USB: remove ancient/broken CRIS hcd
[firewire-audio.git] / net / ipv4 / tcp_input.c
blob051f0f815f179143bd0ccb9486db2a09dbafed30
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presence of
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
95 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
96 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
97 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
99 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
100 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
101 #define FLAG_ECE 0x40 /* ECE in this ACK */
102 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
103 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
106 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
107 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
108 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
109 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
111 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
112 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
113 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
115 #define IsSackFrto() (sysctl_tcp_frto == 0x2)
117 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
119 /* Adapt the MSS value used to make delayed ack decision to the
120 * real world.
122 static void tcp_measure_rcv_mss(struct sock *sk,
123 const struct sk_buff *skb)
125 struct inet_connection_sock *icsk = inet_csk(sk);
126 const unsigned int lss = icsk->icsk_ack.last_seg_size;
127 unsigned int len;
129 icsk->icsk_ack.last_seg_size = 0;
131 /* skb->len may jitter because of SACKs, even if peer
132 * sends good full-sized frames.
134 len = skb_shinfo(skb)->gso_size ?: skb->len;
135 if (len >= icsk->icsk_ack.rcv_mss) {
136 icsk->icsk_ack.rcv_mss = len;
137 } else {
138 /* Otherwise, we make more careful check taking into account,
139 * that SACKs block is variable.
141 * "len" is invariant segment length, including TCP header.
143 len += skb->data - skb_transport_header(skb);
144 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
145 /* If PSH is not set, packet should be
146 * full sized, provided peer TCP is not badly broken.
147 * This observation (if it is correct 8)) allows
148 * to handle super-low mtu links fairly.
150 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
151 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
152 /* Subtract also invariant (if peer is RFC compliant),
153 * tcp header plus fixed timestamp option length.
154 * Resulting "len" is MSS free of SACK jitter.
156 len -= tcp_sk(sk)->tcp_header_len;
157 icsk->icsk_ack.last_seg_size = len;
158 if (len == lss) {
159 icsk->icsk_ack.rcv_mss = len;
160 return;
163 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
164 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
165 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
169 static void tcp_incr_quickack(struct sock *sk)
171 struct inet_connection_sock *icsk = inet_csk(sk);
172 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
174 if (quickacks==0)
175 quickacks=2;
176 if (quickacks > icsk->icsk_ack.quick)
177 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
180 void tcp_enter_quickack_mode(struct sock *sk)
182 struct inet_connection_sock *icsk = inet_csk(sk);
183 tcp_incr_quickack(sk);
184 icsk->icsk_ack.pingpong = 0;
185 icsk->icsk_ack.ato = TCP_ATO_MIN;
188 /* Send ACKs quickly, if "quick" count is not exhausted
189 * and the session is not interactive.
192 static inline int tcp_in_quickack_mode(const struct sock *sk)
194 const struct inet_connection_sock *icsk = inet_csk(sk);
195 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
198 /* Buffer size and advertised window tuning.
200 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
203 static void tcp_fixup_sndbuf(struct sock *sk)
205 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
206 sizeof(struct sk_buff);
208 if (sk->sk_sndbuf < 3 * sndmem)
209 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
212 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
214 * All tcp_full_space() is split to two parts: "network" buffer, allocated
215 * forward and advertised in receiver window (tp->rcv_wnd) and
216 * "application buffer", required to isolate scheduling/application
217 * latencies from network.
218 * window_clamp is maximal advertised window. It can be less than
219 * tcp_full_space(), in this case tcp_full_space() - window_clamp
220 * is reserved for "application" buffer. The less window_clamp is
221 * the smoother our behaviour from viewpoint of network, but the lower
222 * throughput and the higher sensitivity of the connection to losses. 8)
224 * rcv_ssthresh is more strict window_clamp used at "slow start"
225 * phase to predict further behaviour of this connection.
226 * It is used for two goals:
227 * - to enforce header prediction at sender, even when application
228 * requires some significant "application buffer". It is check #1.
229 * - to prevent pruning of receive queue because of misprediction
230 * of receiver window. Check #2.
232 * The scheme does not work when sender sends good segments opening
233 * window and then starts to feed us spaghetti. But it should work
234 * in common situations. Otherwise, we have to rely on queue collapsing.
237 /* Slow part of check#2. */
238 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
240 struct tcp_sock *tp = tcp_sk(sk);
241 /* Optimize this! */
242 int truesize = tcp_win_from_space(skb->truesize)/2;
243 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
245 while (tp->rcv_ssthresh <= window) {
246 if (truesize <= skb->len)
247 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
249 truesize >>= 1;
250 window >>= 1;
252 return 0;
255 static void tcp_grow_window(struct sock *sk,
256 struct sk_buff *skb)
258 struct tcp_sock *tp = tcp_sk(sk);
260 /* Check #1 */
261 if (tp->rcv_ssthresh < tp->window_clamp &&
262 (int)tp->rcv_ssthresh < tcp_space(sk) &&
263 !tcp_memory_pressure) {
264 int incr;
266 /* Check #2. Increase window, if skb with such overhead
267 * will fit to rcvbuf in future.
269 if (tcp_win_from_space(skb->truesize) <= skb->len)
270 incr = 2*tp->advmss;
271 else
272 incr = __tcp_grow_window(sk, skb);
274 if (incr) {
275 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
276 inet_csk(sk)->icsk_ack.quick |= 1;
281 /* 3. Tuning rcvbuf, when connection enters established state. */
283 static void tcp_fixup_rcvbuf(struct sock *sk)
285 struct tcp_sock *tp = tcp_sk(sk);
286 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
288 /* Try to select rcvbuf so that 4 mss-sized segments
289 * will fit to window and corresponding skbs will fit to our rcvbuf.
290 * (was 3; 4 is minimum to allow fast retransmit to work.)
292 while (tcp_win_from_space(rcvmem) < tp->advmss)
293 rcvmem += 128;
294 if (sk->sk_rcvbuf < 4 * rcvmem)
295 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
298 /* 4. Try to fixup all. It is made immediately after connection enters
299 * established state.
301 static void tcp_init_buffer_space(struct sock *sk)
303 struct tcp_sock *tp = tcp_sk(sk);
304 int maxwin;
306 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
307 tcp_fixup_rcvbuf(sk);
308 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
309 tcp_fixup_sndbuf(sk);
311 tp->rcvq_space.space = tp->rcv_wnd;
313 maxwin = tcp_full_space(sk);
315 if (tp->window_clamp >= maxwin) {
316 tp->window_clamp = maxwin;
318 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
319 tp->window_clamp = max(maxwin -
320 (maxwin >> sysctl_tcp_app_win),
321 4 * tp->advmss);
324 /* Force reservation of one segment. */
325 if (sysctl_tcp_app_win &&
326 tp->window_clamp > 2 * tp->advmss &&
327 tp->window_clamp + tp->advmss > maxwin)
328 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
330 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
331 tp->snd_cwnd_stamp = tcp_time_stamp;
334 /* 5. Recalculate window clamp after socket hit its memory bounds. */
335 static void tcp_clamp_window(struct sock *sk)
337 struct tcp_sock *tp = tcp_sk(sk);
338 struct inet_connection_sock *icsk = inet_csk(sk);
340 icsk->icsk_ack.quick = 0;
342 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
343 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
344 !tcp_memory_pressure &&
345 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
346 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
347 sysctl_tcp_rmem[2]);
349 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
350 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
354 /* Initialize RCV_MSS value.
355 * RCV_MSS is an our guess about MSS used by the peer.
356 * We haven't any direct information about the MSS.
357 * It's better to underestimate the RCV_MSS rather than overestimate.
358 * Overestimations make us ACKing less frequently than needed.
359 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
361 void tcp_initialize_rcv_mss(struct sock *sk)
363 struct tcp_sock *tp = tcp_sk(sk);
364 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
366 hint = min(hint, tp->rcv_wnd/2);
367 hint = min(hint, TCP_MIN_RCVMSS);
368 hint = max(hint, TCP_MIN_MSS);
370 inet_csk(sk)->icsk_ack.rcv_mss = hint;
373 /* Receiver "autotuning" code.
375 * The algorithm for RTT estimation w/o timestamps is based on
376 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
377 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
379 * More detail on this code can be found at
380 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
381 * though this reference is out of date. A new paper
382 * is pending.
384 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
386 u32 new_sample = tp->rcv_rtt_est.rtt;
387 long m = sample;
389 if (m == 0)
390 m = 1;
392 if (new_sample != 0) {
393 /* If we sample in larger samples in the non-timestamp
394 * case, we could grossly overestimate the RTT especially
395 * with chatty applications or bulk transfer apps which
396 * are stalled on filesystem I/O.
398 * Also, since we are only going for a minimum in the
399 * non-timestamp case, we do not smooth things out
400 * else with timestamps disabled convergence takes too
401 * long.
403 if (!win_dep) {
404 m -= (new_sample >> 3);
405 new_sample += m;
406 } else if (m < new_sample)
407 new_sample = m << 3;
408 } else {
409 /* No previous measure. */
410 new_sample = m << 3;
413 if (tp->rcv_rtt_est.rtt != new_sample)
414 tp->rcv_rtt_est.rtt = new_sample;
417 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
419 if (tp->rcv_rtt_est.time == 0)
420 goto new_measure;
421 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
422 return;
423 tcp_rcv_rtt_update(tp,
424 jiffies - tp->rcv_rtt_est.time,
427 new_measure:
428 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
429 tp->rcv_rtt_est.time = tcp_time_stamp;
432 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
434 struct tcp_sock *tp = tcp_sk(sk);
435 if (tp->rx_opt.rcv_tsecr &&
436 (TCP_SKB_CB(skb)->end_seq -
437 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
438 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
442 * This function should be called every time data is copied to user space.
443 * It calculates the appropriate TCP receive buffer space.
445 void tcp_rcv_space_adjust(struct sock *sk)
447 struct tcp_sock *tp = tcp_sk(sk);
448 int time;
449 int space;
451 if (tp->rcvq_space.time == 0)
452 goto new_measure;
454 time = tcp_time_stamp - tp->rcvq_space.time;
455 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
456 tp->rcv_rtt_est.rtt == 0)
457 return;
459 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
461 space = max(tp->rcvq_space.space, space);
463 if (tp->rcvq_space.space != space) {
464 int rcvmem;
466 tp->rcvq_space.space = space;
468 if (sysctl_tcp_moderate_rcvbuf &&
469 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
470 int new_clamp = space;
472 /* Receive space grows, normalize in order to
473 * take into account packet headers and sk_buff
474 * structure overhead.
476 space /= tp->advmss;
477 if (!space)
478 space = 1;
479 rcvmem = (tp->advmss + MAX_TCP_HEADER +
480 16 + sizeof(struct sk_buff));
481 while (tcp_win_from_space(rcvmem) < tp->advmss)
482 rcvmem += 128;
483 space *= rcvmem;
484 space = min(space, sysctl_tcp_rmem[2]);
485 if (space > sk->sk_rcvbuf) {
486 sk->sk_rcvbuf = space;
488 /* Make the window clamp follow along. */
489 tp->window_clamp = new_clamp;
494 new_measure:
495 tp->rcvq_space.seq = tp->copied_seq;
496 tp->rcvq_space.time = tcp_time_stamp;
499 /* There is something which you must keep in mind when you analyze the
500 * behavior of the tp->ato delayed ack timeout interval. When a
501 * connection starts up, we want to ack as quickly as possible. The
502 * problem is that "good" TCP's do slow start at the beginning of data
503 * transmission. The means that until we send the first few ACK's the
504 * sender will sit on his end and only queue most of his data, because
505 * he can only send snd_cwnd unacked packets at any given time. For
506 * each ACK we send, he increments snd_cwnd and transmits more of his
507 * queue. -DaveM
509 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
511 struct tcp_sock *tp = tcp_sk(sk);
512 struct inet_connection_sock *icsk = inet_csk(sk);
513 u32 now;
515 inet_csk_schedule_ack(sk);
517 tcp_measure_rcv_mss(sk, skb);
519 tcp_rcv_rtt_measure(tp);
521 now = tcp_time_stamp;
523 if (!icsk->icsk_ack.ato) {
524 /* The _first_ data packet received, initialize
525 * delayed ACK engine.
527 tcp_incr_quickack(sk);
528 icsk->icsk_ack.ato = TCP_ATO_MIN;
529 } else {
530 int m = now - icsk->icsk_ack.lrcvtime;
532 if (m <= TCP_ATO_MIN/2) {
533 /* The fastest case is the first. */
534 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
535 } else if (m < icsk->icsk_ack.ato) {
536 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
537 if (icsk->icsk_ack.ato > icsk->icsk_rto)
538 icsk->icsk_ack.ato = icsk->icsk_rto;
539 } else if (m > icsk->icsk_rto) {
540 /* Too long gap. Apparently sender failed to
541 * restart window, so that we send ACKs quickly.
543 tcp_incr_quickack(sk);
544 sk_stream_mem_reclaim(sk);
547 icsk->icsk_ack.lrcvtime = now;
549 TCP_ECN_check_ce(tp, skb);
551 if (skb->len >= 128)
552 tcp_grow_window(sk, skb);
555 /* Called to compute a smoothed rtt estimate. The data fed to this
556 * routine either comes from timestamps, or from segments that were
557 * known _not_ to have been retransmitted [see Karn/Partridge
558 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
559 * piece by Van Jacobson.
560 * NOTE: the next three routines used to be one big routine.
561 * To save cycles in the RFC 1323 implementation it was better to break
562 * it up into three procedures. -- erics
564 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
566 struct tcp_sock *tp = tcp_sk(sk);
567 long m = mrtt; /* RTT */
569 /* The following amusing code comes from Jacobson's
570 * article in SIGCOMM '88. Note that rtt and mdev
571 * are scaled versions of rtt and mean deviation.
572 * This is designed to be as fast as possible
573 * m stands for "measurement".
575 * On a 1990 paper the rto value is changed to:
576 * RTO = rtt + 4 * mdev
578 * Funny. This algorithm seems to be very broken.
579 * These formulae increase RTO, when it should be decreased, increase
580 * too slowly, when it should be increased quickly, decrease too quickly
581 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
582 * does not matter how to _calculate_ it. Seems, it was trap
583 * that VJ failed to avoid. 8)
585 if (m == 0)
586 m = 1;
587 if (tp->srtt != 0) {
588 m -= (tp->srtt >> 3); /* m is now error in rtt est */
589 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
590 if (m < 0) {
591 m = -m; /* m is now abs(error) */
592 m -= (tp->mdev >> 2); /* similar update on mdev */
593 /* This is similar to one of Eifel findings.
