct *p, long nice)
4506 int old_prio, delta, on_rq;
4507 unsigned long flags;
4508 struct rq *rq;
4510 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4511 return;
4513 * We have to be careful, if called from sys_setpriority(),
4514 * the task might be in the middle of scheduling on another CPU.
4516 rq = task_rq_lock(p, &flags);
4517 update_rq_clock(rq);
4519 * The RT priorities are set via sched_setscheduler(), but we still
4520 * allow the 'normal' nice value to be set - but as expected
4521 * it wont have any effect on scheduling until the task is
4522 * SCHED_FIFO/SCHED_RR:
4524 if (task_has_rt_policy(p)) {
4525 p->static_prio = NICE_TO_PRIO(nice);
4526 goto out_unlock;
4528 on_rq = p->se.on_rq;
4529 if (on_rq) {
4530 dequeue_task(rq, p, 0);
4531 dec_load(rq, p);
4534 p->static_prio = NICE_TO_PRIO(nice);
4535 set_load_weight(p);
4536 old_prio = p->prio;
4537 p->prio = effective_prio(p);
4538 delta = p->prio - old_prio;
4540 if (on_rq) {
4541 enqueue_task(rq, p, 0);
4542 inc_load(rq, p);
4544 * If the task increased its priority or is running and
4545 * lowered its priority, then reschedule its CPU:
4547 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4548 resched_task(rq->curr);
4550 out_unlock:
4551 task_rq_unlock(rq, &flags);
4553 EXPORT_SYMBOL(set_user_nice);
4556 * can_nice - check if a task can reduce its nice value
4557 * @p: task
4558 * @nice: nice value
4560 int can_nice(const struct task_struct *p, const int nice)
4562 /* convert nice value [19,-20] to rlimit style value [1,40] */
4563 int nice_rlim = 20 - nice;
4565 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4566 capable(CAP_SYS_NICE));
4569 #ifdef __ARCH_WANT_SYS_NICE
4572 * sys_nice - change the priority of the current process.
4573 * @increment: priority increment
4575 * sys_setpriority is a more generic, but much slower function that
4576 * does similar things.
4578 asmlinkage long sys_nice(int increment)
4580 long nice, retval;
4583 * Setpriority might change our priority at the same moment.
4584 * We don't have to worry. Conceptually one call occurs first
4585 * and we have a single winner.
4587 if (increment < -40)
4588 increment = -40;
4589 if (increment > 40)
4590 increment = 40;
4592 nice = PRIO_TO_NICE(current->static_prio) + increment;
4593 if (nice < -20)
4594 nice = -20;
4595 if (nice > 19)
4596 nice = 19;
4598 if (increment < 0 && !can_nice(current, nice))
4599 return -EPERM;
4601 retval = security_task_setnice(current, nice);
4602 if (retval)
4603 return retval;
4605 set_user_nice(current, nice);
4606 return 0;
4609 #endif
4612 * task_prio - return the priority value of a given task.
4613 * @p: the task in question.
4615 * This is the priority value as seen by users in /proc.
4616 * RT tasks are offset by -200. Normal tasks are centered
4617 * around 0, value goes from -16 to +15.
4619 int task_prio(const struct task_struct *p)
4621 return p->prio - MAX_RT_PRIO;
4625 * task_nice - return the nice value of a given task.
4626 * @p: the task in question.
4628 int task_nice(const struct task_struct *p)
4630 return TASK_NICE(p);
4632 EXPORT_SYMBOL(task_nice);
4635 * idle_cpu - is a given cpu idle currently?
4636 * @cpu: the processor in question.
4638 int idle_cpu(int cpu)
4640 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4644 * idle_task - return the idle task for a given cpu.
4645 * @cpu: the processor in question.
4647 struct task_struct *idle_task(int cpu)
4649 return cpu_rq(cpu)->idle;
4653 * find_process_by_pid - find a process with a matching PID value.
4654 * @pid: the pid in question.
4656 static struct task_struct *find_process_by_pid(pid_t pid)
4658 return pid ? find_task_by_vpid(pid) : current;
4661 /* Actually do priority change: must hold rq lock. */
4662 static void
4663 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4665 BUG_ON(p->se.on_rq);
4667 p->policy = policy;
4668 switch (p->policy) {
4669 case SCHED_NORMAL:
4670 case SCHED_BATCH:
4671 case SCHED_IDLE:
4672 p->sched_class = &fair_sched_class;
4673 break;
4674 case SCHED_FIFO:
4675 case SCHED_RR:
4676 p->sched_class = &rt_sched_class;
4677 break;
4680 p->rt_priority = prio;
4681 p->normal_prio = normal_prio(p);
4682 /* we are holding p->pi_lock already */
4683 p->prio = rt_mutex_getprio(p);
4684 set_load_weight(p);
4688 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4689 * @p: the task in question.
4690 * @policy: new policy.
4691 * @param: structure containing the new RT priority.
4693 * NOTE that the task may be already dead.
4695 int sched_setscheduler(struct task_struct *p, int policy,
4696 struct sched_param *param)
4698 int retval, oldprio, oldpolicy = -1, on_rq, running;
4699 unsigned long flags;
4700 const struct sched_class *prev_class = p->sched_class;
4701 struct rq *rq;
4703 /* may grab non-irq protected spin_locks */
4704 BUG_ON(in_interrupt());
4705 recheck:
4706 /* double check policy once rq lock held */
4707 if (policy < 0)
4708 policy = oldpolicy = p->policy;
4709 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4710 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4711 policy != SCHED_IDLE)
4712 return -EINVAL;
4714 * Valid priorities for SCHED_FIFO and SCHED_RR are
4715 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4716 * SCHED_BATCH and SCHED_IDLE is 0.
4718 if (param->sched_priority < 0 ||
4719 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4720 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4721 return -EINVAL;
4722 if (rt_policy(policy) != (param->sched_priority != 0))
4723 return -EINVAL;
4726 * Allow unprivileged RT tasks to decrease priority:
4728 if (!capable(CAP_SYS_NICE)) {
4729 if (rt_policy(policy)) {
4730 unsigned long rlim_rtprio;
4732 if (!lock_task_sighand(p, &flags))
4733 return -ESRCH;
4734 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4735 unlock_task_sighand(p, &flags);
4737 /* can't set/change the rt policy */
4738 if (policy != p->policy && !rlim_rtprio)
4739 return -EPERM;
4741 /* can't increase priority */
4742 if (param->sched_priority > p->rt_priority &&
4743 param->sched_priority > rlim_rtprio)
4744 return -EPERM;
4747 * Like positive nice levels, dont allow tasks to
4748 * move out of SCHED_IDLE either:
4750 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4751 return -EPERM;
4753 /* can't change other user's priorities */
4754 if ((current->euid != p->euid) &&
4755 (current->euid != p->uid))
4756 return -EPERM;
4759 #ifdef CONFIG_RT_GROUP_SCHED
4761 * Do not allow realtime tasks into groups that have no runtime
4762 * assigned.
4764 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
4765 return -EPERM;
4766 #endif
4768 retval = security_task_setscheduler(p, policy, param);
4769 if (retval)
4770 return retval;
4772 * make sure no PI-waiters arrive (or leave) while we are
4773 * changing the priority of the task:
4775 spin_lock_irqsave(&p->pi_lock, flags);
4777 * To be able to change p->policy safely, the apropriate
4778 * runqueue lock must be held.
4780 rq = __task_rq_lock(p);
4781 /* recheck policy now with rq lock held */
4782 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4783 policy = oldpolicy = -1;
4784 __task_rq_unlock(rq);
4785 spin_unlock_irqrestore(&p->pi_lock, flags);
4786 goto recheck;
4788 update_rq_clock(rq);
4789 on_rq = p->se.on_rq;
4790 running = task_current(rq, p);
4791 if (on_rq)
4792 deactivate_task(rq, p, 0);
4793 if (running)
4794 p->sched_class->put_prev_task(rq, p);
4796 oldprio = p->prio;
4797 __setscheduler(rq, p, policy, param->sched_priority);
4799 if (running)
4800 p->sched_class->set_curr_task(rq);
4801 if (on_rq) {
4802 activate_task(rq, p, 0);
4804 check_class_changed(rq, p, prev_class, oldprio, running);
4806 __task_rq_unlock(rq);
4807 spin_unlock_irqrestore(&p->pi_lock, flags);
4809 rt_mutex_adjust_pi(p);
4811 return 0;
4813 EXPORT_SYMBOL_GPL(sched_setscheduler);
4815 static int
4816 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4818 struct sched_param lparam;
4819 struct task_struct *p;
4820 int retval;
4822 if (!param || pid < 0)
4823 return -EINVAL;
4824 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4825 return -EFAULT;
4827 rcu_read_lock();
4828 retval = -ESRCH;
4829 p = find_process_by_pid(pid);
4830 if (p != NULL)
4831 retval = sched_setscheduler(p, policy, &lparam);
4832 rcu_read_unlock();
4834 return retval;
4838 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4839 * @pid: the pid in question.
4840 * @policy: new policy.
4841 * @param: structure containing the new RT priority.
4843 asmlinkage long
4844 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4846 /* negative values for policy are not valid */
4847 if (policy < 0)
4848 return -EINVAL;
4850 return do_sched_setscheduler(pid, policy, param);
4854 * sys_sched_setparam - set/change the RT priority of a thread
4855 * @pid: the pid in question.
4856 * @param: structure containing the new RT priority.
4858 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4860 return do_sched_setscheduler(pid, -1, param);
4864 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4865 * @pid: the pid in question.
4867 asmlinkage long sys_sched_getscheduler(pid_t pid)
4869 struct task_struct *p;
4870 int retval;
4872 if (pid < 0)
4873 return -EINVAL;
4875 retval = -ESRCH;
4876 read_lock(&tasklist_lock);
4877 p = find_process_by_pid(pid);
4878 if (p) {
4879 retval = security_task_getscheduler(p);
4880 if (!retval)
4881 retval = p->policy;
4883 read_unlock(&tasklist_lock);
4884 return retval;
4888 * sys_sched_getscheduler - get the RT priority of a thread
4889 * @pid: the pid in question.
4890 * @param: structure containing the RT priority.
4892 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4894 struct sched_param lp;
4895 struct task_struct *p;
4896 int retval;
4898 if (!param || pid < 0)
4899 return -EINVAL;
4901 read_lock(&tasklist_lock);
4902 p = find_process_by_pid(pid);
4903 retval = -ESRCH;
4904 if (!p)
4905 goto out_unlock;
4907 retval = security_task_getscheduler(p);
4908 if (retval)
4909 goto out_unlock;
4911 lp.sched_priority = p->rt_priority;
4912 read_unlock(&tasklist_lock);
4915 * This one might sleep, we cannot do it with a spinlock held ...
4917 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4919 return retval;
4921 out_unlock:
4922 read_unlock(&tasklist_lock);
4923 return retval;
4926 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4928 cpumask_t cpus_allowed;
4929 struct task_struct *p;
4930 int retval;
4932 get_online_cpus();
4933 read_lock(&tasklist_lock);
4935 p = find_process_by_pid(pid);
4936 if (!p) {
4937 read_unlock(&tasklist_lock);
4938 put_online_cpus();
4939 return -ESRCH;
4943 * It is not safe to call set_cpus_allowed with the
4944 * tasklist_lock held. We will bump the task_struct's
4945 * usage count and then drop tasklist_lock.
4947 get_task_struct(p);
4948 read_unlock(&tasklist_lock);
4950 retval = -EPERM;
4951 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4952 !capable(CAP_SYS_NICE))
4953 goto out_unlock;
4955 retval = security_task_setscheduler(p, 0, NULL);
4956 if (retval)
4957 goto out_unlock;
4959 cpus_allowed = cpuset_cpus_allowed(p);
4960 cpus_and(new_mask, new_mask, cpus_allowed);
4961 again:
4962 retval = set_cpus_allowed(p, new_mask);
4964 if (!retval) {
4965 cpus_allowed = cpuset_cpus_allowed(p);
4966 if (!cpus_subset(new_mask, cpus_allowed)) {
4968 * We must have raced with a concurrent cpuset
4969 * update. Just reset the cpus_allowed to the
4970 * cpuset's cpus_allowed
4972 new_mask = cpus_allowed;
4973 goto again;
4976 out_unlock:
4977 put_task_struct(p);
4978 put_online_cpus();
4979 return retval;
4982 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4983 cpumask_t *new_mask)
4985 if (len < sizeof(cpumask_t)) {
4986 memset(new_mask, 0, sizeof(cpumask_t));
4987 } else if (len > sizeof(cpumask_t)) {
4988 len = sizeof(cpumask_t);
4990 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4994 * sys_sched_setaffinity - set the cpu affinity of a process
4995 * @pid: pid of the process
4996 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4997 * @user_mask_ptr: user-space pointer to the new cpu mask
4999 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5000 unsigned long __user *user_mask_ptr)
5002 cpumask_t new_mask;
5003 int retval;
5005 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5006 if (retval)
5007 return retval;
5009 return sched_setaffinity(pid, new_mask);
5013 * Represents all cpu's present in the system
5014 * In systems capable of hotplug, this map could dynamically grow
5015 * as new cpu's are detected in the system via any platform specific
5016 * method, such as ACPI for e.g.
