ieee1394: ohci1394: revert fail on error in suspend
[firewire-audio.git] / drivers / ieee1394 / ohci1394.c
blob44adefd71684fd4bfbe9d8809b4adaa58206d055
1 /*
2 * ohci1394.c - driver for OHCI 1394 boards
3 * Copyright (C)1999,2000 Sebastien Rougeaux <sebastien.rougeaux@anu.edu.au>
4 * Gord Peters <GordPeters@smarttech.com>
5 * 2001 Ben Collins <bcollins@debian.org>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software Foundation,
19 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 * Things known to be working:
24 * . Async Request Transmit
25 * . Async Response Receive
26 * . Async Request Receive
27 * . Async Response Transmit
28 * . Iso Receive
29 * . DMA mmap for iso receive
30 * . Config ROM generation
32 * Things implemented, but still in test phase:
33 * . Iso Transmit
34 * . Async Stream Packets Transmit (Receive done via Iso interface)
36 * Things not implemented:
37 * . DMA error recovery
39 * Known bugs:
40 * . devctl BUS_RESET arg confusion (reset type or root holdoff?)
41 * added LONG_RESET_ROOT and SHORT_RESET_ROOT for root holdoff --kk
45 * Acknowledgments:
47 * Adam J Richter <adam@yggdrasil.com>
48 * . Use of pci_class to find device
50 * Emilie Chung <emilie.chung@axis.com>
51 * . Tip on Async Request Filter
53 * Pascal Drolet <pascal.drolet@informission.ca>
54 * . Various tips for optimization and functionnalities
56 * Robert Ficklin <rficklin@westengineering.com>
57 * . Loop in irq_handler
59 * James Goodwin <jamesg@Filanet.com>
60 * . Various tips on initialization, self-id reception, etc.
62 * Albrecht Dress <ad@mpifr-bonn.mpg.de>
63 * . Apple PowerBook detection
65 * Daniel Kobras <daniel.kobras@student.uni-tuebingen.de>
66 * . Reset the board properly before leaving + misc cleanups
68 * Leon van Stuivenberg <leonvs@iae.nl>
69 * . Bug fixes
71 * Ben Collins <bcollins@debian.org>
72 * . Working big-endian support
73 * . Updated to 2.4.x module scheme (PCI aswell)
74 * . Config ROM generation
76 * Manfred Weihs <weihs@ict.tuwien.ac.at>
77 * . Reworked code for initiating bus resets
78 * (long, short, with or without hold-off)
80 * Nandu Santhi <contactnandu@users.sourceforge.net>
81 * . Added support for nVidia nForce2 onboard Firewire chipset
85 #include <linux/kernel.h>
86 #include <linux/list.h>
87 #include <linux/slab.h>
88 #include <linux/interrupt.h>
89 #include <linux/wait.h>
90 #include <linux/errno.h>
91 #include <linux/module.h>
92 #include <linux/moduleparam.h>
93 #include <linux/pci.h>
94 #include <linux/fs.h>
95 #include <linux/poll.h>
96 #include <asm/byteorder.h>
97 #include <asm/atomic.h>
98 #include <asm/uaccess.h>
99 #include <linux/delay.h>
100 #include <linux/spinlock.h>
102 #include <asm/pgtable.h>
103 #include <asm/page.h>
104 #include <asm/irq.h>
105 #include <linux/sched.h>
106 #include <linux/types.h>
107 #include <linux/vmalloc.h>
108 #include <linux/init.h>
110 #ifdef CONFIG_PPC_PMAC
111 #include <asm/machdep.h>
112 #include <asm/pmac_feature.h>
113 #include <asm/prom.h>
114 #include <asm/pci-bridge.h>
115 #endif
117 #include "csr1212.h"
118 #include "ieee1394.h"
119 #include "ieee1394_types.h"
120 #include "hosts.h"
121 #include "dma.h"
122 #include "iso.h"
123 #include "ieee1394_core.h"
124 #include "highlevel.h"
125 #include "ohci1394.h"
127 #ifdef CONFIG_IEEE1394_VERBOSEDEBUG
128 #define OHCI1394_DEBUG
129 #endif
131 #ifdef DBGMSG
132 #undef DBGMSG
133 #endif
135 #ifdef OHCI1394_DEBUG
136 #define DBGMSG(fmt, args...) \
137 printk(KERN_INFO "%s: fw-host%d: " fmt "\n" , OHCI1394_DRIVER_NAME, ohci->host->id , ## args)
138 #else
139 #define DBGMSG(fmt, args...) do {} while (0)
140 #endif
142 #ifdef CONFIG_IEEE1394_OHCI_DMA_DEBUG
143 #define OHCI_DMA_ALLOC(fmt, args...) \
144 HPSB_ERR("%s(%s)alloc(%d): "fmt, OHCI1394_DRIVER_NAME, __FUNCTION__, \
145 ++global_outstanding_dmas, ## args)
146 #define OHCI_DMA_FREE(fmt, args...) \
147 HPSB_ERR("%s(%s)free(%d): "fmt, OHCI1394_DRIVER_NAME, __FUNCTION__, \
148 --global_outstanding_dmas, ## args)
149 static int global_outstanding_dmas = 0;
150 #else
151 #define OHCI_DMA_ALLOC(fmt, args...) do {} while (0)
152 #define OHCI_DMA_FREE(fmt, args...) do {} while (0)
153 #endif
155 /* print general (card independent) information */
156 #define PRINT_G(level, fmt, args...) \
157 printk(level "%s: " fmt "\n" , OHCI1394_DRIVER_NAME , ## args)
159 /* print card specific information */
160 #define PRINT(level, fmt, args...) \
161 printk(level "%s: fw-host%d: " fmt "\n" , OHCI1394_DRIVER_NAME, ohci->host->id , ## args)
163 /* Module Parameters */
164 static int phys_dma = 1;
165 module_param(phys_dma, int, 0444);
166 MODULE_PARM_DESC(phys_dma, "Enable physical dma (default = 1).");
168 static void dma_trm_tasklet(unsigned long data);
169 static void dma_trm_reset(struct dma_trm_ctx *d);
171 static int alloc_dma_rcv_ctx(struct ti_ohci *ohci, struct dma_rcv_ctx *d,
172 enum context_type type, int ctx, int num_desc,
173 int buf_size, int split_buf_size, int context_base);
174 static void stop_dma_rcv_ctx(struct dma_rcv_ctx *d);
175 static void free_dma_rcv_ctx(struct dma_rcv_ctx *d);
177 static int alloc_dma_trm_ctx(struct ti_ohci *ohci, struct dma_trm_ctx *d,
178 enum context_type type, int ctx, int num_desc,
179 int context_base);
181 static void ohci1394_pci_remove(struct pci_dev *pdev);
183 #ifndef __LITTLE_ENDIAN
184 const static size_t hdr_sizes[] = {
185 3, /* TCODE_WRITEQ */
186 4, /* TCODE_WRITEB */
187 3, /* TCODE_WRITE_RESPONSE */
188 0, /* reserved */
189 3, /* TCODE_READQ */
190 4, /* TCODE_READB */
191 3, /* TCODE_READQ_RESPONSE */
192 4, /* TCODE_READB_RESPONSE */
193 1, /* TCODE_CYCLE_START */
194 4, /* TCODE_LOCK_REQUEST */
195 2, /* TCODE_ISO_DATA */
196 4, /* TCODE_LOCK_RESPONSE */
197 /* rest is reserved or link-internal */
200 static inline void header_le32_to_cpu(quadlet_t *data, unsigned char tcode)
202 size_t size;
204 if (unlikely(tcode >= ARRAY_SIZE(hdr_sizes)))
205 return;
207 size = hdr_sizes[tcode];
208 while (size--)
209 data[size] = le32_to_cpu(data[size]);
211 #else
212 #define header_le32_to_cpu(w,x) do {} while (0)
213 #endif /* !LITTLE_ENDIAN */
215 /***********************************
216 * IEEE-1394 functionality section *
217 ***********************************/
219 static u8 get_phy_reg(struct ti_ohci *ohci, u8 addr)
221 int i;
222 unsigned long flags;
223 quadlet_t r;
225 spin_lock_irqsave (&ohci->phy_reg_lock, flags);
227 reg_write(ohci, OHCI1394_PhyControl, (addr << 8) | 0x00008000);
229 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
230 if (reg_read(ohci, OHCI1394_PhyControl) & 0x80000000)
231 break;
233 mdelay(1);
236 r = reg_read(ohci, OHCI1394_PhyControl);
238 if (i >= OHCI_LOOP_COUNT)
239 PRINT (KERN_ERR, "Get PHY Reg timeout [0x%08x/0x%08x/%d]",
240 r, r & 0x80000000, i);
242 spin_unlock_irqrestore (&ohci->phy_reg_lock, flags);
244 return (r & 0x00ff0000) >> 16;
247 static void set_phy_reg(struct ti_ohci *ohci, u8 addr, u8 data)
249 int i;
250 unsigned long flags;
251 u32 r = 0;
253 spin_lock_irqsave (&ohci->phy_reg_lock, flags);
255 reg_write(ohci, OHCI1394_PhyControl, (addr << 8) | data | 0x00004000);
257 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
258 r = reg_read(ohci, OHCI1394_PhyControl);
259 if (!(r & 0x00004000))
260 break;
262 mdelay(1);
265 if (i == OHCI_LOOP_COUNT)
266 PRINT (KERN_ERR, "Set PHY Reg timeout [0x%08x/0x%08x/%d]",
267 r, r & 0x00004000, i);
269 spin_unlock_irqrestore (&ohci->phy_reg_lock, flags);
271 return;
274 /* Or's our value into the current value */
275 static void set_phy_reg_mask(struct ti_ohci *ohci, u8 addr, u8 data)
277 u8 old;
279 old = get_phy_reg (ohci, addr);
280 old |= data;
281 set_phy_reg (ohci, addr, old);
283 return;
286 static void handle_selfid(struct ti_ohci *ohci, struct hpsb_host *host,
287 int phyid, int isroot)
289 quadlet_t *q = ohci->selfid_buf_cpu;
290 quadlet_t self_id_count=reg_read(ohci, OHCI1394_SelfIDCount);
291 size_t size;
292 quadlet_t q0, q1;
294 /* Check status of self-id reception */
296 if (ohci->selfid_swap)
297 q0 = le32_to_cpu(q[0]);
298 else
299 q0 = q[0];
301 if ((self_id_count & 0x80000000) ||
302 ((self_id_count & 0x00FF0000) != (q0 & 0x00FF0000))) {
303 PRINT(KERN_ERR,
304 "Error in reception of SelfID packets [0x%08x/0x%08x] (count: %d)",
305 self_id_count, q0, ohci->self_id_errors);
307 /* Tip by James Goodwin <jamesg@Filanet.com>:
308 * We had an error, generate another bus reset in response. */
309 if (ohci->self_id_errors<OHCI1394_MAX_SELF_ID_ERRORS) {
310 set_phy_reg_mask (ohci, 1, 0x40);
311 ohci->self_id_errors++;
312 } else {
313 PRINT(KERN_ERR,
314 "Too many errors on SelfID error reception, giving up!");
316 return;
319 /* SelfID Ok, reset error counter. */
320 ohci->self_id_errors = 0;
322 size = ((self_id_count & 0x00001FFC) >> 2) - 1;
323 q++;
325 while (size > 0) {
326 if (ohci->selfid_swap) {
327 q0 = le32_to_cpu(q[0]);
328 q1 = le32_to_cpu(q[1]);
329 } else {
330 q0 = q[0];
331 q1 = q[1];
334 if (q0 == ~q1) {
335 DBGMSG ("SelfID packet 0x%x received", q0);
336 hpsb_selfid_received(host, cpu_to_be32(q0));
337 if (((q0 & 0x3f000000) >> 24) == phyid)
338 DBGMSG ("SelfID for this node is 0x%08x", q0);
339 } else {
340 PRINT(KERN_ERR,
341 "SelfID is inconsistent [0x%08x/0x%08x]", q0, q1);
343 q += 2;
344 size -= 2;
347 DBGMSG("SelfID complete");
349 return;
352 static void ohci_soft_reset(struct ti_ohci *ohci) {
353 int i;
355 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
357 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
358 if (!(reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_softReset))
359 break;
360 mdelay(1);
362 DBGMSG ("Soft reset finished");
366 /* Generate the dma receive prgs and start the context */
367 static void initialize_dma_rcv_ctx(struct dma_rcv_ctx *d, int generate_irq)
369 struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
370 int i;
372 ohci1394_stop_context(ohci, d->ctrlClear, NULL);
374 for (i=0; i<d->num_desc; i++) {
375 u32 c;
377 c = DMA_CTL_INPUT_MORE | DMA_CTL_UPDATE | DMA_CTL_BRANCH;
378 if (generate_irq)
379 c |= DMA_CTL_IRQ;
381 d->prg_cpu[i]->control = cpu_to_le32(c | d->buf_size);
383 /* End of descriptor list? */
384 if (i + 1 < d->num_desc) {
385 d->prg_cpu[i]->branchAddress =
386 cpu_to_le32((d->prg_bus[i+1] & 0xfffffff0) | 0x1);
387 } else {
388 d->prg_cpu[i]->branchAddress =
389 cpu_to_le32((d->prg_bus[0] & 0xfffffff0));
392 d->prg_cpu[i]->address = cpu_to_le32(d->buf_bus[i]);
393 d->prg_cpu[i]->status = cpu_to_le32(d->buf_size);
396 d->buf_ind = 0;
397 d->buf_offset = 0;
399 if (d->type == DMA_CTX_ISO) {
400 /* Clear contextControl */
401 reg_write(ohci, d->ctrlClear, 0xffffffff);
403 /* Set bufferFill, isochHeader, multichannel for IR context */
404 reg_write(ohci, d->ctrlSet, 0xd0000000);
406 /* Set the context match register to match on all tags */
407 reg_write(ohci, d->ctxtMatch, 0xf0000000);
409 /* Clear the multi channel mask high and low registers */
410 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, 0xffffffff);
411 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, 0xffffffff);
413 /* Set up isoRecvIntMask to generate interrupts */
414 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << d->ctx);
417 /* Tell the controller where the first AR program is */
418 reg_write(ohci, d->cmdPtr, d->prg_bus[0] | 0x1);
420 /* Run context */
421 reg_write(ohci, d->ctrlSet, 0x00008000);
423 DBGMSG("Receive DMA ctx=%d initialized", d->ctx);
426 /* Initialize the dma transmit context */
427 static void initialize_dma_trm_ctx(struct dma_trm_ctx *d)
429 struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
431 /* Stop the context */
432 ohci1394_stop_context(ohci, d->ctrlClear, NULL);
434 d->prg_ind = 0;
435 d->sent_ind = 0;
436 d->free_prgs = d->num_desc;
437 d->branchAddrPtr = NULL;
438 INIT_LIST_HEAD(&d->fifo_list);
439 INIT_LIST_HEAD(&d->pending_list);
441 if (d->type == DMA_CTX_ISO) {
442 /* enable interrupts */
443 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << d->ctx);
446 DBGMSG("Transmit DMA ctx=%d initialized", d->ctx);
449 /* Count the number of available iso contexts */
450 static int get_nb_iso_ctx(struct ti_ohci *ohci, int reg)
452 int i,ctx=0;
453 u32 tmp;
455 reg_write(ohci, reg, 0xffffffff);
456 tmp = reg_read(ohci, reg);
458 DBGMSG("Iso contexts reg: %08x implemented: %08x", reg, tmp);
460 /* Count the number of contexts */
461 for (i=0; i<32; i++) {
462 if (tmp & 1) ctx++;
463 tmp >>= 1;
465 return ctx;
468 /* Global initialization */
469 static void ohci_initialize(struct ti_ohci *ohci)
471 char irq_buf[16];
472 quadlet_t buf;
473 int num_ports, i;
475 spin_lock_init(&ohci->phy_reg_lock);
477 /* Put some defaults to these undefined bus options */
478 buf = reg_read(ohci, OHCI1394_BusOptions);
479 buf |= 0x60000000; /* Enable CMC and ISC */
480 if (hpsb_disable_irm)
481 buf &= ~0x80000000;
482 else
483 buf |= 0x80000000; /* Enable IRMC */
484 buf &= ~0x00ff0000; /* XXX: Set cyc_clk_acc to zero for now */
485 buf &= ~0x18000000; /* Disable PMC and BMC */
486 reg_write(ohci, OHCI1394_BusOptions, buf);
488 /* Set the bus number */
489 reg_write(ohci, OHCI1394_NodeID, 0x0000ffc0);
491 /* Enable posted writes */
492 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_postedWriteEnable);
494 /* Clear link control register */
495 reg_write(ohci, OHCI1394_LinkControlClear, 0xffffffff);
497 /* Enable cycle timer and cycle master and set the IRM
498 * contender bit in our self ID packets if appropriate. */
499 reg_write(ohci, OHCI1394_LinkControlSet,
500 OHCI1394_LinkControl_CycleTimerEnable |
501 OHCI1394_LinkControl_CycleMaster);
502 i = get_phy_reg(ohci, 4) | PHY_04_LCTRL;
503 if (hpsb_disable_irm)
504 i &= ~PHY_04_CONTENDER;
505 else
506 i |= PHY_04_CONTENDER;
507 set_phy_reg(ohci, 4, i);
509 /* Set up self-id dma buffer */
510 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->selfid_buf_bus);
512 /* enable self-id and phys */
513 reg_write(ohci, OHCI1394_LinkControlSet, OHCI1394_LinkControl_RcvSelfID |
514 OHCI1394_LinkControl_RcvPhyPkt);
516 /* Set the Config ROM mapping register */
517 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->csr_config_rom_bus);
519 /* Now get our max packet size */
520 ohci->max_packet_size =
521 1<<(((reg_read(ohci, OHCI1394_BusOptions)>>12)&0xf)+1);
523 /* Don't accept phy packets into AR request context */
524 reg_write(ohci, OHCI1394_LinkControlClear, 0x00000400);
526 /* Clear the interrupt mask */
527 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 0xffffffff);
528 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 0xffffffff);
530 /* Clear the interrupt mask */
531 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 0xffffffff);
532 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 0xffffffff);
534 /* Initialize AR dma */
535 initialize_dma_rcv_ctx(&ohci->ar_req_context, 0);
536 initialize_dma_rcv_ctx(&ohci->ar_resp_context, 0);
538 /* Initialize AT dma */
539 initialize_dma_trm_ctx(&ohci->at_req_context);
540 initialize_dma_trm_ctx(&ohci->at_resp_context);
542 /* Initialize IR Legacy DMA channel mask */
543 ohci->ir_legacy_channels = 0;
545 /* Accept AR requests from all nodes */
546 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
548 /* Set the address range of the physical response unit.