594 * Eifel blocks mdev updates when rtt decreases.
595 * This solution is a bit different: we use finer gain
596 * for mdev in this case (alpha*beta).
597 * Like Eifel it also prevents growth of rto,
598 * but also it limits too fast rto decreases,
599 * happening in pure Eifel.
601 if (m > 0)
602 m >>= 3;
603 } else {
604 m -= (tp->mdev >> 2); /* similar update on mdev */
606 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
607 if (tp->mdev > tp->mdev_max) {
608 tp->mdev_max = tp->mdev;
609 if (tp->mdev_max > tp->rttvar)
610 tp->rttvar = tp->mdev_max;
612 if (after(tp->snd_una, tp->rtt_seq)) {
613 if (tp->mdev_max < tp->rttvar)
614 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
615 tp->rtt_seq = tp->snd_nxt;
616 tp->mdev_max = TCP_RTO_MIN;
618 } else {
619 /* no previous measure. */
620 tp->srtt = m<<3; /* take the measured time to be rtt */
621 tp->mdev = m<<1; /* make sure rto = 3*rtt */
622 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
623 tp->rtt_seq = tp->snd_nxt;
627 /* Calculate rto without backoff. This is the second half of Van Jacobson's
628 * routine referred to above.
630 static inline void tcp_set_rto(struct sock *sk)
632 const struct tcp_sock *tp = tcp_sk(sk);
633 /* Old crap is replaced with new one. 8)
635 * More seriously:
636 * 1. If rtt variance happened to be less 50msec, it is hallucination.
637 * It cannot be less due to utterly erratic ACK generation made
638 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
639 * to do with delayed acks, because at cwnd>2 true delack timeout
640 * is invisible. Actually, Linux-2.4 also generates erratic
641 * ACKs in some circumstances.
643 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
645 /* 2. Fixups made earlier cannot be right.
646 * If we do not estimate RTO correctly without them,
647 * all the algo is pure shit and should be replaced
648 * with correct one. It is exactly, which we pretend to do.
652 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
653 * guarantees that rto is higher.
655 static inline void tcp_bound_rto(struct sock *sk)
657 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
658 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
661 /* Save metrics learned by this TCP session.
662 This function is called only, when TCP finishes successfully
663 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
665 void tcp_update_metrics(struct sock *sk)
667 struct tcp_sock *tp = tcp_sk(sk);
668 struct dst_entry *dst = __sk_dst_get(sk);
670 if (sysctl_tcp_nometrics_save)
671 return;
673 dst_confirm(dst);
675 if (dst && (dst->flags&DST_HOST)) {
676 const struct inet_connection_sock *icsk = inet_csk(sk);
677 int m;
679 if (icsk->icsk_backoff || !tp->srtt) {
680 /* This session failed to estimate rtt. Why?
681 * Probably, no packets returned in time.
682 * Reset our results.
684 if (!(dst_metric_locked(dst, RTAX_RTT)))
685 dst->metrics[RTAX_RTT-1] = 0;
686 return;
689 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
691 /* If newly calculated rtt larger than stored one,
692 * store new one. Otherwise, use EWMA. Remember,
693 * rtt overestimation is always better than underestimation.
695 if (!(dst_metric_locked(dst, RTAX_RTT))) {
696 if (m <= 0)
697 dst->metrics[RTAX_RTT-1] = tp->srtt;
698 else
699 dst->metrics[RTAX_RTT-1] -= (m>>3);
702 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
703 if (m < 0)
704 m = -m;
706 /* Scale deviation to rttvar fixed point */
707 m >>= 1;
708 if (m < tp->mdev)
709 m = tp->mdev;
711 if (m >= dst_metric(dst, RTAX_RTTVAR))
712 dst->metrics[RTAX_RTTVAR-1] = m;
713 else
714 dst->metrics[RTAX_RTTVAR-1] -=
715 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
718 if (tp->snd_ssthresh >= 0xFFFF) {
719 /* Slow start still did not finish. */
720 if (dst_metric(dst, RTAX_SSTHRESH) &&
721 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
722 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
723 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
724 if (!dst_metric_locked(dst, RTAX_CWND) &&
725 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
726 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
727 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
728 icsk->icsk_ca_state == TCP_CA_Open) {
729 /* Cong. avoidance phase, cwnd is reliable. */
730 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
731 dst->metrics[RTAX_SSTHRESH-1] =
732 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
733 if (!dst_metric_locked(dst, RTAX_CWND))
734 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
735 } else {
736 /* Else slow start did not finish, cwnd is non-sense,
737 ssthresh may be also invalid.
739 if (!dst_metric_locked(dst, RTAX_CWND))
740 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
741 if (dst->metrics[RTAX_SSTHRESH-1] &&
742 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
743 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
744 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
747 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
748 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
749 tp->reordering != sysctl_tcp_reordering)
750 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
755 /* Numbers are taken from RFC2414. */
756 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
758 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
760 if (!cwnd) {
761 if (tp->mss_cache > 1460)
762 cwnd = 2;
763 else
764 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
766 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
769 /* Set slow start threshold and cwnd not falling to slow start */
770 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
772 struct tcp_sock *tp = tcp_sk(sk);
773 const struct inet_connection_sock *icsk = inet_csk(sk);
775 tp->prior_ssthresh = 0;
776 tp->bytes_acked = 0;
777 if (icsk->icsk_ca_state < TCP_CA_CWR) {
778 tp->undo_marker = 0;
779 if (set_ssthresh)
780 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
781 tp->snd_cwnd = min(tp->snd_cwnd,
782 tcp_packets_in_flight(tp) + 1U);
783 tp->snd_cwnd_cnt = 0;
784 tp->high_seq = tp->snd_nxt;
785 tp->snd_cwnd_stamp = tcp_time_stamp;
786 TCP_ECN_queue_cwr(tp);
788 tcp_set_ca_state(sk, TCP_CA_CWR);
792 /* Initialize metrics on socket. */
794 static void tcp_init_metrics(struct sock *sk)
796 struct tcp_sock *tp = tcp_sk(sk);
797 struct dst_entry *dst = __sk_dst_get(sk);
799 if (dst == NULL)
800 goto reset;
802 dst_confirm(dst);
804 if (dst_metric_locked(dst, RTAX_CWND))
805 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
806 if (dst_metric(dst, RTAX_SSTHRESH)) {
807 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
808 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
809 tp->snd_ssthresh = tp->snd_cwnd_clamp;
811 if (dst_metric(dst, RTAX_REORDERING) &&
812 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
813 tp->rx_opt.sack_ok &= ~2;
814 tp->reordering = dst_metric(dst, RTAX_REORDERING);
817 if (dst_metric(dst, RTAX_RTT) == 0)
818 goto reset;
820 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
821 goto reset;
823 /* Initial rtt is determined from SYN,SYN-ACK.
824 * The segment is small and rtt may appear much
825 * less than real one. Use per-dst memory
826 * to make it more realistic.
828 * A bit of theory. RTT is time passed after "normal" sized packet
829 * is sent until it is ACKed. In normal circumstances sending small
830 * packets force peer to delay ACKs and calculation is correct too.
831 * The algorithm is adaptive and, provided we follow specs, it
832 * NEVER underestimate RTT. BUT! If peer tries to make some clever
833 * tricks sort of "quick acks" for time long enough to decrease RTT
834 * to low value, and then abruptly stops to do it and starts to delay
835 * ACKs, wait for troubles.
837 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
838 tp->srtt = dst_metric(dst, RTAX_RTT);
839 tp->rtt_seq = tp->snd_nxt;
841 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
842 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
843 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
845 tcp_set_rto(sk);
846 tcp_bound_rto(sk);
847 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
848 goto reset;
849 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
850 tp->snd_cwnd_stamp = tcp_time_stamp;
851 return;
853 reset:
854 /* Play conservative. If timestamps are not
855 * supported, TCP will fail to recalculate correct
856 * rtt, if initial rto is too small. FORGET ALL AND RESET!
858 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
859 tp->srtt = 0;
860 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
861 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
865 static void tcp_update_reordering(struct sock *sk, const int metric,
866 const int ts)
868 struct tcp_sock *tp = tcp_sk(sk);
869 if (metric > tp->reordering) {
870 tp->reordering = min(TCP_MAX_REORDERING, metric);
872 /* This exciting event is worth to be remembered. 8) */
873 if (ts)
874 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
875 else if (IsReno(tp))
876 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
877 else if (IsFack(tp))
878 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
879 else
880 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
881 #if FASTRETRANS_DEBUG > 1
882 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
883 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
884 tp->reordering,
885 tp->fackets_out,
886 tp->sacked_out,
887 tp->undo_marker ? tp->undo_retrans : 0);
888 #endif
889 /* Disable FACK yet. */
890 tp->rx_opt.sack_ok &= ~2;
894 /* This procedure tags the retransmission queue when SACKs arrive.
896 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
897 * Packets in queue with these bits set are counted in variables
898 * sacked_out, retrans_out and lost_out, correspondingly.
900 * Valid combinations are:
901 * Tag InFlight Description
902 * 0 1 - orig segment is in flight.
903 * S 0 - nothing flies, orig reached receiver.
904 * L 0 - nothing flies, orig lost by net.
905 * R 2 - both orig and retransmit are in flight.
906 * L|R 1 - orig is lost, retransmit is in flight.
907 * S|R 1 - orig reached receiver, retrans is still in flight.
908 * (L|S|R is logically valid, it could occur when L|R is sacked,
909 * but it is equivalent to plain S and code short-curcuits it to S.
910 * L|S is logically invalid, it would mean -1 packet in flight 8))
912 * These 6 states form finite state machine, controlled by the following events:
913 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
914 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
915 * 3. Loss detection event of one of three flavors:
916 * A. Scoreboard estimator decided the packet is lost.
917 * A'. Reno "three dupacks" marks head of queue lost.
918 * A''. Its FACK modfication, head until snd.fack is lost.
919 * B. SACK arrives sacking data transmitted after never retransmitted
920 * hole was sent out.
921 * C. SACK arrives sacking SND.NXT at the moment, when the
922 * segment was retransmitted.
923 * 4. D-SACK added new rule: D-SACK changes any tag to S.
925 * It is pleasant to note, that state diagram turns out to be commutative,
926 * so that we are allowed not to be bothered by order of our actions,
927 * when multiple events arrive simultaneously. (see the function below).
929 * Reordering detection.
930 * --------------------
931 * Reordering metric is maximal distance, which a packet can be displaced
932 * in packet stream. With SACKs we can estimate it:
934 * 1. SACK fills old hole and the corresponding segment was not
935 * ever retransmitted -> reordering. Alas, we cannot use it
936 * when segment was retransmitted.
937 * 2. The last flaw is solved with D-SACK. D-SACK arrives
938 * for retransmitted and already SACKed segment -> reordering..
939 * Both of these heuristics are not used in Loss state, when we cannot
940 * account for retransmits accurately.
942 static int
943 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
945 const struct inet_connection_sock *icsk = inet_csk(sk);
946 struct tcp_sock *tp = tcp_sk(sk);
947 unsigned char *ptr = (skb_transport_header(ack_skb) +
948 TCP_SKB_CB(ack_skb)->sacked);
949 struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
950 struct sk_buff *cached_skb;
951 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
952 int reord = tp->packets_out;
953 int prior_fackets;
954 u32 lost_retrans = 0;
955 int flag = 0;
956 int dup_sack = 0;
957 int cached_fack_count;
958 int i;
959 int first_sack_index;
961 if (!tp->sacked_out)
962 tp->fackets_out = 0;
963 prior_fackets = tp->fackets_out;
965 /* Check for D-SACK. */
966 if (before(ntohl(sp[0].start_seq), TCP_SKB_CB(ack_skb)->ack_seq)) {
967 dup_sack = 1;
968 tp->rx_opt.sack_ok |= 4;
969 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
970 } else if (num_sacks > 1 &&
971 !after(ntohl(sp[0].end_seq), ntohl(sp[1].end_seq)) &&
972 !before(ntohl(sp[0].start_seq), ntohl(sp[1].start_seq))) {
973 dup_sack = 1;
974 tp->rx_opt.sack_ok |= 4;
975 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
978 /* D-SACK for already forgotten data...
979 * Do dumb counting. */
980 if (dup_sack &&
981 !after(ntohl(sp[0].end_seq), prior_snd_una) &&
982 after(ntohl(sp[0].end_seq), tp->undo_marker))
983 tp->undo_retrans--;
985 /* Eliminate too old ACKs, but take into
986 * account more or less fresh ones, they can
987 * contain valid SACK info.
989 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
990 return 0;
992 /* SACK fastpath:
993 * if the only SACK change is the increase of the end_seq of
994 * the first block then only apply that SACK block
995 * and use retrans queue hinting otherwise slowpath */
996 flag = 1;
997 for (i = 0; i < num_sacks; i++) {
998 __be32 start_seq = sp[i].start_seq;
999 __be32 end_seq = sp[i].end_seq;
1001 if (i == 0) {
1002 if (tp->recv_sack_cache[i].start_seq != start_seq)
1003 flag = 0;
1004 } else {
1005 if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
1006 (tp->recv_sack_cache[i].end_seq != end_seq))
1007 flag = 0;
1009 tp->recv_sack_cache[i].start_seq = start_seq;
1010 tp->recv_sack_cache[i].end_seq = end_seq;
1012 /* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1013 for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1014 tp->recv_sack_cache[i].start_seq = 0;
1015 tp->recv_sack_cache[i].end_seq = 0;
1018 first_sack_index = 0;
1019 if (flag)
1020 num_sacks = 1;
1021 else {
1022 int j;
1023 tp->fastpath_skb_hint = NULL;
1025 /* order SACK blocks to allow in order walk of the retrans queue */
1026 for (i = num_sacks-1; i > 0; i--) {
1027 for (j = 0; j < i; j++){
1028 if (after(ntohl(sp[j].start_seq),
1029 ntohl(sp[j+1].start_seq))){
1030 struct tcp_sack_block_wire tmp;
1032 tmp = sp[j];
1033 sp[j] = sp[j+1];
1034 sp[j+1] = tmp;
1036 /* Track where the first SACK block goes to */
1037 if (j == first_sack_index)
1038 first_sack_index = j+1;
1045 /* clear flag as used for different purpose in following code */
1046 flag = 0;
1048 /* Use SACK fastpath hint if valid */
1049 cached_skb = tp->fastpath_skb_hint;
1050 cached_fack_count = tp->fastpath_cnt_hint;
1051 if (!cached_skb) {
1052 cached_skb = tcp_write_queue_head(sk);
1053 cached_fack_count = 0;
1056 for (i=0; i<num_sacks; i++, sp++) {
1057 struct sk_buff *skb;
1058 __u32 start_seq = ntohl(sp->start_seq);
1059 __u32 end_seq = ntohl(sp->end_seq);
1060 int fack_count;
1062 skb = cached_skb;
1063 fack_count = cached_fack_count;
1065 /* Event "B" in the comment above. */
1066 if (after(end_seq, tp->high_seq))
1067 flag |= FLAG_DATA_LOST;
1069 tcp_for_write_queue_from(skb, sk) {
1070 int in_sack, pcount;
1071 u8 sacked;
1073 if (skb == tcp_send_head(sk))
1074 break;
1076 cached_skb = skb;
1077 cached_fack_count = fack_count;
1078 if (i == first_sack_index) {
1079 tp->fastpath_skb_hint = skb;
1080 tp->fastpath_cnt_hint = fack_count;
1083 /* The retransmission queue is always in order, so
1084 * we can short-circuit the walk early.