5019 cpumask_t cpu_present_map __read_mostly;
5020 EXPORT_SYMBOL(cpu_present_map);
5022 #ifndef CONFIG_SMP
5023 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
5024 EXPORT_SYMBOL(cpu_online_map);
5026 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
5027 EXPORT_SYMBOL(cpu_possible_map);
5028 #endif
5030 long sched_getaffinity(pid_t pid, cpumask_t *mask)
5032 struct task_struct *p;
5033 int retval;
5035 get_online_cpus();
5036 read_lock(&tasklist_lock);
5038 retval = -ESRCH;
5039 p = find_process_by_pid(pid);
5040 if (!p)
5041 goto out_unlock;
5043 retval = security_task_getscheduler(p);
5044 if (retval)
5045 goto out_unlock;
5047 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
5049 out_unlock:
5050 read_unlock(&tasklist_lock);
5051 put_online_cpus();
5053 return retval;
5057 * sys_sched_getaffinity - get the cpu affinity of a process
5058 * @pid: pid of the process
5059 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5060 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5062 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5063 unsigned long __user *user_mask_ptr)
5065 int ret;
5066 cpumask_t mask;
5068 if (len < sizeof(cpumask_t))
5069 return -EINVAL;
5071 ret = sched_getaffinity(pid, &mask);
5072 if (ret < 0)
5073 return ret;
5075 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5076 return -EFAULT;
5078 return sizeof(cpumask_t);
5082 * sys_sched_yield - yield the current processor to other threads.
5084 * This function yields the current CPU to other tasks. If there are no
5085 * other threads running on this CPU then this function will return.
5087 asmlinkage long sys_sched_yield(void)
5089 struct rq *rq = this_rq_lock();
5091 schedstat_inc(rq, yld_count);
5092 current->sched_class->yield_task(rq);
5095 * Since we are going to call schedule() anyway, there's
5096 * no need to preempt or enable interrupts:
5098 __release(rq->lock);
5099 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5100 _raw_spin_unlock(&rq->lock);
5101 preempt_enable_no_resched();
5103 schedule();
5105 return 0;
5108 static void __cond_resched(void)
5110 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5111 __might_sleep(__FILE__, __LINE__);
5112 #endif
5114 * The BKS might be reacquired before we have dropped
5115 * PREEMPT_ACTIVE, which could trigger a second
5116 * cond_resched() call.
5118 do {
5119 add_preempt_count(PREEMPT_ACTIVE);
5120 schedule();
5121 sub_preempt_count(PREEMPT_ACTIVE);
5122 } while (need_resched());
5125 #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
5126 int __sched _cond_resched(void)
5128 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5129 system_state == SYSTEM_RUNNING) {
5130 __cond_resched();
5131 return 1;
5133 return 0;
5135 EXPORT_SYMBOL(_cond_resched);
5136 #endif
5139 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5140 * call schedule, and on return reacquire the lock.
5142 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5143 * operations here to prevent schedule() from being called twice (once via
5144 * spin_unlock(), once by hand).
5146 int cond_resched_lock(spinlock_t *lock)
5148 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5149 int ret = 0;
5151 if (spin_needbreak(lock) || resched) {
5152 spin_unlock(lock);
5153 if (resched && need_resched())
5154 __cond_resched();
5155 else
5156 cpu_relax();
5157 ret = 1;
5158 spin_lock(lock);
5160 return ret;
5162 EXPORT_SYMBOL(cond_resched_lock);
5164 int __sched cond_resched_softirq(void)
5166 BUG_ON(!in_softirq());
5168 if (need_resched() && system_state == SYSTEM_RUNNING) {
5169 local_bh_enable();
5170 __cond_resched();
5171 local_bh_disable();
5172 return 1;
5174 return 0;
5176 EXPORT_SYMBOL(cond_resched_softirq);
5179 * yield - yield the current processor to other threads.
5181 * This is a shortcut for kernel-space yielding - it marks the
5182 * thread runnable and calls sys_sched_yield().
5184 void __sched yield(void)
5186 set_current_state(TASK_RUNNING);
5187 sys_sched_yield();
5189 EXPORT_SYMBOL(yield);
5192 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5193 * that process accounting knows that this is a task in IO wait state.
5195 * But don't do that if it is a deliberate, throttling IO wait (this task
5196 * has set its backing_dev_info: the queue against which it should throttle)
5198 void __sched io_schedule(void)
5200 struct rq *rq = &__raw_get_cpu_var(runqueues);
5202 delayacct_blkio_start();
5203 atomic_inc(&rq->nr_iowait);
5204 schedule();
5205 atomic_dec(&rq->nr_iowait);
5206 delayacct_blkio_end();
5208 EXPORT_SYMBOL(io_schedule);
5210 long __sched io_schedule_timeout(long timeout)
5212 struct rq *rq = &__raw_get_cpu_var(runqueues);
5213 long ret;
5215 delayacct_blkio_start();
5216 atomic_inc(&rq->nr_iowait);
5217 ret = schedule_timeout(timeout);
5218 atomic_dec(&rq->nr_iowait);
5219 delayacct_blkio_end();
5220 return ret;
5224 * sys_sched_get_priority_max - return maximum RT priority.
5225 * @policy: scheduling class.
5227 * this syscall returns the maximum rt_priority that can be used
5228 * by a given scheduling class.
5230 asmlinkage long sys_sched_get_priority_max(int policy)
5232 int ret = -EINVAL;
5234 switch (policy) {
5235 case SCHED_FIFO:
5236 case SCHED_RR:
5237 ret = MAX_USER_RT_PRIO-1;
5238 break;
5239 case SCHED_NORMAL:
5240 case SCHED_BATCH:
5241 case SCHED_IDLE:
5242 ret = 0;
5243 break;
5245 return ret;
5249 * sys_sched_get_priority_min - return minimum RT priority.
5250 * @policy: scheduling class.
5252 * this syscall returns the minimum rt_priority that can be used
5253 * by a given scheduling class.
5255 asmlinkage long sys_sched_get_priority_min(int policy)
5257 int ret = -EINVAL;
5259 switch (policy) {
5260 case SCHED_FIFO:
5261 case SCHED_RR:
5262 ret = 1;
5263 break;
5264 case SCHED_NORMAL:
5265 case SCHED_BATCH:
5266 case SCHED_IDLE:
5267 ret = 0;
5269 return ret;
5273 * sys_sched_rr_get_interval - return the default timeslice of a process.
5274 * @pid: pid of the process.
5275 * @interval: userspace pointer to the timeslice value.
5277 * this syscall writes the default timeslice value of a given process
5278 * into the user-space timespec buffer. A value of '0' means infinity.
5280 asmlinkage
5281 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5283 struct task_struct *p;
5284 unsigned int time_slice;
5285 int retval;
5286 struct timespec t;
5288 if (pid < 0)
5289 return -EINVAL;
5291 retval = -ESRCH;
5292 read_lock(&tasklist_lock);
5293 p = find_process_by_pid(pid);
5294 if (!p)
5295 goto out_unlock;
5297 retval = security_task_getscheduler(p);
5298 if (retval)
5299 goto out_unlock;
5302 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5303 * tasks that are on an otherwise idle runqueue:
5305 time_slice = 0;
5306 if (p->policy == SCHED_RR) {
5307 time_slice = DEF_TIMESLICE;
5308 } else if (p->policy != SCHED_FIFO) {
5309 struct sched_entity *se = &p->se;
5310 unsigned long flags;
5311 struct rq *rq;
5313 rq = task_rq_lock(p, &flags);
5314 if (rq->cfs.load.weight)
5315 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5316 task_rq_unlock(rq, &flags);
5318 read_unlock(&tasklist_lock);
5319 jiffies_to_timespec(time_slice, &t);
5320 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5321 return retval;
5323 out_unlock:
5324 read_unlock(&tasklist_lock);
5325 return retval;
5328 static const char stat_nam[] = "RSDTtZX";
5330 void sched_show_task(struct task_struct *p)
5332 unsigned long free = 0;
5333 unsigned state;
5335 state = p->state ? __ffs(p->state) + 1 : 0;
5336 printk(KERN_INFO "%-13.13s %c", p->comm,
5337 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5338 #if BITS_PER_LONG == 32
5339 if (state == TASK_RUNNING)
5340 printk(KERN_CONT " running ");
5341 else
5342 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5343 #else
5344 if (state == TASK_RUNNING)
5345 printk(KERN_CONT " running task ");
5346 else
5347 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5348 #endif
5349 #ifdef CONFIG_DEBUG_STACK_USAGE
5351 unsigned long *n = end_of_stack(p);
5352 while (!*n)
5353 n++;
5354 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5356 #endif
5357 printk(KERN_CONT "%5lu %5d %6d\n", free,
5358 task_pid_nr(p), task_pid_nr(p->real_parent));
5360 show_stack(p, NULL);
5363 void show_state_filter(unsigned long state_filter)
5365 struct task_struct *g, *p;
5367 #if BITS_PER_LONG == 32
5368 printk(KERN_INFO
5369 " task PC stack pid father\n");
5370 #else
5371 printk(KERN_INFO
5372 " task PC stack pid father\n");
5373 #endif
5374 read_lock(&tasklist_lock);
5375 do_each_thread(g, p) {
5377 * reset the NMI-timeout, listing all files on a slow
5378 * console might take alot of time:
5380 touch_nmi_watchdog();
5381 if (!state_filter || (p->state & state_filter))
5382 sched_show_task(p);
5383 } while_each_thread(g, p);
5385 touch_all_softlockup_watchdogs();
5387 #ifdef CONFIG_SCHED_DEBUG
5388 sysrq_sched_debug_show();
5389 #endif
5390 read_unlock(&tasklist_lock);
5392 * Only show locks if all tasks are dumped:
5394 if (state_filter == -1)
5395 debug_show_all_locks();
5398 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5400 idle->sched_class = &idle_sched_class;
5404 * init_idle - set up an idle thread for a given CPU
5405 * @idle: task in question
5406 * @cpu: cpu the idle task belongs to
5408 * NOTE: this function does not set the idle thread's NEED_RESCHED
5409 * flag, to make booting more robust.
5411 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5413 struct rq *rq = cpu_rq(cpu);
5414 unsigned long flags;
5416 __sched_fork(idle);
5417 idle->se.exec_start = sched_clock();
5419 idle->prio = idle->normal_prio = MAX_PRIO;
5420 idle->cpus_allowed = cpumask_of_cpu(cpu);
5421 __set_task_cpu(idle, cpu);
5423 spin_lock_irqsave(&rq->lock, flags);
5424 rq->curr = rq->idle = idle;
5425 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5426 idle->oncpu = 1;
5427 #endif
5428 spin_unlock_irqrestore(&rq->lock, flags);
5430 /* Set the preempt count _outside_ the spinlocks! */
5431 task_thread_info(idle)->preempt_count = 0;
5434 * The idle tasks have their own, simple scheduling class:
5436 idle->sched_class = &idle_sched_class;
5440 * In a system that switches off the HZ timer nohz_cpu_mask
5441 * indicates which cpus entered this state. This is used
5442 * in the rcu update to wait only for active cpus. For system
5443 * which do not switch off the HZ timer nohz_cpu_mask should
5444 * always be CPU_MASK_NONE.
5446 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5449 * Increase the granularity value when there are more CPUs,
5450 * because with more CPUs the 'effective latency' as visible
5451 * to users decreases. But the relationship is not linear,
5452 * so pick a second-best guess by going with the log2 of the
5453 * number of CPUs.
5455 * This idea comes from the SD scheduler of Con Kolivas:
5457 static inline void sched_init_granularity(void)
5459 unsigned int factor = 1 + ilog2(num_online_cpus());
5460 const unsigned long limit = 200000000;
5462 sysctl_sched_min_granularity *= factor;
5463 if (sysctl_sched_min_granularity > limit)
5464 sysctl_sched_min_granularity = limit;
5466 sysctl_sched_latency *= factor;
5467 if (sysctl_sched_latency > limit)
5468 sysctl_sched_latency = limit;
5470 sysctl_sched_wakeup_granularity *= factor;
5473 #ifdef CONFIG_SMP
5475 * This is how migration works:
5477 * 1) we queue a struct migration_req structure in the source CPU's
5478 * runqueue and wake up that CPU's migration thread.
5479 * 2) we down() the locked semaphore => thread blocks.
5480 * 3) migration thread wakes up (implicitly it forces the migrated
5481 * thread off the CPU)
5482 * 4) it gets the migration request and checks whether the migrated
5483 * task is still in the wrong runqueue.
5484 * 5) if it's in the wrong runqueue then the migration thread removes
5485 * it and puts it into the right queue.
5486 * 6) migration thread up()s the semaphore.
5487 * 7) we wake up and the migration is done.
5491 * Change a given task's CPU affinity. Migrate the thread to a
5492 * proper CPU and schedule it away if the CPU it's executing on
5493 * is removed from the allowed bitmask.
5495 * NOTE: the caller must have a valid reference to the task, the
5496 * task must not exit() & deallocate itself prematurely. The
5497 * call is not atomic; no spinlocks may be held.