549 * Most controllers do not implement it as a writable register though.
550 * They will keep a hardwired offset of 0x00010000 and show 0x0 as
551 * register content.
552 * To actually enable physical responses is the job of our interrupt
553 * handler which programs the physical request filter. */
554 reg_write(ohci, OHCI1394_PhyUpperBound,
555 OHCI1394_PHYS_UPPER_BOUND_PROGRAMMED >> 16);
557 DBGMSG("physUpperBoundOffset=%08x",
558 reg_read(ohci, OHCI1394_PhyUpperBound));
560 /* Specify AT retries */
561 reg_write(ohci, OHCI1394_ATRetries,
562 OHCI1394_MAX_AT_REQ_RETRIES |
563 (OHCI1394_MAX_AT_RESP_RETRIES<<4) |
564 (OHCI1394_MAX_PHYS_RESP_RETRIES<<8));
566 /* We don't want hardware swapping */
567 reg_write(ohci, OHCI1394_HCControlClear, OHCI1394_HCControl_noByteSwap);
569 /* Enable interrupts */
570 reg_write(ohci, OHCI1394_IntMaskSet,
571 OHCI1394_unrecoverableError |
572 OHCI1394_masterIntEnable |
573 OHCI1394_busReset |
574 OHCI1394_selfIDComplete |
575 OHCI1394_RSPkt |
576 OHCI1394_RQPkt |
577 OHCI1394_respTxComplete |
578 OHCI1394_reqTxComplete |
579 OHCI1394_isochRx |
580 OHCI1394_isochTx |
581 OHCI1394_postedWriteErr |
582 OHCI1394_cycleTooLong |
583 OHCI1394_cycleInconsistent);
585 /* Enable link */
586 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_linkEnable);
588 buf = reg_read(ohci, OHCI1394_Version);
589 sprintf (irq_buf, "%d", ohci->dev->irq);
590 PRINT(KERN_INFO, "OHCI-1394 %d.%d (PCI): IRQ=[%s] "
591 "MMIO=[%llx-%llx] Max Packet=[%d] IR/IT contexts=[%d/%d]",
592 ((((buf) >> 16) & 0xf) + (((buf) >> 20) & 0xf) * 10),
593 ((((buf) >> 4) & 0xf) + ((buf) & 0xf) * 10), irq_buf,
594 (unsigned long long)pci_resource_start(ohci->dev, 0),
595 (unsigned long long)pci_resource_start(ohci->dev, 0) + OHCI1394_REGISTER_SIZE - 1,
596 ohci->max_packet_size,
597 ohci->nb_iso_rcv_ctx, ohci->nb_iso_xmit_ctx);
599 /* Check all of our ports to make sure that if anything is
600 * connected, we enable that port. */
601 num_ports = get_phy_reg(ohci, 2) & 0xf;
602 for (i = 0; i < num_ports; i++) {
603 unsigned int status;
605 set_phy_reg(ohci, 7, i);
606 status = get_phy_reg(ohci, 8);
608 if (status & 0x20)
609 set_phy_reg(ohci, 8, status & ~1);
612 /* Serial EEPROM Sanity check. */
613 if ((ohci->max_packet_size < 512) ||
614 (ohci->max_packet_size > 4096)) {
615 /* Serial EEPROM contents are suspect, set a sane max packet
616 * size and print the raw contents for bug reports if verbose
617 * debug is enabled. */
618 #ifdef CONFIG_IEEE1394_VERBOSEDEBUG
619 int i;
620 #endif
622 PRINT(KERN_DEBUG, "Serial EEPROM has suspicious values, "
623 "attempting to setting max_packet_size to 512 bytes");
624 reg_write(ohci, OHCI1394_BusOptions,
625 (reg_read(ohci, OHCI1394_BusOptions) & 0xf007) | 0x8002);
626 ohci->max_packet_size = 512;
627 #ifdef CONFIG_IEEE1394_VERBOSEDEBUG
628 PRINT(KERN_DEBUG, " EEPROM Present: %d",
629 (reg_read(ohci, OHCI1394_Version) >> 24) & 0x1);
630 reg_write(ohci, OHCI1394_GUID_ROM, 0x80000000);
632 for (i = 0;
633 ((i < 1000) &&
634 (reg_read(ohci, OHCI1394_GUID_ROM) & 0x80000000)); i++)
635 udelay(10);
637 for (i = 0; i < 0x20; i++) {
638 reg_write(ohci, OHCI1394_GUID_ROM, 0x02000000);
639 PRINT(KERN_DEBUG, " EEPROM %02x: %02x", i,
640 (reg_read(ohci, OHCI1394_GUID_ROM) >> 16) & 0xff);
642 #endif
647 * Insert a packet in the DMA fifo and generate the DMA prg
648 * FIXME: rewrite the program in order to accept packets crossing
649 * page boundaries.
650 * check also that a single dma descriptor doesn't cross a
651 * page boundary.
653 static void insert_packet(struct ti_ohci *ohci,
654 struct dma_trm_ctx *d, struct hpsb_packet *packet)
656 u32 cycleTimer;
657 int idx = d->prg_ind;
659 DBGMSG("Inserting packet for node " NODE_BUS_FMT
660 ", tlabel=%d, tcode=0x%x, speed=%d",
661 NODE_BUS_ARGS(ohci->host, packet->node_id), packet->tlabel,
662 packet->tcode, packet->speed_code);
664 d->prg_cpu[idx]->begin.address = 0;
665 d->prg_cpu[idx]->begin.branchAddress = 0;
667 if (d->type == DMA_CTX_ASYNC_RESP) {
669 * For response packets, we need to put a timeout value in
670 * the 16 lower bits of the status... let's try 1 sec timeout
672 cycleTimer = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
673 d->prg_cpu[idx]->begin.status = cpu_to_le32(
674 (((((cycleTimer>>25)&0x7)+1)&0x7)<<13) |
675 ((cycleTimer&0x01fff000)>>12));
677 DBGMSG("cycleTimer: %08x timeStamp: %08x",
678 cycleTimer, d->prg_cpu[idx]->begin.status);
679 } else
680 d->prg_cpu[idx]->begin.status = 0;
682 if ( (packet->type == hpsb_async) || (packet->type == hpsb_raw) ) {
684 if (packet->type == hpsb_raw) {
685 d->prg_cpu[idx]->data[0] = cpu_to_le32(OHCI1394_TCODE_PHY<<4);
686 d->prg_cpu[idx]->data[1] = cpu_to_le32(packet->header[0]);
687 d->prg_cpu[idx]->data[2] = cpu_to_le32(packet->header[1]);
688 } else {
689 d->prg_cpu[idx]->data[0] = packet->speed_code<<16 |
690 (packet->header[0] & 0xFFFF);
692 if (packet->tcode == TCODE_ISO_DATA) {
693 /* Sending an async stream packet */
694 d->prg_cpu[idx]->data[1] = packet->header[0] & 0xFFFF0000;
695 } else {
696 /* Sending a normal async request or response */
697 d->prg_cpu[idx]->data[1] =
698 (packet->header[1] & 0xFFFF) |
699 (packet->header[0] & 0xFFFF0000);
700 d->prg_cpu[idx]->data[2] = packet->header[2];
701 d->prg_cpu[idx]->data[3] = packet->header[3];
703 header_le32_to_cpu(d->prg_cpu[idx]->data, packet->tcode);
706 if (packet->data_size) { /* block transmit */
707 if (packet->tcode == TCODE_STREAM_DATA){
708 d->prg_cpu[idx]->begin.control =
709 cpu_to_le32(DMA_CTL_OUTPUT_MORE |
710 DMA_CTL_IMMEDIATE | 0x8);
711 } else {
712 d->prg_cpu[idx]->begin.control =
713 cpu_to_le32(DMA_CTL_OUTPUT_MORE |
714 DMA_CTL_IMMEDIATE | 0x10);
716 d->prg_cpu[idx]->end.control =
717 cpu_to_le32(DMA_CTL_OUTPUT_LAST |
718 DMA_CTL_IRQ |
719 DMA_CTL_BRANCH |
720 packet->data_size);
722 * Check that the packet data buffer
723 * does not cross a page boundary.
725 * XXX Fix this some day. eth1394 seems to trigger
726 * it, but ignoring it doesn't seem to cause a
727 * problem.
729 #if 0
730 if (cross_bound((unsigned long)packet->data,
731 packet->data_size)>0) {
732 /* FIXME: do something about it */
733 PRINT(KERN_ERR,
734 "%s: packet data addr: %p size %Zd bytes "
735 "cross page boundary", __FUNCTION__,
736 packet->data, packet->data_size);
738 #endif
739 d->prg_cpu[idx]->end.address = cpu_to_le32(
740 pci_map_single(ohci->dev, packet->data,
741 packet->data_size,
742 PCI_DMA_TODEVICE));
743 OHCI_DMA_ALLOC("single, block transmit packet");
745 d->prg_cpu[idx]->end.branchAddress = 0;
746 d->prg_cpu[idx]->end.status = 0;
747 if (d->branchAddrPtr)
748 *(d->branchAddrPtr) =
749 cpu_to_le32(d->prg_bus[idx] | 0x3);
750 d->branchAddrPtr =
751 &(d->prg_cpu[idx]->end.branchAddress);
752 } else { /* quadlet transmit */
753 if (packet->type == hpsb_raw)
754 d->prg_cpu[idx]->begin.control =
755 cpu_to_le32(DMA_CTL_OUTPUT_LAST |
756 DMA_CTL_IMMEDIATE |
757 DMA_CTL_IRQ |
758 DMA_CTL_BRANCH |
759 (packet->header_size + 4));
760 else
761 d->prg_cpu[idx]->begin.control =
762 cpu_to_le32(DMA_CTL_OUTPUT_LAST |
763 DMA_CTL_IMMEDIATE |
764 DMA_CTL_IRQ |
765 DMA_CTL_BRANCH |
766 packet->header_size);
768 if (d->branchAddrPtr)
769 *(d->branchAddrPtr) =
770 cpu_to_le32(d->prg_bus[idx] | 0x2);
771 d->branchAddrPtr =
772 &(d->prg_cpu[idx]->begin.branchAddress);
775 } else { /* iso packet */
776 d->prg_cpu[idx]->data[0] = packet->speed_code<<16 |
777 (packet->header[0] & 0xFFFF);
778 d->prg_cpu[idx]->data[1] = packet->header[0] & 0xFFFF0000;
779 header_le32_to_cpu(d->prg_cpu[idx]->data, packet->tcode);
781 d->prg_cpu[idx]->begin.control =
782 cpu_to_le32(DMA_CTL_OUTPUT_MORE |
783 DMA_CTL_IMMEDIATE | 0x8);
784 d->prg_cpu[idx]->end.control =
785 cpu_to_le32(DMA_CTL_OUTPUT_LAST |
786 DMA_CTL_UPDATE |
787 DMA_CTL_IRQ |
788 DMA_CTL_BRANCH |
789 packet->data_size);
790 d->prg_cpu[idx]->end.address = cpu_to_le32(
791 pci_map_single(ohci->dev, packet->data,
792 packet->data_size, PCI_DMA_TODEVICE));
793 OHCI_DMA_ALLOC("single, iso transmit packet");
795 d->prg_cpu[idx]->end.branchAddress = 0;
796 d->prg_cpu[idx]->end.status = 0;
797 DBGMSG("Iso xmit context info: header[%08x %08x]\n"
798 " begin=%08x %08x %08x %08x\n"
799 " %08x %08x %08x %08x\n"
800 " end =%08x %08x %08x %08x",
801 d->prg_cpu[idx]->data[0], d->prg_cpu[idx]->data[1],
802 d->prg_cpu[idx]->begin.control,
803 d->prg_cpu[idx]->begin.address,
804 d->prg_cpu[idx]->begin.branchAddress,
805 d->prg_cpu[idx]->begin.status,
806 d->prg_cpu[idx]->data[0],
807 d->prg_cpu[idx]->data[1],
808 d->prg_cpu[idx]->data[2],
809 d->prg_cpu[idx]->data[3],
810 d->prg_cpu[idx]->end.control,
811 d->prg_cpu[idx]->end.address,
812 d->prg_cpu[idx]->end.branchAddress,
813 d->prg_cpu[idx]->end.status);
814 if (d->branchAddrPtr)
815 *(d->branchAddrPtr) = cpu_to_le32(d->prg_bus[idx] | 0x3);
816 d->branchAddrPtr = &(d->prg_cpu[idx]->end.branchAddress);
818 d->free_prgs--;
820 /* queue the packet in the appropriate context queue */
821 list_add_tail(&packet->driver_list, &d->fifo_list);
822 d->prg_ind = (d->prg_ind + 1) % d->num_desc;
826 * This function fills the FIFO with the (eventual) pending packets
827 * and runs or wakes up the DMA prg if necessary.
829 * The function MUST be called with the d->lock held.