1086 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1087 break;
1089 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1090 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1092 pcount = tcp_skb_pcount(skb);
1094 if (pcount > 1 && !in_sack &&
1095 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1096 unsigned int pkt_len;
1098 in_sack = !after(start_seq,
1099 TCP_SKB_CB(skb)->seq);
1101 if (!in_sack)
1102 pkt_len = (start_seq -
1103 TCP_SKB_CB(skb)->seq);
1104 else
1105 pkt_len = (end_seq -
1106 TCP_SKB_CB(skb)->seq);
1107 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size))
1108 break;
1109 pcount = tcp_skb_pcount(skb);
1112 fack_count += pcount;
1114 sacked = TCP_SKB_CB(skb)->sacked;
1116 /* Account D-SACK for retransmitted packet. */
1117 if ((dup_sack && in_sack) &&
1118 (sacked & TCPCB_RETRANS) &&
1119 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1120 tp->undo_retrans--;
1122 /* The frame is ACKed. */
1123 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1124 if (sacked&TCPCB_RETRANS) {
1125 if ((dup_sack && in_sack) &&
1126 (sacked&TCPCB_SACKED_ACKED))
1127 reord = min(fack_count, reord);
1128 } else {
1129 /* If it was in a hole, we detected reordering. */
1130 if (fack_count < prior_fackets &&
1131 !(sacked&TCPCB_SACKED_ACKED))
1132 reord = min(fack_count, reord);
1135 /* Nothing to do; acked frame is about to be dropped. */
1136 continue;
1139 if ((sacked&TCPCB_SACKED_RETRANS) &&
1140 after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1141 (!lost_retrans || after(end_seq, lost_retrans)))
1142 lost_retrans = end_seq;
1144 if (!in_sack)
1145 continue;
1147 if (!(sacked&TCPCB_SACKED_ACKED)) {
1148 if (sacked & TCPCB_SACKED_RETRANS) {
1149 /* If the segment is not tagged as lost,
1150 * we do not clear RETRANS, believing
1151 * that retransmission is still in flight.
1153 if (sacked & TCPCB_LOST) {
1154 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1155 tp->lost_out -= tcp_skb_pcount(skb);
1156 tp->retrans_out -= tcp_skb_pcount(skb);
1158 /* clear lost hint */
1159 tp->retransmit_skb_hint = NULL;
1161 } else {
1162 /* New sack for not retransmitted frame,
1163 * which was in hole. It is reordering.
1165 if (!(sacked & TCPCB_RETRANS) &&
1166 fack_count < prior_fackets)
1167 reord = min(fack_count, reord);
1169 if (sacked & TCPCB_LOST) {
1170 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1171 tp->lost_out -= tcp_skb_pcount(skb);
1173 /* clear lost hint */
1174 tp->retransmit_skb_hint = NULL;
1176 /* SACK enhanced F-RTO detection.
1177 * Set flag if and only if non-rexmitted
1178 * segments below frto_highmark are
1179 * SACKed (RFC4138; Appendix B).
1180 * Clearing correct due to in-order walk
1182 if (after(end_seq, tp->frto_highmark)) {
1183 flag &= ~FLAG_ONLY_ORIG_SACKED;
1184 } else {
1185 if (!(sacked & TCPCB_RETRANS))
1186 flag |= FLAG_ONLY_ORIG_SACKED;
1190 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1191 flag |= FLAG_DATA_SACKED;
1192 tp->sacked_out += tcp_skb_pcount(skb);
1194 if (fack_count > tp->fackets_out)
1195 tp->fackets_out = fack_count;
1196 } else {
1197 if (dup_sack && (sacked&TCPCB_RETRANS))
1198 reord = min(fack_count, reord);
1201 /* D-SACK. We can detect redundant retransmission
1202 * in S|R and plain R frames and clear it.
1203 * undo_retrans is decreased above, L|R frames
1204 * are accounted above as well.
1206 if (dup_sack &&
1207 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1208 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1209 tp->retrans_out -= tcp_skb_pcount(skb);
1210 tp->retransmit_skb_hint = NULL;
1215 /* Check for lost retransmit. This superb idea is
1216 * borrowed from "ratehalving". Event "C".
1217 * Later note: FACK people cheated me again 8),
1218 * we have to account for reordering! Ugly,
1219 * but should help.
1221 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1222 struct sk_buff *skb;
1224 tcp_for_write_queue(skb, sk) {
1225 if (skb == tcp_send_head(sk))
1226 break;
1227 if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1228 break;
1229 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1230 continue;
1231 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1232 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1233 (IsFack(tp) ||
1234 !before(lost_retrans,
1235 TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1236 tp->mss_cache))) {
1237 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1238 tp->retrans_out -= tcp_skb_pcount(skb);
1240 /* clear lost hint */
1241 tp->retransmit_skb_hint = NULL;
1243 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1244 tp->lost_out += tcp_skb_pcount(skb);
1245 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1246 flag |= FLAG_DATA_SACKED;
1247 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1253 tp->left_out = tp->sacked_out + tp->lost_out;
1255 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss &&
1256 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1257 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1259 #if FASTRETRANS_DEBUG > 0
1260 BUG_TRAP((int)tp->sacked_out >= 0);
1261 BUG_TRAP((int)tp->lost_out >= 0);
1262 BUG_TRAP((int)tp->retrans_out >= 0);
1263 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1264 #endif
1265 return flag;
1268 /* F-RTO can only be used if these conditions are satisfied:
1269 * - there must be some unsent new data
1270 * - the advertised window should allow sending it
1271 * - TCP has never retransmitted anything other than head (SACK enhanced
1272 * variant from Appendix B of RFC4138 is more robust here)
1274 int tcp_use_frto(struct sock *sk)
1276 const struct tcp_sock *tp = tcp_sk(sk);
1277 struct sk_buff *skb;
1279 if (!sysctl_tcp_frto || !tcp_send_head(sk) ||
1280 after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
1281 tp->snd_una + tp->snd_wnd))
1282 return 0;
1284 if (IsSackFrto())
1285 return 1;
1287 /* Avoid expensive walking of rexmit queue if possible */
1288 if (tp->retrans_out > 1)
1289 return 0;
1291 skb = tcp_write_queue_head(sk);
1292 skb = tcp_write_queue_next(sk, skb); /* Skips head */
1293 tcp_for_write_queue_from(skb, sk) {
1294 if (skb == tcp_send_head(sk))
1295 break;
1296 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1297 return 0;
1298 /* Short-circuit when first non-SACKed skb has been checked */
1299 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1300 break;
1302 return 1;
1305 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1306 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1307 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1308 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1309 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1310 * bits are handled if the Loss state is really to be entered (in
1311 * tcp_enter_frto_loss).
1313 * Do like tcp_enter_loss() would; when RTO expires the second time it
1314 * does:
1315 * "Reduce ssthresh if it has not yet been made inside this window."
1317 void tcp_enter_frto(struct sock *sk)
1319 const struct inet_connection_sock *icsk = inet_csk(sk);
1320 struct tcp_sock *tp = tcp_sk(sk);
1321 struct sk_buff *skb;
1323 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1324 tp->snd_una == tp->high_seq ||
1325 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1326 !icsk->icsk_retransmits)) {
1327 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1328 /* Our state is too optimistic in ssthresh() call because cwnd
1329 * is not reduced until tcp_enter_frto_loss() when previous FRTO
1330 * recovery has not yet completed. Pattern would be this: RTO,
1331 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1332 * up here twice).
1333 * RFC4138 should be more specific on what to do, even though
1334 * RTO is quite unlikely to occur after the first Cumulative ACK
1335 * due to back-off and complexity of triggering events ...
1337 if (tp->frto_counter) {
1338 u32 stored_cwnd;
1339 stored_cwnd = tp->snd_cwnd;
1340 tp->snd_cwnd = 2;
1341 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1342 tp->snd_cwnd = stored_cwnd;
1343 } else {
1344 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1346 /* ... in theory, cong.control module could do "any tricks" in
1347 * ssthresh(), which means that ca_state, lost bits and lost_out
1348 * counter would have to be faked before the call occurs. We
1349 * consider that too expensive, unlikely and hacky, so modules
1350 * using these in ssthresh() must deal these incompatibility
1351 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1353 tcp_ca_event(sk, CA_EVENT_FRTO);
1356 tp->undo_marker = tp->snd_una;
1357 tp->undo_retrans = 0;
1359 skb = tcp_write_queue_head(sk);
1360 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1361 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1362 tp->retrans_out -= tcp_skb_pcount(skb);
1364 tcp_sync_left_out(tp);
1366 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1367 * The last condition is necessary at least in tp->frto_counter case.
1369 if (IsSackFrto() && (tp->frto_counter ||
1370 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1371 after(tp->high_seq, tp->snd_una)) {
1372 tp->frto_highmark = tp->high_seq;
1373 } else {
1374 tp->frto_highmark = tp->snd_nxt;
1376 tcp_set_ca_state(sk, TCP_CA_Disorder);
1377 tp->high_seq = tp->snd_nxt;
1378 tp->frto_counter = 1;
1381 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1382 * which indicates that we should follow the traditional RTO recovery,
1383 * i.e. mark everything lost and do go-back-N retransmission.
1385 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1387 struct tcp_sock *tp = tcp_sk(sk);
1388 struct sk_buff *skb;
1389 int cnt = 0;
1391 tp->sacked_out = 0;
1392 tp->lost_out = 0;
1393 tp->fackets_out = 0;
1394 tp->retrans_out = 0;
1396 tcp_for_write_queue(skb, sk) {
1397 if (skb == tcp_send_head(sk))
1398 break;
1399 cnt += tcp_skb_pcount(skb);
1401 * Count the retransmission made on RTO correctly (only when
1402 * waiting for the first ACK and did not get it)...
1404 if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
1405 tp->retrans_out += tcp_skb_pcount(skb);
1406 /* ...enter this if branch just for the first segment */
1407 flag |= FLAG_DATA_ACKED;
1408 } else {
1409 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1411 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1413 /* Do not mark those segments lost that were
1414 * forward transmitted after RTO
1416 if (!after(TCP_SKB_CB(skb)->end_seq,
1417 tp->frto_highmark)) {
1418 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1419 tp->lost_out += tcp_skb_pcount(skb);
1421 } else {
1422 tp->sacked_out += tcp_skb_pcount(skb);
1423 tp->fackets_out = cnt;
1426 tcp_sync_left_out(tp);
1428 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1429 tp->snd_cwnd_cnt = 0;
1430 tp->snd_cwnd_stamp = tcp_time_stamp;
1431 tp->undo_marker = 0;
1432 tp->frto_counter = 0;
1434 tp->reordering = min_t(unsigned int, tp->reordering,
1435 sysctl_tcp_reordering);
1436 tcp_set_ca_state(sk, TCP_CA_Loss);
1437 tp->high_seq = tp->frto_highmark;
1438 TCP_ECN_queue_cwr(tp);
1440 clear_all_retrans_hints(tp);
1443 void tcp_clear_retrans(struct tcp_sock *tp)
1445 tp->left_out = 0;
1446 tp->retrans_out = 0;
1448 tp->fackets_out = 0;
1449 tp->sacked_out = 0;
1450 tp->lost_out = 0;
1452 tp->undo_marker = 0;
1453 tp->undo_retrans = 0;
1456 /* Enter Loss state. If "how" is not zero, forget all SACK information
1457 * and reset tags completely, otherwise preserve SACKs. If receiver
1458 * dropped its ofo queue, we will know this due to reneging detection.
1460 void tcp_enter_loss(struct sock *sk, int how)
1462 const struct inet_connection_sock *icsk = inet_csk(sk);
1463 struct tcp_sock *tp = tcp_sk(sk);
1464 struct sk_buff *skb;
1465 int cnt = 0;
1467 /* Reduce ssthresh if it has not yet been made inside this window. */
1468 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1469 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1470 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1471 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1472 tcp_ca_event(sk, CA_EVENT_LOSS);
1474 tp->snd_cwnd = 1;
1475 tp->snd_cwnd_cnt = 0;
1476 tp->snd_cwnd_stamp = tcp_time_stamp;
1478 tp->bytes_acked = 0;
1479 tcp_clear_retrans(tp);
1481 /* Push undo marker, if it was plain RTO and nothing
1482 * was retransmitted. */
1483 if (!how)
1484 tp->undo_marker = tp->snd_una;
1486 tcp_for_write_queue(skb, sk) {
1487 if (skb == tcp_send_head(sk))
1488 break;
1489 cnt += tcp_skb_pcount(skb);
1490 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1491 tp->undo_marker = 0;
1492 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1493 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1494 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1495 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1496 tp->lost_out += tcp_skb_pcount(skb);
1497 } else {
1498 tp->sacked_out += tcp_skb_pcount(skb);
1499 tp->fackets_out = cnt;
1502 tcp_sync_left_out(tp);
1504 tp->reordering = min_t(unsigned int, tp->reordering,
1505 sysctl_tcp_reordering);
1506 tcp_set_ca_state(sk, TCP_CA_Loss);
1507 tp->high_seq = tp->snd_nxt;
1508 TCP_ECN_queue_cwr(tp);
1510 clear_all_retrans_hints(tp);
1513 static int tcp_check_sack_reneging(struct sock *sk)
1515 struct sk_buff *skb;
1517 /* If ACK arrived pointing to a remembered SACK,
1518 * it means that our remembered SACKs do not reflect
1519 * real state of receiver i.e.