5499 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
5501 struct migration_req req;
5502 unsigned long flags;
5503 struct rq *rq;
5504 int ret = 0;
5506 rq = task_rq_lock(p, &flags);
5507 if (!cpus_intersects(new_mask, cpu_online_map)) {
5508 ret = -EINVAL;
5509 goto out;
5512 if (p->sched_class->set_cpus_allowed)
5513 p->sched_class->set_cpus_allowed(p, &new_mask);
5514 else {
5515 p->cpus_allowed = new_mask;
5516 p->rt.nr_cpus_allowed = cpus_weight(new_mask);
5519 /* Can the task run on the task's current CPU? If so, we're done */
5520 if (cpu_isset(task_cpu(p), new_mask))
5521 goto out;
5523 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5524 /* Need help from migration thread: drop lock and wait. */
5525 task_rq_unlock(rq, &flags);
5526 wake_up_process(rq->migration_thread);
5527 wait_for_completion(&req.done);
5528 tlb_migrate_finish(p->mm);
5529 return 0;
5531 out:
5532 task_rq_unlock(rq, &flags);
5534 return ret;
5536 EXPORT_SYMBOL_GPL(set_cpus_allowed);
5539 * Move (not current) task off this cpu, onto dest cpu. We're doing
5540 * this because either it can't run here any more (set_cpus_allowed()
5541 * away from this CPU, or CPU going down), or because we're
5542 * attempting to rebalance this task on exec (sched_exec).
5544 * So we race with normal scheduler movements, but that's OK, as long
5545 * as the task is no longer on this CPU.
5547 * Returns non-zero if task was successfully migrated.
5549 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5551 struct rq *rq_dest, *rq_src;
5552 int ret = 0, on_rq;
5554 if (unlikely(cpu_is_offline(dest_cpu)))
5555 return ret;
5557 rq_src = cpu_rq(src_cpu);
5558 rq_dest = cpu_rq(dest_cpu);
5560 double_rq_lock(rq_src, rq_dest);
5561 /* Already moved. */
5562 if (task_cpu(p) != src_cpu)
5563 goto out;
5564 /* Affinity changed (again). */
5565 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5566 goto out;
5568 on_rq = p->se.on_rq;
5569 if (on_rq)
5570 deactivate_task(rq_src, p, 0);
5572 set_task_cpu(p, dest_cpu);
5573 if (on_rq) {
5574 activate_task(rq_dest, p, 0);
5575 check_preempt_curr(rq_dest, p);
5577 ret = 1;
5578 out:
5579 double_rq_unlock(rq_src, rq_dest);
5580 return ret;
5584 * migration_thread - this is a highprio system thread that performs
5585 * thread migration by bumping thread off CPU then 'pushing' onto
5586 * another runqueue.
5588 static int migration_thread(void *data)
5590 int cpu = (long)data;
5591 struct rq *rq;
5593 rq = cpu_rq(cpu);
5594 BUG_ON(rq->migration_thread != current);
5596 set_current_state(TASK_INTERRUPTIBLE);
5597 while (!kthread_should_stop()) {
5598 struct migration_req *req;
5599 struct list_head *head;
5601 spin_lock_irq(&rq->lock);
5603 if (cpu_is_offline(cpu)) {
5604 spin_unlock_irq(&rq->lock);
5605 goto wait_to_die;
5608 if (rq->active_balance) {
5609 active_load_balance(rq, cpu);
5610 rq->active_balance = 0;
5613 head = &rq->migration_queue;
5615 if (list_empty(head)) {
5616 spin_unlock_irq(&rq->lock);
5617 schedule();
5618 set_current_state(TASK_INTERRUPTIBLE);
5619 continue;
5621 req = list_entry(head->next, struct migration_req, list);
5622 list_del_init(head->next);
5624 spin_unlock(&rq->lock);
5625 __migrate_task(req->task, cpu, req->dest_cpu);
5626 local_irq_enable();
5628 complete(&req->done);
5630 __set_current_state(TASK_RUNNING);
5631 return 0;
5633 wait_to_die:
5634 /* Wait for kthread_stop */
5635 set_current_state(TASK_INTERRUPTIBLE);
5636 while (!kthread_should_stop()) {
5637 schedule();
5638 set_current_state(TASK_INTERRUPTIBLE);
5640 __set_current_state(TASK_RUNNING);
5641 return 0;
5644 #ifdef CONFIG_HOTPLUG_CPU
5646 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5648 int ret;
5650 local_irq_disable();
5651 ret = __migrate_task(p, src_cpu, dest_cpu);
5652 local_irq_enable();
5653 return ret;
5657 * Figure out where task on dead CPU should go, use force if necessary.
5658 * NOTE: interrupts should be disabled by the caller
5660 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5662 unsigned long flags;
5663 cpumask_t mask;
5664 struct rq *rq;
5665 int dest_cpu;
5667 do {
5668 /* On same node? */
5669 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5670 cpus_and(mask, mask, p->cpus_allowed);
5671 dest_cpu = any_online_cpu(mask);
5673 /* On any allowed CPU? */
5674 if (dest_cpu == NR_CPUS)
5675 dest_cpu = any_online_cpu(p->cpus_allowed);
5677 /* No more Mr. Nice Guy. */
5678 if (dest_cpu == NR_CPUS) {
5679 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5681 * Try to stay on the same cpuset, where the
5682 * current cpuset may be a subset of all cpus.
5683 * The cpuset_cpus_allowed_locked() variant of
5684 * cpuset_cpus_allowed() will not block. It must be
5685 * called within calls to cpuset_lock/cpuset_unlock.
5687 rq = task_rq_lock(p, &flags);
5688 p->cpus_allowed = cpus_allowed;
5689 dest_cpu = any_online_cpu(p->cpus_allowed);
5690 task_rq_unlock(rq, &flags);
5693 * Don't tell them about moving exiting tasks or
5694 * kernel threads (both mm NULL), since they never
5695 * leave kernel.
5697 if (p->mm && printk_ratelimit()) {
5698 printk(KERN_INFO "process %d (%s) no "
5699 "longer affine to cpu%d\n",
5700 task_pid_nr(p), p->comm, dead_cpu);
5703 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
5707 * While a dead CPU has no uninterruptible tasks queued at this point,
5708 * it might still have a nonzero ->nr_uninterruptible counter, because
5709 * for performance reasons the counter is not stricly tracking tasks to
5710 * their home CPUs. So we just add the counter to another CPU's counter,
5711 * to keep the global sum constant after CPU-down:
5713 static void migrate_nr_uninterruptible(struct rq *rq_src)
5715 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5716 unsigned long flags;
5718 local_irq_save(flags);
5719 double_rq_lock(rq_src, rq_dest);
5720 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5721 rq_src->nr_uninterruptible = 0;
5722 double_rq_unlock(rq_src, rq_dest);
5723 local_irq_restore(flags);
5726 /* Run through task list and migrate tasks from the dead cpu. */
5727 static void migrate_live_tasks(int src_cpu)
5729 struct task_struct *p, *t;
5731 read_lock(&tasklist_lock);
5733 do_each_thread(t, p) {
5734 if (p == current)
5735 continue;
5737 if (task_cpu(p) == src_cpu)
5738 move_task_off_dead_cpu(src_cpu, p);
5739 } while_each_thread(t, p);
5741 read_unlock(&tasklist_lock);
5745 * Schedules idle task to be the next runnable task on current CPU.
5746 * It does so by boosting its priority to highest possible.
5747 * Used by CPU offline code.
5749 void sched_idle_next(void)
5751 int this_cpu = smp_processor_id();
5752 struct rq *rq = cpu_rq(this_cpu);
5753 struct task_struct *p = rq->idle;
5754 unsigned long flags;
5756 /* cpu has to be offline */
5757 BUG_ON(cpu_online(this_cpu));
5760 * Strictly not necessary since rest of the CPUs are stopped by now
5761 * and interrupts disabled on the current cpu.
5763 spin_lock_irqsave(&rq->lock, flags);
5765 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5767 update_rq_clock(rq);
5768 activate_task(rq, p, 0);
5770 spin_unlock_irqrestore(&rq->lock, flags);
5774 * Ensures that the idle task is using init_mm right before its cpu goes
5775 * offline.
5777 void idle_task_exit(void)
5779 struct mm_struct *mm = current->active_mm;
5781 BUG_ON(cpu_online(smp_processor_id()));
5783 if (mm != &init_mm)
5784 switch_mm(mm, &init_mm, current);
5785 mmdrop(mm);
5788 /* called under rq->lock with disabled interrupts */
5789 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5791 struct rq *rq = cpu_rq(dead_cpu);
5793 /* Must be exiting, otherwise would be on tasklist. */
5794 BUG_ON(!p->exit_state);
5796 /* Cannot have done final schedule yet: would have vanished. */
5797 BUG_ON(p->state == TASK_DEAD);
5799 get_task_struct(p);
5802 * Drop lock around migration; if someone else moves it,
5803 * that's OK. No task can be added to this CPU, so iteration is
5804 * fine.
5806 spin_unlock_irq(&rq->lock);
5807 move_task_off_dead_cpu(dead_cpu, p);
5808 spin_lock_irq(&rq->lock);
5810 put_task_struct(p);
5813 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5814 static void migrate_dead_tasks(unsigned int dead_cpu)
5816 struct rq *rq = cpu_rq(dead_cpu);
5817 struct task_struct *next;
5819 for ( ; ; ) {
5820 if (!rq->nr_running)
5821 break;
5822 update_rq_clock(rq);
5823 next = pick_next_task(rq, rq->curr);
5824 if (!next)
5825 break;
5826 migrate_dead(dead_cpu, next);
5830 #endif /* CONFIG_HOTPLUG_CPU */
5832 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5834 static struct ctl_table sd_ctl_dir[] = {
5836 .procname = "sched_domain",
5837 .mode = 0555,
5839 {0, },
5842 static struct ctl_table sd_ctl_root[] = {
5844 .ctl_name = CTL_KERN,
5845 .procname = "kernel",
5846 .mode = 0555,
5847 .child = sd_ctl_dir,
5849 {0, },
5852 static struct ctl_table *sd_alloc_ctl_entry(int n)
5854 struct ctl_table *entry =
5855 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5857 return entry;
5860 static void sd_free_ctl_entry(struct ctl_table **tablep)
5862 struct ctl_table *entry;
5865 * In the intermediate directories, both the child directory and
5866 * procname are dynamically allocated and could fail but the mode
5867 * will always be set. In the lowest directory the names are
5868 * static strings and all have proc handlers.
5870 for (entry = *tablep; entry->mode; entry++) {
5871 if (entry->child)
5872 sd_free_ctl_entry(&entry->child);
5873 if (entry->proc_handler == NULL)
5874 kfree(entry->procname);
5877 kfree(*tablep);
5878 *tablep = NULL;
5881 static void
5882 set_table_entry(struct ctl_table *entry,
5883 const char *procname, void *data, int maxlen,
5884 mode_t mode, proc_handler *proc_handler)
5886 entry->procname = procname;
5887 entry->data = data;
5888 entry->maxlen = maxlen;
5889 entry->mode = mode;
5890 entry->proc_handler = proc_handler;
5893 static struct ctl_table *
5894 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5896 struct ctl_table *table = sd_alloc_ctl_entry(12);
5898 if (table == NULL)
5899 return NULL;
5901 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5902 sizeof(long), 0644, proc_doulongvec_minmax);
5903 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5904 sizeof(long), 0644, proc_doulongvec_minmax);
5905 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5906 sizeof(int), 0644, proc_dointvec_minmax);
5907 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5908 sizeof(int), 0644, proc_dointvec_minmax);
5909 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5910 sizeof(int), 0644, proc_dointvec_minmax);
5911 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5912 sizeof(int), 0644, proc_dointvec_minmax);
5913 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5914 sizeof(int), 0644, proc_dointvec_minmax);
5915 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5916 sizeof(int), 0644, proc_dointvec_minmax);
5917 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5918 sizeof(int), 0644, proc_dointvec_minmax);
5919 set_table_entry(&table[9], "cache_nice_tries",
5920 &sd->cache_nice_tries,
5921 sizeof(int), 0644, proc_dointvec_minmax);
5922 set_table_entry(&table[10], "flags", &sd->flags,
5923 sizeof(int), 0644, proc_dointvec_minmax);
5924 /* &table[11] is terminator */
5926 return table;
5929 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5931 struct ctl_table *entry, *table;
5932 struct sched_domain *sd;
5933 int domain_num = 0, i;
5934 char buf[32];
5936 for_each_domain(cpu, sd)
5937 domain_num++;
5938 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5939 if (table == NULL)
5940 return NULL;
5942 i = 0;
5943 for_each_domain(cpu, sd) {
5944 snprintf(buf, 32, "domain%d", i);
5945 entry->procname = kstrdup(buf, GFP_KERNEL);
5946 entry->mode = 0555;
5947 entry->child = sd_alloc_ctl_domain_table(sd);
5948 entry++;
5949 i++;
5951 return table;
5954 static struct ctl_table_header *sd_sysctl_header;
5955 static void register_sched_domain_sysctl(void)
5957 int i, cpu_num = num_online_cpus();
5958 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5959 char buf[32];
5961 WARN_ON(sd_ctl_dir[0].child);
5962 sd_ctl_dir[0].child = entry;
5964 if (entry == NULL)
5965 return;
5967 for_each_online_cpu(i) {
5968 snprintf(buf, 32, "cpu%d", i);
5969 entry->procname = kstrdup(buf, GFP_KERNEL);
5970 entry->mode = 0555;
5971 entry->child = sd_alloc_ctl_cpu_table(i);
5972 entry++;
5975 WARN_ON(sd_sysctl_header);
5976 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5979 /* may be called multiple times per register */
5980 static void unregister_sched_domain_sysctl(void)
5982 if (sd_sysctl_header)
5983 unregister_sysctl_table(sd_sysctl_header);
5984 sd_sysctl_header = NULL;
5985 if (sd_ctl_dir[0].child)
5986 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5988 #else
5989 static void register_sched_domain_sysctl(void)
5992 static void unregister_sched_domain_sysctl(void)
5995 #endif
5998 * migration_call - callback that gets triggered when a CPU is added.