831 static void dma_trm_flush(struct ti_ohci *ohci, struct dma_trm_ctx *d)
833 struct hpsb_packet *packet, *ptmp;
834 int idx = d->prg_ind;
835 int z = 0;
837 /* insert the packets into the dma fifo */
838 list_for_each_entry_safe(packet, ptmp, &d->pending_list, driver_list) {
839 if (!d->free_prgs)
840 break;
842 /* For the first packet only */
843 if (!z)
844 z = (packet->data_size) ? 3 : 2;
846 /* Insert the packet */
847 list_del_init(&packet->driver_list);
848 insert_packet(ohci, d, packet);
851 /* Nothing must have been done, either no free_prgs or no packets */
852 if (z == 0)
853 return;
855 /* Is the context running ? (should be unless it is
856 the first packet to be sent in this context) */
857 if (!(reg_read(ohci, d->ctrlSet) & 0x8000)) {
858 u32 nodeId = reg_read(ohci, OHCI1394_NodeID);
860 DBGMSG("Starting transmit DMA ctx=%d",d->ctx);
861 reg_write(ohci, d->cmdPtr, d->prg_bus[idx] | z);
863 /* Check that the node id is valid, and not 63 */
864 if (!(nodeId & 0x80000000) || (nodeId & 0x3f) == 63)
865 PRINT(KERN_ERR, "Running dma failed because Node ID is not valid");
866 else
867 reg_write(ohci, d->ctrlSet, 0x8000);
868 } else {
869 /* Wake up the dma context if necessary */
870 if (!(reg_read(ohci, d->ctrlSet) & 0x400))
871 DBGMSG("Waking transmit DMA ctx=%d",d->ctx);
873 /* do this always, to avoid race condition */
874 reg_write(ohci, d->ctrlSet, 0x1000);
877 return;
880 /* Transmission of an async or iso packet */
881 static int ohci_transmit(struct hpsb_host *host, struct hpsb_packet *packet)
883 struct ti_ohci *ohci = host->hostdata;
884 struct dma_trm_ctx *d;
885 unsigned long flags;
887 if (packet->data_size > ohci->max_packet_size) {
888 PRINT(KERN_ERR,
889 "Transmit packet size %Zd is too big",
890 packet->data_size);
891 return -EOVERFLOW;
894 /* Decide whether we have an iso, a request, or a response packet */
895 if (packet->type == hpsb_raw)
896 d = &ohci->at_req_context;
897 else if ((packet->tcode == TCODE_ISO_DATA) && (packet->type == hpsb_iso)) {
898 /* The legacy IT DMA context is initialized on first
899 * use. However, the alloc cannot be run from
900 * interrupt context, so we bail out if that is the
901 * case. I don't see anyone sending ISO packets from
902 * interrupt context anyway... */
904 if (ohci->it_legacy_context.ohci == NULL) {
905 if (in_interrupt()) {
906 PRINT(KERN_ERR,
907 "legacy IT context cannot be initialized during interrupt");
908 return -EINVAL;
911 if (alloc_dma_trm_ctx(ohci, &ohci->it_legacy_context,
912 DMA_CTX_ISO, 0, IT_NUM_DESC,
913 OHCI1394_IsoXmitContextBase) < 0) {
914 PRINT(KERN_ERR,
915 "error initializing legacy IT context");
916 return -ENOMEM;
919 initialize_dma_trm_ctx(&ohci->it_legacy_context);
922 d = &ohci->it_legacy_context;
923 } else if ((packet->tcode & 0x02) && (packet->tcode != TCODE_ISO_DATA))
924 d = &ohci->at_resp_context;
925 else
926 d = &ohci->at_req_context;
928 spin_lock_irqsave(&d->lock,flags);
930 list_add_tail(&packet->driver_list, &d->pending_list);
932 dma_trm_flush(ohci, d);
934 spin_unlock_irqrestore(&d->lock,flags);
936 return 0;
939 static int ohci_devctl(struct hpsb_host *host, enum devctl_cmd cmd, int arg)
941 struct ti_ohci *ohci = host->hostdata;
942 int retval = 0;
943 unsigned long flags;
944 int phy_reg;
946 switch (cmd) {
947 case RESET_BUS:
948 switch (arg) {
949 case SHORT_RESET:
950 phy_reg = get_phy_reg(ohci, 5);
951 phy_reg |= 0x40;
952 set_phy_reg(ohci, 5, phy_reg); /* set ISBR */
953 break;
954 case LONG_RESET:
955 phy_reg = get_phy_reg(ohci, 1);
956 phy_reg |= 0x40;
957 set_phy_reg(ohci, 1, phy_reg); /* set IBR */
958 break;
959 case SHORT_RESET_NO_FORCE_ROOT:
960 phy_reg = get_phy_reg(ohci, 1);
961 if (phy_reg & 0x80) {
962 phy_reg &= ~0x80;
963 set_phy_reg(ohci, 1, phy_reg); /* clear RHB */
966 phy_reg = get_phy_reg(ohci, 5);
967 phy_reg |= 0x40;
968 set_phy_reg(ohci, 5, phy_reg); /* set ISBR */
969 break;
970 case LONG_RESET_NO_FORCE_ROOT:
971 phy_reg = get_phy_reg(ohci, 1);
972 phy_reg &= ~0x80;
973 phy_reg |= 0x40;
974 set_phy_reg(ohci, 1, phy_reg); /* clear RHB, set IBR */
975 break;
976 case SHORT_RESET_FORCE_ROOT:
977 phy_reg = get_phy_reg(ohci, 1);
978 if (!(phy_reg & 0x80)) {
979 phy_reg |= 0x80;
980 set_phy_reg(ohci, 1, phy_reg); /* set RHB */
983 phy_reg = get_phy_reg(ohci, 5);
984 phy_reg |= 0x40;
985 set_phy_reg(ohci, 5, phy_reg); /* set ISBR */
986 break;
987 case LONG_RESET_FORCE_ROOT:
988 phy_reg = get_phy_reg(ohci, 1);
989 phy_reg |= 0xc0;
990 set_phy_reg(ohci, 1, phy_reg); /* set RHB and IBR */
991 break;
992 default:
993 retval = -1;
995 break;
997 case GET_CYCLE_COUNTER:
998 retval = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
999 break;
1001 case SET_CYCLE_COUNTER:
1002 reg_write(ohci, OHCI1394_IsochronousCycleTimer, arg);
1003 break;
1005 case SET_BUS_ID:
1006 PRINT(KERN_ERR, "devctl command SET_BUS_ID err");
1007 break;
1009 case ACT_CYCLE_MASTER:
1010 if (arg) {
1011 /* check if we are root and other nodes are present */
1012 u32 nodeId = reg_read(ohci, OHCI1394_NodeID);
1013 if ((nodeId & (1<<30)) && (nodeId & 0x3f)) {
1015 * enable cycleTimer, cycleMaster
1017 DBGMSG("Cycle master enabled");
1018 reg_write(ohci, OHCI1394_LinkControlSet,
1019 OHCI1394_LinkControl_CycleTimerEnable |
1020 OHCI1394_LinkControl_CycleMaster);
1022 } else {
1023 /* disable cycleTimer, cycleMaster, cycleSource */
1024 reg_write(ohci, OHCI1394_LinkControlClear,
1025 OHCI1394_LinkControl_CycleTimerEnable |
1026 OHCI1394_LinkControl_CycleMaster |
1027 OHCI1394_LinkControl_CycleSource);
1029 break;
1031 case CANCEL_REQUESTS:
1032 DBGMSG("Cancel request received");
1033 dma_trm_reset(&ohci->at_req_context);
1034 dma_trm_reset(&ohci->at_resp_context);
1035 break;
1037 case ISO_LISTEN_CHANNEL:
1039 u64 mask;
1040 struct dma_rcv_ctx *d = &ohci->ir_legacy_context;
1041 int ir_legacy_active;
1043 if (arg<0 || arg>63) {
1044 PRINT(KERN_ERR,
1045 "%s: IS0 listen channel %d is out of range",
1046 __FUNCTION__, arg);
1047 return -EFAULT;
1050 mask = (u64)0x1<<arg;
1052 spin_lock_irqsave(&ohci->IR_channel_lock, flags);
1054 if (ohci->ISO_channel_usage & mask) {
1055 PRINT(KERN_ERR,
1056 "%s: IS0 listen channel %d is already used",
1057 __FUNCTION__, arg);
1058 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1059 return -EFAULT;
1062 ir_legacy_active = ohci->ir_legacy_channels;
1064 ohci->ISO_channel_usage |= mask;
1065 ohci->ir_legacy_channels |= mask;
1067 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1069 if (!ir_legacy_active) {
1070 if (ohci1394_register_iso_tasklet(ohci,
1071 &ohci->ir_legacy_tasklet) < 0) {
1072 PRINT(KERN_ERR, "No IR DMA context available");
1073 return -EBUSY;
1076 /* the IR context can be assigned to any DMA context
1077 * by ohci1394_register_iso_tasklet */
1078 d->ctx = ohci->ir_legacy_tasklet.context;
1079 d->ctrlSet = OHCI1394_IsoRcvContextControlSet +
1080 32*d->ctx;
1081 d->ctrlClear = OHCI1394_IsoRcvContextControlClear +
1082 32*d->ctx;
1083 d->cmdPtr = OHCI1394_IsoRcvCommandPtr + 32*d->ctx;
1084 d->ctxtMatch = OHCI1394_IsoRcvContextMatch + 32*d->ctx;
1086 initialize_dma_rcv_ctx(&ohci->ir_legacy_context, 1);
1088 if (printk_ratelimit())
1089 DBGMSG("IR legacy activated");
1092 spin_lock_irqsave(&ohci->IR_channel_lock, flags);
1094 if (arg>31)
1095 reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet,
1096 1<<(arg-32));
1097 else
1098 reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet,
1099 1<<arg);
1101 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1102 DBGMSG("Listening enabled on channel %d", arg);
1103 break;
1105 case ISO_UNLISTEN_CHANNEL:
1107 u64 mask;
1109 if (arg<0 || arg>63) {
1110 PRINT(KERN_ERR,
1111 "%s: IS0 unlisten channel %d is out of range",
1112 __FUNCTION__, arg);
1113 return -EFAULT;
1116 mask = (u64)0x1<<arg;
1118 spin_lock_irqsave(&ohci->IR_channel_lock, flags);
1120 if (!(ohci->ISO_channel_usage & mask)) {
1121 PRINT(KERN_ERR,
1122 "%s: IS0 unlisten channel %d is not used",
1123 __FUNCTION__, arg);
1124 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1125 return -EFAULT;
1128 ohci->ISO_channel_usage &= ~mask;
1129 ohci->ir_legacy_channels &= ~mask;
1131 if (arg>31)
1132 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear,
1133 1<<(arg-32));
1134 else
1135 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear,
1136 1<<arg);
1138 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1139 DBGMSG("Listening disabled on channel %d", arg);
1141 if (ohci->ir_legacy_channels == 0) {
1142 stop_dma_rcv_ctx(&ohci->ir_legacy_context);
1143 DBGMSG("ISO legacy receive context stopped");
1146 break;
1148 default:
1149 PRINT_G(KERN_ERR, "ohci_devctl cmd %d not implemented yet",
1150 cmd);
1151 break;
1153 return retval;
1156 /***********************************
1157 * rawiso ISO reception *
1158 ***********************************/
1161 We use either buffer-fill or packet-per-buffer DMA mode. The DMA
1162 buffer is split into "blocks" (regions described by one DMA
1163 descriptor). Each block must be one page or less in size, and
1164 must not cross a page boundary.
1166 There is one little wrinkle with buffer-fill mode: a packet that
1167 starts in the final block may wrap around into the first block. But
1168 the user API expects all packets to be contiguous. Our solution is
1169 to keep the very last page of the DMA buffer in reserve - if a
1170 packet spans the gap, we copy its tail into this page.
1173 struct ohci_iso_recv {
1174 struct ti_ohci *ohci;
1176 struct ohci1394_iso_tasklet task;
1177 int task_active;
1179 enum { BUFFER_FILL_MODE = 0,
1180 PACKET_PER_BUFFER_MODE = 1 } dma_mode;
1182 /* memory and PCI mapping for the DMA descriptors */
1183 struct dma_prog_region prog;
1184 struct dma_cmd *block; /* = (struct dma_cmd*) prog.virt */
1186 /* how many DMA blocks fit in the buffer */
1187 unsigned int nblocks;
1189 /* stride of DMA blocks */
1190 unsigned int buf_stride;
1192 /* number of blocks to batch between interrupts */
1193 int block_irq_interval;
1195 /* block that DMA will finish next */
1196 int block_dma;
1198 /* (buffer-fill only) block that the reader will release next */
1199 int block_reader;
1201 /* (buffer-fill only) bytes of buffer the reader has released,
1202 less than one block */
1203 int released_bytes;
1205 /* (buffer-fill only) buffer offset at which the next packet will appear */
1206 int dma_offset;
1208 /* OHCI DMA context control registers */
1209 u32 ContextControlSet;
1210 u32 ContextControlClear;
1211 u32 CommandPtr;
1212 u32 ContextMatch;
1215 static void ohci_iso_recv_task(unsigned long data);
1216 static void ohci_iso_recv_stop(struct hpsb_iso *iso);
1217 static void ohci_iso_recv_shutdown(struct hpsb_iso *iso);
1218 static int ohci_iso_recv_start(struct hpsb_iso *iso, int cycle, int tag_mask, int sync);
1219 static void ohci_iso_recv_program(struct hpsb_iso *iso);
1221 static int ohci_iso_recv_init(struct hpsb_iso *iso)
1223 struct ti_ohci *ohci = iso->host->hostdata;
1224 struct ohci_iso_recv *recv;
1225 int ctx;
1226 int ret = -ENOMEM;
1228 recv = kmalloc(sizeof(*recv), GFP_KERNEL);
1229 if (!recv)
1230 return -ENOMEM;
1232 iso->hostdata = recv;
1233 recv->ohci = ohci;
1234 recv->task_active = 0;
1235 dma_prog_region_init(&recv->prog);
1236 recv->block = NULL;
1238 /* use buffer-fill mode, unless irq_interval is 1
1239 (note: multichannel requires buffer-fill) */
1241 if (((iso->irq_interval == 1 && iso->dma_mode == HPSB_ISO_DMA_OLD_ABI) ||
1242 iso->dma_mode == HPSB_ISO_DMA_PACKET_PER_BUFFER) && iso->channel != -1) {
1243 recv->dma_mode = PACKET_PER_BUFFER_MODE;
1244 } else {
1245 recv->dma_mode = BUFFER_FILL_MODE;
1248 /* set nblocks, buf_stride, block_irq_interval */
1250 if (recv->dma_mode == BUFFER_FILL_MODE) {
1251 recv->buf_stride = PAGE_SIZE;
1253 /* one block per page of data in the DMA buffer, minus the final guard page */
1254 recv->nblocks = iso->buf_size/PAGE_SIZE - 1;
1255 if (recv->nblocks < 3) {
1256 DBGMSG("ohci_iso_recv_init: DMA buffer too small");
1257 goto err;
1260 /* iso->irq_interval is in packets - translate that to blocks */
1261 if (iso->irq_interval == 1)
1262 recv->block_irq_interval = 1;
1263 else
1264 recv->block_irq_interval = iso->irq_interval *
1265 ((recv->nblocks+1)/iso->buf_packets);
1266 if (recv->block_irq_interval*4 > recv->nblocks)
1267 recv->block_irq_interval = recv->nblocks/4;
1268 if (recv->block_irq_interval < 1)
1269 recv->block_irq_interval = 1;
1271 } else {
1272 int max_packet_size;
1274 recv->nblocks = iso->buf_packets;
1275 recv->block_irq_interval = iso->irq_interval;
1276 if (recv->block_irq_interval * 4 > iso->buf_packets)
1277 recv->block_irq_interval = iso->buf_packets / 4;
1278 if (recv->block_irq_interval < 1)
1279 recv->block_irq_interval = 1;
1281 /* choose a buffer stride */
1282 /* must be a power of 2, and <= PAGE_SIZE */
1284 max_packet_size = iso->buf_size / iso->buf_packets;
1286 for (recv->buf_stride = 8; recv->buf_stride < max_packet_size;
1287 recv->buf_stride *= 2);
1289 if (recv->buf_stride*iso->buf_packets > iso->buf_size ||
1290 recv->buf_stride > PAGE_SIZE) {
1291 /* this shouldn't happen, but anyway... */
1292 DBGMSG("ohci_iso_recv_init: problem choosing a buffer stride");
1293 goto err;
1297 recv->block_reader = 0;
1298 recv->released_bytes = 0;
1299 recv->block_dma = 0;
1300 recv->dma_offset = 0;
1302 /* size of DMA program = one descriptor per block */
1303 if (dma_prog_region_alloc(&recv->prog,
1304 sizeof(struct dma_cmd) * recv->nblocks,
1305 recv->ohci->dev))
1306 goto err;
1308 recv->block = (struct dma_cmd*) recv->prog.kvirt;
1310 ohci1394_init_iso_tasklet(&recv->task,
1311 iso->channel == -1 ? OHCI_ISO_MULTICHANNEL_RECEIVE :
1312 OHCI_ISO_RECEIVE,
1313 ohci_iso_recv_task, (unsigned long) iso);
1315 if (ohci1394_register_iso_tasklet(recv->ohci, &recv->task) < 0) {
1316 ret = -EBUSY;
1317 goto err;
1320 recv->task_active = 1;
1322 /* recv context registers are spaced 32 bytes apart */
1323 ctx = recv->task.context;
1324 recv->ContextControlSet = OHCI1394_IsoRcvContextControlSet + 32 * ctx;
1325 recv->ContextControlClear = OHCI1394_IsoRcvContextControlClear + 32 * ctx;
1326 recv->CommandPtr = OHCI1394_IsoRcvCommandPtr + 32 * ctx;
1327 recv->ContextMatch = OHCI1394_IsoRcvContextMatch + 32 * ctx;
1329 if (iso->channel == -1) {
1330 /* clear multi-channel selection mask */
1331 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskHiClear, 0xFFFFFFFF);
1332 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskLoClear, 0xFFFFFFFF);
1335 /* write the DMA program */
1336 ohci_iso_recv_program(iso);
1338 DBGMSG("ohci_iso_recv_init: %s mode, DMA buffer is %lu pages"
1339 " (%u bytes), using %u blocks, buf_stride %u, block_irq_interval %d",
1340 recv->dma_mode == BUFFER_FILL_MODE ?