1520 * receiver _host_ is heavily congested (or buggy).
1521 * Do processing similar to RTO timeout.
1523 if ((skb = tcp_write_queue_head(sk)) != NULL &&
1524 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1525 struct inet_connection_sock *icsk = inet_csk(sk);
1526 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1528 tcp_enter_loss(sk, 1);
1529 icsk->icsk_retransmits++;
1530 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1531 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1532 icsk->icsk_rto, TCP_RTO_MAX);
1533 return 1;
1535 return 0;
1538 static inline int tcp_fackets_out(struct tcp_sock *tp)
1540 return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1543 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1545 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1548 static inline int tcp_head_timedout(struct sock *sk)
1550 struct tcp_sock *tp = tcp_sk(sk);
1552 return tp->packets_out &&
1553 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1556 /* Linux NewReno/SACK/FACK/ECN state machine.
1557 * --------------------------------------
1559 * "Open" Normal state, no dubious events, fast path.
1560 * "Disorder" In all the respects it is "Open",
1561 * but requires a bit more attention. It is entered when
1562 * we see some SACKs or dupacks. It is split of "Open"
1563 * mainly to move some processing from fast path to slow one.
1564 * "CWR" CWND was reduced due to some Congestion Notification event.
1565 * It can be ECN, ICMP source quench, local device congestion.
1566 * "Recovery" CWND was reduced, we are fast-retransmitting.
1567 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1569 * tcp_fastretrans_alert() is entered:
1570 * - each incoming ACK, if state is not "Open"
1571 * - when arrived ACK is unusual, namely:
1572 * * SACK
1573 * * Duplicate ACK.
1574 * * ECN ECE.
1576 * Counting packets in flight is pretty simple.
1578 * in_flight = packets_out - left_out + retrans_out
1580 * packets_out is SND.NXT-SND.UNA counted in packets.
1582 * retrans_out is number of retransmitted segments.
1584 * left_out is number of segments left network, but not ACKed yet.
1586 * left_out = sacked_out + lost_out
1588 * sacked_out: Packets, which arrived to receiver out of order
1589 * and hence not ACKed. With SACKs this number is simply
1590 * amount of SACKed data. Even without SACKs
1591 * it is easy to give pretty reliable estimate of this number,
1592 * counting duplicate ACKs.
1594 * lost_out: Packets lost by network. TCP has no explicit
1595 * "loss notification" feedback from network (for now).
1596 * It means that this number can be only _guessed_.
1597 * Actually, it is the heuristics to predict lossage that
1598 * distinguishes different algorithms.
1600 * F.e. after RTO, when all the queue is considered as lost,
1601 * lost_out = packets_out and in_flight = retrans_out.
1603 * Essentially, we have now two algorithms counting
1604 * lost packets.
1606 * FACK: It is the simplest heuristics. As soon as we decided
1607 * that something is lost, we decide that _all_ not SACKed
1608 * packets until the most forward SACK are lost. I.e.
1609 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1610 * It is absolutely correct estimate, if network does not reorder
1611 * packets. And it loses any connection to reality when reordering
1612 * takes place. We use FACK by default until reordering
1613 * is suspected on the path to this destination.
1615 * NewReno: when Recovery is entered, we assume that one segment
1616 * is lost (classic Reno). While we are in Recovery and
1617 * a partial ACK arrives, we assume that one more packet
1618 * is lost (NewReno). This heuristics are the same in NewReno
1619 * and SACK.
1621 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1622 * deflation etc. CWND is real congestion window, never inflated, changes
1623 * only according to classic VJ rules.
1625 * Really tricky (and requiring careful tuning) part of algorithm
1626 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1627 * The first determines the moment _when_ we should reduce CWND and,
1628 * hence, slow down forward transmission. In fact, it determines the moment
1629 * when we decide that hole is caused by loss, rather than by a reorder.
1631 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1632 * holes, caused by lost packets.
1634 * And the most logically complicated part of algorithm is undo
1635 * heuristics. We detect false retransmits due to both too early
1636 * fast retransmit (reordering) and underestimated RTO, analyzing
1637 * timestamps and D-SACKs. When we detect that some segments were
1638 * retransmitted by mistake and CWND reduction was wrong, we undo
1639 * window reduction and abort recovery phase. This logic is hidden
1640 * inside several functions named tcp_try_undo_<something>.
1643 /* This function decides, when we should leave Disordered state
1644 * and enter Recovery phase, reducing congestion window.
1646 * Main question: may we further continue forward transmission
1647 * with the same cwnd?
1649 static int tcp_time_to_recover(struct sock *sk)
1651 struct tcp_sock *tp = tcp_sk(sk);
1652 __u32 packets_out;
1654 /* Do not perform any recovery during FRTO algorithm */
1655 if (tp->frto_counter)
1656 return 0;
1658 /* Trick#1: The loss is proven. */
1659 if (tp->lost_out)
1660 return 1;
1662 /* Not-A-Trick#2 : Classic rule... */
1663 if (tcp_fackets_out(tp) > tp->reordering)
1664 return 1;
1666 /* Trick#3 : when we use RFC2988 timer restart, fast
1667 * retransmit can be triggered by timeout of queue head.
1669 if (tcp_head_timedout(sk))
1670 return 1;
1672 /* Trick#4: It is still not OK... But will it be useful to delay
1673 * recovery more?
1675 packets_out = tp->packets_out;
1676 if (packets_out <= tp->reordering &&
1677 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1678 !tcp_may_send_now(sk)) {
1679 /* We have nothing to send. This connection is limited
1680 * either by receiver window or by application.
1682 return 1;
1685 return 0;
1688 /* If we receive more dupacks than we expected counting segments
1689 * in assumption of absent reordering, interpret this as reordering.
1690 * The only another reason could be bug in receiver TCP.
1692 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1694 struct tcp_sock *tp = tcp_sk(sk);
1695 u32 holes;
1697 holes = max(tp->lost_out, 1U);
1698 holes = min(holes, tp->packets_out);
1700 if ((tp->sacked_out + holes) > tp->packets_out) {
1701 tp->sacked_out = tp->packets_out - holes;
1702 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1706 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1708 static void tcp_add_reno_sack(struct sock *sk)
1710 struct tcp_sock *tp = tcp_sk(sk);
1711 tp->sacked_out++;
1712 tcp_check_reno_reordering(sk, 0);
1713 tcp_sync_left_out(tp);
1716 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1718 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1720 struct tcp_sock *tp = tcp_sk(sk);
1722 if (acked > 0) {
1723 /* One ACK acked hole. The rest eat duplicate ACKs. */
1724 if (acked-1 >= tp->sacked_out)
1725 tp->sacked_out = 0;
1726 else
1727 tp->sacked_out -= acked-1;
1729 tcp_check_reno_reordering(sk, acked);
1730 tcp_sync_left_out(tp);
1733 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1735 tp->sacked_out = 0;
1736 tp->left_out = tp->lost_out;
1739 /* Mark head of queue up as lost. */
1740 static void tcp_mark_head_lost(struct sock *sk,
1741 int packets, u32 high_seq)
1743 struct tcp_sock *tp = tcp_sk(sk);
1744 struct sk_buff *skb;
1745 int cnt;
1747 BUG_TRAP(packets <= tp->packets_out);
1748 if (tp->lost_skb_hint) {
1749 skb = tp->lost_skb_hint;
1750 cnt = tp->lost_cnt_hint;
1751 } else {
1752 skb = tcp_write_queue_head(sk);
1753 cnt = 0;
1756 tcp_for_write_queue_from(skb, sk) {
1757 if (skb == tcp_send_head(sk))
1758 break;
1759 /* TODO: do this better */
1760 /* this is not the most efficient way to do this... */
1761 tp->lost_skb_hint = skb;
1762 tp->lost_cnt_hint = cnt;
1763 cnt += tcp_skb_pcount(skb);
1764 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1765 break;
1766 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1767 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1768 tp->lost_out += tcp_skb_pcount(skb);
1770 /* clear xmit_retransmit_queue hints
1771 * if this is beyond hint */
1772 if (tp->retransmit_skb_hint != NULL &&
1773 before(TCP_SKB_CB(skb)->seq,
1774 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1775 tp->retransmit_skb_hint = NULL;
1779 tcp_sync_left_out(tp);
1782 /* Account newly detected lost packet(s) */
1784 static void tcp_update_scoreboard(struct sock *sk)
1786 struct tcp_sock *tp = tcp_sk(sk);
1788 if (IsFack(tp)) {
1789 int lost = tp->fackets_out - tp->reordering;
1790 if (lost <= 0)
1791 lost = 1;
1792 tcp_mark_head_lost(sk, lost, tp->high_seq);
1793 } else {
1794 tcp_mark_head_lost(sk, 1, tp->high_seq);
1797 /* New heuristics: it is possible only after we switched
1798 * to restart timer each time when something is ACKed.
1799 * Hence, we can detect timed out packets during fast
1800 * retransmit without falling to slow start.
1802 if (!IsReno(tp) && tcp_head_timedout(sk)) {
1803 struct sk_buff *skb;
1805 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
1806 : tcp_write_queue_head(sk);
1808 tcp_for_write_queue_from(skb, sk) {
1809 if (skb == tcp_send_head(sk))
1810 break;
1811 if (!tcp_skb_timedout(sk, skb))
1812 break;
1814 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1815 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1816 tp->lost_out += tcp_skb_pcount(skb);
1818 /* clear xmit_retrans hint */
1819 if (tp->retransmit_skb_hint &&
1820 before(TCP_SKB_CB(skb)->seq,
1821 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1823 tp->retransmit_skb_hint = NULL;
1827 tp->scoreboard_skb_hint = skb;
1829 tcp_sync_left_out(tp);
1833 /* CWND moderation, preventing bursts due to too big ACKs
1834 * in dubious situations.
1836 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1838 tp->snd_cwnd = min(tp->snd_cwnd,
1839 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1840 tp->snd_cwnd_stamp = tcp_time_stamp;
1843 /* Lower bound on congestion window is slow start threshold
1844 * unless congestion avoidance choice decides to overide it.
1846 static inline u32 tcp_cwnd_min(const struct sock *sk)
1848 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1850 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
1853 /* Decrease cwnd each second ack. */
1854 static void tcp_cwnd_down(struct sock *sk)
1856 struct tcp_sock *tp = tcp_sk(sk);
1857 int decr = tp->snd_cwnd_cnt + 1;
1859 tp->snd_cwnd_cnt = decr&1;
1860 decr >>= 1;
1862 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
1863 tp->snd_cwnd -= decr;
1865 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1866 tp->snd_cwnd_stamp = tcp_time_stamp;
1869 /* Nothing was retransmitted or returned timestamp is less
1870 * than timestamp of the first retransmission.
1872 static inline int tcp_packet_delayed(struct tcp_sock *tp)
1874 return !tp->retrans_stamp ||
1875 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1876 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1879 /* Undo procedures. */
1881 #if FASTRETRANS_DEBUG > 1
1882 static void DBGUNDO(struct sock *sk, const char *msg)
1884 struct tcp_sock *tp = tcp_sk(sk);
1885 struct inet_sock *inet = inet_sk(sk);
1887 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1888 msg,
1889 NIPQUAD(inet->daddr), ntohs(inet->dport),
1890 tp->snd_cwnd, tp->left_out,
1891 tp->snd_ssthresh, tp->prior_ssthresh,
1892 tp->packets_out);
1894 #else
1895 #define DBGUNDO(x...) do { } while (0)
1896 #endif
1898 static void tcp_undo_cwr(struct sock *sk, const int undo)
1900 struct tcp_sock *tp = tcp_sk(sk);
1902 if (tp->prior_ssthresh) {
1903 const struct inet_connection_sock *icsk = inet_csk(sk);
1905 if (icsk->icsk_ca_ops->undo_cwnd)
1906 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1907 else
1908 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1910 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1911 tp->snd_ssthresh = tp->prior_ssthresh;
1912 TCP_ECN_withdraw_cwr(tp);
1914 } else {
1915 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1917 tcp_moderate_cwnd(tp);
1918 tp->snd_cwnd_stamp = tcp_time_stamp;
1920 /* There is something screwy going on with the retrans hints after
1921 an undo */
1922 clear_all_retrans_hints(tp);
1925 static inline int tcp_may_undo(struct tcp_sock *tp)
1927 return tp->undo_marker &&
1928 (!tp->undo_retrans || tcp_packet_delayed(tp));
1931 /* People celebrate: "We love our President!" */
1932 static int tcp_try_undo_recovery(struct sock *sk)
1934 struct tcp_sock *tp = tcp_sk(sk);
1936 if (tcp_may_undo(tp)) {
1937 /* Happy end! We did not retransmit anything
1938 * or our original transmission succeeded.
1940 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
1941 tcp_undo_cwr(sk, 1);
1942 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1943 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1944 else
1945 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1946 tp->undo_marker = 0;
1948 if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1949 /* Hold old state until something *above* high_seq
1950 * is ACKed. For Reno it is MUST to prevent false
1951 * fast retransmits (RFC2582). SACK TCP is safe. */
1952 tcp_moderate_cwnd(tp);
1953 return 1;
1955 tcp_set_ca_state(sk, TCP_CA_Open);
1956 return 0;
1959 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1960 static void tcp_try_undo_dsack(struct sock *sk)
1962 struct tcp_sock *tp = tcp_sk(sk);
1964 if (tp->undo_marker && !tp->undo_retrans) {
1965 DBGUNDO(sk, "D-SACK");
1966 tcp_undo_cwr(sk, 1);
1967 tp->undo_marker = 0;
1968 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1972 /* Undo during fast recovery after partial ACK. */
1974 static int tcp_try_undo_partial(struct sock *sk, int acked)
1976 struct tcp_sock *tp = tcp_sk(sk);
1977 /* Partial ACK arrived. Force Hoe's retransmit. */
1978 int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1980 if (tcp_may_undo(tp)) {
1981 /* Plain luck! Hole if filled with delayed
1982 * packet, rather than with a retransmit.
1984 if (tp->retrans_out == 0)
1985 tp->retrans_stamp = 0;
1987 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1989 DBGUNDO(sk, "Hoe");
1990 tcp_undo_cwr(sk, 0);
1991 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1993 /* So... Do not make Hoe's retransmit yet.
1994 * If the first packet was delayed, the rest
1995 * ones are most probably delayed as well.