5999 * Here we can start up the necessary migration thread for the new CPU.
6001 static int __cpuinit
6002 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6004 struct task_struct *p;
6005 int cpu = (long)hcpu;
6006 unsigned long flags;
6007 struct rq *rq;
6009 switch (action) {
6011 case CPU_UP_PREPARE:
6012 case CPU_UP_PREPARE_FROZEN:
6013 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6014 if (IS_ERR(p))
6015 return NOTIFY_BAD;
6016 kthread_bind(p, cpu);
6017 /* Must be high prio: stop_machine expects to yield to it. */
6018 rq = task_rq_lock(p, &flags);
6019 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6020 task_rq_unlock(rq, &flags);
6021 cpu_rq(cpu)->migration_thread = p;
6022 break;
6024 case CPU_ONLINE:
6025 case CPU_ONLINE_FROZEN:
6026 /* Strictly unnecessary, as first user will wake it. */
6027 wake_up_process(cpu_rq(cpu)->migration_thread);
6029 /* Update our root-domain */
6030 rq = cpu_rq(cpu);
6031 spin_lock_irqsave(&rq->lock, flags);
6032 if (rq->rd) {
6033 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6034 cpu_set(cpu, rq->rd->online);
6036 spin_unlock_irqrestore(&rq->lock, flags);
6037 break;
6039 #ifdef CONFIG_HOTPLUG_CPU
6040 case CPU_UP_CANCELED:
6041 case CPU_UP_CANCELED_FROZEN:
6042 if (!cpu_rq(cpu)->migration_thread)
6043 break;
6044 /* Unbind it from offline cpu so it can run. Fall thru. */
6045 kthread_bind(cpu_rq(cpu)->migration_thread,
6046 any_online_cpu(cpu_online_map));
6047 kthread_stop(cpu_rq(cpu)->migration_thread);
6048 cpu_rq(cpu)->migration_thread = NULL;
6049 break;
6051 case CPU_DEAD:
6052 case CPU_DEAD_FROZEN:
6053 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6054 migrate_live_tasks(cpu);
6055 rq = cpu_rq(cpu);
6056 kthread_stop(rq->migration_thread);
6057 rq->migration_thread = NULL;
6058 /* Idle task back to normal (off runqueue, low prio) */
6059 spin_lock_irq(&rq->lock);
6060 update_rq_clock(rq);
6061 deactivate_task(rq, rq->idle, 0);
6062 rq->idle->static_prio = MAX_PRIO;
6063 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6064 rq->idle->sched_class = &idle_sched_class;
6065 migrate_dead_tasks(cpu);
6066 spin_unlock_irq(&rq->lock);
6067 cpuset_unlock();
6068 migrate_nr_uninterruptible(rq);
6069 BUG_ON(rq->nr_running != 0);
6072 * No need to migrate the tasks: it was best-effort if
6073 * they didn't take sched_hotcpu_mutex. Just wake up
6074 * the requestors.
6076 spin_lock_irq(&rq->lock);
6077 while (!list_empty(&rq->migration_queue)) {
6078 struct migration_req *req;
6080 req = list_entry(rq->migration_queue.next,
6081 struct migration_req, list);
6082 list_del_init(&req->list);
6083 complete(&req->done);
6085 spin_unlock_irq(&rq->lock);
6086 break;
6088 case CPU_DYING:
6089 case CPU_DYING_FROZEN:
6090 /* Update our root-domain */
6091 rq = cpu_rq(cpu);
6092 spin_lock_irqsave(&rq->lock, flags);
6093 if (rq->rd) {
6094 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6095 cpu_clear(cpu, rq->rd->online);
6097 spin_unlock_irqrestore(&rq->lock, flags);
6098 break;
6099 #endif
6101 return NOTIFY_OK;
6104 /* Register at highest priority so that task migration (migrate_all_tasks)
6105 * happens before everything else.
6107 static struct notifier_block __cpuinitdata migration_notifier = {
6108 .notifier_call = migration_call,
6109 .priority = 10
6112 void __init migration_init(void)
6114 void *cpu = (void *)(long)smp_processor_id();
6115 int err;
6117 /* Start one for the boot CPU: */
6118 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6119 BUG_ON(err == NOTIFY_BAD);
6120 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6121 register_cpu_notifier(&migration_notifier);
6123 #endif
6125 #ifdef CONFIG_SMP
6127 /* Number of possible processor ids */
6128 int nr_cpu_ids __read_mostly = NR_CPUS;
6129 EXPORT_SYMBOL(nr_cpu_ids);
6131 #ifdef CONFIG_SCHED_DEBUG
6133 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
6135 struct sched_group *group = sd->groups;
6136 cpumask_t groupmask;
6137 char str[NR_CPUS];
6139 cpumask_scnprintf(str, NR_CPUS, sd->span);
6140 cpus_clear(groupmask);
6142 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6144 if (!(sd->flags & SD_LOAD_BALANCE)) {
6145 printk("does not load-balance\n");
6146 if (sd->parent)
6147 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6148 " has parent");
6149 return -1;
6152 printk(KERN_CONT "span %s\n", str);
6154 if (!cpu_isset(cpu, sd->span)) {
6155 printk(KERN_ERR "ERROR: domain->span does not contain "
6156 "CPU%d\n", cpu);
6158 if (!cpu_isset(cpu, group->cpumask)) {
6159 printk(KERN_ERR "ERROR: domain->groups does not contain"
6160 " CPU%d\n", cpu);
6163 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6164 do {
6165 if (!group) {
6166 printk("\n");
6167 printk(KERN_ERR "ERROR: group is NULL\n");
6168 break;
6171 if (!group->__cpu_power) {
6172 printk(KERN_CONT "\n");
6173 printk(KERN_ERR "ERROR: domain->cpu_power not "
6174 "set\n");
6175 break;
6178 if (!cpus_weight(group->cpumask)) {
6179 printk(KERN_CONT "\n");
6180 printk(KERN_ERR "ERROR: empty group\n");
6181 break;
6184 if (cpus_intersects(groupmask, group->cpumask)) {
6185 printk(KERN_CONT "\n");
6186 printk(KERN_ERR "ERROR: repeated CPUs\n");
6187 break;
6190 cpus_or(groupmask, groupmask, group->cpumask);
6192 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
6193 printk(KERN_CONT " %s", str);
6195 group = group->next;
6196 } while (group != sd->groups);
6197 printk(KERN_CONT "\n");
6199 if (!cpus_equal(sd->span, groupmask))
6200 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6202 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
6203 printk(KERN_ERR "ERROR: parent span is not a superset "
6204 "of domain->span\n");
6205 return 0;
6208 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6210 int level = 0;
6212 if (!sd) {
6213 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6214 return;
6217 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6219 for (;;) {
6220 if (sched_domain_debug_one(sd, cpu, level))
6221 break;
6222 level++;
6223 sd = sd->parent;
6224 if (!sd)
6225 break;
6228 #else
6229 # define sched_domain_debug(sd, cpu) do { } while (0)
6230 #endif
6232 static int sd_degenerate(struct sched_domain *sd)
6234 if (cpus_weight(sd->span) == 1)
6235 return 1;
6237 /* Following flags need at least 2 groups */
6238 if (sd->flags & (SD_LOAD_BALANCE |
6239 SD_BALANCE_NEWIDLE |
6240 SD_BALANCE_FORK |
6241 SD_BALANCE_EXEC |
6242 SD_SHARE_CPUPOWER |
6243 SD_SHARE_PKG_RESOURCES)) {
6244 if (sd->groups != sd->groups->next)
6245 return 0;
6248 /* Following flags don't use groups */
6249 if (sd->flags & (SD_WAKE_IDLE |
6250 SD_WAKE_AFFINE |
6251 SD_WAKE_BALANCE))
6252 return 0;
6254 return 1;
6257 static int
6258 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6260 unsigned long cflags = sd->flags, pflags = parent->flags;
6262 if (sd_degenerate(parent))
6263 return 1;
6265 if (!cpus_equal(sd->span, parent->span))
6266 return 0;
6268 /* Does parent contain flags not in child? */
6269 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6270 if (cflags & SD_WAKE_AFFINE)
6271 pflags &= ~SD_WAKE_BALANCE;
6272 /* Flags needing groups don't count if only 1 group in parent */
6273 if (parent->groups == parent->groups->next) {
6274 pflags &= ~(SD_LOAD_BALANCE |
6275 SD_BALANCE_NEWIDLE |
6276 SD_BALANCE_FORK |
6277 SD_BALANCE_EXEC |
6278 SD_SHARE_CPUPOWER |
6279 SD_SHARE_PKG_RESOURCES);
6281 if (~cflags & pflags)
6282 return 0;
6284 return 1;
6287 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6289 unsigned long flags;
6290 const struct sched_class *class;
6292 spin_lock_irqsave(&rq->lock, flags);
6294 if (rq->rd) {
6295 struct root_domain *old_rd = rq->rd;
6297 for (class = sched_class_highest; class; class = class->next) {
6298 if (class->leave_domain)
6299 class->leave_domain(rq);
6302 cpu_clear(rq->cpu, old_rd->span);
6303 cpu_clear(rq->cpu, old_rd->online);
6305 if (atomic_dec_and_test(&old_rd->refcount))
6306 kfree(old_rd);
6309 atomic_inc(&rd->refcount);
6310 rq->rd = rd;
6312 cpu_set(rq->cpu, rd->span);
6313 if (cpu_isset(rq->cpu, cpu_online_map))
6314 cpu_set(rq->cpu, rd->online);
6316 for (class = sched_class_highest; class; class = class->next) {
6317 if (class->join_domain)
6318 class->join_domain(rq);
6321 spin_unlock_irqrestore(&rq->lock, flags);
6324 static void init_rootdomain(struct root_domain *rd)
6326 memset(rd, 0, sizeof(*rd));
6328 cpus_clear(rd->span);
6329 cpus_clear(rd->online);
6332 static void init_defrootdomain(void)
6334 init_rootdomain(&def_root_domain);
6335 atomic_set(&def_root_domain.refcount, 1);
6338 static struct root_domain *alloc_rootdomain(void)
6340 struct root_domain *rd;
6342 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6343 if (!rd)
6344 return NULL;
6346 init_rootdomain(rd);
6348 return rd;
6352 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6353 * hold the hotplug lock.
6355 static void
6356 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6358 struct rq *rq = cpu_rq(cpu);
6359 struct sched_domain *tmp;
6361 /* Remove the sched domains which do not contribute to scheduling. */
6362 for (tmp = sd; tmp; tmp = tmp->parent) {
6363 struct sched_domain *parent = tmp->parent;
6364 if (!parent)
6365 break;
6366 if (sd_parent_degenerate(tmp, parent)) {
6367 tmp->parent = parent->parent;
6368 if (parent->parent)
6369 parent->parent->child = tmp;
6373 if (sd && sd_degenerate(sd)) {
6374 sd = sd->parent;
6375 if (sd)
6376 sd->child = NULL;
6379 sched_domain_debug(sd, cpu);
6381 rq_attach_root(rq, rd);
6382 rcu_assign_pointer(rq->sd, sd);
6385 /* cpus with isolated domains */
6386 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6388 /* Setup the mask of cpus configured for isolated domains */
6389 static int __init isolated_cpu_setup(char *str)
6391 int ints[NR_CPUS], i;
6393 str = get_options(str, ARRAY_SIZE(ints), ints);
6394 cpus_clear(cpu_isolated_map);
6395 for (i = 1; i <= ints[0]; i++)
6396 if (ints[i] < NR_CPUS)
6397 cpu_set(ints[i], cpu_isolated_map);
6398 return 1;
6401 __setup("isolcpus=", isolated_cpu_setup);
6404 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6405 * to a function which identifies what group(along with sched group) a CPU
6406 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6407 * (due to the fact that we keep track of groups covered with a cpumask_t).
6409 * init_sched_build_groups will build a circular linked list of the groups
6410 * covered by the given span, and will set each group's ->cpumask correctly,
6411 * and ->cpu_power to 0.