1341 "buffer-fill" : "packet-per-buffer",
1342 iso->buf_size/PAGE_SIZE, iso->buf_size,
1343 recv->nblocks, recv->buf_stride, recv->block_irq_interval);
1345 return 0;
1347 err:
1348 ohci_iso_recv_shutdown(iso);
1349 return ret;
1352 static void ohci_iso_recv_stop(struct hpsb_iso *iso)
1354 struct ohci_iso_recv *recv = iso->hostdata;
1356 /* disable interrupts */
1357 reg_write(recv->ohci, OHCI1394_IsoRecvIntMaskClear, 1 << recv->task.context);
1359 /* halt DMA */
1360 ohci1394_stop_context(recv->ohci, recv->ContextControlClear, NULL);
1363 static void ohci_iso_recv_shutdown(struct hpsb_iso *iso)
1365 struct ohci_iso_recv *recv = iso->hostdata;
1367 if (recv->task_active) {
1368 ohci_iso_recv_stop(iso);
1369 ohci1394_unregister_iso_tasklet(recv->ohci, &recv->task);
1370 recv->task_active = 0;
1373 dma_prog_region_free(&recv->prog);
1374 kfree(recv);
1375 iso->hostdata = NULL;
1378 /* set up a "gapped" ring buffer DMA program */
1379 static void ohci_iso_recv_program(struct hpsb_iso *iso)
1381 struct ohci_iso_recv *recv = iso->hostdata;
1382 int blk;
1384 /* address of 'branch' field in previous DMA descriptor */
1385 u32 *prev_branch = NULL;
1387 for (blk = 0; blk < recv->nblocks; blk++) {
1388 u32 control;
1390 /* the DMA descriptor */
1391 struct dma_cmd *cmd = &recv->block[blk];
1393 /* offset of the DMA descriptor relative to the DMA prog buffer */
1394 unsigned long prog_offset = blk * sizeof(struct dma_cmd);
1396 /* offset of this packet's data within the DMA buffer */
1397 unsigned long buf_offset = blk * recv->buf_stride;
1399 if (recv->dma_mode == BUFFER_FILL_MODE) {
1400 control = 2 << 28; /* INPUT_MORE */
1401 } else {
1402 control = 3 << 28; /* INPUT_LAST */
1405 control |= 8 << 24; /* s = 1, update xferStatus and resCount */
1407 /* interrupt on last block, and at intervals */
1408 if (blk == recv->nblocks-1 || (blk % recv->block_irq_interval) == 0) {
1409 control |= 3 << 20; /* want interrupt */
1412 control |= 3 << 18; /* enable branch to address */
1413 control |= recv->buf_stride;
1415 cmd->control = cpu_to_le32(control);
1416 cmd->address = cpu_to_le32(dma_region_offset_to_bus(&iso->data_buf, buf_offset));
1417 cmd->branchAddress = 0; /* filled in on next loop */
1418 cmd->status = cpu_to_le32(recv->buf_stride);
1420 /* link the previous descriptor to this one */
1421 if (prev_branch) {
1422 *prev_branch = cpu_to_le32(dma_prog_region_offset_to_bus(&recv->prog, prog_offset) | 1);
1425 prev_branch = &cmd->branchAddress;
1428 /* the final descriptor's branch address and Z should be left at 0 */
1431 /* listen or unlisten to a specific channel (multi-channel mode only) */
1432 static void ohci_iso_recv_change_channel(struct hpsb_iso *iso, unsigned char channel, int listen)
1434 struct ohci_iso_recv *recv = iso->hostdata;
1435 int reg, i;
1437 if (channel < 32) {
1438 reg = listen ? OHCI1394_IRMultiChanMaskLoSet : OHCI1394_IRMultiChanMaskLoClear;
1439 i = channel;
1440 } else {
1441 reg = listen ? OHCI1394_IRMultiChanMaskHiSet : OHCI1394_IRMultiChanMaskHiClear;
1442 i = channel - 32;
1445 reg_write(recv->ohci, reg, (1 << i));
1447 /* issue a dummy read to force all PCI writes to be posted immediately */
1448 mb();
1449 reg_read(recv->ohci, OHCI1394_IsochronousCycleTimer);
1452 static void ohci_iso_recv_set_channel_mask(struct hpsb_iso *iso, u64 mask)
1454 struct ohci_iso_recv *recv = iso->hostdata;
1455 int i;
1457 for (i = 0; i < 64; i++) {
1458 if (mask & (1ULL << i)) {
1459 if (i < 32)
1460 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskLoSet, (1 << i));
1461 else
1462 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskHiSet, (1 << (i-32)));
1463 } else {
1464 if (i < 32)
1465 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskLoClear, (1 << i));
1466 else
1467 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskHiClear, (1 << (i-32)));
1471 /* issue a dummy read to force all PCI writes to be posted immediately */
1472 mb();
1473 reg_read(recv->ohci, OHCI1394_IsochronousCycleTimer);
1476 static int ohci_iso_recv_start(struct hpsb_iso *iso, int cycle, int tag_mask, int sync)
1478 struct ohci_iso_recv *recv = iso->hostdata;
1479 struct ti_ohci *ohci = recv->ohci;
1480 u32 command, contextMatch;
1482 reg_write(recv->ohci, recv->ContextControlClear, 0xFFFFFFFF);
1483 wmb();
1485 /* always keep ISO headers */
1486 command = (1 << 30);
1488 if (recv->dma_mode == BUFFER_FILL_MODE)
1489 command |= (1 << 31);
1491 reg_write(recv->ohci, recv->ContextControlSet, command);
1493 /* match on specified tags */
1494 contextMatch = tag_mask << 28;
1496 if (iso->channel == -1) {
1497 /* enable multichannel reception */
1498 reg_write(recv->ohci, recv->ContextControlSet, (1 << 28));
1499 } else {
1500 /* listen on channel */
1501 contextMatch |= iso->channel;
1504 if (cycle != -1) {
1505 u32 seconds;
1507 /* enable cycleMatch */
1508 reg_write(recv->ohci, recv->ContextControlSet, (1 << 29));
1510 /* set starting cycle */
1511 cycle &= 0x1FFF;
1513 /* 'cycle' is only mod 8000, but we also need two 'seconds' bits -
1514 just snarf them from the current time */
1515 seconds = reg_read(recv->ohci, OHCI1394_IsochronousCycleTimer) >> 25;
1517 /* advance one second to give some extra time for DMA to start */
1518 seconds += 1;
1520 cycle |= (seconds & 3) << 13;
1522 contextMatch |= cycle << 12;
1525 if (sync != -1) {
1526 /* set sync flag on first DMA descriptor */
1527 struct dma_cmd *cmd = &recv->block[recv->block_dma];
1528 cmd->control |= cpu_to_le32(DMA_CTL_WAIT);
1530 /* match sync field */
1531 contextMatch |= (sync&0xf)<<8;
1534 reg_write(recv->ohci, recv->ContextMatch, contextMatch);
1536 /* address of first descriptor block */
1537 command = dma_prog_region_offset_to_bus(&recv->prog,
1538 recv->block_dma * sizeof(struct dma_cmd));
1539 command |= 1; /* Z=1 */
1541 reg_write(recv->ohci, recv->CommandPtr, command);
1543 /* enable interrupts */
1544 reg_write(recv->ohci, OHCI1394_IsoRecvIntMaskSet, 1 << recv->task.context);
1546 wmb();
1548 /* run */
1549 reg_write(recv->ohci, recv->ContextControlSet, 0x8000);
1551 /* issue a dummy read of the cycle timer register to force
1552 all PCI writes to be posted immediately */
1553 mb();
1554 reg_read(recv->ohci, OHCI1394_IsochronousCycleTimer);
1556 /* check RUN */
1557 if (!(reg_read(recv->ohci, recv->ContextControlSet) & 0x8000)) {
1558 PRINT(KERN_ERR,
1559 "Error starting IR DMA (ContextControl 0x%08x)\n",
1560 reg_read(recv->ohci, recv->ContextControlSet));
1561 return -1;
1564 return 0;
1567 static void ohci_iso_recv_release_block(struct ohci_iso_recv *recv, int block)
1569 /* re-use the DMA descriptor for the block */
1570 /* by linking the previous descriptor to it */
1572 int next_i = block;
1573 int prev_i = (next_i == 0) ? (recv->nblocks - 1) : (next_i - 1);
1575 struct dma_cmd *next = &recv->block[next_i];
1576 struct dma_cmd *prev = &recv->block[prev_i];
1578 /* ignore out-of-range requests */
1579 if ((block < 0) || (block > recv->nblocks))
1580 return;
1582 /* 'next' becomes the new end of the DMA chain,
1583 so disable branch and enable interrupt */
1584 next->branchAddress = 0;
1585 next->control |= cpu_to_le32(3 << 20);
1586 next->status = cpu_to_le32(recv->buf_stride);
1588 /* link prev to next */
1589 prev->branchAddress = cpu_to_le32(dma_prog_region_offset_to_bus(&recv->prog,
1590 sizeof(struct dma_cmd) * next_i)
1591 | 1); /* Z=1 */
1593 /* disable interrupt on previous DMA descriptor, except at intervals */
1594 if ((prev_i % recv->block_irq_interval) == 0) {
1595 prev->control |= cpu_to_le32(3 << 20); /* enable interrupt */
1596 } else {
1597 prev->control &= cpu_to_le32(~(3<<20)); /* disable interrupt */
1599 wmb();
1601 /* wake up DMA in case it fell asleep */
1602 reg_write(recv->ohci, recv->ContextControlSet, (1 << 12));
1605 static void ohci_iso_recv_bufferfill_release(struct ohci_iso_recv *recv,
1606 struct hpsb_iso_packet_info *info)
1608 /* release the memory where the packet was */
1609 recv->released_bytes += info->total_len;
1611 /* have we released enough memory for one block? */
1612 while (recv->released_bytes > recv->buf_stride) {
1613 ohci_iso_recv_release_block(recv, recv->block_reader);
1614 recv->block_reader = (recv->block_reader + 1) % recv->nblocks;
1615 recv->released_bytes -= recv->buf_stride;
1619 static inline void ohci_iso_recv_release(struct hpsb_iso *iso, struct hpsb_iso_packet_info *info)
1621 struct ohci_iso_recv *recv = iso->hostdata;
1622 if (recv->dma_mode == BUFFER_FILL_MODE) {
1623 ohci_iso_recv_bufferfill_release(recv, info);
1624 } else {
1625 ohci_iso_recv_release_block(recv, info - iso->infos);
1629 /* parse all packets from blocks that have been fully received */
1630 static void ohci_iso_recv_bufferfill_parse(struct hpsb_iso *iso, struct ohci_iso_recv *recv)
1632 int wake = 0;
1633 int runaway = 0;
1634 struct ti_ohci *ohci = recv->ohci;
1636 while (1) {
1637 /* we expect the next parsable packet to begin at recv->dma_offset */
1638 /* note: packet layout is as shown in section 10.6.1.1 of the OHCI spec */
1640 unsigned int offset;
1641 unsigned short len, cycle, total_len;
1642 unsigned char channel, tag, sy;
1644 unsigned char *p = iso->data_buf.kvirt;
1646 unsigned int this_block = recv->dma_offset/recv->buf_stride;
1648 /* don't loop indefinitely */
1649 if (runaway++ > 100000) {
1650 atomic_inc(&iso->overflows);
1651 PRINT(KERN_ERR,
1652 "IR DMA error - Runaway during buffer parsing!\n");
1653 break;
1656 /* stop parsing once we arrive at block_dma (i.e. don't get ahead of DMA) */
1657 if (this_block == recv->block_dma)
1658 break;
1660 wake = 1;
1662 /* parse data length, tag, channel, and sy */
1664 /* note: we keep our own local copies of 'len' and 'offset'
1665 so the user can't mess with them by poking in the mmap area */
1667 len = p[recv->dma_offset+2] | (p[recv->dma_offset+3] << 8);
1669 if (len > 4096) {
1670 PRINT(KERN_ERR,
1671 "IR DMA error - bogus 'len' value %u\n", len);
1674 channel = p[recv->dma_offset+1] & 0x3F;
1675 tag = p[recv->dma_offset+1] >> 6;
1676 sy = p[recv->dma_offset+0] & 0xF;
1678 /* advance to data payload */
1679 recv->dma_offset += 4;
1681 /* check for wrap-around */
1682 if (recv->dma_offset >= recv->buf_stride*recv->nblocks) {
1683 recv->dma_offset -= recv->buf_stride*recv->nblocks;
1686 /* dma_offset now points to the first byte of the data payload */
1687 offset = recv->dma_offset;
1689 /* advance to xferStatus/timeStamp */
1690 recv->dma_offset += len;
1692 total_len = len + 8; /* 8 bytes header+trailer in OHCI packet */
1693 /* payload is padded to 4 bytes */
1694 if (len % 4) {
1695 recv->dma_offset += 4 - (len%4);
1696 total_len += 4 - (len%4);
1699 /* check for wrap-around */
1700 if (recv->dma_offset >= recv->buf_stride*recv->nblocks) {
1701 /* uh oh, the packet data wraps from the last
1702 to the first DMA block - make the packet
1703 contiguous by copying its "tail" into the
1704 guard page */
1706 int guard_off = recv->buf_stride*recv->nblocks;
1707 int tail_len = len - (guard_off - offset);
1709 if (tail_len > 0 && tail_len < recv->buf_stride) {
1710 memcpy(iso->data_buf.kvirt + guard_off,
1711 iso->data_buf.kvirt,
1712 tail_len);
1715 recv->dma_offset -= recv->buf_stride*recv->nblocks;
1718 /* parse timestamp */
1719 cycle = p[recv->dma_offset+0] | (p[recv->dma_offset+1]<<8);
1720 cycle &= 0x1FFF;
1722 /* advance to next packet */
1723 recv->dma_offset += 4;
1725 /* check for wrap-around */
1726 if (recv->dma_offset >= recv->buf_stride*recv->nblocks) {
1727 recv->dma_offset -= recv->buf_stride*recv->nblocks;
1730 hpsb_iso_packet_received(iso, offset, len, total_len, cycle, channel, tag, sy);
1733 if (wake)
1734 hpsb_iso_wake(iso);
1737 static void ohci_iso_recv_bufferfill_task(struct hpsb_iso *iso, struct ohci_iso_recv *recv)
1739 int loop;
1740 struct ti_ohci *ohci = recv->ohci;
1742 /* loop over all blocks */
1743 for (loop = 0; loop < recv->nblocks; loop++) {
1745 /* check block_dma to see if it's done */
1746 struct dma_cmd *im = &recv->block[recv->block_dma];
1748 /* check the DMA descriptor for new writes to xferStatus */
1749 u16 xferstatus = le32_to_cpu(im->status) >> 16;
1751 /* rescount is the number of bytes *remaining to be written* in the block */
1752 u16 rescount = le32_to_cpu(im->status) & 0xFFFF;
1754 unsigned char event = xferstatus & 0x1F;
1756 if (!event) {
1757 /* nothing has happened to this block yet */
1758 break;
1761 if (event != 0x11) {
1762 atomic_inc(&iso->overflows);
1763 PRINT(KERN_ERR,
1764 "IR DMA error - OHCI error code 0x%02x\n", event);
1767 if (rescount != 0) {
1768 /* the card is still writing to this block;
1769 we can't touch it until it's done */
1770 break;
1773 /* OK, the block is finished... */
1775 /* sync our view of the block */
1776 dma_region_sync_for_cpu(&iso->data_buf, recv->block_dma*recv->buf_stride, recv->buf_stride);
1778 /* reset the DMA descriptor */
1779 im->status = recv->buf_stride;
1781 /* advance block_dma */
1782 recv->block_dma = (recv->block_dma + 1) % recv->nblocks;
1784 if ((recv->block_dma+1) % recv->nblocks == recv->block_reader) {
1785 atomic_inc(&iso->overflows);
1786 DBGMSG("ISO reception overflow - "
1787 "ran out of DMA blocks");
1791 /* parse any packets that have arrived */
1792 ohci_iso_recv_bufferfill_parse(iso, recv);
1795 static void ohci_iso_recv_packetperbuf_task(struct hpsb_iso *iso, struct ohci_iso_recv *recv)
1797 int count;
1798 int wake = 0;
1799 struct ti_ohci *ohci = recv->ohci;
1801 /* loop over the entire buffer */
1802 for (count = 0; count < recv->nblocks; count++) {
1803 u32 packet_len = 0;
1805 /* pointer to the DMA descriptor */
1806 struct dma_cmd *il = ((struct dma_cmd*) recv->prog.kvirt) + iso->pkt_dma;
1808 /* check the DMA descriptor for new writes to xferStatus */
1809 u16 xferstatus = le32_to_cpu(il->status) >> 16;
1810 u16 rescount = le32_to_cpu(il->status) & 0xFFFF;
1812 unsigned char event = xferstatus & 0x1F;
1814 if (!event) {
1815 /* this packet hasn't come in yet; we are done for now */
1816 goto out;
1819 if (event == 0x11) {
1820 /* packet received successfully! */
1822 /* rescount is the number of bytes *remaining* in the packet buffer,
1823 after the packet was written */
1824 packet_len = recv->buf_stride - rescount;
1826 } else if (event == 0x02) {
1827 PRINT(KERN_ERR, "IR DMA error - packet too long for buffer\n");
1828 } else if (event) {
1829 PRINT(KERN_ERR, "IR DMA error - OHCI error code 0x%02x\n", event);
1832 /* sync our view of the buffer */
1833 dma_region_sync_for_cpu(&iso->data_buf, iso->pkt_dma * recv->buf_stride, recv->buf_stride);
1835 /* record the per-packet info */
1837 /* iso header is 8 bytes ahead of the data payload */
1838 unsigned char *hdr;
1840 unsigned int offset;
1841 unsigned short cycle;
1842 unsigned char channel, tag, sy;
1844 offset = iso->pkt_dma * recv->buf_stride;
1845 hdr = iso->data_buf.kvirt + offset;
1847 /* skip iso header */
1848 offset += 8;
1849 packet_len -= 8;
1851 cycle = (hdr[0] | (hdr[1] << 8)) & 0x1FFF;
1852 channel = hdr[5] & 0x3F;
1853 tag = hdr[5] >> 6;
1854 sy = hdr[4] & 0xF;
1856 hpsb_iso_packet_received(iso, offset, packet_len,
1857 recv->buf_stride, cycle, channel, tag, sy);
1860 /* reset the DMA descriptor */
1861 il->status = recv->buf_stride;
1863 wake = 1;
1864 recv->block_dma = iso->pkt_dma;
1867 out:
1868 if (wake)
1869 hpsb_iso_wake(iso);
1872 static void ohci_iso_recv_task(unsigned long data)
1874 struct hpsb_iso *iso = (struct hpsb_iso*) data;
1875 struct ohci_iso_recv *recv = iso->hostdata;
1877 if (recv->dma_mode == BUFFER_FILL_MODE)
1878 ohci_iso_recv_bufferfill_task(iso, recv);
1879 else
1880 ohci_iso_recv_packetperbuf_task(iso, recv);
1883 /***********************************
1884 * rawiso ISO transmission *
1885 ***********************************/
1887 struct ohci_iso_xmit {
1888 struct ti_ohci *ohci;
1889 struct dma_prog_region prog;
1890 struct ohci1394_iso_tasklet task;
1891 int task_active;
1893 u32 ContextControlSet;
1894 u32 ContextControlClear;
1895 u32 CommandPtr;
1898 /* transmission DMA program:
1899 one OUTPUT_MORE_IMMEDIATE for the IT header
1900 one OUTPUT_LAST for the buffer data */
1902 struct iso_xmit_cmd {
1903 struct dma_cmd output_more_immediate;
1904 u8 iso_hdr[8];
1905 u32 unused[2];
1906 struct dma_cmd output_last;
1909 static int ohci_iso_xmit_init(struct hpsb_iso *iso);
1910 static int ohci_iso_xmit_start(struct hpsb_iso *iso, int cycle);
1911 static void ohci_iso_xmit_shutdown(struct hpsb_iso *iso);
1912 static void ohci_iso_xmit_task(unsigned long data);
1914 static int ohci_iso_xmit_init(struct hpsb_iso *iso)
1916 struct ohci_iso_xmit *xmit;
1917 unsigned int prog_size;
1918 int ctx;
1919 int ret = -ENOMEM;
1921 xmit = kmalloc(sizeof(*xmit), GFP_KERNEL);
1922 if (!xmit)
1923 return -ENOMEM;
1925 iso->hostdata = xmit;
1926 xmit->ohci = iso->host->hostdata;
1927 xmit->task_active = 0;
1929 dma_prog_region_init(&xmit->prog);
1931 prog_size = sizeof(struct iso_xmit_cmd) * iso->buf_packets;
1933 if (dma_prog_region_alloc(&xmit->prog, prog_size, xmit->ohci->dev))
1934 goto err;
1936 ohci1394_init_iso_tasklet(&xmit->task, OHCI_ISO_TRANSMIT,
1937 ohci_iso_xmit_task, (unsigned long) iso);
1939 if (ohci1394_register_iso_tasklet(xmit->ohci, &xmit->task) < 0) {
1940 ret = -EBUSY;
1941 goto err;
1944 xmit->task_active = 1;
1946 /* xmit context registers are spaced 16 bytes apart */
1947 ctx = xmit->task.context;
1948 xmit->ContextControlSet = OHCI1394_IsoXmitContextControlSet + 16 * ctx;
1949 xmit->ContextControlClear = OHCI1394_IsoXmitContextControlClear + 16 * ctx;
1950 xmit->CommandPtr = OHCI1394_IsoXmitCommandPtr + 16 * ctx;
1952 return 0;
1954 err:
1955 ohci_iso_xmit_shutdown(iso);
1956 return ret;
1959 static void ohci_iso_xmit_stop(struct hpsb_iso *iso)
1961 struct ohci_iso_xmit *xmit = iso->hostdata;
1962 struct ti_ohci *ohci = xmit->ohci;
1964 /* disable interrupts */
1965 reg_write(xmit->ohci, OHCI1394_IsoXmitIntMaskClear, 1 << xmit->task.context);
1967 /* halt DMA */
1968 if (ohci1394_stop_context(xmit->ohci, xmit->ContextControlClear, NULL)) {