1997 failed = 0;
1999 return failed;
2002 /* Undo during loss recovery after partial ACK. */
2003 static int tcp_try_undo_loss(struct sock *sk)
2005 struct tcp_sock *tp = tcp_sk(sk);
2007 if (tcp_may_undo(tp)) {
2008 struct sk_buff *skb;
2009 tcp_for_write_queue(skb, sk) {
2010 if (skb == tcp_send_head(sk))
2011 break;
2012 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2015 clear_all_retrans_hints(tp);
2017 DBGUNDO(sk, "partial loss");
2018 tp->lost_out = 0;
2019 tp->left_out = tp->sacked_out;
2020 tcp_undo_cwr(sk, 1);
2021 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2022 inet_csk(sk)->icsk_retransmits = 0;
2023 tp->undo_marker = 0;
2024 if (!IsReno(tp))
2025 tcp_set_ca_state(sk, TCP_CA_Open);
2026 return 1;
2028 return 0;
2031 static inline void tcp_complete_cwr(struct sock *sk)
2033 struct tcp_sock *tp = tcp_sk(sk);
2034 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2035 tp->snd_cwnd_stamp = tcp_time_stamp;
2036 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2039 static void tcp_try_to_open(struct sock *sk, int flag)
2041 struct tcp_sock *tp = tcp_sk(sk);
2043 tp->left_out = tp->sacked_out;
2045 if (tp->retrans_out == 0)
2046 tp->retrans_stamp = 0;
2048 if (flag&FLAG_ECE)
2049 tcp_enter_cwr(sk, 1);
2051 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2052 int state = TCP_CA_Open;
2054 if (tp->left_out || tp->retrans_out || tp->undo_marker)
2055 state = TCP_CA_Disorder;
2057 if (inet_csk(sk)->icsk_ca_state != state) {
2058 tcp_set_ca_state(sk, state);
2059 tp->high_seq = tp->snd_nxt;
2061 tcp_moderate_cwnd(tp);
2062 } else {
2063 tcp_cwnd_down(sk);
2067 static void tcp_mtup_probe_failed(struct sock *sk)
2069 struct inet_connection_sock *icsk = inet_csk(sk);
2071 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2072 icsk->icsk_mtup.probe_size = 0;
2075 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2077 struct tcp_sock *tp = tcp_sk(sk);
2078 struct inet_connection_sock *icsk = inet_csk(sk);
2080 /* FIXME: breaks with very large cwnd */
2081 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2082 tp->snd_cwnd = tp->snd_cwnd *
2083 tcp_mss_to_mtu(sk, tp->mss_cache) /
2084 icsk->icsk_mtup.probe_size;
2085 tp->snd_cwnd_cnt = 0;
2086 tp->snd_cwnd_stamp = tcp_time_stamp;
2087 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2089 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2090 icsk->icsk_mtup.probe_size = 0;
2091 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2095 /* Process an event, which can update packets-in-flight not trivially.
2096 * Main goal of this function is to calculate new estimate for left_out,
2097 * taking into account both packets sitting in receiver's buffer and
2098 * packets lost by network.
2100 * Besides that it does CWND reduction, when packet loss is detected
2101 * and changes state of machine.
2103 * It does _not_ decide what to send, it is made in function
2104 * tcp_xmit_retransmit_queue().
2106 static void
2107 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
2108 int prior_packets, int flag)
2110 struct inet_connection_sock *icsk = inet_csk(sk);
2111 struct tcp_sock *tp = tcp_sk(sk);
2112 int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
2114 /* Some technical things:
2115 * 1. Reno does not count dupacks (sacked_out) automatically. */
2116 if (!tp->packets_out)
2117 tp->sacked_out = 0;
2118 /* 2. SACK counts snd_fack in packets inaccurately. */
2119 if (tp->sacked_out == 0)
2120 tp->fackets_out = 0;
2122 /* Now state machine starts.
2123 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2124 if (flag&FLAG_ECE)
2125 tp->prior_ssthresh = 0;
2127 /* B. In all the states check for reneging SACKs. */
2128 if (tp->sacked_out && tcp_check_sack_reneging(sk))
2129 return;
2131 /* C. Process data loss notification, provided it is valid. */
2132 if ((flag&FLAG_DATA_LOST) &&
2133 before(tp->snd_una, tp->high_seq) &&
2134 icsk->icsk_ca_state != TCP_CA_Open &&
2135 tp->fackets_out > tp->reordering) {
2136 tcp_mark_head_lost(sk, tp->fackets_out-tp->reordering, tp->high_seq);
2137 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2140 /* D. Synchronize left_out to current state. */
2141 tcp_sync_left_out(tp);
2143 /* E. Check state exit conditions. State can be terminated
2144 * when high_seq is ACKed. */
2145 if (icsk->icsk_ca_state == TCP_CA_Open) {
2146 BUG_TRAP(tp->retrans_out == 0);
2147 tp->retrans_stamp = 0;
2148 } else if (!before(tp->snd_una, tp->high_seq)) {
2149 switch (icsk->icsk_ca_state) {
2150 case TCP_CA_Loss:
2151 icsk->icsk_retransmits = 0;
2152 if (tcp_try_undo_recovery(sk))
2153 return;
2154 break;
2156 case TCP_CA_CWR:
2157 /* CWR is to be held something *above* high_seq
2158 * is ACKed for CWR bit to reach receiver. */
2159 if (tp->snd_una != tp->high_seq) {
2160 tcp_complete_cwr(sk);
2161 tcp_set_ca_state(sk, TCP_CA_Open);
2163 break;
2165 case TCP_CA_Disorder:
2166 tcp_try_undo_dsack(sk);
2167 if (!tp->undo_marker ||
2168 /* For SACK case do not Open to allow to undo
2169 * catching for all duplicate ACKs. */
2170 IsReno(tp) || tp->snd_una != tp->high_seq) {
2171 tp->undo_marker = 0;
2172 tcp_set_ca_state(sk, TCP_CA_Open);
2174 break;
2176 case TCP_CA_Recovery:
2177 if (IsReno(tp))
2178 tcp_reset_reno_sack(tp);
2179 if (tcp_try_undo_recovery(sk))
2180 return;
2181 tcp_complete_cwr(sk);
2182 break;
2186 /* F. Process state. */
2187 switch (icsk->icsk_ca_state) {
2188 case TCP_CA_Recovery:
2189 if (prior_snd_una == tp->snd_una) {
2190 if (IsReno(tp) && is_dupack)
2191 tcp_add_reno_sack(sk);
2192 } else {
2193 int acked = prior_packets - tp->packets_out;
2194 if (IsReno(tp))
2195 tcp_remove_reno_sacks(sk, acked);
2196 is_dupack = tcp_try_undo_partial(sk, acked);
2198 break;
2199 case TCP_CA_Loss:
2200 if (flag&FLAG_DATA_ACKED)
2201 icsk->icsk_retransmits = 0;
2202 if (!tcp_try_undo_loss(sk)) {
2203 tcp_moderate_cwnd(tp);
2204 tcp_xmit_retransmit_queue(sk);
2205 return;
2207 if (icsk->icsk_ca_state != TCP_CA_Open)
2208 return;
2209 /* Loss is undone; fall through to processing in Open state. */
2210 default:
2211 if (IsReno(tp)) {
2212 if (tp->snd_una != prior_snd_una)
2213 tcp_reset_reno_sack(tp);
2214 if (is_dupack)
2215 tcp_add_reno_sack(sk);
2218 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2219 tcp_try_undo_dsack(sk);
2221 if (!tcp_time_to_recover(sk)) {
2222 tcp_try_to_open(sk, flag);
2223 return;
2226 /* MTU probe failure: don't reduce cwnd */
2227 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2228 icsk->icsk_mtup.probe_size &&
2229 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2230 tcp_mtup_probe_failed(sk);
2231 /* Restores the reduction we did in tcp_mtup_probe() */
2232 tp->snd_cwnd++;
2233 tcp_simple_retransmit(sk);
2234 return;
2237 /* Otherwise enter Recovery state */
2239 if (IsReno(tp))
2240 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2241 else
2242 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2244 tp->high_seq = tp->snd_nxt;
2245 tp->prior_ssthresh = 0;
2246 tp->undo_marker = tp->snd_una;
2247 tp->undo_retrans = tp->retrans_out;
2249 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2250 if (!(flag&FLAG_ECE))
2251 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2252 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2253 TCP_ECN_queue_cwr(tp);
2256 tp->bytes_acked = 0;
2257 tp->snd_cwnd_cnt = 0;
2258 tcp_set_ca_state(sk, TCP_CA_Recovery);
2261 if (is_dupack || tcp_head_timedout(sk))
2262 tcp_update_scoreboard(sk);
2263 tcp_cwnd_down(sk);
2264 tcp_xmit_retransmit_queue(sk);
2267 /* Read draft-ietf-tcplw-high-performance before mucking
2268 * with this code. (Supersedes RFC1323)
2270 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2272 /* RTTM Rule: A TSecr value received in a segment is used to
2273 * update the averaged RTT measurement only if the segment
2274 * acknowledges some new data, i.e., only if it advances the
2275 * left edge of the send window.
2277 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2278 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2280 * Changed: reset backoff as soon as we see the first valid sample.
2281 * If we do not, we get strongly overestimated rto. With timestamps
2282 * samples are accepted even from very old segments: f.e., when rtt=1
2283 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2284 * answer arrives rto becomes 120 seconds! If at least one of segments
2285 * in window is lost... Voila. --ANK (010210)
2287 struct tcp_sock *tp = tcp_sk(sk);
2288 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2289 tcp_rtt_estimator(sk, seq_rtt);
2290 tcp_set_rto(sk);
2291 inet_csk(sk)->icsk_backoff = 0;
2292 tcp_bound_rto(sk);
2295 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2297 /* We don't have a timestamp. Can only use
2298 * packets that are not retransmitted to determine
2299 * rtt estimates. Also, we must not reset the
2300 * backoff for rto until we get a non-retransmitted
2301 * packet. This allows us to deal with a situation
2302 * where the network delay has increased suddenly.
2303 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2306 if (flag & FLAG_RETRANS_DATA_ACKED)
2307 return;
2309 tcp_rtt_estimator(sk, seq_rtt);
2310 tcp_set_rto(sk);
2311 inet_csk(sk)->icsk_backoff = 0;
2312 tcp_bound_rto(sk);
2315 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2316 const s32 seq_rtt)
2318 const struct tcp_sock *tp = tcp_sk(sk);
2319 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2320 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2321 tcp_ack_saw_tstamp(sk, flag);
2322 else if (seq_rtt >= 0)
2323 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2326 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt,
2327 u32 in_flight, int good)
2329 const struct inet_connection_sock *icsk = inet_csk(sk);
2330 icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good);
2331 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2334 /* Restart timer after forward progress on connection.
2335 * RFC2988 recommends to restart timer to now+rto.
2338 static void tcp_ack_packets_out(struct sock *sk)
2340 struct tcp_sock *tp = tcp_sk(sk);
2342 if (!tp->packets_out) {
2343 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2344 } else {
2345 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2349 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
2350 __u32 now, __s32 *seq_rtt)
2352 struct tcp_sock *tp = tcp_sk(sk);
2353 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2354 __u32 seq = tp->snd_una;
2355 __u32 packets_acked;
2356 int acked = 0;
2358 /* If we get here, the whole TSO packet has not been
2359 * acked.
2361 BUG_ON(!after(scb->end_seq, seq));
2363 packets_acked = tcp_skb_pcount(skb);
2364 if (tcp_trim_head(sk, skb, seq - scb->seq))
2365 return 0;
2366 packets_acked -= tcp_skb_pcount(skb);
2368 if (packets_acked) {
2369 __u8 sacked = scb->sacked;
2371 acked |= FLAG_DATA_ACKED;
2372 if (sacked) {
2373 if (sacked & TCPCB_RETRANS) {
2374 if (sacked & TCPCB_SACKED_RETRANS)
2375 tp->retrans_out -= packets_acked;
2376 acked |= FLAG_RETRANS_DATA_ACKED;
2377 *seq_rtt = -1;
2378 } else if (*seq_rtt < 0)
2379 *seq_rtt = now - scb->when;
2380 if (sacked & TCPCB_SACKED_ACKED)
2381 tp->sacked_out -= packets_acked;
2382 if (sacked & TCPCB_LOST)
2383 tp->lost_out -= packets_acked;
2384 if (sacked & TCPCB_URG) {
2385 if (tp->urg_mode &&
2386 !before(seq, tp->snd_up))
2387 tp->urg_mode = 0;
2389 } else if (*seq_rtt < 0)
2390 *seq_rtt = now - scb->when;
2392 if (tp->fackets_out) {
2393 __u32 dval = min(tp->fackets_out, packets_acked);
2394 tp->fackets_out -= dval;
2396 tp->packets_out -= packets_acked;
2398 BUG_ON(tcp_skb_pcount(skb) == 0);
2399 BUG_ON(!before(scb->seq, scb->end_seq));
2402 return acked;
2405 /* Remove acknowledged frames from the retransmission queue. */
2406 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
2408 struct tcp_sock *tp = tcp_sk(sk);
2409 const struct inet_connection_sock *icsk = inet_csk(sk);
2410 struct sk_buff *skb;
2411 __u32 now = tcp_time_stamp;
2412 int acked = 0;
2413 __s32 seq_rtt = -1;
2414 u32 pkts_acked = 0;
2415 ktime_t last_ackt = ktime_set(0,0);
2417 while ((skb = tcp_write_queue_head(sk)) &&
2418 skb != tcp_send_head(sk)) {
2419 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2420 __u8 sacked = scb->sacked;
2422 /* If our packet is before the ack sequence we can
2423 * discard it as it's confirmed to have arrived at
2424 * the other end.
2426 if (after(scb->end_seq, tp->snd_una)) {
2427 if (tcp_skb_pcount(skb) > 1 &&
2428 after(tp->snd_una, scb->seq))
2429 acked |= tcp_tso_acked(sk, skb,
2430 now, &seq_rtt);
2431 break;
2434 /* Initial outgoing SYN's get put onto the write_queue
2435 * just like anything else we transmit. It is not
2436 * true data, and if we misinform our callers that
2437 * this ACK acks real data, we will erroneously exit
2438 * connection startup slow start one packet too
2439 * quickly. This is severely frowned upon behavior.