6413 static void
6414 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
6415 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6416 struct sched_group **sg))
6418 struct sched_group *first = NULL, *last = NULL;
6419 cpumask_t covered = CPU_MASK_NONE;
6420 int i;
6422 for_each_cpu_mask(i, span) {
6423 struct sched_group *sg;
6424 int group = group_fn(i, cpu_map, &sg);
6425 int j;
6427 if (cpu_isset(i, covered))
6428 continue;
6430 sg->cpumask = CPU_MASK_NONE;
6431 sg->__cpu_power = 0;
6433 for_each_cpu_mask(j, span) {
6434 if (group_fn(j, cpu_map, NULL) != group)
6435 continue;
6437 cpu_set(j, covered);
6438 cpu_set(j, sg->cpumask);
6440 if (!first)
6441 first = sg;
6442 if (last)
6443 last->next = sg;
6444 last = sg;
6446 last->next = first;
6449 #define SD_NODES_PER_DOMAIN 16
6451 #ifdef CONFIG_NUMA
6454 * find_next_best_node - find the next node to include in a sched_domain
6455 * @node: node whose sched_domain we're building
6456 * @used_nodes: nodes already in the sched_domain
6458 * Find the next node to include in a given scheduling domain. Simply
6459 * finds the closest node not already in the @used_nodes map.
6461 * Should use nodemask_t.
6463 static int find_next_best_node(int node, unsigned long *used_nodes)
6465 int i, n, val, min_val, best_node = 0;
6467 min_val = INT_MAX;
6469 for (i = 0; i < MAX_NUMNODES; i++) {
6470 /* Start at @node */
6471 n = (node + i) % MAX_NUMNODES;
6473 if (!nr_cpus_node(n))
6474 continue;
6476 /* Skip already used nodes */
6477 if (test_bit(n, used_nodes))
6478 continue;
6480 /* Simple min distance search */
6481 val = node_distance(node, n);
6483 if (val < min_val) {
6484 min_val = val;
6485 best_node = n;
6489 set_bit(best_node, used_nodes);
6490 return best_node;
6494 * sched_domain_node_span - get a cpumask for a node's sched_domain
6495 * @node: node whose cpumask we're constructing
6496 * @size: number of nodes to include in this span
6498 * Given a node, construct a good cpumask for its sched_domain to span. It
6499 * should be one that prevents unnecessary balancing, but also spreads tasks
6500 * out optimally.
6502 static cpumask_t sched_domain_node_span(int node)
6504 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6505 cpumask_t span, nodemask;
6506 int i;
6508 cpus_clear(span);
6509 bitmap_zero(used_nodes, MAX_NUMNODES);
6511 nodemask = node_to_cpumask(node);
6512 cpus_or(span, span, nodemask);
6513 set_bit(node, used_nodes);
6515 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6516 int next_node = find_next_best_node(node, used_nodes);
6518 nodemask = node_to_cpumask(next_node);
6519 cpus_or(span, span, nodemask);
6522 return span;
6524 #endif
6526 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6529 * SMT sched-domains:
6531 #ifdef CONFIG_SCHED_SMT
6532 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6533 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6535 static int
6536 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6538 if (sg)
6539 *sg = &per_cpu(sched_group_cpus, cpu);
6540 return cpu;
6542 #endif
6545 * multi-core sched-domains:
6547 #ifdef CONFIG_SCHED_MC
6548 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6549 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6550 #endif
6552 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6553 static int
6554 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6556 int group;
6557 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6558 cpus_and(mask, mask, *cpu_map);
6559 group = first_cpu(mask);
6560 if (sg)
6561 *sg = &per_cpu(sched_group_core, group);
6562 return group;
6564 #elif defined(CONFIG_SCHED_MC)
6565 static int
6566 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6568 if (sg)
6569 *sg = &per_cpu(sched_group_core, cpu);
6570 return cpu;
6572 #endif
6574 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6575 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6577 static int
6578 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6580 int group;
6581 #ifdef CONFIG_SCHED_MC
6582 cpumask_t mask = cpu_coregroup_map(cpu);
6583 cpus_and(mask, mask, *cpu_map);
6584 group = first_cpu(mask);
6585 #elif defined(CONFIG_SCHED_SMT)
6586 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6587 cpus_and(mask, mask, *cpu_map);
6588 group = first_cpu(mask);
6589 #else
6590 group = cpu;
6591 #endif
6592 if (sg)
6593 *sg = &per_cpu(sched_group_phys, group);
6594 return group;
6597 #ifdef CONFIG_NUMA
6599 * The init_sched_build_groups can't handle what we want to do with node
6600 * groups, so roll our own. Now each node has its own list of groups which
6601 * gets dynamically allocated.
6603 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6604 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
6606 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6607 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6609 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6610 struct sched_group **sg)
6612 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6613 int group;
6615 cpus_and(nodemask, nodemask, *cpu_map);
6616 group = first_cpu(nodemask);
6618 if (sg)
6619 *sg = &per_cpu(sched_group_allnodes, group);
6620 return group;
6623 static void init_numa_sched_groups_power(struct sched_group *group_head)
6625 struct sched_group *sg = group_head;
6626 int j;
6628 if (!sg)
6629 return;
6630 do {
6631 for_each_cpu_mask(j, sg->cpumask) {
6632 struct sched_domain *sd;
6634 sd = &per_cpu(phys_domains, j);
6635 if (j != first_cpu(sd->groups->cpumask)) {
6637 * Only add "power" once for each
6638 * physical package.
6640 continue;
6643 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6645 sg = sg->next;
6646 } while (sg != group_head);
6648 #endif
6650 #ifdef CONFIG_NUMA
6651 /* Free memory allocated for various sched_group structures */
6652 static void free_sched_groups(const cpumask_t *cpu_map)
6654 int cpu, i;
6656 for_each_cpu_mask(cpu, *cpu_map) {
6657 struct sched_group **sched_group_nodes
6658 = sched_group_nodes_bycpu[cpu];
6660 if (!sched_group_nodes)
6661 continue;
6663 for (i = 0; i < MAX_NUMNODES; i++) {
6664 cpumask_t nodemask = node_to_cpumask(i);
6665 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6667 cpus_and(nodemask, nodemask, *cpu_map);
6668 if (cpus_empty(nodemask))
6669 continue;
6671 if (sg == NULL)
6672 continue;
6673 sg = sg->next;
6674 next_sg:
6675 oldsg = sg;
6676 sg = sg->next;
6677 kfree(oldsg);
6678 if (oldsg != sched_group_nodes[i])
6679 goto next_sg;
6681 kfree(sched_group_nodes);
6682 sched_group_nodes_bycpu[cpu] = NULL;
6685 #else
6686 static void free_sched_groups(const cpumask_t *cpu_map)
6689 #endif
6692 * Initialize sched groups cpu_power.
6694 * cpu_power indicates the capacity of sched group, which is used while
6695 * distributing the load between different sched groups in a sched domain.
6696 * Typically cpu_power for all the groups in a sched domain will be same unless
6697 * there are asymmetries in the topology. If there are asymmetries, group
6698 * having more cpu_power will pickup more load compared to the group having
6699 * less cpu_power.
6701 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6702 * the maximum number of tasks a group can handle in the presence of other idle
6703 * or lightly loaded groups in the same sched domain.
6705 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6707 struct sched_domain *child;
6708 struct sched_group *group;
6710 WARN_ON(!sd || !sd->groups);
6712 if (cpu != first_cpu(sd->groups->cpumask))
6713 return;
6715 child = sd->child;
6717 sd->groups->__cpu_power = 0;
6720 * For perf policy, if the groups in child domain share resources
6721 * (for example cores sharing some portions of the cache hierarchy
6722 * or SMT), then set this domain groups cpu_power such that each group
6723 * can handle only one task, when there are other idle groups in the
6724 * same sched domain.
6726 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6727 (child->flags &
6728 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6729 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6730 return;
6734 * add cpu_power of each child group to this groups cpu_power
6736 group = child->groups;
6737 do {
6738 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6739 group = group->next;
6740 } while (group != child->groups);
6744 * Build sched domains for a given set of cpus and attach the sched domains
6745 * to the individual cpus
6747 static int build_sched_domains(const cpumask_t *cpu_map)
6749 int i;
6750 struct root_domain *rd;
6751 #ifdef CONFIG_NUMA
6752 struct sched_group **sched_group_nodes = NULL;
6753 int sd_allnodes = 0;
6756 * Allocate the per-node list of sched groups
6758 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6759 GFP_KERNEL);
6760 if (!sched_group_nodes) {
6761 printk(KERN_WARNING "Can not alloc sched group node list\n");
6762 return -ENOMEM;
6764 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6765 #endif
6767 rd = alloc_rootdomain();
6768 if (!rd) {
6769 printk(KERN_WARNING "Cannot alloc root domain\n");
6770 return -ENOMEM;
6774 * Set up domains for cpus specified by the cpu_map.
6776 for_each_cpu_mask(i, *cpu_map) {
6777 struct sched_domain *sd = NULL, *p;
6778 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6780 cpus_and(nodemask, nodemask, *cpu_map);
6782 #ifdef CONFIG_NUMA
6783 if (cpus_weight(*cpu_map) >
6784 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6785 sd = &per_cpu(allnodes_domains, i);
6786 *sd = SD_ALLNODES_INIT;
6787 sd->span = *cpu_map;
6788 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6789 p = sd;
6790 sd_allnodes = 1;
6791 } else
6792 p = NULL;
6794 sd = &per_cpu(node_domains, i);
6795 *sd = SD_NODE_INIT;
6796 sd->span = sched_domain_node_span(cpu_to_node(i));
6797 sd->parent = p;
6798 if (p)
6799 p->child = sd;
6800 cpus_and(sd->span, sd->span, *cpu_map);
6801 #endif
6803 p = sd;
6804 sd = &per_cpu(phys_domains, i);
6805 *sd = SD_CPU_INIT;
6806 sd->span = nodemask;
6807 sd->parent = p;
6808 if (p)
6809 p->child = sd;
6810 cpu_to_phys_group(i, cpu_map, &sd->groups);
6812 #ifdef CONFIG_SCHED_MC
6813 p = sd;
6814 sd = &per_cpu(core_domains, i);
6815 *sd = SD_MC_INIT;
6816 sd->span = cpu_coregroup_map(i);
6817 cpus_and(sd->span, sd->span, *cpu_map);
6818 sd->parent = p;
6819 p->child = sd;
6820 cpu_to_core_group(i, cpu_map, &sd->groups);
6821 #endif
6823 #ifdef CONFIG_SCHED_SMT
6824 p = sd;
6825 sd = &per_cpu(cpu_domains, i);
6826 *sd = SD_SIBLING_INIT;
6827 sd->span = per_cpu(cpu_sibling_map, i);
6828 cpus_and(sd->span, sd->span, *cpu_map);
6829 sd->parent = p;
6830 p->child = sd;
6831 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6832 #endif
6835 #ifdef CONFIG_SCHED_SMT
6836 /* Set up CPU (sibling) groups */
6837 for_each_cpu_mask(i, *cpu_map) {
6838 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6839 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6840 if (i != first_cpu(this_sibling_map))
6841 continue;
6843 init_sched_build_groups(this_sibling_map, cpu_map,
6844 &cpu_to_cpu_group);
6846 #endif
6848 #ifdef CONFIG_SCHED_MC
6849 /* Set up multi-core groups */
6850 for_each_cpu_mask(i, *cpu_map) {
6851 cpumask_t this_core_map = cpu_coregroup_map(i);
6852 cpus_and(this_core_map, this_core_map, *cpu_map);
6853 if (i != first_cpu(this_core_map))
6854 continue;
6855 init_sched_build_groups(this_core_map, cpu_map,
6856 &cpu_to_core_group);
6858 #endif
6860 /* Set up physical groups */
6861 for (i = 0; i < MAX_NUMNODES; i++) {
6862 cpumask_t nodemask = node_to_cpumask(i);
6864 cpus_and(nodemask, nodemask, *cpu_map);
6865 if (cpus_empty(nodemask))
6866 continue;
6868 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6871 #ifdef CONFIG_NUMA
6872 /* Set up node groups */
6873 if (sd_allnodes)
6874 init_sched_build_groups(*cpu_map, cpu_map,
6875 &cpu_to_allnodes_group);
6877 for (i = 0; i < MAX_NUMNODES; i++) {
6878 /* Set up node groups */
6879 struct sched_group *sg, *prev;
6880 cpumask_t nodemask = node_to_cpumask(i);
6881 cpumask_t domainspan;
6882 cpumask_t covered = CPU_MASK_NONE;
6883 int j;
6885 cpus_and(nodemask, nodemask, *cpu_map);
6886 if (cpus_empty(nodemask)) {
6887 sched_group_nodes[i] = NULL;
6888 continue;
6891 domainspan = sched_domain_node_span(i);
6892 cpus_and(domainspan, domainspan, *cpu_map);
6894 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6895 if (!sg) {
6896 printk(KERN_WARNING "Can not alloc domain group for "
6897 "node %d\n", i);
6898 goto error;
6900 sched_group_nodes[i] = sg;
6901 for_each_cpu_mask(j, nodemask) {
6902 struct sched_domain *sd;
6904 sd = &per_cpu(node_domains, j);
6905 sd->groups = sg;
6907 sg->__cpu_power = 0;
6908 sg->cpumask = nodemask;
6909 sg->next = sg;
6910 cpus_or(covered, covered, nodemask);
6911 prev = sg;
6913 for (j = 0; j < MAX_NUMNODES; j++) {
6914 cpumask_t tmp, notcovered;
6915 int n = (i + j) % MAX_NUMNODES;
6917 cpus_complement(notcovered, covered);
6918 cpus_and(tmp, notcovered, *cpu_map);
6919 cpus_and(tmp, tmp, domainspan);
6920 if (cpus_empty(tmp))
6921 break;
6923 nodemask = node_to_cpumask(n);
6924 cpus_and(tmp, tmp, nodemask);
6925 if (cpus_empty(tmp))
6926 continue;
6928 sg = kmalloc_node(sizeof(struct sched_group),
6929 GFP_KERNEL, i);
6930 if (!sg) {
6931 printk(KERN_WARNING
6932 "Can not alloc domain group for node %d\n", j);
6933 goto error;
6935 sg->__cpu_power = 0;
6936 sg->cpumask = tmp;
6937 sg->next = prev->next;
6938 cpus_or(covered, covered, tmp);
6939 prev->next = sg;
6940 prev = sg;
6943 #endif
6945 /* Calculate CPU power for physical packages and nodes */
6946 #ifdef CONFIG_SCHED_SMT
6947 for_each_cpu_mask(i, *cpu_map) {
6948 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6950 init_sched_groups_power(i, sd);
6952 #endif
6953 #ifdef CONFIG_SCHED_MC
6954 for_each_cpu_mask(i, *cpu_map) {
6955 struct sched_domain *sd = &per_cpu(core_domains, i);
6957 init_sched_groups_power(i, sd);
6959 #endif
6961 for_each_cpu_mask(i, *cpu_map) {
6962 struct sched_domain *sd = &per_cpu(phys_domains, i);
6964 init_sched_groups_power(i, sd);
6967 #ifdef CONFIG_NUMA
6968 for (i = 0; i < MAX_NUMNODES; i++)
6969 init_numa_sched_groups_power(sched_group_nodes[i]);
6971 if (sd_allnodes) {
6972 struct sched_group *sg;
6974 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6975 init_numa_sched_groups_power(sg);
6977 #endif
6979 /* Attach the domains */
6980 for_each_cpu_mask(i, *cpu_map) {
6981 struct sched_domain *sd;
6982 #ifdef CONFIG_SCHED_SMT
6983 sd = &per_cpu(cpu_domains, i);
6984 #elif defined(CONFIG_SCHED_MC)
6985 sd = &per_cpu(core_domains, i);
6986 #else
6987 sd = &per_cpu(phys_domains, i);
6988 #endif
6989 cpu_attach_domain(sd, rd, i);
6992 return 0;
6994 #ifdef CONFIG_NUMA
6995 error:
6996 free_sched_groups(cpu_map);
6997 return -ENOMEM;
6998 #endif
7001 static cpumask_t *doms_cur; /* current sched domains */
7002 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7005 * Special case: If a kmalloc of a doms_cur partition (array of
7006 * cpumask_t) fails, then fallback to a single sched domain,
7007 * as determined by the single cpumask_t fallback_doms.