1969 /* XXX the DMA context will lock up if you try to send too much data! */
1970 PRINT(KERN_ERR,
1971 "you probably exceeded the OHCI card's bandwidth limit - "
1972 "reload the module and reduce xmit bandwidth");
1976 static void ohci_iso_xmit_shutdown(struct hpsb_iso *iso)
1978 struct ohci_iso_xmit *xmit = iso->hostdata;
1980 if (xmit->task_active) {
1981 ohci_iso_xmit_stop(iso);
1982 ohci1394_unregister_iso_tasklet(xmit->ohci, &xmit->task);
1983 xmit->task_active = 0;
1986 dma_prog_region_free(&xmit->prog);
1987 kfree(xmit);
1988 iso->hostdata = NULL;
1991 static void ohci_iso_xmit_task(unsigned long data)
1993 struct hpsb_iso *iso = (struct hpsb_iso*) data;
1994 struct ohci_iso_xmit *xmit = iso->hostdata;
1995 struct ti_ohci *ohci = xmit->ohci;
1996 int wake = 0;
1997 int count;
1999 /* check the whole buffer if necessary, starting at pkt_dma */
2000 for (count = 0; count < iso->buf_packets; count++) {
2001 int cycle;
2003 /* DMA descriptor */
2004 struct iso_xmit_cmd *cmd = dma_region_i(&xmit->prog, struct iso_xmit_cmd, iso->pkt_dma);
2006 /* check for new writes to xferStatus */
2007 u16 xferstatus = le32_to_cpu(cmd->output_last.status) >> 16;
2008 u8 event = xferstatus & 0x1F;
2010 if (!event) {
2011 /* packet hasn't been sent yet; we are done for now */
2012 break;
2015 if (event != 0x11)
2016 PRINT(KERN_ERR,
2017 "IT DMA error - OHCI error code 0x%02x\n", event);
2019 /* at least one packet went out, so wake up the writer */
2020 wake = 1;
2022 /* parse cycle */
2023 cycle = le32_to_cpu(cmd->output_last.status) & 0x1FFF;
2025 /* tell the subsystem the packet has gone out */
2026 hpsb_iso_packet_sent(iso, cycle, event != 0x11);
2028 /* reset the DMA descriptor for next time */
2029 cmd->output_last.status = 0;
2032 if (wake)
2033 hpsb_iso_wake(iso);
2036 static int ohci_iso_xmit_queue(struct hpsb_iso *iso, struct hpsb_iso_packet_info *info)
2038 struct ohci_iso_xmit *xmit = iso->hostdata;
2039 struct ti_ohci *ohci = xmit->ohci;
2041 int next_i, prev_i;
2042 struct iso_xmit_cmd *next, *prev;
2044 unsigned int offset;
2045 unsigned short len;
2046 unsigned char tag, sy;
2048 /* check that the packet doesn't cross a page boundary
2049 (we could allow this if we added OUTPUT_MORE descriptor support) */
2050 if (cross_bound(info->offset, info->len)) {
2051 PRINT(KERN_ERR,
2052 "rawiso xmit: packet %u crosses a page boundary",
2053 iso->first_packet);
2054 return -EINVAL;
2057 offset = info->offset;
2058 len = info->len;
2059 tag = info->tag;
2060 sy = info->sy;
2062 /* sync up the card's view of the buffer */
2063 dma_region_sync_for_device(&iso->data_buf, offset, len);
2065 /* append first_packet to the DMA chain */
2066 /* by linking the previous descriptor to it */
2067 /* (next will become the new end of the DMA chain) */
2069 next_i = iso->first_packet;
2070 prev_i = (next_i == 0) ? (iso->buf_packets - 1) : (next_i - 1);
2072 next = dma_region_i(&xmit->prog, struct iso_xmit_cmd, next_i);
2073 prev = dma_region_i(&xmit->prog, struct iso_xmit_cmd, prev_i);
2075 /* set up the OUTPUT_MORE_IMMEDIATE descriptor */
2076 memset(next, 0, sizeof(struct iso_xmit_cmd));
2077 next->output_more_immediate.control = cpu_to_le32(0x02000008);
2079 /* ISO packet header is embedded in the OUTPUT_MORE_IMMEDIATE */
2081 /* tcode = 0xA, and sy */
2082 next->iso_hdr[0] = 0xA0 | (sy & 0xF);
2084 /* tag and channel number */
2085 next->iso_hdr[1] = (tag << 6) | (iso->channel & 0x3F);
2087 /* transmission speed */
2088 next->iso_hdr[2] = iso->speed & 0x7;
2090 /* payload size */
2091 next->iso_hdr[6] = len & 0xFF;
2092 next->iso_hdr[7] = len >> 8;
2094 /* set up the OUTPUT_LAST */
2095 next->output_last.control = cpu_to_le32(1 << 28);
2096 next->output_last.control |= cpu_to_le32(1 << 27); /* update timeStamp */
2097 next->output_last.control |= cpu_to_le32(3 << 20); /* want interrupt */
2098 next->output_last.control |= cpu_to_le32(3 << 18); /* enable branch */
2099 next->output_last.control |= cpu_to_le32(len);
2101 /* payload bus address */
2102 next->output_last.address = cpu_to_le32(dma_region_offset_to_bus(&iso->data_buf, offset));
2104 /* leave branchAddress at zero for now */
2106 /* re-write the previous DMA descriptor to chain to this one */
2108 /* set prev branch address to point to next (Z=3) */
2109 prev->output_last.branchAddress = cpu_to_le32(
2110 dma_prog_region_offset_to_bus(&xmit->prog, sizeof(struct iso_xmit_cmd) * next_i) | 3);
2112 /* disable interrupt, unless required by the IRQ interval */
2113 if (prev_i % iso->irq_interval) {
2114 prev->output_last.control &= cpu_to_le32(~(3 << 20)); /* no interrupt */
2115 } else {
2116 prev->output_last.control |= cpu_to_le32(3 << 20); /* enable interrupt */
2119 wmb();
2121 /* wake DMA in case it is sleeping */
2122 reg_write(xmit->ohci, xmit->ContextControlSet, 1 << 12);
2124 /* issue a dummy read of the cycle timer to force all PCI
2125 writes to be posted immediately */
2126 mb();
2127 reg_read(xmit->ohci, OHCI1394_IsochronousCycleTimer);
2129 return 0;
2132 static int ohci_iso_xmit_start(struct hpsb_iso *iso, int cycle)
2134 struct ohci_iso_xmit *xmit = iso->hostdata;
2135 struct ti_ohci *ohci = xmit->ohci;
2137 /* clear out the control register */
2138 reg_write(xmit->ohci, xmit->ContextControlClear, 0xFFFFFFFF);
2139 wmb();
2141 /* address and length of first descriptor block (Z=3) */
2142 reg_write(xmit->ohci, xmit->CommandPtr,
2143 dma_prog_region_offset_to_bus(&xmit->prog, iso->pkt_dma * sizeof(struct iso_xmit_cmd)) | 3);
2145 /* cycle match */
2146 if (cycle != -1) {
2147 u32 start = cycle & 0x1FFF;
2149 /* 'cycle' is only mod 8000, but we also need two 'seconds' bits -
2150 just snarf them from the current time */
2151 u32 seconds = reg_read(xmit->ohci, OHCI1394_IsochronousCycleTimer) >> 25;
2153 /* advance one second to give some extra time for DMA to start */
2154 seconds += 1;
2156 start |= (seconds & 3) << 13;
2158 reg_write(xmit->ohci, xmit->ContextControlSet, 0x80000000 | (start << 16));
2161 /* enable interrupts */
2162 reg_write(xmit->ohci, OHCI1394_IsoXmitIntMaskSet, 1 << xmit->task.context);
2164 /* run */
2165 reg_write(xmit->ohci, xmit->ContextControlSet, 0x8000);
2166 mb();
2168 /* wait 100 usec to give the card time to go active */
2169 udelay(100);
2171 /* check the RUN bit */
2172 if (!(reg_read(xmit->ohci, xmit->ContextControlSet) & 0x8000)) {
2173 PRINT(KERN_ERR, "Error starting IT DMA (ContextControl 0x%08x)\n",
2174 reg_read(xmit->ohci, xmit->ContextControlSet));
2175 return -1;
2178 return 0;
2181 static int ohci_isoctl(struct hpsb_iso *iso, enum isoctl_cmd cmd, unsigned long arg)
2184 switch(cmd) {
2185 case XMIT_INIT:
2186 return ohci_iso_xmit_init(iso);
2187 case XMIT_START:
2188 return ohci_iso_xmit_start(iso, arg);
2189 case XMIT_STOP:
2190 ohci_iso_xmit_stop(iso);
2191 return 0;
2192 case XMIT_QUEUE:
2193 return ohci_iso_xmit_queue(iso, (struct hpsb_iso_packet_info*) arg);
2194 case XMIT_SHUTDOWN:
2195 ohci_iso_xmit_shutdown(iso);
2196 return 0;
2198 case RECV_INIT:
2199 return ohci_iso_recv_init(iso);
2200 case RECV_START: {
2201 int *args = (int*) arg;
2202 return ohci_iso_recv_start(iso, args[0], args[1], args[2]);
2204 case RECV_STOP:
2205 ohci_iso_recv_stop(iso);
2206 return 0;
2207 case RECV_RELEASE:
2208 ohci_iso_recv_release(iso, (struct hpsb_iso_packet_info*) arg);
2209 return 0;
2210 case RECV_FLUSH:
2211 ohci_iso_recv_task((unsigned long) iso);
2212 return 0;
2213 case RECV_SHUTDOWN:
2214 ohci_iso_recv_shutdown(iso);
2215 return 0;
2216 case RECV_LISTEN_CHANNEL:
2217 ohci_iso_recv_change_channel(iso, arg, 1);
2218 return 0;
2219 case RECV_UNLISTEN_CHANNEL:
2220 ohci_iso_recv_change_channel(iso, arg, 0);
2221 return 0;
2222 case RECV_SET_CHANNEL_MASK:
2223 ohci_iso_recv_set_channel_mask(iso, *((u64*) arg));
2224 return 0;
2226 default:
2227 PRINT_G(KERN_ERR, "ohci_isoctl cmd %d not implemented yet",
2228 cmd);
2229 break;
2231 return -EINVAL;
2234 /***************************************
2235 * IEEE-1394 functionality section END *
2236 ***************************************/
2239 /********************************************************
2240 * Global stuff (interrupt handler, init/shutdown code) *
2241 ********************************************************/
2243 static void dma_trm_reset(struct dma_trm_ctx *d)
2245 unsigned long flags;
2246 LIST_HEAD(packet_list);
2247 struct ti_ohci *ohci = d->ohci;
2248 struct hpsb_packet *packet, *ptmp;
2250 ohci1394_stop_context(ohci, d->ctrlClear, NULL);
2252 /* Lock the context, reset it and release it. Move the packets
2253 * that were pending in the context to packet_list and free
2254 * them after releasing the lock. */
2256 spin_lock_irqsave(&d->lock, flags);
2258 list_splice(&d->fifo_list, &packet_list);
2259 list_splice(&d->pending_list, &packet_list);
2260 INIT_LIST_HEAD(&d->fifo_list);
2261 INIT_LIST_HEAD(&d->pending_list);
2263 d->branchAddrPtr = NULL;
2264 d->sent_ind = d->prg_ind;
2265 d->free_prgs = d->num_desc;
2267 spin_unlock_irqrestore(&d->lock, flags);
2269 if (list_empty(&packet_list))
2270 return;
2272 PRINT(KERN_INFO, "AT dma reset ctx=%d, aborting transmission", d->ctx);
2274 /* Now process subsystem callbacks for the packets from this
2275 * context. */
2276 list_for_each_entry_safe(packet, ptmp, &packet_list, driver_list) {
2277 list_del_init(&packet->driver_list);
2278 hpsb_packet_sent(ohci->host, packet, ACKX_ABORTED);
2282 static void ohci_schedule_iso_tasklets(struct ti_ohci *ohci,
2283 quadlet_t rx_event,
2284 quadlet_t tx_event)
2286 struct ohci1394_iso_tasklet *t;
2287 unsigned long mask;
2288 unsigned long flags;
2290 spin_lock_irqsave(&ohci->iso_tasklet_list_lock, flags);
2292 list_for_each_entry(t, &ohci->iso_tasklet_list, link) {
2293 mask = 1 << t->context;
2295 if (t->type == OHCI_ISO_TRANSMIT && tx_event & mask)
2296 tasklet_schedule(&t->tasklet);
2297 else if (rx_event & mask)
2298 tasklet_schedule(&t->tasklet);
2301 spin_unlock_irqrestore(&ohci->iso_tasklet_list_lock, flags);
2304 static irqreturn_t ohci_irq_handler(int irq, void *dev_id)
2306 quadlet_t event, node_id;
2307 struct ti_ohci *ohci = (struct ti_ohci *)dev_id;
2308 struct hpsb_host *host = ohci->host;
2309 int phyid = -1, isroot = 0;
2310 unsigned long flags;
2312 /* Read and clear the interrupt event register. Don't clear
2313 * the busReset event, though. This is done when we get the
2314 * selfIDComplete interrupt. */
2315 spin_lock_irqsave(&ohci->event_lock, flags);
2316 event = reg_read(ohci, OHCI1394_IntEventClear);
2317 reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
2318 spin_unlock_irqrestore(&ohci->event_lock, flags);
2320 if (!event)
2321 return IRQ_NONE;
2323 /* If event is ~(u32)0 cardbus card was ejected. In this case
2324 * we just return, and clean up in the ohci1394_pci_remove
2325 * function. */
2326 if (event == ~(u32) 0) {
2327 DBGMSG("Device removed.");
2328 return IRQ_NONE;
2331 DBGMSG("IntEvent: %08x", event);
2333 if (event & OHCI1394_unrecoverableError) {
2334 int ctx;
2335 PRINT(KERN_ERR, "Unrecoverable error!");
2337 if (reg_read(ohci, OHCI1394_AsReqTrContextControlSet) & 0x800)
2338 PRINT(KERN_ERR, "Async Req Tx Context died: "
2339 "ctrl[%08x] cmdptr[%08x]",
2340 reg_read(ohci, OHCI1394_AsReqTrContextControlSet),
2341 reg_read(ohci, OHCI1394_AsReqTrCommandPtr));
2343 if (reg_read(ohci, OHCI1394_AsRspTrContextControlSet) & 0x800)
2344 PRINT(KERN_ERR, "Async Rsp Tx Context died: "
2345 "ctrl[%08x] cmdptr[%08x]",
2346 reg_read(ohci, OHCI1394_AsRspTrContextControlSet),
2347 reg_read(ohci, OHCI1394_AsRspTrCommandPtr));
2349 if (reg_read(ohci, OHCI1394_AsReqRcvContextControlSet) & 0x800)
2350 PRINT(KERN_ERR, "Async Req Rcv Context died: "
2351 "ctrl[%08x] cmdptr[%08x]",
2352 reg_read(ohci, OHCI1394_AsReqRcvContextControlSet),
2353 reg_read(ohci, OHCI1394_AsReqRcvCommandPtr));
2355 if (reg_read(ohci, OHCI1394_AsRspRcvContextControlSet) & 0x800)
2356 PRINT(KERN_ERR, "Async Rsp Rcv Context died: "
2357 "ctrl[%08x] cmdptr[%08x]",
2358 reg_read(ohci, OHCI1394_AsRspRcvContextControlSet),
2359 reg_read(ohci, OHCI1394_AsRspRcvCommandPtr));
2361 for (ctx = 0; ctx < ohci->nb_iso_xmit_ctx; ctx++) {
2362 if (reg_read(ohci, OHCI1394_IsoXmitContextControlSet + (16 * ctx)) & 0x800)
2363 PRINT(KERN_ERR, "Iso Xmit %d Context died: "
2364 "ctrl[%08x] cmdptr[%08x]", ctx,
2365 reg_read(ohci, OHCI1394_IsoXmitContextControlSet + (16 * ctx)),
2366 reg_read(ohci, OHCI1394_IsoXmitCommandPtr + (16 * ctx)));
2369 for (ctx = 0; ctx < ohci->nb_iso_rcv_ctx; ctx++) {
2370 if (reg_read(ohci, OHCI1394_IsoRcvContextControlSet + (32 * ctx)) & 0x800)
2371 PRINT(KERN_ERR, "Iso Recv %d Context died: "
2372 "ctrl[%08x] cmdptr[%08x] match[%08x]", ctx,
2373 reg_read(ohci, OHCI1394_IsoRcvContextControlSet + (32 * ctx)),
2374 reg_read(ohci, OHCI1394_IsoRcvCommandPtr + (32 * ctx)),
2375 reg_read(ohci, OHCI1394_IsoRcvContextMatch + (32 * ctx)));
2378 event &= ~OHCI1394_unrecoverableError;
2380 if (event & OHCI1394_postedWriteErr) {
2381 PRINT(KERN_ERR, "physical posted write error");
2382 /* no recovery strategy yet, had to involve protocol drivers */
2384 if (event & OHCI1394_cycleTooLong) {
2385 if(printk_ratelimit())
2386 PRINT(KERN_WARNING, "isochronous cycle too long");
2387 else
2388 DBGMSG("OHCI1394_cycleTooLong");
2389 reg_write(ohci, OHCI1394_LinkControlSet,
2390 OHCI1394_LinkControl_CycleMaster);
2391 event &= ~OHCI1394_cycleTooLong;
2393 if (event & OHCI1394_cycleInconsistent) {
2394 /* We subscribe to the cycleInconsistent event only to
2395 * clear the corresponding event bit... otherwise,
2396 * isochronous cycleMatch DMA won't work. */
2397 DBGMSG("OHCI1394_cycleInconsistent");
2398 event &= ~OHCI1394_cycleInconsistent;
2400 if (event & OHCI1394_busReset) {
2401 /* The busReset event bit can't be cleared during the
2402 * selfID phase, so we disable busReset interrupts, to
2403 * avoid burying the cpu in interrupt requests. */
2404 spin_lock_irqsave(&ohci->event_lock, flags);
2405 reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_busReset);
2407 if (ohci->check_busreset) {
2408 int loop_count = 0;
2410 udelay(10);
2412 while (reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
2413 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2415 spin_unlock_irqrestore(&ohci->event_lock, flags);
2416 udelay(10);
2417 spin_lock_irqsave(&ohci->event_lock, flags);
2419 /* The loop counter check is to prevent the driver
2420 * from remaining in this state forever. For the
2421 * initial bus reset, the loop continues for ever
2422 * and the system hangs, until some device is plugged-in
2423 * or out manually into a port! The forced reset seems
2424 * to solve this problem. This mainly effects nForce2. */
2425 if (loop_count > 10000) {
2426 ohci_devctl(host, RESET_BUS, LONG_RESET);
2427 DBGMSG("Detected bus-reset loop. Forced a bus reset!");
2428 loop_count = 0;
2431 loop_count++;
2434 spin_unlock_irqrestore(&ohci->event_lock, flags);
2435 if (!host->in_bus_reset) {
2436 DBGMSG("irq_handler: Bus reset requested");
2438 /* Subsystem call */
2439 hpsb_bus_reset(ohci->host);
2441 event &= ~OHCI1394_busReset;
2443 if (event & OHCI1394_reqTxComplete) {
2444 struct dma_trm_ctx *d = &ohci->at_req_context;
2445 DBGMSG("Got reqTxComplete interrupt "
2446 "status=0x%08X", reg_read(ohci, d->ctrlSet));
2447 if (reg_read(ohci, d->ctrlSet) & 0x800)
2448 ohci1394_stop_context(ohci, d->ctrlClear,
2449 "reqTxComplete");
2450 else
2451 dma_trm_tasklet((unsigned long)d);
2452 //tasklet_schedule(&d->task);
2453 event &= ~OHCI1394_reqTxComplete;
2455 if (event & OHCI1394_respTxComplete) {
2456 struct dma_trm_ctx *d = &ohci->at_resp_context;
2457 DBGMSG("Got respTxComplete interrupt "
2458 "status=0x%08X", reg_read(ohci, d->ctrlSet));
2459 if (reg_read(ohci, d->ctrlSet) & 0x800)
2460 ohci1394_stop_context(ohci, d->ctrlClear,
2461 "respTxComplete");
2462 else
2463 tasklet_schedule(&d->task);
2464 event &= ~OHCI1394_respTxComplete;
2466 if (event & OHCI1394_RQPkt) {
2467 struct dma_rcv_ctx *d = &ohci->ar_req_context;
2468 DBGMSG("Got RQPkt interrupt status=0x%08X",
2469 reg_read(ohci, d->ctrlSet));
2470 if (reg_read(ohci, d->ctrlSet) & 0x800)
2471 ohci1394_stop_context(ohci, d->ctrlClear, "RQPkt");
2472 else
2473 tasklet_schedule(&d->task);
2474 event &= ~OHCI1394_RQPkt;
2476 if (event & OHCI1394_RSPkt) {
2477 struct dma_rcv_ctx *d = &ohci->ar_resp_context;
2478 DBGMSG("Got RSPkt interrupt status=0x%08X",
2479 reg_read(ohci, d->ctrlSet));
2480 if (reg_read(ohci, d->ctrlSet) & 0x800)
2481 ohci1394_stop_context(ohci, d->ctrlClear, "RSPkt");
2482 else
2483 tasklet_schedule(&d->task);
2484 event &= ~OHCI1394_RSPkt;
2486 if (event & OHCI1394_isochRx) {
2487 quadlet_t rx_event;
2489 rx_event = reg_read(ohci, OHCI1394_IsoRecvIntEventSet);
2490 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, rx_event);
2491 ohci_schedule_iso_tasklets(ohci, rx_event, 0);
2492 event &= ~OHCI1394_isochRx;
2494 if (event & OHCI1394_isochTx) {
2495 quadlet_t tx_event;
2497 tx_event = reg_read(ohci, OHCI1394_IsoXmitIntEventSet);
2498 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, tx_event);
2499 ohci_schedule_iso_tasklets(ohci, 0, tx_event);
2500 event &= ~OHCI1394_isochTx;
2502 if (event & OHCI1394_selfIDComplete) {
2503 if (host->in_bus_reset) {
2504 node_id = reg_read(ohci, OHCI1394_NodeID);
2506 if (!(node_id & 0x80000000)) {
2507 PRINT(KERN_ERR,
2508 "SelfID received, but NodeID invalid "
2509 "(probably new bus reset occurred): %08X",
2510 node_id);
2511 goto selfid_not_valid;
2514 phyid = node_id & 0x0000003f;
2515 isroot = (node_id & 0x40000000) != 0;
2517 DBGMSG("SelfID interrupt received "
2518 "(phyid %d, %s)", phyid,
2519 (isroot ? "root" : "not root"));
2521 handle_selfid(ohci, host, phyid, isroot);
2523 /* Clear the bus reset event and re-enable the
2524 * busReset interrupt. */
2525 spin_lock_irqsave(&ohci->event_lock, flags);
2526 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2527 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
2528 spin_unlock_irqrestore(&ohci->event_lock, flags);
2530 /* Turn on phys dma reception.