2441 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2442 acked |= FLAG_DATA_ACKED;
2443 ++pkts_acked;
2444 } else {
2445 acked |= FLAG_SYN_ACKED;
2446 tp->retrans_stamp = 0;
2449 /* MTU probing checks */
2450 if (icsk->icsk_mtup.probe_size) {
2451 if (!after(tp->mtu_probe.probe_seq_end, TCP_SKB_CB(skb)->end_seq)) {
2452 tcp_mtup_probe_success(sk, skb);
2456 if (sacked) {
2457 if (sacked & TCPCB_RETRANS) {
2458 if (sacked & TCPCB_SACKED_RETRANS)
2459 tp->retrans_out -= tcp_skb_pcount(skb);
2460 acked |= FLAG_RETRANS_DATA_ACKED;
2461 seq_rtt = -1;
2462 } else if (seq_rtt < 0) {
2463 seq_rtt = now - scb->when;
2464 last_ackt = skb->tstamp;
2466 if (sacked & TCPCB_SACKED_ACKED)
2467 tp->sacked_out -= tcp_skb_pcount(skb);
2468 if (sacked & TCPCB_LOST)
2469 tp->lost_out -= tcp_skb_pcount(skb);
2470 if (sacked & TCPCB_URG) {
2471 if (tp->urg_mode &&
2472 !before(scb->end_seq, tp->snd_up))
2473 tp->urg_mode = 0;
2475 } else if (seq_rtt < 0) {
2476 seq_rtt = now - scb->when;
2477 last_ackt = skb->tstamp;
2479 tcp_dec_pcount_approx(&tp->fackets_out, skb);
2480 tcp_packets_out_dec(tp, skb);
2481 tcp_unlink_write_queue(skb, sk);
2482 sk_stream_free_skb(sk, skb);
2483 clear_all_retrans_hints(tp);
2486 if (acked&FLAG_ACKED) {
2487 const struct tcp_congestion_ops *ca_ops
2488 = inet_csk(sk)->icsk_ca_ops;
2490 tcp_ack_update_rtt(sk, acked, seq_rtt);
2491 tcp_ack_packets_out(sk);
2493 if (ca_ops->pkts_acked)
2494 ca_ops->pkts_acked(sk, pkts_acked, last_ackt);
2497 #if FASTRETRANS_DEBUG > 0
2498 BUG_TRAP((int)tp->sacked_out >= 0);
2499 BUG_TRAP((int)tp->lost_out >= 0);
2500 BUG_TRAP((int)tp->retrans_out >= 0);
2501 if (!tp->packets_out && tp->rx_opt.sack_ok) {
2502 const struct inet_connection_sock *icsk = inet_csk(sk);
2503 if (tp->lost_out) {
2504 printk(KERN_DEBUG "Leak l=%u %d\n",
2505 tp->lost_out, icsk->icsk_ca_state);
2506 tp->lost_out = 0;
2508 if (tp->sacked_out) {
2509 printk(KERN_DEBUG "Leak s=%u %d\n",
2510 tp->sacked_out, icsk->icsk_ca_state);
2511 tp->sacked_out = 0;
2513 if (tp->retrans_out) {
2514 printk(KERN_DEBUG "Leak r=%u %d\n",
2515 tp->retrans_out, icsk->icsk_ca_state);
2516 tp->retrans_out = 0;
2519 #endif
2520 *seq_rtt_p = seq_rtt;
2521 return acked;
2524 static void tcp_ack_probe(struct sock *sk)
2526 const struct tcp_sock *tp = tcp_sk(sk);
2527 struct inet_connection_sock *icsk = inet_csk(sk);
2529 /* Was it a usable window open? */
2531 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2532 tp->snd_una + tp->snd_wnd)) {
2533 icsk->icsk_backoff = 0;
2534 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2535 /* Socket must be waked up by subsequent tcp_data_snd_check().
2536 * This function is not for random using!
2538 } else {
2539 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2540 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2541 TCP_RTO_MAX);
2545 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2547 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2548 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2551 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2553 const struct tcp_sock *tp = tcp_sk(sk);
2554 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2555 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2558 /* Check that window update is acceptable.
2559 * The function assumes that snd_una<=ack<=snd_next.
2561 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2562 const u32 ack_seq, const u32 nwin)
2564 return (after(ack, tp->snd_una) ||
2565 after(ack_seq, tp->snd_wl1) ||
2566 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2569 /* Update our send window.
2571 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2572 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2574 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2575 u32 ack_seq)
2577 struct tcp_sock *tp = tcp_sk(sk);
2578 int flag = 0;
2579 u32 nwin = ntohs(tcp_hdr(skb)->window);
2581 if (likely(!tcp_hdr(skb)->syn))
2582 nwin <<= tp->rx_opt.snd_wscale;
2584 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2585 flag |= FLAG_WIN_UPDATE;
2586 tcp_update_wl(tp, ack, ack_seq);
2588 if (tp->snd_wnd != nwin) {
2589 tp->snd_wnd = nwin;
2591 /* Note, it is the only place, where
2592 * fast path is recovered for sending TCP.
2594 tp->pred_flags = 0;
2595 tcp_fast_path_check(sk);
2597 if (nwin > tp->max_window) {
2598 tp->max_window = nwin;
2599 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2604 tp->snd_una = ack;
2606 return flag;
2609 /* A very conservative spurious RTO response algorithm: reduce cwnd and
2610 * continue in congestion avoidance.
2612 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
2614 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2615 tp->snd_cwnd_cnt = 0;
2616 tcp_moderate_cwnd(tp);
2619 /* A conservative spurious RTO response algorithm: reduce cwnd using
2620 * rate halving and continue in congestion avoidance.
2622 static void tcp_ratehalving_spur_to_response(struct sock *sk)
2624 tcp_enter_cwr(sk, 0);
2627 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
2629 if (flag&FLAG_ECE)
2630 tcp_ratehalving_spur_to_response(sk);
2631 else
2632 tcp_undo_cwr(sk, 1);
2635 /* F-RTO spurious RTO detection algorithm (RFC4138)
2637 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
2638 * comments). State (ACK number) is kept in frto_counter. When ACK advances
2639 * window (but not to or beyond highest sequence sent before RTO):
2640 * On First ACK, send two new segments out.
2641 * On Second ACK, RTO was likely spurious. Do spurious response (response
2642 * algorithm is not part of the F-RTO detection algorithm
2643 * given in RFC4138 but can be selected separately).
2644 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
2645 * and TCP falls back to conventional RTO recovery.
2647 * Rationale: if the RTO was spurious, new ACKs should arrive from the
2648 * original window even after we transmit two new data segments.
2650 * SACK version:
2651 * on first step, wait until first cumulative ACK arrives, then move to
2652 * the second step. In second step, the next ACK decides.
2654 * F-RTO is implemented (mainly) in four functions:
2655 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
2656 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
2657 * called when tcp_use_frto() showed green light
2658 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
2659 * - tcp_enter_frto_loss() is called if there is not enough evidence
2660 * to prove that the RTO is indeed spurious. It transfers the control
2661 * from F-RTO to the conventional RTO recovery
2663 static int tcp_process_frto(struct sock *sk, u32 prior_snd_una, int flag)
2665 struct tcp_sock *tp = tcp_sk(sk);
2667 tcp_sync_left_out(tp);
2669 /* Duplicate the behavior from Loss state (fastretrans_alert) */
2670 if (flag&FLAG_DATA_ACKED)
2671 inet_csk(sk)->icsk_retransmits = 0;
2673 if (!before(tp->snd_una, tp->frto_highmark)) {
2674 tcp_enter_frto_loss(sk, tp->frto_counter + 1, flag);
2675 return 1;
2678 if (!IsSackFrto() || IsReno(tp)) {
2679 /* RFC4138 shortcoming in step 2; should also have case c):
2680 * ACK isn't duplicate nor advances window, e.g., opposite dir
2681 * data, winupdate
2683 if ((tp->snd_una == prior_snd_una) && (flag&FLAG_NOT_DUP) &&
2684 !(flag&FLAG_FORWARD_PROGRESS))
2685 return 1;
2687 if (!(flag&FLAG_DATA_ACKED)) {
2688 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
2689 flag);
2690 return 1;
2692 } else {
2693 if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
2694 /* Prevent sending of new data. */
2695 tp->snd_cwnd = min(tp->snd_cwnd,
2696 tcp_packets_in_flight(tp));
2697 return 1;
2700 if ((tp->frto_counter == 2) &&
2701 (!(flag&FLAG_FORWARD_PROGRESS) ||
2702 ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
2703 /* RFC4138 shortcoming (see comment above) */
2704 if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
2705 return 1;
2707 tcp_enter_frto_loss(sk, 3, flag);
2708 return 1;
2712 if (tp->frto_counter == 1) {
2713 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2714 tp->frto_counter = 2;
2715 return 1;
2716 } else /* frto_counter == 2 */ {
2717 switch (sysctl_tcp_frto_response) {
2718 case 2:
2719 tcp_undo_spur_to_response(sk, flag);
2720 break;
2721 case 1:
2722 tcp_conservative_spur_to_response(tp);
2723 break;
2724 default:
2725 tcp_ratehalving_spur_to_response(sk);
2726 break;
2728 tp->frto_counter = 0;
2730 return 0;
2733 /* This routine deals with incoming acks, but not outgoing ones. */
2734 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2736 struct inet_connection_sock *icsk = inet_csk(sk);
2737 struct tcp_sock *tp = tcp_sk(sk);
2738 u32 prior_snd_una = tp->snd_una;
2739 u32 ack_seq = TCP_SKB_CB(skb)->seq;
2740 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2741 u32 prior_in_flight;
2742 s32 seq_rtt;
2743 int prior_packets;
2744 int frto_cwnd = 0;
2746 /* If the ack is newer than sent or older than previous acks
2747 * then we can probably ignore it.
2749 if (after(ack, tp->snd_nxt))
2750 goto uninteresting_ack;
2752 if (before(ack, prior_snd_una))
2753 goto old_ack;
2755 if (sysctl_tcp_abc) {
2756 if (icsk->icsk_ca_state < TCP_CA_CWR)
2757 tp->bytes_acked += ack - prior_snd_una;
2758 else if (icsk->icsk_ca_state == TCP_CA_Loss)
2759 /* we assume just one segment left network */
2760 tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
2763 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2764 /* Window is constant, pure forward advance.
2765 * No more checks are required.
2766 * Note, we use the fact that SND.UNA>=SND.WL2.
2768 tcp_update_wl(tp, ack, ack_seq);
2769 tp->snd_una = ack;
2770 flag |= FLAG_WIN_UPDATE;
2772 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
2774 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2775 } else {
2776 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2777 flag |= FLAG_DATA;
2778 else
2779 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2781 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
2783 if (TCP_SKB_CB(skb)->sacked)
2784 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2786 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
2787 flag |= FLAG_ECE;
2789 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
2792 /* We passed data and got it acked, remove any soft error
2793 * log. Something worked...
2795 sk->sk_err_soft = 0;
2796 tp->rcv_tstamp = tcp_time_stamp;
2797 prior_packets = tp->packets_out;
2798 if (!prior_packets)
2799 goto no_queue;
2801 prior_in_flight = tcp_packets_in_flight(tp);
2803 /* See if we can take anything off of the retransmit queue. */
2804 flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
2806 if (tp->frto_counter)
2807 frto_cwnd = tcp_process_frto(sk, prior_snd_una, flag);
2809 if (tcp_ack_is_dubious(sk, flag)) {
2810 /* Advance CWND, if state allows this. */
2811 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
2812 tcp_may_raise_cwnd(sk, flag))
2813 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 0);
2814 tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2815 } else {
2816 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
2817 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1);
2820 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2821 dst_confirm(sk->sk_dst_cache);
2823 return 1;
2825 no_queue:
2826 icsk->icsk_probes_out = 0;
2828 /* If this ack opens up a zero window, clear backoff. It was
2829 * being used to time the probes, and is probably far higher than
2830 * it needs to be for normal retransmission.
2832 if (tcp_send_head(sk))
2833 tcp_ack_probe(sk);
2834 return 1;
2836 old_ack:
2837 if (TCP_SKB_CB(skb)->sacked)
2838 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2840 uninteresting_ack:
2841 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2842 return 0;
2846 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
2847 * But, this can also be called on packets in the established flow when
2848 * the fast version below fails.
2850 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2852 unsigned char *ptr;
2853 struct tcphdr *th = tcp_hdr(skb);
2854 int length=(th->doff*4)-sizeof(struct tcphdr);
2856 ptr = (unsigned char *)(th + 1);
2857 opt_rx->saw_tstamp = 0;
2859 while (length > 0) {
2860 int opcode=*ptr++;
2861 int opsize;
2863 switch (opcode) {
2864 case TCPOPT_EOL:
2865 return;
2866 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
2867 length--;
2868 continue;
2869 default:
2870 opsize=*ptr++;
2871 if (opsize < 2) /* "silly options" */
2872 return;
2873 if (opsize > length)
2874 return; /* don't parse partial options */
2875 switch (opcode) {
2876 case TCPOPT_MSS:
2877 if (opsize==TCPOLEN_MSS && th->syn && !estab) {
2878 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
2879 if (in_mss) {
2880 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2881 in_mss = opt_rx->user_mss;
2882 opt_rx->mss_clamp = in_mss;
2885 break;
2886 case TCPOPT_WINDOW:
2887 if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
2888 if (sysctl_tcp_window_scaling) {
2889 __u8 snd_wscale = *(__u8 *) ptr;
2890 opt_rx->wscale_ok = 1;
2891 if (snd_wscale > 14) {
2892 if (net_ratelimit())
2893 printk(KERN_INFO "tcp_parse_options: Illegal window "
2894 "scaling value %d >14 received.\n",
2895 snd_wscale);
2896 snd_wscale = 14;
2898 opt_rx->snd_wscale = snd_wscale;
2900 break;
2901 case TCPOPT_TIMESTAMP:
2902 if (opsize==TCPOLEN_TIMESTAMP) {
2903 if ((estab && opt_rx->tstamp_ok) ||
2904 (!estab && sysctl_tcp_timestamps)) {
2905 opt_rx->saw_tstamp = 1;
2906 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
2907 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
2910 break;
2911 case TCPOPT_SACK_PERM:
2912 if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2913 if (sysctl_tcp_sack) {
2914 opt_rx->sack_ok = 1;
2915 tcp_sack_reset(opt_rx);
2918 break;
2920 case TCPOPT_SACK:
2921 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2922 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2923 opt_rx->sack_ok) {
2924 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2926 #ifdef CONFIG_TCP_MD5SIG
2927 case TCPOPT_MD5SIG:
2929 * The MD5 Hash has already been
2930 * checked (see tcp_v{4,6}_do_rcv()).