7009 static cpumask_t fallback_doms;
7011 void __attribute__((weak)) arch_update_cpu_topology(void)
7016 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7017 * For now this just excludes isolated cpus, but could be used to
7018 * exclude other special cases in the future.
7020 static int arch_init_sched_domains(const cpumask_t *cpu_map)
7022 int err;
7024 arch_update_cpu_topology();
7025 ndoms_cur = 1;
7026 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7027 if (!doms_cur)
7028 doms_cur = &fallback_doms;
7029 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7030 err = build_sched_domains(doms_cur);
7031 register_sched_domain_sysctl();
7033 return err;
7036 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
7038 free_sched_groups(cpu_map);
7042 * Detach sched domains from a group of cpus specified in cpu_map
7043 * These cpus will now be attached to the NULL domain
7045 static void detach_destroy_domains(const cpumask_t *cpu_map)
7047 int i;
7049 unregister_sched_domain_sysctl();
7051 for_each_cpu_mask(i, *cpu_map)
7052 cpu_attach_domain(NULL, &def_root_domain, i);
7053 synchronize_sched();
7054 arch_destroy_sched_domains(cpu_map);
7058 * Partition sched domains as specified by the 'ndoms_new'
7059 * cpumasks in the array doms_new[] of cpumasks. This compares
7060 * doms_new[] to the current sched domain partitioning, doms_cur[].
7061 * It destroys each deleted domain and builds each new domain.
7063 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7064 * The masks don't intersect (don't overlap.) We should setup one
7065 * sched domain for each mask. CPUs not in any of the cpumasks will
7066 * not be load balanced. If the same cpumask appears both in the
7067 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7068 * it as it is.
7070 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7071 * ownership of it and will kfree it when done with it. If the caller
7072 * failed the kmalloc call, then it can pass in doms_new == NULL,
7073 * and partition_sched_domains() will fallback to the single partition
7074 * 'fallback_doms'.
7076 * Call with hotplug lock held
7078 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
7080 int i, j;
7082 lock_doms_cur();
7084 /* always unregister in case we don't destroy any domains */
7085 unregister_sched_domain_sysctl();
7087 if (doms_new == NULL) {
7088 ndoms_new = 1;
7089 doms_new = &fallback_doms;
7090 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7093 /* Destroy deleted domains */
7094 for (i = 0; i < ndoms_cur; i++) {
7095 for (j = 0; j < ndoms_new; j++) {
7096 if (cpus_equal(doms_cur[i], doms_new[j]))
7097 goto match1;
7099 /* no match - a current sched domain not in new doms_new[] */
7100 detach_destroy_domains(doms_cur + i);
7101 match1:
7105 /* Build new domains */
7106 for (i = 0; i < ndoms_new; i++) {
7107 for (j = 0; j < ndoms_cur; j++) {
7108 if (cpus_equal(doms_new[i], doms_cur[j]))
7109 goto match2;
7111 /* no match - add a new doms_new */
7112 build_sched_domains(doms_new + i);
7113 match2:
7117 /* Remember the new sched domains */
7118 if (doms_cur != &fallback_doms)
7119 kfree(doms_cur);
7120 doms_cur = doms_new;
7121 ndoms_cur = ndoms_new;
7123 register_sched_domain_sysctl();
7125 unlock_doms_cur();
7128 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7129 int arch_reinit_sched_domains(void)
7131 int err;
7133 get_online_cpus();
7134 detach_destroy_domains(&cpu_online_map);
7135 err = arch_init_sched_domains(&cpu_online_map);
7136 put_online_cpus();
7138 return err;
7141 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7143 int ret;
7145 if (buf[0] != '0' && buf[0] != '1')
7146 return -EINVAL;
7148 if (smt)
7149 sched_smt_power_savings = (buf[0] == '1');
7150 else
7151 sched_mc_power_savings = (buf[0] == '1');
7153 ret = arch_reinit_sched_domains();
7155 return ret ? ret : count;
7158 #ifdef CONFIG_SCHED_MC
7159 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7161 return sprintf(page, "%u\n", sched_mc_power_savings);
7163 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7164 const char *buf, size_t count)
7166 return sched_power_savings_store(buf, count, 0);
7168 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7169 sched_mc_power_savings_store);
7170 #endif
7172 #ifdef CONFIG_SCHED_SMT
7173 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7175 return sprintf(page, "%u\n", sched_smt_power_savings);
7177 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7178 const char *buf, size_t count)
7180 return sched_power_savings_store(buf, count, 1);
7182 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7183 sched_smt_power_savings_store);
7184 #endif
7186 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7188 int err = 0;
7190 #ifdef CONFIG_SCHED_SMT
7191 if (smt_capable())
7192 err = sysfs_create_file(&cls->kset.kobj,
7193 &attr_sched_smt_power_savings.attr);
7194 #endif
7195 #ifdef CONFIG_SCHED_MC
7196 if (!err && mc_capable())
7197 err = sysfs_create_file(&cls->kset.kobj,
7198 &attr_sched_mc_power_savings.attr);
7199 #endif
7200 return err;
7202 #endif
7205 * Force a reinitialization of the sched domains hierarchy. The domains
7206 * and groups cannot be updated in place without racing with the balancing
7207 * code, so we temporarily attach all running cpus to the NULL domain
7208 * which will prevent rebalancing while the sched domains are recalculated.
7210 static int update_sched_domains(struct notifier_block *nfb,
7211 unsigned long action, void *hcpu)
7213 switch (action) {
7214 case CPU_UP_PREPARE:
7215 case CPU_UP_PREPARE_FROZEN:
7216 case CPU_DOWN_PREPARE:
7217 case CPU_DOWN_PREPARE_FROZEN:
7218 detach_destroy_domains(&cpu_online_map);
7219 return NOTIFY_OK;
7221 case CPU_UP_CANCELED:
7222 case CPU_UP_CANCELED_FROZEN:
7223 case CPU_DOWN_FAILED:
7224 case CPU_DOWN_FAILED_FROZEN:
7225 case CPU_ONLINE:
7226 case CPU_ONLINE_FROZEN:
7227 case CPU_DEAD:
7228 case CPU_DEAD_FROZEN:
7230 * Fall through and re-initialise the domains.
7232 break;
7233 default:
7234 return NOTIFY_DONE;
7237 /* The hotplug lock is already held by cpu_up/cpu_down */
7238 arch_init_sched_domains(&cpu_online_map);
7240 return NOTIFY_OK;
7243 void __init sched_init_smp(void)
7245 cpumask_t non_isolated_cpus;
7247 get_online_cpus();
7248 arch_init_sched_domains(&cpu_online_map);
7249 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7250 if (cpus_empty(non_isolated_cpus))
7251 cpu_set(smp_processor_id(), non_isolated_cpus);
7252 put_online_cpus();
7253 /* XXX: Theoretical race here - CPU may be hotplugged now */
7254 hotcpu_notifier(update_sched_domains, 0);
7256 /* Move init over to a non-isolated CPU */
7257 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
7258 BUG();
7259 sched_init_granularity();
7261 #else
7262 void __init sched_init_smp(void)
7264 sched_init_granularity();
7266 #endif /* CONFIG_SMP */
7268 int in_sched_functions(unsigned long addr)
7270 return in_lock_functions(addr) ||
7271 (addr >= (unsigned long)__sched_text_start
7272 && addr < (unsigned long)__sched_text_end);
7275 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7277 cfs_rq->tasks_timeline = RB_ROOT;
7278 #ifdef CONFIG_FAIR_GROUP_SCHED
7279 cfs_rq->rq = rq;
7280 #endif
7281 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7284 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7286 struct rt_prio_array *array;
7287 int i;
7289 array = &rt_rq->active;
7290 for (i = 0; i < MAX_RT_PRIO; i++) {
7291 INIT_LIST_HEAD(array->queue + i);
7292 __clear_bit(i, array->bitmap);
7294 /* delimiter for bitsearch: */
7295 __set_bit(MAX_RT_PRIO, array->bitmap);
7297 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7298 rt_rq->highest_prio = MAX_RT_PRIO;
7299 #endif
7300 #ifdef CONFIG_SMP
7301 rt_rq->rt_nr_migratory = 0;
7302 rt_rq->overloaded = 0;
7303 #endif
7305 rt_rq->rt_time = 0;
7306 rt_rq->rt_throttled = 0;
7307 rt_rq->rt_runtime = 0;
7308 spin_lock_init(&rt_rq->rt_runtime_lock);
7310 #ifdef CONFIG_RT_GROUP_SCHED
7311 rt_rq->rt_nr_boosted = 0;
7312 rt_rq->rq = rq;
7313 #endif
7316 #ifdef CONFIG_FAIR_GROUP_SCHED
7317 static void init_tg_cfs_entry(struct rq *rq, struct task_group *tg,
7318 struct cfs_rq *cfs_rq, struct sched_entity *se,
7319 int cpu, int add)
7321 tg->cfs_rq[cpu] = cfs_rq;
7322 init_cfs_rq(cfs_rq, rq);
7323 cfs_rq->tg = tg;
7324 if (add)
7325 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7327 tg->se[cpu] = se;
7328 se->cfs_rq = &rq->cfs;
7329 se->my_q = cfs_rq;
7330 se->load.weight = tg->shares;
7331 se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
7332 se->parent = NULL;
7334 #endif
7336 #ifdef CONFIG_RT_GROUP_SCHED
7337 static void init_tg_rt_entry(struct rq *rq, struct task_group *tg,
7338 struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
7339 int cpu, int add)
7341 tg->rt_rq[cpu] = rt_rq;
7342 init_rt_rq(rt_rq, rq);
7343 rt_rq->tg = tg;
7344 rt_rq->rt_se = rt_se;
7345 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7346 if (add)
7347 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7349 tg->rt_se[cpu] = rt_se;
7350 rt_se->rt_rq = &rq->rt;
7351 rt_se->my_q = rt_rq;
7352 rt_se->parent = NULL;
7353 INIT_LIST_HEAD(&rt_se->run_list);
7355 #endif
7357 void __init sched_init(void)
7359 int highest_cpu = 0;
7360 int i, j;
7362 #ifdef CONFIG_SMP
7363 init_defrootdomain();
7364 #endif
7366 init_rt_bandwidth(&def_rt_bandwidth,
7367 global_rt_period(), global_rt_runtime());
7369 #ifdef CONFIG_RT_GROUP_SCHED
7370 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7371 global_rt_period(), global_rt_runtime());
7372 #endif
7374 #ifdef CONFIG_GROUP_SCHED
7375 list_add(&init_task_group.list, &task_groups);
7376 #endif
7378 for_each_possible_cpu(i) {
7379 struct rq *rq;
7381 rq = cpu_rq(i);
7382 spin_lock_init(&rq->lock);
7383 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7384 rq->nr_running = 0;
7385 rq->clock = 1;
7386 update_last_tick_seen(rq);
7387 init_cfs_rq(&rq->cfs, rq);
7388 init_rt_rq(&rq->rt, rq);
7389 #ifdef CONFIG_FAIR_GROUP_SCHED
7390 init_task_group.shares = init_task_group_load;
7391 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7392 init_tg_cfs_entry(rq, &init_task_group,
7393 &per_cpu(init_cfs_rq, i),
7394 &per_cpu(init_sched_entity, i), i, 1);
7396 #endif
7397 #ifdef CONFIG_RT_GROUP_SCHED
7398 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7399 init_tg_rt_entry(rq, &init_task_group,
7400 &per_cpu(init_rt_rq, i),
7401 &per_cpu(init_sched_rt_entity, i), i, 1);
7402 #else
7403 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7404 #endif
7406 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7407 rq->cpu_load[j] = 0;
7408 #ifdef CONFIG_SMP
7409 rq->sd = NULL;
7410 rq->rd = NULL;
7411 rq->active_balance = 0;
7412 rq->next_balance = jiffies;
7413 rq->push_cpu = 0;
7414 rq->cpu = i;
7415 rq->migration_thread = NULL;
7416 INIT_LIST_HEAD(&rq->migration_queue);
7417 rq_attach_root(rq, &def_root_domain);
7418 #endif
7419 init_rq_hrtick(rq);
7420 atomic_set(&rq->nr_iowait, 0);
7421 highest_cpu = i;
7424 set_load_weight(&init_task);
7426 #ifdef CONFIG_PREEMPT_NOTIFIERS
7427 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7428 #endif
7430 #ifdef CONFIG_SMP
7431 nr_cpu_ids = highest_cpu + 1;
7432 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
7433 #endif
7435 #ifdef CONFIG_RT_MUTEXES
7436 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
7437 #endif
7440 * The boot idle thread does lazy MMU switching as well:
7442 atomic_inc(&init_mm.mm_count);
7443 enter_lazy_tlb(&init_mm, current);
7446 * Make us the idle thread. Technically, schedule() should not be
7447 * called from this thread, however somewhere below it might be,
7448 * but because we are the idle thread, we just pick up running again
7449 * when this runqueue becomes "idle".