2532 * TODO: Enable some sort of filtering management.
2534 if (phys_dma) {
2535 reg_write(ohci, OHCI1394_PhyReqFilterHiSet,
2536 0xffffffff);
2537 reg_write(ohci, OHCI1394_PhyReqFilterLoSet,
2538 0xffffffff);
2541 DBGMSG("PhyReqFilter=%08x%08x",
2542 reg_read(ohci, OHCI1394_PhyReqFilterHiSet),
2543 reg_read(ohci, OHCI1394_PhyReqFilterLoSet));
2545 hpsb_selfid_complete(host, phyid, isroot);
2546 } else
2547 PRINT(KERN_ERR,
2548 "SelfID received outside of bus reset sequence");
2550 selfid_not_valid:
2551 event &= ~OHCI1394_selfIDComplete;
2554 /* Make sure we handle everything, just in case we accidentally
2555 * enabled an interrupt that we didn't write a handler for. */
2556 if (event)
2557 PRINT(KERN_ERR, "Unhandled interrupt(s) 0x%08x",
2558 event);
2560 return IRQ_HANDLED;
2563 /* Put the buffer back into the dma context */
2564 static void insert_dma_buffer(struct dma_rcv_ctx *d, int idx)
2566 struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
2567 DBGMSG("Inserting dma buf ctx=%d idx=%d", d->ctx, idx);
2569 d->prg_cpu[idx]->status = cpu_to_le32(d->buf_size);
2570 d->prg_cpu[idx]->branchAddress &= le32_to_cpu(0xfffffff0);
2571 idx = (idx + d->num_desc - 1 ) % d->num_desc;
2572 d->prg_cpu[idx]->branchAddress |= le32_to_cpu(0x00000001);
2574 /* To avoid a race, ensure 1394 interface hardware sees the inserted
2575 * context program descriptors before it sees the wakeup bit set. */
2576 wmb();
2578 /* wake up the dma context if necessary */
2579 if (!(reg_read(ohci, d->ctrlSet) & 0x400)) {
2580 PRINT(KERN_INFO,
2581 "Waking dma ctx=%d ... processing is probably too slow",
2582 d->ctx);
2585 /* do this always, to avoid race condition */
2586 reg_write(ohci, d->ctrlSet, 0x1000);
2589 #define cond_le32_to_cpu(data, noswap) \
2590 (noswap ? data : le32_to_cpu(data))
2592 static const int TCODE_SIZE[16] = {20, 0, 16, -1, 16, 20, 20, 0,
2593 -1, 0, -1, 0, -1, -1, 16, -1};
2596 * Determine the length of a packet in the buffer
2597 * Optimization suggested by Pascal Drolet <pascal.drolet@informission.ca>
2599 static inline int packet_length(struct dma_rcv_ctx *d, int idx,
2600 quadlet_t *buf_ptr, int offset,
2601 unsigned char tcode, int noswap)
2603 int length = -1;
2605 if (d->type == DMA_CTX_ASYNC_REQ || d->type == DMA_CTX_ASYNC_RESP) {
2606 length = TCODE_SIZE[tcode];
2607 if (length == 0) {
2608 if (offset + 12 >= d->buf_size) {
2609 length = (cond_le32_to_cpu(d->buf_cpu[(idx + 1) % d->num_desc]
2610 [3 - ((d->buf_size - offset) >> 2)], noswap) >> 16);
2611 } else {
2612 length = (cond_le32_to_cpu(buf_ptr[3], noswap) >> 16);
2614 length += 20;
2616 } else if (d->type == DMA_CTX_ISO) {
2617 /* Assumption: buffer fill mode with header/trailer */
2618 length = (cond_le32_to_cpu(buf_ptr[0], noswap) >> 16) + 8;
2621 if (length > 0 && length % 4)
2622 length += 4 - (length % 4);
2624 return length;
2627 /* Tasklet that processes dma receive buffers */
2628 static void dma_rcv_tasklet (unsigned long data)
2630 struct dma_rcv_ctx *d = (struct dma_rcv_ctx*)data;
2631 struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
2632 unsigned int split_left, idx, offset, rescount;
2633 unsigned char tcode;
2634 int length, bytes_left, ack;
2635 unsigned long flags;
2636 quadlet_t *buf_ptr;
2637 char *split_ptr;
2638 char msg[256];
2640 spin_lock_irqsave(&d->lock, flags);
2642 idx = d->buf_ind;
2643 offset = d->buf_offset;
2644 buf_ptr = d->buf_cpu[idx] + offset/4;
2646 rescount = le32_to_cpu(d->prg_cpu[idx]->status) & 0xffff;
2647 bytes_left = d->buf_size - rescount - offset;
2649 while (bytes_left > 0) {
2650 tcode = (cond_le32_to_cpu(buf_ptr[0], ohci->no_swap_incoming) >> 4) & 0xf;
2652 /* packet_length() will return < 4 for an error */
2653 length = packet_length(d, idx, buf_ptr, offset, tcode, ohci->no_swap_incoming);
2655 if (length < 4) { /* something is wrong */
2656 sprintf(msg,"Unexpected tcode 0x%x(0x%08x) in AR ctx=%d, length=%d",
2657 tcode, cond_le32_to_cpu(buf_ptr[0], ohci->no_swap_incoming),
2658 d->ctx, length);
2659 ohci1394_stop_context(ohci, d->ctrlClear, msg);
2660 spin_unlock_irqrestore(&d->lock, flags);
2661 return;
2664 /* The first case is where we have a packet that crosses
2665 * over more than one descriptor. The next case is where
2666 * it's all in the first descriptor. */
2667 if ((offset + length) > d->buf_size) {
2668 DBGMSG("Split packet rcv'd");
2669 if (length > d->split_buf_size) {
2670 ohci1394_stop_context(ohci, d->ctrlClear,
2671 "Split packet size exceeded");
2672 d->buf_ind = idx;
2673 d->buf_offset = offset;
2674 spin_unlock_irqrestore(&d->lock, flags);
2675 return;
2678 if (le32_to_cpu(d->prg_cpu[(idx+1)%d->num_desc]->status)
2679 == d->buf_size) {
2680 /* Other part of packet not written yet.
2681 * this should never happen I think
2682 * anyway we'll get it on the next call. */
2683 PRINT(KERN_INFO,
2684 "Got only half a packet!");
2685 d->buf_ind = idx;
2686 d->buf_offset = offset;
2687 spin_unlock_irqrestore(&d->lock, flags);
2688 return;
2691 split_left = length;
2692 split_ptr = (char *)d->spb;
2693 memcpy(split_ptr,buf_ptr,d->buf_size-offset);
2694 split_left -= d->buf_size-offset;
2695 split_ptr += d->buf_size-offset;
2696 insert_dma_buffer(d, idx);
2697 idx = (idx+1) % d->num_desc;
2698 buf_ptr = d->buf_cpu[idx];
2699 offset=0;
2701 while (split_left >= d->buf_size) {
2702 memcpy(split_ptr,buf_ptr,d->buf_size);
2703 split_ptr += d->buf_size;
2704 split_left -= d->buf_size;
2705 insert_dma_buffer(d, idx);
2706 idx = (idx+1) % d->num_desc;
2707 buf_ptr = d->buf_cpu[idx];
2710 if (split_left > 0) {
2711 memcpy(split_ptr, buf_ptr, split_left);
2712 offset = split_left;
2713 buf_ptr += offset/4;
2715 } else {
2716 DBGMSG("Single packet rcv'd");
2717 memcpy(d->spb, buf_ptr, length);
2718 offset += length;
2719 buf_ptr += length/4;
2720 if (offset==d->buf_size) {
2721 insert_dma_buffer(d, idx);
2722 idx = (idx+1) % d->num_desc;
2723 buf_ptr = d->buf_cpu[idx];
2724 offset=0;
2728 /* We get one phy packet to the async descriptor for each
2729 * bus reset. We always ignore it. */
2730 if (tcode != OHCI1394_TCODE_PHY) {
2731 if (!ohci->no_swap_incoming)
2732 header_le32_to_cpu(d->spb, tcode);
2733 DBGMSG("Packet received from node"
2734 " %d ack=0x%02X spd=%d tcode=0x%X"
2735 " length=%d ctx=%d tlabel=%d",
2736 (d->spb[1]>>16)&0x3f,
2737 (cond_le32_to_cpu(d->spb[length/4-1], ohci->no_swap_incoming)>>16)&0x1f,
2738 (cond_le32_to_cpu(d->spb[length/4-1], ohci->no_swap_incoming)>>21)&0x3,
2739 tcode, length, d->ctx,
2740 (d->spb[0]>>10)&0x3f);
2742 ack = (((cond_le32_to_cpu(d->spb[length/4-1], ohci->no_swap_incoming)>>16)&0x1f)
2743 == 0x11) ? 1 : 0;
2745 hpsb_packet_received(ohci->host, d->spb,
2746 length-4, ack);
2748 #ifdef OHCI1394_DEBUG
2749 else
2750 PRINT (KERN_DEBUG, "Got phy packet ctx=%d ... discarded",
2751 d->ctx);
2752 #endif
2754 rescount = le32_to_cpu(d->prg_cpu[idx]->status) & 0xffff;
2756 bytes_left = d->buf_size - rescount - offset;
2760 d->buf_ind = idx;
2761 d->buf_offset = offset;
2763 spin_unlock_irqrestore(&d->lock, flags);
2766 /* Bottom half that processes sent packets */
2767 static void dma_trm_tasklet (unsigned long data)
2769 struct dma_trm_ctx *d = (struct dma_trm_ctx*)data;
2770 struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
2771 struct hpsb_packet *packet, *ptmp;
2772 unsigned long flags;
2773 u32 status, ack;
2774 size_t datasize;
2776 spin_lock_irqsave(&d->lock, flags);
2778 list_for_each_entry_safe(packet, ptmp, &d->fifo_list, driver_list) {
2779 datasize = packet->data_size;
2780 if (datasize && packet->type != hpsb_raw)
2781 status = le32_to_cpu(
2782 d->prg_cpu[d->sent_ind]->end.status) >> 16;
2783 else
2784 status = le32_to_cpu(
2785 d->prg_cpu[d->sent_ind]->begin.status) >> 16;
2787 if (status == 0)
2788 /* this packet hasn't been sent yet*/
2789 break;
2791 #ifdef OHCI1394_DEBUG
2792 if (datasize)
2793 if (((le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>4)&0xf) == 0xa)
2794 DBGMSG("Stream packet sent to channel %d tcode=0x%X "
2795 "ack=0x%X spd=%d dataLength=%d ctx=%d",
2796 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>8)&0x3f,
2797 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>4)&0xf,
2798 status&0x1f, (status>>5)&0x3,
2799 le32_to_cpu(d->prg_cpu[d->sent_ind]->data[1])>>16,
2800 d->ctx);
2801 else
2802 DBGMSG("Packet sent to node %d tcode=0x%X tLabel="
2803 "%d ack=0x%X spd=%d dataLength=%d ctx=%d",
2804 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[1])>>16)&0x3f,
2805 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>4)&0xf,
2806 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>10)&0x3f,
2807 status&0x1f, (status>>5)&0x3,
2808 le32_to_cpu(d->prg_cpu[d->sent_ind]->data[3])>>16,
2809 d->ctx);
2810 else
2811 DBGMSG("Packet sent to node %d tcode=0x%X tLabel="
2812 "%d ack=0x%X spd=%d data=0x%08X ctx=%d",
2813 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[1])
2814 >>16)&0x3f,
2815 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])
2816 >>4)&0xf,
2817 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])
2818 >>10)&0x3f,
2819 status&0x1f, (status>>5)&0x3,
2820 le32_to_cpu(d->prg_cpu[d->sent_ind]->data[3]),
2821 d->ctx);
2822 #endif
2824 if (status & 0x10) {
2825 ack = status & 0xf;
2826 } else {
2827 switch (status & 0x1f) {
2828 case EVT_NO_STATUS: /* that should never happen */
2829 case EVT_RESERVED_A: /* that should never happen */
2830 case EVT_LONG_PACKET: /* that should never happen */
2831 PRINT(KERN_WARNING, "Received OHCI evt_* error 0x%x", status & 0x1f);
2832 ack = ACKX_SEND_ERROR;
2833 break;
2834 case EVT_MISSING_ACK:
2835 ack = ACKX_TIMEOUT;
2836 break;
2837 case EVT_UNDERRUN:
2838 ack = ACKX_SEND_ERROR;
2839 break;
2840 case EVT_OVERRUN: /* that should never happen */
2841 PRINT(KERN_WARNING, "Received OHCI evt_* error 0x%x", status & 0x1f);
2842 ack = ACKX_SEND_ERROR;
2843 break;
2844 case EVT_DESCRIPTOR_READ:
2845 case EVT_DATA_READ:
2846 case EVT_DATA_WRITE:
2847 ack = ACKX_SEND_ERROR;
2848 break;
2849 case EVT_BUS_RESET: /* that should never happen */
2850 PRINT(KERN_WARNING, "Received OHCI evt_* error 0x%x", status & 0x1f);
2851 ack = ACKX_SEND_ERROR;
2852 break;
2853 case EVT_TIMEOUT:
2854 ack = ACKX_TIMEOUT;
2855 break;
2856 case EVT_TCODE_ERR:
2857 ack = ACKX_SEND_ERROR;
2858 break;
2859 case EVT_RESERVED_B: /* that should never happen */
2860 case EVT_RESERVED_C: /* that should never happen */
2861 PRINT(KERN_WARNING, "Received OHCI evt_* error 0x%x", status & 0x1f);
2862 ack = ACKX_SEND_ERROR;
2863 break;
2864 case EVT_UNKNOWN:
2865 case EVT_FLUSHED:
2866 ack = ACKX_SEND_ERROR;
2867 break;
2868 default:
2869 PRINT(KERN_ERR, "Unhandled OHCI evt_* error 0x%x", status & 0x1f);
2870 ack = ACKX_SEND_ERROR;
2871 BUG();
2875 list_del_init(&packet->driver_list);
2876 hpsb_packet_sent(ohci->host, packet, ack);
2878 if (datasize) {
2879 pci_unmap_single(ohci->dev,
2880 cpu_to_le32(d->prg_cpu[d->sent_ind]->end.address),
2881 datasize, PCI_DMA_TODEVICE);
2882 OHCI_DMA_FREE("single Xmit data packet");
2885 d->sent_ind = (d->sent_ind+1)%d->num_desc;
2886 d->free_prgs++;
2889 dma_trm_flush(ohci, d);
2891 spin_unlock_irqrestore(&d->lock, flags);
2894 static void stop_dma_rcv_ctx(struct dma_rcv_ctx *d)
2896 if (d->ctrlClear) {
2897 ohci1394_stop_context(d->ohci, d->ctrlClear, NULL);
2899 if (d->type == DMA_CTX_ISO) {
2900 /* disable interrupts */
2901 reg_write(d->ohci, OHCI1394_IsoRecvIntMaskClear, 1 << d->ctx);
2902 ohci1394_unregister_iso_tasklet(d->ohci, &d->ohci->ir_legacy_tasklet);
2903 } else {
2904 tasklet_kill(&d->task);
2910 static void free_dma_rcv_ctx(struct dma_rcv_ctx *d)
2912 int i;
2913 struct ti_ohci *ohci = d->ohci;
2915 if (ohci == NULL)
2916 return;
2918 DBGMSG("Freeing dma_rcv_ctx %d", d->ctx);
2920 if (d->buf_cpu) {
2921 for (i=0; i<d->num_desc; i++)
2922 if (d->buf_cpu[i] && d->buf_bus[i]) {
2923 pci_free_consistent(
2924 ohci->dev, d->buf_size,
2925 d->buf_cpu[i], d->buf_bus[i]);
2926 OHCI_DMA_FREE("consistent dma_rcv buf[%d]", i);
2928 kfree(d->buf_cpu);
2929 kfree(d->buf_bus);
2931 if (d->prg_cpu) {
2932 for (i=0; i<d->num_desc; i++)
2933 if (d->prg_cpu[i] && d->prg_bus[i]) {
2934 pci_pool_free(d->prg_pool, d->prg_cpu[i], d->prg_bus[i]);
2935 OHCI_DMA_FREE("consistent dma_rcv prg[%d]", i);
2937 pci_pool_destroy(d->prg_pool);
2938 OHCI_DMA_FREE("dma_rcv prg pool");
2939 kfree(d->prg_cpu);
2940 kfree(d->prg_bus);
2942 kfree(d->spb);
2944 /* Mark this context as freed. */
2945 d->ohci = NULL;
2948 static int
2949 alloc_dma_rcv_ctx(struct ti_ohci *ohci, struct dma_rcv_ctx *d,
2950 enum context_type type, int ctx, int num_desc,
2951 int buf_size, int split_buf_size, int context_base)
2953 int i, len;
2954 static int num_allocs;
2955 static char pool_name[20];
2957 d->ohci = ohci;
2958 d->type = type;
2959 d->ctx = ctx;
2961 d->num_desc = num_desc;
2962 d->buf_size = buf_size;
2963 d->split_buf_size = split_buf_size;
2965 d->ctrlSet = 0;
2966 d->ctrlClear = 0;
2967 d->cmdPtr = 0;
2969 d->buf_cpu = kzalloc(d->num_desc * sizeof(*d->buf_cpu), GFP_ATOMIC);
2970 d->buf_bus = kzalloc(d->num_desc * sizeof(*d->buf_bus), GFP_ATOMIC);
2972 if (d->buf_cpu == NULL || d->buf_bus == NULL) {
2973 PRINT(KERN_ERR, "Failed to allocate dma buffer");
2974 free_dma_rcv_ctx(d);
2975 return -ENOMEM;
2978 d->prg_cpu = kzalloc(d->num_desc * sizeof(*d->prg_cpu), GFP_ATOMIC);
2979 d->prg_bus = kzalloc(d->num_desc * sizeof(*d->prg_bus), GFP_ATOMIC);
2981 if (d->prg_cpu == NULL || d->prg_bus == NULL) {
2982 PRINT(KERN_ERR, "Failed to allocate dma prg");
2983 free_dma_rcv_ctx(d);
2984 return -ENOMEM;
2987 d->spb = kmalloc(d->split_buf_size, GFP_ATOMIC);