2932 break;
2933 #endif
2936 ptr+=opsize-2;
2937 length-=opsize;
2942 /* Fast parse options. This hopes to only see timestamps.
2943 * If it is wrong it falls back on tcp_parse_options().
2945 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2946 struct tcp_sock *tp)
2948 if (th->doff == sizeof(struct tcphdr)>>2) {
2949 tp->rx_opt.saw_tstamp = 0;
2950 return 0;
2951 } else if (tp->rx_opt.tstamp_ok &&
2952 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
2953 __be32 *ptr = (__be32 *)(th + 1);
2954 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
2955 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2956 tp->rx_opt.saw_tstamp = 1;
2957 ++ptr;
2958 tp->rx_opt.rcv_tsval = ntohl(*ptr);
2959 ++ptr;
2960 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
2961 return 1;
2964 tcp_parse_options(skb, &tp->rx_opt, 1);
2965 return 1;
2968 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
2970 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
2971 tp->rx_opt.ts_recent_stamp = get_seconds();
2974 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
2976 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
2977 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
2978 * extra check below makes sure this can only happen
2979 * for pure ACK frames. -DaveM
2981 * Not only, also it occurs for expired timestamps.
2984 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
2985 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
2986 tcp_store_ts_recent(tp);
2990 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
2992 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
2993 * it can pass through stack. So, the following predicate verifies that
2994 * this segment is not used for anything but congestion avoidance or
2995 * fast retransmit. Moreover, we even are able to eliminate most of such
2996 * second order effects, if we apply some small "replay" window (~RTO)
2997 * to timestamp space.
2999 * All these measures still do not guarantee that we reject wrapped ACKs
3000 * on networks with high bandwidth, when sequence space is recycled fastly,
3001 * but it guarantees that such events will be very rare and do not affect
3002 * connection seriously. This doesn't look nice, but alas, PAWS is really
3003 * buggy extension.
3005 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3006 * states that events when retransmit arrives after original data are rare.
3007 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3008 * the biggest problem on large power networks even with minor reordering.
3009 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3010 * up to bandwidth of 18Gigabit/sec. 8) ]
3013 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3015 struct tcp_sock *tp = tcp_sk(sk);
3016 struct tcphdr *th = tcp_hdr(skb);
3017 u32 seq = TCP_SKB_CB(skb)->seq;
3018 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3020 return (/* 1. Pure ACK with correct sequence number. */
3021 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3023 /* 2. ... and duplicate ACK. */
3024 ack == tp->snd_una &&
3026 /* 3. ... and does not update window. */
3027 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3029 /* 4. ... and sits in replay window. */
3030 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3033 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
3035 const struct tcp_sock *tp = tcp_sk(sk);
3036 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3037 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3038 !tcp_disordered_ack(sk, skb));
3041 /* Check segment sequence number for validity.
3043 * Segment controls are considered valid, if the segment
3044 * fits to the window after truncation to the window. Acceptability
3045 * of data (and SYN, FIN, of course) is checked separately.
3046 * See tcp_data_queue(), for example.
3048 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3049 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3050 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3051 * (borrowed from freebsd)
3054 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3056 return !before(end_seq, tp->rcv_wup) &&
3057 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3060 /* When we get a reset we do this. */
3061 static void tcp_reset(struct sock *sk)
3063 /* We want the right error as BSD sees it (and indeed as we do). */
3064 switch (sk->sk_state) {
3065 case TCP_SYN_SENT:
3066 sk->sk_err = ECONNREFUSED;
3067 break;
3068 case TCP_CLOSE_WAIT:
3069 sk->sk_err = EPIPE;
3070 break;
3071 case TCP_CLOSE:
3072 return;
3073 default:
3074 sk->sk_err = ECONNRESET;
3077 if (!sock_flag(sk, SOCK_DEAD))
3078 sk->sk_error_report(sk);
3080 tcp_done(sk);
3084 * Process the FIN bit. This now behaves as it is supposed to work
3085 * and the FIN takes effect when it is validly part of sequence
3086 * space. Not before when we get holes.
3088 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3089 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3090 * TIME-WAIT)
3092 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3093 * close and we go into CLOSING (and later onto TIME-WAIT)
3095 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3097 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3099 struct tcp_sock *tp = tcp_sk(sk);
3101 inet_csk_schedule_ack(sk);
3103 sk->sk_shutdown |= RCV_SHUTDOWN;
3104 sock_set_flag(sk, SOCK_DONE);
3106 switch (sk->sk_state) {
3107 case TCP_SYN_RECV:
3108 case TCP_ESTABLISHED:
3109 /* Move to CLOSE_WAIT */
3110 tcp_set_state(sk, TCP_CLOSE_WAIT);
3111 inet_csk(sk)->icsk_ack.pingpong = 1;
3112 break;
3114 case TCP_CLOSE_WAIT:
3115 case TCP_CLOSING:
3116 /* Received a retransmission of the FIN, do
3117 * nothing.
3119 break;
3120 case TCP_LAST_ACK:
3121 /* RFC793: Remain in the LAST-ACK state. */
3122 break;
3124 case TCP_FIN_WAIT1:
3125 /* This case occurs when a simultaneous close
3126 * happens, we must ack the received FIN and
3127 * enter the CLOSING state.
3129 tcp_send_ack(sk);
3130 tcp_set_state(sk, TCP_CLOSING);
3131 break;
3132 case TCP_FIN_WAIT2:
3133 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3134 tcp_send_ack(sk);
3135 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3136 break;
3137 default:
3138 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3139 * cases we should never reach this piece of code.
3141 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3142 __FUNCTION__, sk->sk_state);
3143 break;
3146 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3147 * Probably, we should reset in this case. For now drop them.
3149 __skb_queue_purge(&tp->out_of_order_queue);
3150 if (tp->rx_opt.sack_ok)
3151 tcp_sack_reset(&tp->rx_opt);
3152 sk_stream_mem_reclaim(sk);
3154 if (!sock_flag(sk, SOCK_DEAD)) {
3155 sk->sk_state_change(sk);
3157 /* Do not send POLL_HUP for half duplex close. */
3158 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3159 sk->sk_state == TCP_CLOSE)
3160 sk_wake_async(sk, 1, POLL_HUP);
3161 else
3162 sk_wake_async(sk, 1, POLL_IN);
3166 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
3168 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3169 if (before(seq, sp->start_seq))
3170 sp->start_seq = seq;
3171 if (after(end_seq, sp->end_seq))
3172 sp->end_seq = end_seq;
3173 return 1;
3175 return 0;
3178 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3180 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3181 if (before(seq, tp->rcv_nxt))
3182 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3183 else
3184 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3186 tp->rx_opt.dsack = 1;
3187 tp->duplicate_sack[0].start_seq = seq;
3188 tp->duplicate_sack[0].end_seq = end_seq;
3189 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3193 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3195 if (!tp->rx_opt.dsack)
3196 tcp_dsack_set(tp, seq, end_seq);
3197 else
3198 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3201 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3203 struct tcp_sock *tp = tcp_sk(sk);
3205 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3206 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3207 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3208 tcp_enter_quickack_mode(sk);
3210 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3211 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3213 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3214 end_seq = tp->rcv_nxt;
3215 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3219 tcp_send_ack(sk);
3222 /* These routines update the SACK block as out-of-order packets arrive or
3223 * in-order packets close up the sequence space.
3225 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3227 int this_sack;
3228 struct tcp_sack_block *sp = &tp->selective_acks[0];
3229 struct tcp_sack_block *swalk = sp+1;
3231 /* See if the recent change to the first SACK eats into
3232 * or hits the sequence space of other SACK blocks, if so coalesce.
3234 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3235 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3236 int i;
3238 /* Zap SWALK, by moving every further SACK up by one slot.
3239 * Decrease num_sacks.
3241 tp->rx_opt.num_sacks--;
3242 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3243 for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
3244 sp[i] = sp[i+1];
3245 continue;
3247 this_sack++, swalk++;
3251 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3253 __u32 tmp;
3255 tmp = sack1->start_seq;
3256 sack1->start_seq = sack2->start_seq;
3257 sack2->start_seq = tmp;
3259 tmp = sack1->end_seq;
3260 sack1->end_seq = sack2->end_seq;
3261 sack2->end_seq = tmp;
3264 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3266 struct tcp_sock *tp = tcp_sk(sk);
3267 struct tcp_sack_block *sp = &tp->selective_acks[0];
3268 int cur_sacks = tp->rx_opt.num_sacks;
3269 int this_sack;
3271 if (!cur_sacks)
3272 goto new_sack;
3274 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3275 if (tcp_sack_extend(sp, seq, end_seq)) {
3276 /* Rotate this_sack to the first one. */
3277 for (; this_sack>0; this_sack--, sp--)
3278 tcp_sack_swap(sp, sp-1);
3279 if (cur_sacks > 1)
3280 tcp_sack_maybe_coalesce(tp);
3281 return;
3285 /* Could not find an adjacent existing SACK, build a new one,
3286 * put it at the front, and shift everyone else down. We
3287 * always know there is at least one SACK present already here.
3289 * If the sack array is full, forget about the last one.
3291 if (this_sack >= 4) {
3292 this_sack--;
3293 tp->rx_opt.num_sacks--;
3294 sp--;
3296 for (; this_sack > 0; this_sack--, sp--)
3297 *sp = *(sp-1);
3299 new_sack:
3300 /* Build the new head SACK, and we're done. */
3301 sp->start_seq = seq;
3302 sp->end_seq = end_seq;
3303 tp->rx_opt.num_sacks++;
3304 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3307 /* RCV.NXT advances, some SACKs should be eaten. */
3309 static void tcp_sack_remove(struct tcp_sock *tp)
3311 struct tcp_sack_block *sp = &tp->selective_acks[0];
3312 int num_sacks = tp->rx_opt.num_sacks;
3313 int this_sack;
3315 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3316 if (skb_queue_empty(&tp->out_of_order_queue)) {
3317 tp->rx_opt.num_sacks = 0;
3318 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3319 return;
3322 for (this_sack = 0; this_sack < num_sacks; ) {
3323 /* Check if the start of the sack is covered by RCV.NXT. */
3324 if (!before(tp->rcv_nxt, sp->start_seq)) {
3325 int i;
3327 /* RCV.NXT must cover all the block! */
3328 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3330 /* Zap this SACK, by moving forward any other SACKS. */
3331 for (i=this_sack+1; i < num_sacks; i++)
3332 tp->selective_acks[i-1] = tp->selective_acks[i];
3333 num_sacks--;
3334 continue;
3336 this_sack++;
3337 sp++;
3339 if (num_sacks != tp->rx_opt.num_sacks) {
3340 tp->rx_opt.num_sacks = num_sacks;
3341 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3345 /* This one checks to see if we can put data from the
3346 * out_of_order queue into the receive_queue.
3348 static void tcp_ofo_queue(struct sock *sk)
3350 struct tcp_sock *tp = tcp_sk(sk);
3351 __u32 dsack_high = tp->rcv_nxt;
3352 struct sk_buff *skb;
3354 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3355 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3356 break;
3358 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3359 __u32 dsack = dsack_high;
3360 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3361 dsack_high = TCP_SKB_CB(skb)->end_seq;
3362 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3365 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3366 SOCK_DEBUG(sk, "ofo packet was already received \n");
3367 __skb_unlink(skb, &tp->out_of_order_queue);
3368 __kfree_skb(skb);
3369 continue;
3371 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3372 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3373 TCP_SKB_CB(skb)->end_seq);
3375 __skb_unlink(skb, &tp->out_of_order_queue);
3376 __skb_queue_tail(&sk->sk_receive_queue, skb);
3377 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3378 if (tcp_hdr(skb)->fin)
3379 tcp_fin(skb, sk, tcp_hdr(skb));
3383 static int tcp_prune_queue(struct sock *sk);
3385 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3387 struct tcphdr *th = tcp_hdr(skb);
3388 struct tcp_sock *tp = tcp_sk(sk);
3389 int eaten = -1;
3391 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3392 goto drop;
3394 __skb_pull(skb, th->doff*4);
3396 TCP_ECN_accept_cwr(tp, skb);
3398 if (tp->rx_opt.dsack) {
3399 tp->rx_opt.dsack = 0;
3400 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3401 4 - tp->rx_opt.tstamp_ok);
3404 /* Queue data for delivery to the user.
3405 * Packets in sequence go to the receive queue.
3406 * Out of sequence packets to the out_of_order_queue.
3408 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3409 if (tcp_receive_window(tp) == 0)
3410 goto out_of_window;
3412 /* Ok. In sequence. In window. */
3413 if (tp->ucopy.task == current &&
3414 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3415 sock_owned_by_user(sk) && !tp->urg_data) {
3416 int chunk = min_t(unsigned int, skb->len,
3417 tp->ucopy.len);
3419 __set_current_state(TASK_RUNNING);
3421 local_bh_enable();
3422 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3423 tp->ucopy.len -= chunk;
3424 tp->copied_seq += chunk;
3425 eaten = (chunk == skb->len && !th->fin);
3426 tcp_rcv_space_adjust(sk);
3428 local_bh_disable();
3431 if (eaten <= 0) {
3432 queue_and_out:
3433 if (eaten < 0 &&
3434 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3435 !sk_stream_rmem_schedule(sk, skb))) {
3436 if (tcp_prune_queue(sk) < 0 ||
3437 !sk_stream_rmem_schedule(sk, skb))
3438 goto drop;
3440 sk_stream_set_owner_r(skb, sk);
3441 __skb_queue_tail(&sk->sk_receive_queue, skb);
3443 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3444 if (skb->len)
3445 tcp_event_data_recv(sk, skb);
3446 if (th->fin)
3447 tcp_fin(skb, sk, th);
3449 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3450 tcp_ofo_queue(sk);
3452 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3453 * gap in queue is filled.
3455 if (skb_queue_empty(&tp->out_of_order_queue))
3456 inet_csk(sk)->icsk_ack.pingpong = 0;
3459 if (tp->rx_opt.num_sacks)
3460 tcp_sack_remove(tp);
3462 tcp_fast_path_check(sk);
3464 if (eaten > 0)
3465 __kfree_skb(skb);
3466 else if (!sock_flag(sk, SOCK_DEAD))
3467 sk->sk_data_ready(sk, 0);
3468 return;
3471 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3472 /* A retransmit, 2nd most common case. Force an immediate ack. */
3473 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3474 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3476 out_of_window:
3477 tcp_enter_quickack_mode(sk);
3478 inet_csk_schedule_ack(sk);
3479 drop:
3480 __kfree_skb(skb);
3481 return;
3484 /* Out of window. F.e. zero window probe. */
3485 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3486 goto out_of_window;
3488 tcp_enter_quickack_mode(sk);
3490 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3491 /* Partial packet, seq < rcv_next < end_seq */
3492 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3493 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3494 TCP_SKB_CB(skb)->end_seq);
3496 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3498 /* If window is closed, drop tail of packet. But after
3499 * remembering D-SACK for its head made in previous line.