7451 init_idle(current, smp_processor_id());
7453 * During early bootup we pretend to be a normal task:
7455 current->sched_class = &fair_sched_class;
7457 scheduler_running = 1;
7460 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7461 void __might_sleep(char *file, int line)
7463 #ifdef in_atomic
7464 static unsigned long prev_jiffy; /* ratelimiting */
7466 if ((in_atomic() || irqs_disabled()) &&
7467 system_state == SYSTEM_RUNNING && !oops_in_progress) {
7468 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7469 return;
7470 prev_jiffy = jiffies;
7471 printk(KERN_ERR "BUG: sleeping function called from invalid"
7472 " context at %s:%d\n", file, line);
7473 printk("in_atomic():%d, irqs_disabled():%d\n",
7474 in_atomic(), irqs_disabled());
7475 debug_show_held_locks(current);
7476 if (irqs_disabled())
7477 print_irqtrace_events(current);
7478 dump_stack();
7480 #endif
7482 EXPORT_SYMBOL(__might_sleep);
7483 #endif
7485 #ifdef CONFIG_MAGIC_SYSRQ
7486 static void normalize_task(struct rq *rq, struct task_struct *p)
7488 int on_rq;
7489 update_rq_clock(rq);
7490 on_rq = p->se.on_rq;
7491 if (on_rq)
7492 deactivate_task(rq, p, 0);
7493 __setscheduler(rq, p, SCHED_NORMAL, 0);
7494 if (on_rq) {
7495 activate_task(rq, p, 0);
7496 resched_task(rq->curr);
7500 void normalize_rt_tasks(void)
7502 struct task_struct *g, *p;
7503 unsigned long flags;
7504 struct rq *rq;
7506 read_lock_irqsave(&tasklist_lock, flags);
7507 do_each_thread(g, p) {
7509 * Only normalize user tasks:
7511 if (!p->mm)
7512 continue;
7514 p->se.exec_start = 0;
7515 #ifdef CONFIG_SCHEDSTATS
7516 p->se.wait_start = 0;
7517 p->se.sleep_start = 0;
7518 p->se.block_start = 0;
7519 #endif
7520 task_rq(p)->clock = 0;
7522 if (!rt_task(p)) {
7524 * Renice negative nice level userspace
7525 * tasks back to 0:
7527 if (TASK_NICE(p) < 0 && p->mm)
7528 set_user_nice(p, 0);
7529 continue;
7532 spin_lock(&p->pi_lock);
7533 rq = __task_rq_lock(p);
7535 normalize_task(rq, p);
7537 __task_rq_unlock(rq);
7538 spin_unlock(&p->pi_lock);
7539 } while_each_thread(g, p);
7541 read_unlock_irqrestore(&tasklist_lock, flags);
7544 #endif /* CONFIG_MAGIC_SYSRQ */
7546 #ifdef CONFIG_IA64
7548 * These functions are only useful for the IA64 MCA handling.
7550 * They can only be called when the whole system has been
7551 * stopped - every CPU needs to be quiescent, and no scheduling
7552 * activity can take place. Using them for anything else would
7553 * be a serious bug, and as a result, they aren't even visible
7554 * under any other configuration.
7558 * curr_task - return the current task for a given cpu.
7559 * @cpu: the processor in question.
7561 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7563 struct task_struct *curr_task(int cpu)
7565 return cpu_curr(cpu);
7569 * set_curr_task - set the current task for a given cpu.
7570 * @cpu: the processor in question.
7571 * @p: the task pointer to set.
7573 * Description: This function must only be used when non-maskable interrupts
7574 * are serviced on a separate stack. It allows the architecture to switch the
7575 * notion of the current task on a cpu in a non-blocking manner. This function
7576 * must be called with all CPU's synchronized, and interrupts disabled, the
7577 * and caller must save the original value of the current task (see
7578 * curr_task() above) and restore that value before reenabling interrupts and
7579 * re-starting the system.
7581 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7583 void set_curr_task(int cpu, struct task_struct *p)
7585 cpu_curr(cpu) = p;
7588 #endif
7590 #ifdef CONFIG_FAIR_GROUP_SCHED
7591 static void free_fair_sched_group(struct task_group *tg)
7593 int i;
7595 for_each_possible_cpu(i) {
7596 if (tg->cfs_rq)
7597 kfree(tg->cfs_rq[i]);
7598 if (tg->se)
7599 kfree(tg->se[i]);
7602 kfree(tg->cfs_rq);
7603 kfree(tg->se);
7606 static int alloc_fair_sched_group(struct task_group *tg)
7608 struct cfs_rq *cfs_rq;
7609 struct sched_entity *se;
7610 struct rq *rq;
7611 int i;
7613 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
7614 if (!tg->cfs_rq)
7615 goto err;
7616 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
7617 if (!tg->se)
7618 goto err;
7620 tg->shares = NICE_0_LOAD;
7622 for_each_possible_cpu(i) {
7623 rq = cpu_rq(i);
7625 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
7626 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7627 if (!cfs_rq)
7628 goto err;
7630 se = kmalloc_node(sizeof(struct sched_entity),
7631 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7632 if (!se)
7633 goto err;
7635 init_tg_cfs_entry(rq, tg, cfs_rq, se, i, 0);
7638 return 1;
7640 err:
7641 return 0;
7644 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7646 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
7647 &cpu_rq(cpu)->leaf_cfs_rq_list);
7650 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7652 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
7654 #else
7655 static inline void free_fair_sched_group(struct task_group *tg)
7659 static inline int alloc_fair_sched_group(struct task_group *tg)
7661 return 1;
7664 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7668 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7671 #endif
7673 #ifdef CONFIG_RT_GROUP_SCHED
7674 static void free_rt_sched_group(struct task_group *tg)
7676 int i;
7678 destroy_rt_bandwidth(&tg->rt_bandwidth);
7680 for_each_possible_cpu(i) {
7681 if (tg->rt_rq)
7682 kfree(tg->rt_rq[i]);
7683 if (tg->rt_se)
7684 kfree(tg->rt_se[i]);
7687 kfree(tg->rt_rq);
7688 kfree(tg->rt_se);
7691 static int alloc_rt_sched_group(struct task_group *tg)
7693 struct rt_rq *rt_rq;
7694 struct sched_rt_entity *rt_se;
7695 struct rq *rq;
7696 int i;
7698 tg->rt_rq = kzalloc(sizeof(rt_rq) * NR_CPUS, GFP_KERNEL);
7699 if (!tg->rt_rq)
7700 goto err;
7701 tg->rt_se = kzalloc(sizeof(rt_se) * NR_CPUS, GFP_KERNEL);
7702 if (!tg->rt_se)
7703 goto err;
7705 init_rt_bandwidth(&tg->rt_bandwidth,
7706 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
7708 for_each_possible_cpu(i) {
7709 rq = cpu_rq(i);
7711 rt_rq = kmalloc_node(sizeof(struct rt_rq),
7712 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7713 if (!rt_rq)
7714 goto err;
7716 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
7717 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7718 if (!rt_se)
7719 goto err;
7721 init_tg_rt_entry(rq, tg, rt_rq, rt_se, i, 0);
7724 return 1;
7726 err:
7727 return 0;
7730 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7732 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
7733 &cpu_rq(cpu)->leaf_rt_rq_list);
7736 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7738 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
7740 #else
7741 static inline void free_rt_sched_group(struct task_group *tg)
7745 static inline int alloc_rt_sched_group(struct task_group *tg)
7747 return 1;
7750 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7754 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7757 #endif
7759 #ifdef CONFIG_GROUP_SCHED
7760 static void free_sched_group(struct task_group *tg)
7762 free_fair_sched_group(tg);
7763 free_rt_sched_group(tg);
7764 kfree(tg);
7767 /* allocate runqueue etc for a new task group */
7768 struct task_group *sched_create_group(void)
7770 struct task_group *tg;
7771 unsigned long flags;
7772 int i;
7774 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7775 if (!tg)
7776 return ERR_PTR(-ENOMEM);
7778 if (!alloc_fair_sched_group(tg))
7779 goto err;
7781 if (!alloc_rt_sched_group(tg))
7782 goto err;
7784 spin_lock_irqsave(&task_group_lock, flags);
7785 for_each_possible_cpu(i) {
7786 register_fair_sched_group(tg, i);
7787 register_rt_sched_group(tg, i);
7789 list_add_rcu(&tg->list, &task_groups);
7790 spin_unlock_irqrestore(&task_group_lock, flags);
7792 return tg;
7794 err:
7795 free_sched_group(tg);
7796 return ERR_PTR(-ENOMEM);
7799 /* rcu callback to free various structures associated with a task group */
7800 static void free_sched_group_rcu(struct rcu_head *rhp)
7802 /* now it should be safe to free those cfs_rqs */
7803 free_sched_group(container_of(rhp, struct task_group, rcu));
7806 /* Destroy runqueue etc associated with a task group */
7807 void sched_destroy_group(struct task_group *tg)
7809 unsigned long flags;
7810 int i;
7812 spin_lock_irqsave(&task_group_lock, flags);
7813 for_each_possible_cpu(i) {
7814 unregister_fair_sched_group(tg, i);
7815 unregister_rt_sched_group(tg, i);
7817 list_del_rcu(&tg->list);
7818 spin_unlock_irqrestore(&task_group_lock, flags);
7820 /* wait for possible concurrent references to cfs_rqs complete */
7821 call_rcu(&tg->rcu, free_sched_group_rcu);
7824 /* change task's runqueue when it moves between groups.
7825 * The caller of this function should have put the task in its new group
7826 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7827 * reflect its new group.
7829 void sched_move_task(struct task_struct *tsk)
7831 int on_rq, running;
7832 unsigned long flags;
7833 struct rq *rq;
7835 rq = task_rq_lock(tsk, &flags);
7837 update_rq_clock(rq);
7839 running = task_current(rq, tsk);
7840 on_rq = tsk->se.on_rq;
7842 if (on_rq)
7843 dequeue_task(rq, tsk, 0);
7844 if (unlikely(running))
7845 tsk->sched_class->put_prev_task(rq, tsk);
7847 set_task_rq(tsk, task_cpu(tsk));
7849 #ifdef CONFIG_FAIR_GROUP_SCHED
7850 if (tsk->sched_class->moved_group)
7851 tsk->sched_class->moved_group(tsk);
7852 #endif
7854 if (unlikely(running))
7855 tsk->sched_class->set_curr_task(rq);
7856 if (on_rq)
7857 enqueue_task(rq, tsk, 0);
7859 task_rq_unlock(rq, &flags);
7861 #endif
7863 #ifdef CONFIG_FAIR_GROUP_SCHED
7864 static void set_se_shares(struct sched_entity *se, unsigned long shares)
7866 struct cfs_rq *cfs_rq = se->cfs_rq;
7867 struct rq *rq = cfs_rq->rq;
7868 int on_rq;
7870 spin_lock_irq(&rq->lock);
7872 on_rq = se->on_rq;
7873 if (on_rq)
7874 dequeue_entity(cfs_rq, se, 0);
7876 se->load.weight = shares;
7877 se->load.inv_weight = div64_64((1ULL<<32), shares);
7879 if (on_rq)
7880 enqueue_entity(cfs_rq, se, 0);
7882 spin_unlock_irq(&rq->lock);
7885 static DEFINE_MUTEX(shares_mutex);
7887 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7889 int i;
7890 unsigned long flags;
7893 * A weight of 0 or 1 can cause arithmetics problems.