2989 if (d->spb == NULL) {
2990 PRINT(KERN_ERR, "Failed to allocate split buffer");
2991 free_dma_rcv_ctx(d);
2992 return -ENOMEM;
2995 len = sprintf(pool_name, "ohci1394_rcv_prg");
2996 sprintf(pool_name+len, "%d", num_allocs);
2997 d->prg_pool = pci_pool_create(pool_name, ohci->dev,
2998 sizeof(struct dma_cmd), 4, 0);
2999 if(d->prg_pool == NULL)
3001 PRINT(KERN_ERR, "pci_pool_create failed for %s", pool_name);
3002 free_dma_rcv_ctx(d);
3003 return -ENOMEM;
3005 num_allocs++;
3007 OHCI_DMA_ALLOC("dma_rcv prg pool");
3009 for (i=0; i<d->num_desc; i++) {
3010 d->buf_cpu[i] = pci_alloc_consistent(ohci->dev,
3011 d->buf_size,
3012 d->buf_bus+i);
3013 OHCI_DMA_ALLOC("consistent dma_rcv buf[%d]", i);
3015 if (d->buf_cpu[i] != NULL) {
3016 memset(d->buf_cpu[i], 0, d->buf_size);
3017 } else {
3018 PRINT(KERN_ERR,
3019 "Failed to allocate dma buffer");
3020 free_dma_rcv_ctx(d);
3021 return -ENOMEM;
3024 d->prg_cpu[i] = pci_pool_alloc(d->prg_pool, GFP_KERNEL, d->prg_bus+i);
3025 OHCI_DMA_ALLOC("pool dma_rcv prg[%d]", i);
3027 if (d->prg_cpu[i] != NULL) {
3028 memset(d->prg_cpu[i], 0, sizeof(struct dma_cmd));
3029 } else {
3030 PRINT(KERN_ERR,
3031 "Failed to allocate dma prg");
3032 free_dma_rcv_ctx(d);
3033 return -ENOMEM;
3037 spin_lock_init(&d->lock);
3039 if (type == DMA_CTX_ISO) {
3040 ohci1394_init_iso_tasklet(&ohci->ir_legacy_tasklet,
3041 OHCI_ISO_MULTICHANNEL_RECEIVE,
3042 dma_rcv_tasklet, (unsigned long) d);
3043 } else {
3044 d->ctrlSet = context_base + OHCI1394_ContextControlSet;
3045 d->ctrlClear = context_base + OHCI1394_ContextControlClear;
3046 d->cmdPtr = context_base + OHCI1394_ContextCommandPtr;
3048 tasklet_init (&d->task, dma_rcv_tasklet, (unsigned long) d);
3051 return 0;
3054 static void free_dma_trm_ctx(struct dma_trm_ctx *d)
3056 int i;
3057 struct ti_ohci *ohci = d->ohci;
3059 if (ohci == NULL)
3060 return;
3062 DBGMSG("Freeing dma_trm_ctx %d", d->ctx);
3064 if (d->prg_cpu) {
3065 for (i=0; i<d->num_desc; i++)
3066 if (d->prg_cpu[i] && d->prg_bus[i]) {
3067 pci_pool_free(d->prg_pool, d->prg_cpu[i], d->prg_bus[i]);
3068 OHCI_DMA_FREE("pool dma_trm prg[%d]", i);
3070 pci_pool_destroy(d->prg_pool);
3071 OHCI_DMA_FREE("dma_trm prg pool");
3072 kfree(d->prg_cpu);
3073 kfree(d->prg_bus);
3076 /* Mark this context as freed. */
3077 d->ohci = NULL;
3080 static int
3081 alloc_dma_trm_ctx(struct ti_ohci *ohci, struct dma_trm_ctx *d,
3082 enum context_type type, int ctx, int num_desc,
3083 int context_base)
3085 int i, len;
3086 static char pool_name[20];
3087 static int num_allocs=0;
3089 d->ohci = ohci;
3090 d->type = type;
3091 d->ctx = ctx;
3092 d->num_desc = num_desc;
3093 d->ctrlSet = 0;
3094 d->ctrlClear = 0;
3095 d->cmdPtr = 0;
3097 d->prg_cpu = kzalloc(d->num_desc * sizeof(*d->prg_cpu), GFP_KERNEL);
3098 d->prg_bus = kzalloc(d->num_desc * sizeof(*d->prg_bus), GFP_KERNEL);
3100 if (d->prg_cpu == NULL || d->prg_bus == NULL) {
3101 PRINT(KERN_ERR, "Failed to allocate at dma prg");
3102 free_dma_trm_ctx(d);
3103 return -ENOMEM;
3106 len = sprintf(pool_name, "ohci1394_trm_prg");
3107 sprintf(pool_name+len, "%d", num_allocs);
3108 d->prg_pool = pci_pool_create(pool_name, ohci->dev,
3109 sizeof(struct at_dma_prg), 4, 0);
3110 if (d->prg_pool == NULL) {
3111 PRINT(KERN_ERR, "pci_pool_create failed for %s", pool_name);
3112 free_dma_trm_ctx(d);
3113 return -ENOMEM;
3115 num_allocs++;
3117 OHCI_DMA_ALLOC("dma_rcv prg pool");
3119 for (i = 0; i < d->num_desc; i++) {
3120 d->prg_cpu[i] = pci_pool_alloc(d->prg_pool, GFP_KERNEL, d->prg_bus+i);
3121 OHCI_DMA_ALLOC("pool dma_trm prg[%d]", i);
3123 if (d->prg_cpu[i] != NULL) {
3124 memset(d->prg_cpu[i], 0, sizeof(struct at_dma_prg));
3125 } else {
3126 PRINT(KERN_ERR,
3127 "Failed to allocate at dma prg");
3128 free_dma_trm_ctx(d);
3129 return -ENOMEM;
3133 spin_lock_init(&d->lock);
3135 /* initialize tasklet */
3136 if (type == DMA_CTX_ISO) {
3137 ohci1394_init_iso_tasklet(&ohci->it_legacy_tasklet, OHCI_ISO_TRANSMIT,
3138 dma_trm_tasklet, (unsigned long) d);
3139 if (ohci1394_register_iso_tasklet(ohci,
3140 &ohci->it_legacy_tasklet) < 0) {
3141 PRINT(KERN_ERR, "No IT DMA context available");
3142 free_dma_trm_ctx(d);
3143 return -EBUSY;
3146 /* IT can be assigned to any context by register_iso_tasklet */
3147 d->ctx = ohci->it_legacy_tasklet.context;
3148 d->ctrlSet = OHCI1394_IsoXmitContextControlSet + 16 * d->ctx;
3149 d->ctrlClear = OHCI1394_IsoXmitContextControlClear + 16 * d->ctx;
3150 d->cmdPtr = OHCI1394_IsoXmitCommandPtr + 16 * d->ctx;
3151 } else {
3152 d->ctrlSet = context_base + OHCI1394_ContextControlSet;
3153 d->ctrlClear = context_base + OHCI1394_ContextControlClear;
3154 d->cmdPtr = context_base + OHCI1394_ContextCommandPtr;
3155 tasklet_init (&d->task, dma_trm_tasklet, (unsigned long)d);
3158 return 0;
3161 static void ohci_set_hw_config_rom(struct hpsb_host *host, quadlet_t *config_rom)
3163 struct ti_ohci *ohci = host->hostdata;
3165 reg_write(ohci, OHCI1394_ConfigROMhdr, be32_to_cpu(config_rom[0]));
3166 reg_write(ohci, OHCI1394_BusOptions, be32_to_cpu(config_rom[2]));
3168 memcpy(ohci->csr_config_rom_cpu, config_rom, OHCI_CONFIG_ROM_LEN);
3172 static quadlet_t ohci_hw_csr_reg(struct hpsb_host *host, int reg,
3173 quadlet_t data, quadlet_t compare)
3175 struct ti_ohci *ohci = host->hostdata;
3176 int i;
3178 reg_write(ohci, OHCI1394_CSRData, data);
3179 reg_write(ohci, OHCI1394_CSRCompareData, compare);
3180 reg_write(ohci, OHCI1394_CSRControl, reg & 0x3);
3182 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
3183 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
3184 break;
3186 mdelay(1);
3189 return reg_read(ohci, OHCI1394_CSRData);
3192 static struct hpsb_host_driver ohci1394_driver = {
3193 .owner = THIS_MODULE,
3194 .name = OHCI1394_DRIVER_NAME,
3195 .set_hw_config_rom = ohci_set_hw_config_rom,
3196 .transmit_packet = ohci_transmit,
3197 .devctl = ohci_devctl,
3198 .isoctl = ohci_isoctl,
3199 .hw_csr_reg = ohci_hw_csr_reg,
3202 /***********************************
3203 * PCI Driver Interface functions *
3204 ***********************************/
3206 #define FAIL(err, fmt, args...) \
3207 do { \
3208 PRINT_G(KERN_ERR, fmt , ## args); \
3209 ohci1394_pci_remove(dev); \
3210 return err; \
3211 } while (0)
3213 static int __devinit ohci1394_pci_probe(struct pci_dev *dev,
3214 const struct pci_device_id *ent)
3216 struct hpsb_host *host;
3217 struct ti_ohci *ohci; /* shortcut to currently handled device */
3218 resource_size_t ohci_base;
3220 if (pci_enable_device(dev))
3221 FAIL(-ENXIO, "Failed to enable OHCI hardware");
3222 pci_set_master(dev);
3224 host = hpsb_alloc_host(&ohci1394_driver, sizeof(struct ti_ohci), &dev->dev);
3225 if (!host) FAIL(-ENOMEM, "Failed to allocate host structure");
3227 ohci = host->hostdata;
3228 ohci->dev = dev;
3229 ohci->host = host;
3230 ohci->init_state = OHCI_INIT_ALLOC_HOST;
3231 host->pdev = dev;
3232 pci_set_drvdata(dev, ohci);
3234 /* We don't want hardware swapping */
3235 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3237 /* Some oddball Apple controllers do not order the selfid
3238 * properly, so we make up for it here. */
3239 #ifndef __LITTLE_ENDIAN
3240 /* XXX: Need a better way to check this. I'm wondering if we can
3241 * read the values of the OHCI1394_PCI_HCI_Control and the
3242 * noByteSwapData registers to see if they were not cleared to
3243 * zero. Should this work? Obviously it's not defined what these
3244 * registers will read when they aren't supported. Bleh! */
3245 if (dev->vendor == PCI_VENDOR_ID_APPLE &&
3246 dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW) {
3247 ohci->no_swap_incoming = 1;
3248 ohci->selfid_swap = 0;
3249 } else
3250 ohci->selfid_swap = 1;
3251 #endif
3254 #ifndef PCI_DEVICE_ID_NVIDIA_NFORCE2_FW
3255 #define PCI_DEVICE_ID_NVIDIA_NFORCE2_FW 0x006e
3256 #endif
3258 /* These chipsets require a bit of extra care when checking after
3259 * a busreset. */
3260 if ((dev->vendor == PCI_VENDOR_ID_APPLE &&
3261 dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW) ||
3262 (dev->vendor == PCI_VENDOR_ID_NVIDIA &&
3263 dev->device == PCI_DEVICE_ID_NVIDIA_NFORCE2_FW))
3264 ohci->check_busreset = 1;
3266 /* We hardwire the MMIO length, since some CardBus adaptors
3267 * fail to report the right length. Anyway, the ohci spec
3268 * clearly says it's 2kb, so this shouldn't be a problem. */
3269 ohci_base = pci_resource_start(dev, 0);
3270 if (pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE)
3271 PRINT(KERN_WARNING, "PCI resource length of 0x%llx too small!",
3272 (unsigned long long)pci_resource_len(dev, 0));
3274 /* Seems PCMCIA handles this internally. Not sure why. Seems
3275 * pretty bogus to force a driver to special case this. */
3276 #ifndef PCMCIA
3277 if (!request_mem_region (ohci_base, OHCI1394_REGISTER_SIZE, OHCI1394_DRIVER_NAME))
3278 FAIL(-ENOMEM, "MMIO resource (0x%llx - 0x%llx) unavailable",
3279 (unsigned long long)ohci_base,
3280 (unsigned long long)ohci_base + OHCI1394_REGISTER_SIZE);
3281 #endif
3282 ohci->init_state = OHCI_INIT_HAVE_MEM_REGION;
3284 ohci->registers = ioremap(ohci_base, OHCI1394_REGISTER_SIZE);
3285 if (ohci->registers == NULL)
3286 FAIL(-ENXIO, "Failed to remap registers - card not accessible");
3287 ohci->init_state = OHCI_INIT_HAVE_IOMAPPING;
3288 DBGMSG("Remapped memory spaces reg 0x%p", ohci->registers);
3290 /* csr_config rom allocation */
3291 ohci->csr_config_rom_cpu =
3292 pci_alloc_consistent(ohci->dev, OHCI_CONFIG_ROM_LEN,
3293 &ohci->csr_config_rom_bus);
3294 OHCI_DMA_ALLOC("consistent csr_config_rom");
3295 if (ohci->csr_config_rom_cpu == NULL)
3296 FAIL(-ENOMEM, "Failed to allocate buffer config rom");
3297 ohci->init_state = OHCI_INIT_HAVE_CONFIG_ROM_BUFFER;
3299 /* self-id dma buffer allocation */
3300 ohci->selfid_buf_cpu =
3301 pci_alloc_consistent(ohci->dev, OHCI1394_SI_DMA_BUF_SIZE,
3302 &ohci->selfid_buf_bus);
3303 OHCI_DMA_ALLOC("consistent selfid_buf");
3305 if (ohci->selfid_buf_cpu == NULL)
3306 FAIL(-ENOMEM, "Failed to allocate DMA buffer for self-id packets");
3307 ohci->init_state = OHCI_INIT_HAVE_SELFID_BUFFER;
3309 if ((unsigned long)ohci->selfid_buf_cpu & 0x1fff)
3310 PRINT(KERN_INFO, "SelfID buffer %p is not aligned on "
3311 "8Kb boundary... may cause problems on some CXD3222 chip",
3312 ohci->selfid_buf_cpu);
3314 /* No self-id errors at startup */
3315 ohci->self_id_errors = 0;
3317 ohci->init_state = OHCI_INIT_HAVE_TXRX_BUFFERS__MAYBE;
3318 /* AR DMA request context allocation */
3319 if (alloc_dma_rcv_ctx(ohci, &ohci->ar_req_context,
3320 DMA_CTX_ASYNC_REQ, 0, AR_REQ_NUM_DESC,
3321 AR_REQ_BUF_SIZE, AR_REQ_SPLIT_BUF_SIZE,
3322 OHCI1394_AsReqRcvContextBase) < 0)
3323 FAIL(-ENOMEM, "Failed to allocate AR Req context");
3325 /* AR DMA response context allocation */
3326 if (alloc_dma_rcv_ctx(ohci, &ohci->ar_resp_context,
3327 DMA_CTX_ASYNC_RESP, 0, AR_RESP_NUM_DESC,
3328 AR_RESP_BUF_SIZE, AR_RESP_SPLIT_BUF_SIZE,
3329 OHCI1394_AsRspRcvContextBase) < 0)
3330 FAIL(-ENOMEM, "Failed to allocate AR Resp context");
3332 /* AT DMA request context */
3333 if (alloc_dma_trm_ctx(ohci, &ohci->at_req_context,
3334 DMA_CTX_ASYNC_REQ, 0, AT_REQ_NUM_DESC,
3335 OHCI1394_AsReqTrContextBase) < 0)
3336 FAIL(-ENOMEM, "Failed to allocate AT Req context");
3338 /* AT DMA response context */
3339 if (alloc_dma_trm_ctx(ohci, &ohci->at_resp_context,
3340 DMA_CTX_ASYNC_RESP, 1, AT_RESP_NUM_DESC,
3341 OHCI1394_AsRspTrContextBase) < 0)
3342 FAIL(-ENOMEM, "Failed to allocate AT Resp context");
3344 /* Start off with a soft reset, to clear everything to a sane
3345 * state. */
3346 ohci_soft_reset(ohci);
3348 /* Now enable LPS, which we need in order to start accessing
3349 * most of the registers. In fact, on some cards (ALI M5251),
3350 * accessing registers in the SClk domain without LPS enabled
3351 * will lock up the machine. Wait 50msec to make sure we have
3352 * full link enabled. */
3353 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_LPS);
3355 /* Disable and clear interrupts */
3356 reg_write(ohci, OHCI1394_IntEventClear, 0xffffffff);
3357 reg_write(ohci, OHCI1394_IntMaskClear, 0xffffffff);
3359 mdelay(50);
3361 /* Determine the number of available IR and IT contexts. */
3362 ohci->nb_iso_rcv_ctx =
3363 get_nb_iso_ctx(ohci, OHCI1394_IsoRecvIntMaskSet);
3364 ohci->nb_iso_xmit_ctx =
3365 get_nb_iso_ctx(ohci, OHCI1394_IsoXmitIntMaskSet);
3367 /* Set the usage bits for non-existent contexts so they can't
3368 * be allocated */
3369 ohci->ir_ctx_usage = ~0 << ohci->nb_iso_rcv_ctx;
3370 ohci->it_ctx_usage = ~0 << ohci->nb_iso_xmit_ctx;
3372 INIT_LIST_HEAD(&ohci->iso_tasklet_list);
3373 spin_lock_init(&ohci->iso_tasklet_list_lock);
3374 ohci->ISO_channel_usage = 0;
3375 spin_lock_init(&ohci->IR_channel_lock);
3377 /* Allocate the IR DMA context right here so we don't have
3378 * to do it in interrupt path - note that this doesn't
3379 * waste much memory and avoids the jugglery required to
3380 * allocate it in IRQ path. */
3381 if (alloc_dma_rcv_ctx(ohci, &ohci->ir_legacy_context,
3382 DMA_CTX_ISO, 0, IR_NUM_DESC,
3383 IR_BUF_SIZE, IR_SPLIT_BUF_SIZE,
3384 OHCI1394_IsoRcvContextBase) < 0) {
3385 FAIL(-ENOMEM, "Cannot allocate IR Legacy DMA context");
3388 /* We hopefully don't have to pre-allocate IT DMA like we did
3389 * for IR DMA above. Allocate it on-demand and mark inactive. */
3390 ohci->it_legacy_context.ohci = NULL;
3391 spin_lock_init(&ohci->event_lock);
3394 * interrupts are disabled, all right, but... due to IRQF_SHARED we
3395 * might get called anyway. We'll see no event, of course, but
3396 * we need to get to that "no event", so enough should be initialized
3397 * by that point.
3399 if (request_irq(dev->irq, ohci_irq_handler, IRQF_SHARED,
3400 OHCI1394_DRIVER_NAME, ohci))
3401 FAIL(-ENOMEM, "Failed to allocate shared interrupt %d", dev->irq);
3403 ohci->init_state = OHCI_INIT_HAVE_IRQ;
3404 ohci_initialize(ohci);
3406 /* Set certain csr values */
3407 host->csr.guid_hi = reg_read(ohci, OHCI1394_GUIDHi);
3408 host->csr.guid_lo = reg_read(ohci, OHCI1394_GUIDLo);
3409 host->csr.cyc_clk_acc = 100; /* how do we determine clk accuracy? */
3410 host->csr.max_rec = (reg_read(ohci, OHCI1394_BusOptions) >> 12) & 0xf;
3411 host->csr.lnk_spd = reg_read(ohci, OHCI1394_BusOptions) & 0x7;
3413 if (phys_dma) {
3414 host->low_addr_space =
3415 (u64) reg_read(ohci, OHCI1394_PhyUpperBound) << 16;
3416 if (!host->low_addr_space)
3417 host->low_addr_space = OHCI1394_PHYS_UPPER_BOUND_FIXED;
3419 host->middle_addr_space = OHCI1394_MIDDLE_ADDRESS_SPACE;
3421 /* Tell the highlevel this host is ready */
3422 if (hpsb_add_host(host))
3423 FAIL(-ENOMEM, "Failed to register host with highlevel");
3425 ohci->init_state = OHCI_INIT_DONE;
3427 return 0;
3428 #undef FAIL
3431 static void ohci1394_pci_remove(struct pci_dev *pdev)
3433 struct ti_ohci *ohci;
3434 struct device *dev;
3436 ohci = pci_get_drvdata(pdev);
3437 if (!ohci)
3438 return;
3440 dev = get_device(&ohci->host->device);
3442 switch (ohci->init_state) {
3443 case OHCI_INIT_DONE:
3444 hpsb_remove_host(ohci->host);
3446 /* Clear out BUS Options */
3447 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
3448 reg_write(ohci, OHCI1394_BusOptions,
3449 (reg_read(ohci, OHCI1394_BusOptions) & 0x0000f007) |
3450 0x00ff0000);
3451 memset(ohci->csr_config_rom_cpu, 0, OHCI_CONFIG_ROM_LEN);
3453 case OHCI_INIT_HAVE_IRQ:
3454 /* Clear interrupt registers */
3455 reg_write(ohci, OHCI1394_IntMaskClear, 0xffffffff);
3456 reg_write(ohci, OHCI1394_IntEventClear, 0xffffffff);
3457 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 0xffffffff);
3458 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 0xffffffff);
3459 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 0xffffffff);
3460 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 0xffffffff);
3462 /* Disable IRM Contender */
3463 set_phy_reg(ohci, 4, ~0xc0 & get_phy_reg(ohci, 4));
3465 /* Clear link control register */
3466 reg_write(ohci, OHCI1394_LinkControlClear, 0xffffffff);
3468 /* Let all other nodes know to ignore us */
3469 ohci_devctl(ohci->host, RESET_BUS, LONG_RESET_NO_FORCE_ROOT);
3471 /* Soft reset before we start - this disables
3472 * interrupts and clears linkEnable and LPS. */
3473 ohci_soft_reset(ohci);
3474 free_irq(ohci->dev->irq, ohci);
3476 case OHCI_INIT_HAVE_TXRX_BUFFERS__MAYBE:
3477 /* The ohci_soft_reset() stops all DMA contexts, so we
3478 * dont need to do this. */
3479 free_dma_rcv_ctx(&ohci->ar_req_context);
3480 free_dma_rcv_ctx(&ohci->ar_resp_context);
3481 free_dma_trm_ctx(&ohci->at_req_context);
3482 free_dma_trm_ctx(&ohci->at_resp_context);
3483 free_dma_rcv_ctx(&ohci->ir_legacy_context);
3484 free_dma_trm_ctx(&ohci->it_legacy_context);
3486 case OHCI_INIT_HAVE_SELFID_BUFFER:
3487 pci_free_consistent(ohci->dev, OHCI1394_SI_DMA_BUF_SIZE,
3488 ohci->selfid_buf_cpu,
3489 ohci->selfid_buf_bus);
3490 OHCI_DMA_FREE("consistent selfid_buf");
3492 case OHCI_INIT_HAVE_CONFIG_ROM_BUFFER:
3493 pci_free_consistent(ohci->dev, OHCI_CONFIG_ROM_LEN,
3494 ohci->csr_config_rom_cpu,
3495 ohci->csr_config_rom_bus);
3496 OHCI_DMA_FREE("consistent csr_config_rom");
3498 case OHCI_INIT_HAVE_IOMAPPING:
3499 iounmap(ohci->registers);
3501 case OHCI_INIT_HAVE_MEM_REGION:
3502 #ifndef PCMCIA
3503 release_mem_region(pci_resource_start(ohci->dev, 0),
3504 OHCI1394_REGISTER_SIZE);
3505 #endif
3507 #ifdef CONFIG_PPC_PMAC
3508 /* On UniNorth, power down the cable and turn off the chip
3509 * clock when the module is removed to save power on
3510 * laptops. Turning it back ON is done by the arch code when
3511 * pci_enable_device() is called */
3513 struct device_node* of_node;
3515 of_node = pci_device_to_OF_node(ohci->dev);
3516 if (of_node) {
3517 pmac_call_feature(PMAC_FTR_1394_ENABLE, of_node, 0, 0);
3518 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, of_node, 0, 0);
3521 #endif /* CONFIG_PPC_PMAC */
3523 case OHCI_INIT_ALLOC_HOST:
3524 pci_set_drvdata(ohci->dev, NULL);
3527 if (dev)
3528 put_device(dev);
3531 #ifdef CONFIG_PM
3532 static int ohci1394_pci_suspend(struct pci_dev *pdev, pm_message_t state)
3534 int err;
3535 struct ti_ohci *ohci = pci_get_drvdata(pdev);
3537 printk(KERN_INFO "%s does not fully support suspend and resume yet\n",
3538 OHCI1394_DRIVER_NAME);
3540 PRINT(KERN_DEBUG, "suspend called");
3541 if (!ohci)
3542 return -ENXIO;
3544 /* Clear the async DMA contexts and stop using the controller */
3545 hpsb_bus_reset(ohci->host);
3547 /* See ohci1394_pci_remove() for comments on this sequence */
3548 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
3549 reg_write(ohci, OHCI1394_BusOptions,
3550 (reg_read(ohci, OHCI1394_BusOptions) & 0x0000f007) |
3551 0x00ff0000);
3552 reg_write(ohci, OHCI1394_IntMaskClear, 0xffffffff);
3553 reg_write(ohci, OHCI1394_IntEventClear, 0xffffffff);
3554 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 0xffffffff);
3555 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 0xffffffff);
3556 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 0xffffffff);
3557 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 0xffffffff);
3558 set_phy_reg(ohci, 4, ~0xc0 & get_phy_reg(ohci, 4));
3559 reg_write(ohci, OHCI1394_LinkControlClear, 0xffffffff);
3560 ohci_devctl(ohci->host, RESET_BUS, LONG_RESET_NO_FORCE_ROOT);
3561 ohci_soft_reset(ohci);
3563 err = pci_save_state(pdev);
3564 if (err) {
3565 printk(KERN_ERR "%s: pci_save_state failed with %d\n",
3566 OHCI1394_DRIVER_NAME, err);
3567 return err;
3569 err = pci_set_power_state(pdev, pci_choose_state(pdev, state));
3570 #ifdef OHCI1394_DEBUG
3571 if (err)
3572 printk(KERN_DEBUG "%s: pci_set_power_state failed with %d\n",
3573 OHCI1394_DRIVER_NAME, err);
3574 #endif /* OHCI1394_DEBUG */
3576 /* PowerMac suspend code comes last */
3577 #ifdef CONFIG_PPC_PMAC
3578 if (machine_is(powermac)) {
3579 struct device_node *of_node;
3581 /* Disable 1394 */
3582 of_node = pci_device_to_OF_node (pdev);
3583 if (of_node)
3584 pmac_call_feature(PMAC_FTR_1394_ENABLE, of_node, 0, 0);
3586 #endif /* CONFIG_PPC_PMAC */
3588 return 0;
3591 static int ohci1394_pci_resume(struct pci_dev *pdev)
3593 int err;
3594 struct ti_ohci *ohci = pci_get_drvdata(pdev);
3596 PRINT(KERN_DEBUG, "resume called");
3597 if (!ohci)
3598 return -ENXIO;
3600 /* PowerMac resume code comes first */
3601 #ifdef CONFIG_PPC_PMAC
3602 if (machine_is(powermac)) {
3603 struct device_node *of_node;
3605 /* Re-enable 1394 */
3606 of_node = pci_device_to_OF_node (pdev);
3607 if (of_node)
3608 pmac_call_feature (PMAC_FTR_1394_ENABLE, of_node, 0, 1);
3610 #endif /* CONFIG_PPC_PMAC */
3612 pci_set_power_state(pdev, PCI_D0);
3613 pci_restore_state(pdev);
3614 err = pci_enable_device(pdev);
3615 if (err)
3616 return err;
3618 /* See ohci1394_pci_probe() for comments on this sequence */
3619 ohci_soft_reset(ohci);
3620 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_LPS);
3621 reg_write(ohci, OHCI1394_IntEventClear, 0xffffffff);
3622 reg_write(ohci, OHCI1394_IntMaskClear, 0xffffffff);
3623 mdelay(50);
3624 ohci_initialize(ohci);
3626 return 0;
3628 #endif /* CONFIG_PM */
3630 #define PCI_CLASS_FIREWIRE_OHCI ((PCI_CLASS_SERIAL_FIREWIRE << 8) | 0x10)
3632 static struct pci_device_id ohci1394_pci_tbl[] = {
3634 .class = PCI_CLASS_FIREWIRE_OHCI,
3635 .class_mask = PCI_ANY_ID,
3636 .vendor = PCI_ANY_ID,
3637 .device = PCI_ANY_ID,
3638 .subvendor = PCI_ANY_ID,
3639 .subdevice = PCI_ANY_ID,
3641 { 0, },
3644 MODULE_DEVICE_TABLE(pci, ohci1394_pci_tbl);
3646 static struct pci_driver ohci1394_pci_driver = {
3647 .name = OHCI1394_DRIVER_NAME,
3648 .id_table = ohci1394_pci_tbl,
3649 .probe = ohci1394_pci_probe,
3650 .remove = ohci1394_pci_remove,
3651 #ifdef CONFIG_PM
3652 .resume = ohci1394_pci_resume,
3653 .suspend = ohci1394_pci_suspend,
3654 #endif
3657 /***********************************
3658 * OHCI1394 Video Interface *
3659 ***********************************/
3661 /* essentially the only purpose of this code is to allow another
3662 module to hook into ohci's interrupt handler */
3664 int ohci1394_stop_context(struct ti_ohci *ohci, int reg, char *msg)
3666 int i=0;
3668 /* stop the channel program if it's still running */
3669 reg_write(ohci, reg, 0x8000);
3671 /* Wait until it effectively stops */
3672 while (reg_read(ohci, reg) & 0x400) {
3673 i++;
3674 if (i>5000) {
3675 PRINT(KERN_ERR,
3676 "Runaway loop while stopping context: %s...", msg ? msg : "");
3677 return 1;
3680 mb();
3681 udelay(10);
3683 if (msg) PRINT(KERN_ERR, "%s: dma prg stopped", msg);
3684 return 0;
3687 void ohci1394_init_iso_tasklet(struct ohci1394_iso_tasklet *tasklet, int type,
3688 void (*func)(unsigned long), unsigned long data)
3690 tasklet_init(&tasklet->tasklet, func, data);
3691 tasklet->type = type;
3692 /* We init the tasklet->link field, so we can list_del() it
3693 * without worrying whether it was added to the list or not. */
3694 INIT_LIST_HEAD(&tasklet->link);
3697 int ohci1394_register_iso_tasklet(struct ti_ohci *ohci,
3698 struct ohci1394_iso_tasklet *tasklet)
3700 unsigned long flags, *usage;
3701 int n, i, r = -EBUSY;
3703 if (tasklet->type == OHCI_ISO_TRANSMIT) {
3704 n = ohci->nb_iso_xmit_ctx;
3705 usage = &ohci->it_ctx_usage;
3707 else {
3708 n = ohci->nb_iso_rcv_ctx;
3709 usage = &ohci->ir_ctx_usage;
3711 /* only one receive context can be multichannel (OHCI sec 10.4.1) */
3712 if (tasklet->type == OHCI_ISO_MULTICHANNEL_RECEIVE) {
3713 if (test_and_set_bit(0, &ohci->ir_multichannel_used)) {
3714 return r;
3719 spin_lock_irqsave(&ohci->iso_tasklet_list_lock, flags);
3721 for (i = 0; i < n; i++)
3722 if (!test_and_set_bit(i, usage)) {
3723 tasklet->context = i;
3724 list_add_tail(&tasklet->link, &ohci->iso_tasklet_list);
3725 r = 0;
3726 break;
3729 spin_unlock_irqrestore(&ohci->iso_tasklet_list_lock, flags);
3731 return r;
3734 void ohci1394_unregister_iso_tasklet(struct ti_ohci *ohci,
3735 struct ohci1394_iso_tasklet *tasklet)
3737 unsigned long flags;
3739 tasklet_kill(&tasklet->tasklet);
3741 spin_lock_irqsave(&ohci->iso_tasklet_list_lock, flags);
3743 if (tasklet->type == OHCI_ISO_TRANSMIT)
3744 clear_bit(tasklet->context, &ohci->it_ctx_usage);
3745 else {
3746 clear_bit(tasklet->context, &ohci->ir_ctx_usage);
3748 if (tasklet->type == OHCI_ISO_MULTICHANNEL_RECEIVE) {
3749 clear_bit(0, &ohci->ir_multichannel_used);
3753 list_del(&tasklet->link);
3755 spin_unlock_irqrestore(&ohci->iso_tasklet_list_lock, flags);
3758 EXPORT_SYMBOL(ohci1394_stop_context);
3759 EXPORT_SYMBOL(ohci1394_init_iso_tasklet);
3760 EXPORT_SYMBOL(ohci1394_register_iso_tasklet);
3761 EXPORT_SYMBOL(ohci1394_unregister_iso_tasklet);
3763 /***********************************
3764 * General module initialization *
3765 ***********************************/
3767 MODULE_AUTHOR("Sebastien Rougeaux <sebastien.rougeaux@anu.edu.au>");
3768 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE-1394 controllers");
3769 MODULE_LICENSE("GPL");
3771 static void __exit ohci1394_cleanup (void)
3773 pci_unregister_driver(&ohci1394_pci_driver);
3776 static int __init ohci1394_init(void)
3778 return pci_register_driver(&ohci1394_pci_driver);
3781 /* Register before most other device drivers.
3782 * Useful for remote debugging via physical DMA, e.g. using firescope. */
3783 fs_initcall(ohci1394_init);
3784 module_exit(ohci1394_cleanup);