7894 * (The default weight is 1024 - so there's no practical
7895 * limitation from this.)
7897 if (shares < 2)
7898 shares = 2;
7900 mutex_lock(&shares_mutex);
7901 if (tg->shares == shares)
7902 goto done;
7904 spin_lock_irqsave(&task_group_lock, flags);
7905 for_each_possible_cpu(i)
7906 unregister_fair_sched_group(tg, i);
7907 spin_unlock_irqrestore(&task_group_lock, flags);
7909 /* wait for any ongoing reference to this group to finish */
7910 synchronize_sched();
7913 * Now we are free to modify the group's share on each cpu
7914 * w/o tripping rebalance_share or load_balance_fair.
7916 tg->shares = shares;
7917 for_each_possible_cpu(i)
7918 set_se_shares(tg->se[i], shares);
7921 * Enable load balance activity on this group, by inserting it back on
7922 * each cpu's rq->leaf_cfs_rq_list.
7924 spin_lock_irqsave(&task_group_lock, flags);
7925 for_each_possible_cpu(i)
7926 register_fair_sched_group(tg, i);
7927 spin_unlock_irqrestore(&task_group_lock, flags);
7928 done:
7929 mutex_unlock(&shares_mutex);
7930 return 0;
7933 unsigned long sched_group_shares(struct task_group *tg)
7935 return tg->shares;
7937 #endif
7939 #ifdef CONFIG_RT_GROUP_SCHED
7941 * Ensure that the real time constraints are schedulable.
7943 static DEFINE_MUTEX(rt_constraints_mutex);
7945 static unsigned long to_ratio(u64 period, u64 runtime)
7947 if (runtime == RUNTIME_INF)
7948 return 1ULL << 16;
7950 return div64_64(runtime << 16, period);
7953 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7955 struct task_group *tgi;
7956 unsigned long total = 0;
7957 unsigned long global_ratio =
7958 to_ratio(global_rt_period(), global_rt_runtime());
7960 rcu_read_lock();
7961 list_for_each_entry_rcu(tgi, &task_groups, list) {
7962 if (tgi == tg)
7963 continue;
7965 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
7966 tgi->rt_bandwidth.rt_runtime);
7968 rcu_read_unlock();
7970 return total + to_ratio(period, runtime) < global_ratio;
7973 /* Must be called with tasklist_lock held */
7974 static inline int tg_has_rt_tasks(struct task_group *tg)
7976 struct task_struct *g, *p;
7977 do_each_thread(g, p) {
7978 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
7979 return 1;
7980 } while_each_thread(g, p);
7981 return 0;
7984 static int tg_set_bandwidth(struct task_group *tg,
7985 u64 rt_period, u64 rt_runtime)
7987 int i, err = 0;
7989 mutex_lock(&rt_constraints_mutex);
7990 read_lock(&tasklist_lock);
7991 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
7992 err = -EBUSY;
7993 goto unlock;
7995 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
7996 err = -EINVAL;
7997 goto unlock;
8000 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8001 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8002 tg->rt_bandwidth.rt_runtime = rt_runtime;
8004 for_each_possible_cpu(i) {
8005 struct rt_rq *rt_rq = tg->rt_rq[i];
8007 spin_lock(&rt_rq->rt_runtime_lock);
8008 rt_rq->rt_runtime = rt_runtime;
8009 spin_unlock(&rt_rq->rt_runtime_lock);
8011 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8012 unlock:
8013 read_unlock(&tasklist_lock);
8014 mutex_unlock(&rt_constraints_mutex);
8016 return err;
8019 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8021 u64 rt_runtime, rt_period;
8023 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8024 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8025 if (rt_runtime_us < 0)
8026 rt_runtime = RUNTIME_INF;
8028 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8031 long sched_group_rt_runtime(struct task_group *tg)
8033 u64 rt_runtime_us;
8035 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8036 return -1;
8038 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8039 do_div(rt_runtime_us, NSEC_PER_USEC);
8040 return rt_runtime_us;
8043 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8045 u64 rt_runtime, rt_period;
8047 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8048 rt_runtime = tg->rt_bandwidth.rt_runtime;
8050 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8053 long sched_group_rt_period(struct task_group *tg)
8055 u64 rt_period_us;
8057 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8058 do_div(rt_period_us, NSEC_PER_USEC);
8059 return rt_period_us;
8062 static int sched_rt_global_constraints(void)
8064 int ret = 0;
8066 mutex_lock(&rt_constraints_mutex);
8067 if (!__rt_schedulable(NULL, 1, 0))
8068 ret = -EINVAL;
8069 mutex_unlock(&rt_constraints_mutex);
8071 return ret;
8073 #else
8074 static int sched_rt_global_constraints(void)
8076 unsigned long flags;
8077 int i;
8079 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8080 for_each_possible_cpu(i) {
8081 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8083 spin_lock(&rt_rq->rt_runtime_lock);
8084 rt_rq->rt_runtime = global_rt_runtime();
8085 spin_unlock(&rt_rq->rt_runtime_lock);
8087 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8089 return 0;
8091 #endif
8093 int sched_rt_handler(struct ctl_table *table, int write,
8094 struct file *filp, void __user *buffer, size_t *lenp,
8095 loff_t *ppos)
8097 int ret;
8098 int old_period, old_runtime;
8099 static DEFINE_MUTEX(mutex);
8101 mutex_lock(&mutex);
8102 old_period = sysctl_sched_rt_period;
8103 old_runtime = sysctl_sched_rt_runtime;
8105 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8107 if (!ret && write) {
8108 ret = sched_rt_global_constraints();
8109 if (ret) {
8110 sysctl_sched_rt_period = old_period;
8111 sysctl_sched_rt_runtime = old_runtime;
8112 } else {
8113 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8114 def_rt_bandwidth.rt_period =
8115 ns_to_ktime(global_rt_period());
8118 mutex_unlock(&mutex);
8120 return ret;
8123 #ifdef CONFIG_CGROUP_SCHED
8125 /* return corresponding task_group object of a cgroup */
8126 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8128 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8129 struct task_group, css);
8132 static struct cgroup_subsys_state *
8133 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8135 struct task_group *tg;
8137 if (!cgrp->parent) {
8138 /* This is early initialization for the top cgroup */
8139 init_task_group.css.cgroup = cgrp;
8140 return &init_task_group.css;
8143 /* we support only 1-level deep hierarchical scheduler atm */
8144 if (cgrp->parent->parent)
8145 return ERR_PTR(-EINVAL);
8147 tg = sched_create_group();
8148 if (IS_ERR(tg))
8149 return ERR_PTR(-ENOMEM);
8151 /* Bind the cgroup to task_group object we just created */
8152 tg->css.cgroup = cgrp;
8154 return &tg->css;
8157 static void
8158 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8160 struct task_group *tg = cgroup_tg(cgrp);
8162 sched_destroy_group(tg);
8165 static int
8166 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8167 struct task_struct *tsk)
8169 #ifdef CONFIG_RT_GROUP_SCHED
8170 /* Don't accept realtime tasks when there is no way for them to run */
8171 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
8172 return -EINVAL;
8173 #else
8174 /* We don't support RT-tasks being in separate groups */
8175 if (tsk->sched_class != &fair_sched_class)
8176 return -EINVAL;
8177 #endif
8179 return 0;
8182 static void
8183 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8184 struct cgroup *old_cont, struct task_struct *tsk)
8186 sched_move_task(tsk);
8189 #ifdef CONFIG_FAIR_GROUP_SCHED
8190 static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8191 u64 shareval)
8193 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8196 static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
8198 struct task_group *tg = cgroup_tg(cgrp);
8200 return (u64) tg->shares;
8202 #endif
8204 #ifdef CONFIG_RT_GROUP_SCHED
8205 static ssize_t cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8206 struct file *file,
8207 const char __user *userbuf,
8208 size_t nbytes, loff_t *unused_ppos)
8210 char buffer[64];
8211 int retval = 0;
8212 s64 val;
8213 char *end;
8215 if (!nbytes)
8216 return -EINVAL;
8217 if (nbytes >= sizeof(buffer))
8218 return -E2BIG;
8219 if (copy_from_user(buffer, userbuf, nbytes))
8220 return -EFAULT;
8222 buffer[nbytes] = 0; /* nul-terminate */
8224 /* strip newline if necessary */
8225 if (nbytes && (buffer[nbytes-1] == '\n'))
8226 buffer[nbytes-1] = 0;
8227 val = simple_strtoll(buffer, &end, 0);
8228 if (*end)
8229 return -EINVAL;
8231 /* Pass to subsystem */
8232 retval = sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8233 if (!retval)
8234 retval = nbytes;
8235 return retval;
8238 static ssize_t cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft,
8239 struct file *file,
8240 char __user *buf, size_t nbytes,
8241 loff_t *ppos)
8243 char tmp[64];
8244 long val = sched_group_rt_runtime(cgroup_tg(cgrp));
8245 int len = sprintf(tmp, "%ld\n", val);
8247 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
8250 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8251 u64 rt_period_us)
8253 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8256 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8258 return sched_group_rt_period(cgroup_tg(cgrp));
8260 #endif
8262 static struct cftype cpu_files[] = {
8263 #ifdef CONFIG_FAIR_GROUP_SCHED
8265 .name = "shares",
8266 .read_uint = cpu_shares_read_uint,
8267 .write_uint = cpu_shares_write_uint,
8269 #endif
8270 #ifdef CONFIG_RT_GROUP_SCHED
8272 .name = "rt_runtime_us",
8273 .read = cpu_rt_runtime_read,
8274 .write = cpu_rt_runtime_write,
8277 .name = "rt_period_us",
8278 .read_uint = cpu_rt_period_read_uint,
8279 .write_uint = cpu_rt_period_write_uint,
8281 #endif
8284 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8286 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8289 struct cgroup_subsys cpu_cgroup_subsys = {
8290 .name = "cpu",
8291 .create = cpu_cgroup_create,
8292 .destroy = cpu_cgroup_destroy,
8293 .can_attach = cpu_cgroup_can_attach,
8294 .attach = cpu_cgroup_attach,
8295 .populate = cpu_cgroup_populate,
8296 .subsys_id = cpu_cgroup_subsys_id,
8297 .early_init = 1,
8300 #endif /* CONFIG_CGROUP_SCHED */
8302 #ifdef CONFIG_CGROUP_CPUACCT
8305 * CPU accounting code for task groups.
8307 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8308 * (balbir@in.ibm.com).
8311 /* track cpu usage of a group of tasks */
8312 struct cpuacct {
8313 struct cgroup_subsys_state css;
8314 /* cpuusage holds pointer to a u64-type object on every cpu */
8315 u64 *cpuusage;
8318 struct cgroup_subsys cpuacct_subsys;
8320 /* return cpu accounting group corresponding to this container */
8321 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8323 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8324 struct cpuacct, css);
8327 /* return cpu accounting group to which this task belongs */
8328 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8330 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8331 struct cpuacct, css);
8334 /* create a new cpu accounting group */
8335 static struct cgroup_subsys_state *cpuacct_create(
8336 struct cgroup_subsys *ss, struct cgroup *cgrp)
8338 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8340 if (!ca)
8341 return ERR_PTR(-ENOMEM);
8343 ca->cpuusage = alloc_percpu(u64);
8344 if (!ca->cpuusage) {
8345 kfree(ca);
8346 return ERR_PTR(-ENOMEM);
8349 return &ca->css;
8352 /* destroy an existing cpu accounting group */
8353 static void
8354 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8356 struct cpuacct *ca = cgroup_ca(cgrp);
8358 free_percpu(ca->cpuusage);
8359 kfree(ca);
8362 /* return total cpu usage (in nanoseconds) of a group */
8363 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8365 struct cpuacct *ca = cgroup_ca(cgrp);
8366 u64 totalcpuusage = 0;
8367 int i;
8369 for_each_possible_cpu(i) {
8370 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8373 * Take rq->lock to make 64-bit addition safe on 32-bit
8374 * platforms.
8376 spin_lock_irq(&cpu_rq(i)->lock);
8377 totalcpuusage += *cpuusage;
8378 spin_unlock_irq(&cpu_rq(i)->lock);
8381 return totalcpuusage;
8384 static struct cftype files[] = {
8386 .name = "usage",
8387 .read_uint = cpuusage_read,
8391 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8393 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8397 * charge this task's execution time to its accounting group.
8399 * called with rq->lock held.
8401 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8403 struct cpuacct *ca;
8405 if (!cpuacct_subsys.active)
8406 return;
8408 ca = task_ca(tsk);
8409 if (ca) {
8410 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
8412 *cpuusage += cputime;
8416 struct cgroup_subsys cpuacct_subsys = {
8417 .name = "cpuacct",
8418 .create = cpuacct_create,
8419 .destroy = cpuacct_destroy,
8420 .populate = cpuacct_populate,
8421 .subsys_id = cpuacct_subsys_id,
8423 #endif /* CONFIG_CGROUP_CPUACCT */