3501 if (!tcp_receive_window(tp))
3502 goto out_of_window;
3503 goto queue_and_out;
3506 TCP_ECN_check_ce(tp, skb);
3508 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3509 !sk_stream_rmem_schedule(sk, skb)) {
3510 if (tcp_prune_queue(sk) < 0 ||
3511 !sk_stream_rmem_schedule(sk, skb))
3512 goto drop;
3515 /* Disable header prediction. */
3516 tp->pred_flags = 0;
3517 inet_csk_schedule_ack(sk);
3519 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3520 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3522 sk_stream_set_owner_r(skb, sk);
3524 if (!skb_peek(&tp->out_of_order_queue)) {
3525 /* Initial out of order segment, build 1 SACK. */
3526 if (tp->rx_opt.sack_ok) {
3527 tp->rx_opt.num_sacks = 1;
3528 tp->rx_opt.dsack = 0;
3529 tp->rx_opt.eff_sacks = 1;
3530 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3531 tp->selective_acks[0].end_seq =
3532 TCP_SKB_CB(skb)->end_seq;
3534 __skb_queue_head(&tp->out_of_order_queue,skb);
3535 } else {
3536 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3537 u32 seq = TCP_SKB_CB(skb)->seq;
3538 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3540 if (seq == TCP_SKB_CB(skb1)->end_seq) {
3541 __skb_append(skb1, skb, &tp->out_of_order_queue);
3543 if (!tp->rx_opt.num_sacks ||
3544 tp->selective_acks[0].end_seq != seq)
3545 goto add_sack;
3547 /* Common case: data arrive in order after hole. */
3548 tp->selective_acks[0].end_seq = end_seq;
3549 return;
3552 /* Find place to insert this segment. */
3553 do {
3554 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3555 break;
3556 } while ((skb1 = skb1->prev) !=
3557 (struct sk_buff*)&tp->out_of_order_queue);
3559 /* Do skb overlap to previous one? */
3560 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3561 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3562 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3563 /* All the bits are present. Drop. */
3564 __kfree_skb(skb);
3565 tcp_dsack_set(tp, seq, end_seq);
3566 goto add_sack;
3568 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3569 /* Partial overlap. */
3570 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3571 } else {
3572 skb1 = skb1->prev;
3575 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3577 /* And clean segments covered by new one as whole. */
3578 while ((skb1 = skb->next) !=
3579 (struct sk_buff*)&tp->out_of_order_queue &&
3580 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3581 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3582 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3583 break;
3585 __skb_unlink(skb1, &tp->out_of_order_queue);
3586 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3587 __kfree_skb(skb1);
3590 add_sack:
3591 if (tp->rx_opt.sack_ok)
3592 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3596 /* Collapse contiguous sequence of skbs head..tail with
3597 * sequence numbers start..end.
3598 * Segments with FIN/SYN are not collapsed (only because this
3599 * simplifies code)
3601 static void
3602 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3603 struct sk_buff *head, struct sk_buff *tail,
3604 u32 start, u32 end)
3606 struct sk_buff *skb;
3608 /* First, check that queue is collapsible and find
3609 * the point where collapsing can be useful. */
3610 for (skb = head; skb != tail; ) {
3611 /* No new bits? It is possible on ofo queue. */
3612 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3613 struct sk_buff *next = skb->next;
3614 __skb_unlink(skb, list);
3615 __kfree_skb(skb);
3616 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3617 skb = next;
3618 continue;
3621 /* The first skb to collapse is:
3622 * - not SYN/FIN and
3623 * - bloated or contains data before "start" or
3624 * overlaps to the next one.
3626 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
3627 (tcp_win_from_space(skb->truesize) > skb->len ||
3628 before(TCP_SKB_CB(skb)->seq, start) ||
3629 (skb->next != tail &&
3630 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3631 break;
3633 /* Decided to skip this, advance start seq. */
3634 start = TCP_SKB_CB(skb)->end_seq;
3635 skb = skb->next;
3637 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
3638 return;
3640 while (before(start, end)) {
3641 struct sk_buff *nskb;
3642 int header = skb_headroom(skb);
3643 int copy = SKB_MAX_ORDER(header, 0);
3645 /* Too big header? This can happen with IPv6. */
3646 if (copy < 0)
3647 return;
3648 if (end-start < copy)
3649 copy = end-start;
3650 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3651 if (!nskb)
3652 return;
3654 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
3655 skb_set_network_header(nskb, (skb_network_header(skb) -
3656 skb->head));
3657 skb_set_transport_header(nskb, (skb_transport_header(skb) -
3658 skb->head));
3659 skb_reserve(nskb, header);
3660 memcpy(nskb->head, skb->head, header);
3661 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3662 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3663 __skb_insert(nskb, skb->prev, skb, list);
3664 sk_stream_set_owner_r(nskb, sk);
3666 /* Copy data, releasing collapsed skbs. */
3667 while (copy > 0) {
3668 int offset = start - TCP_SKB_CB(skb)->seq;
3669 int size = TCP_SKB_CB(skb)->end_seq - start;
3671 BUG_ON(offset < 0);
3672 if (size > 0) {
3673 size = min(copy, size);
3674 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3675 BUG();
3676 TCP_SKB_CB(nskb)->end_seq += size;
3677 copy -= size;
3678 start += size;
3680 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3681 struct sk_buff *next = skb->next;
3682 __skb_unlink(skb, list);
3683 __kfree_skb(skb);
3684 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3685 skb = next;
3686 if (skb == tail ||
3687 tcp_hdr(skb)->syn ||
3688 tcp_hdr(skb)->fin)
3689 return;
3695 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3696 * and tcp_collapse() them until all the queue is collapsed.
3698 static void tcp_collapse_ofo_queue(struct sock *sk)
3700 struct tcp_sock *tp = tcp_sk(sk);
3701 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3702 struct sk_buff *head;
3703 u32 start, end;
3705 if (skb == NULL)
3706 return;
3708 start = TCP_SKB_CB(skb)->seq;
3709 end = TCP_SKB_CB(skb)->end_seq;
3710 head = skb;
3712 for (;;) {
3713 skb = skb->next;
3715 /* Segment is terminated when we see gap or when
3716 * we are at the end of all the queue. */
3717 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3718 after(TCP_SKB_CB(skb)->seq, end) ||
3719 before(TCP_SKB_CB(skb)->end_seq, start)) {
3720 tcp_collapse(sk, &tp->out_of_order_queue,
3721 head, skb, start, end);
3722 head = skb;
3723 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3724 break;
3725 /* Start new segment */
3726 start = TCP_SKB_CB(skb)->seq;
3727 end = TCP_SKB_CB(skb)->end_seq;
3728 } else {
3729 if (before(TCP_SKB_CB(skb)->seq, start))
3730 start = TCP_SKB_CB(skb)->seq;
3731 if (after(TCP_SKB_CB(skb)->end_seq, end))
3732 end = TCP_SKB_CB(skb)->end_seq;
3737 /* Reduce allocated memory if we can, trying to get
3738 * the socket within its memory limits again.
3740 * Return less than zero if we should start dropping frames
3741 * until the socket owning process reads some of the data
3742 * to stabilize the situation.
3744 static int tcp_prune_queue(struct sock *sk)
3746 struct tcp_sock *tp = tcp_sk(sk);
3748 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3750 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3752 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3753 tcp_clamp_window(sk);
3754 else if (tcp_memory_pressure)
3755 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3757 tcp_collapse_ofo_queue(sk);
3758 tcp_collapse(sk, &sk->sk_receive_queue,
3759 sk->sk_receive_queue.next,
3760 (struct sk_buff*)&sk->sk_receive_queue,
3761 tp->copied_seq, tp->rcv_nxt);
3762 sk_stream_mem_reclaim(sk);
3764 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3765 return 0;
3767 /* Collapsing did not help, destructive actions follow.
3768 * This must not ever occur. */
3770 /* First, purge the out_of_order queue. */
3771 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3772 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
3773 __skb_queue_purge(&tp->out_of_order_queue);
3775 /* Reset SACK state. A conforming SACK implementation will
3776 * do the same at a timeout based retransmit. When a connection
3777 * is in a sad state like this, we care only about integrity
3778 * of the connection not performance.
3780 if (tp->rx_opt.sack_ok)
3781 tcp_sack_reset(&tp->rx_opt);
3782 sk_stream_mem_reclaim(sk);
3785 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3786 return 0;
3788 /* If we are really being abused, tell the caller to silently
3789 * drop receive data on the floor. It will get retransmitted
3790 * and hopefully then we'll have sufficient space.
3792 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3794 /* Massive buffer overcommit. */
3795 tp->pred_flags = 0;
3796 return -1;
3800 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3801 * As additional protections, we do not touch cwnd in retransmission phases,
3802 * and if application hit its sndbuf limit recently.
3804 void tcp_cwnd_application_limited(struct sock *sk)
3806 struct tcp_sock *tp = tcp_sk(sk);
3808 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
3809 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3810 /* Limited by application or receiver window. */
3811 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
3812 u32 win_used = max(tp->snd_cwnd_used, init_win);
3813 if (win_used < tp->snd_cwnd) {
3814 tp->snd_ssthresh = tcp_current_ssthresh(sk);
3815 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3817 tp->snd_cwnd_used = 0;
3819 tp->snd_cwnd_stamp = tcp_time_stamp;
3822 static int tcp_should_expand_sndbuf(struct sock *sk)
3824 struct tcp_sock *tp = tcp_sk(sk);
3826 /* If the user specified a specific send buffer setting, do
3827 * not modify it.
3829 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3830 return 0;
3832 /* If we are under global TCP memory pressure, do not expand. */
3833 if (tcp_memory_pressure)
3834 return 0;
3836 /* If we are under soft global TCP memory pressure, do not expand. */
3837 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3838 return 0;
3840 /* If we filled the congestion window, do not expand. */
3841 if (tp->packets_out >= tp->snd_cwnd)
3842 return 0;
3844 return 1;
3847 /* When incoming ACK allowed to free some skb from write_queue,
3848 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3849 * on the exit from tcp input handler.
3851 * PROBLEM: sndbuf expansion does not work well with largesend.
3853 static void tcp_new_space(struct sock *sk)
3855 struct tcp_sock *tp = tcp_sk(sk);
3857 if (tcp_should_expand_sndbuf(sk)) {
3858 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
3859 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3860 demanded = max_t(unsigned int, tp->snd_cwnd,
3861 tp->reordering + 1);
3862 sndmem *= 2*demanded;
3863 if (sndmem > sk->sk_sndbuf)
3864 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3865 tp->snd_cwnd_stamp = tcp_time_stamp;
3868 sk->sk_write_space(sk);
3871 static void tcp_check_space(struct sock *sk)
3873 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3874 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3875 if (sk->sk_socket &&
3876 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3877 tcp_new_space(sk);
3881 static inline void tcp_data_snd_check(struct sock *sk)
3883 tcp_push_pending_frames(sk);
3884 tcp_check_space(sk);
3888 * Check if sending an ack is needed.
3890 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3892 struct tcp_sock *tp = tcp_sk(sk);
3894 /* More than one full frame received... */
3895 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
3896 /* ... and right edge of window advances far enough.
3897 * (tcp_recvmsg() will send ACK otherwise). Or...
3899 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3900 /* We ACK each frame or... */
3901 tcp_in_quickack_mode(sk) ||
3902 /* We have out of order data. */
3903 (ofo_possible &&
3904 skb_peek(&tp->out_of_order_queue))) {
3905 /* Then ack it now */
3906 tcp_send_ack(sk);
3907 } else {
3908 /* Else, send delayed ack. */
3909 tcp_send_delayed_ack(sk);
3913 static inline void tcp_ack_snd_check(struct sock *sk)
3915 if (!inet_csk_ack_scheduled(sk)) {
3916 /* We sent a data segment already. */
3917 return;
3919 __tcp_ack_snd_check(sk, 1);
3923 * This routine is only called when we have urgent data
3924 * signaled. Its the 'slow' part of tcp_urg. It could be
3925 * moved inline now as tcp_urg is only called from one
3926 * place. We handle URGent data wrong. We have to - as
3927 * BSD still doesn't use the correction from RFC961.
3928 * For 1003.1g we should support a new option TCP_STDURG to permit
3929 * either form (or just set the sysctl tcp_stdurg).
3932 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3934 struct tcp_sock *tp = tcp_sk(sk);
3935 u32 ptr = ntohs(th->urg_ptr);
3937 if (ptr && !sysctl_tcp_stdurg)
3938 ptr--;
3939 ptr += ntohl(th->seq);
3941 /* Ignore urgent data that we've already seen and read. */
3942 if (after(tp->copied_seq, ptr))
3943 return;
3945 /* Do not replay urg ptr.
3947 * NOTE: interesting situation not covered by specs.
3948 * Misbehaving sender may send urg ptr, pointing to segment,
3949 * which we already have in ofo queue. We are not able to fetch
3950 * such data and will stay in TCP_URG_NOTYET until will be eaten
3951 * by recvmsg(). Seems, we are not obliged to handle such wicked
3952 * situations. But it is worth to think about possibility of some
3953 * DoSes using some hypothetical application level deadlock.
3955 if (before(ptr, tp->rcv_nxt))
3956 return;
3958 /* Do we already have a newer (or duplicate) urgent pointer? */
3959 if (tp->urg_data && !after(ptr, tp->urg_seq))
3960 return;
3962 /* Tell the world about our new urgent pointer. */
3963 sk_send_sigurg(sk);
3965 /* We may be adding urgent data when the last byte read was
3966 * urgent. To do this requires some care. We cannot just ignore
3967 * tp->copied_seq since we would read the last urgent byte again
3968 * as data, nor can we alter copied_seq until this data arrives
3969 * or we break the semantics of SIOCATMARK (and thus sockatmark())
3971 * NOTE. Double Dutch. Rendering to plain English: author of comment
3972 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
3973 * and expect that both A and B disappear from stream. This is _wrong_.
3974 * Though this happens in BSD with high probability, this is occasional.
3975 * Any application relying on this is buggy. Note also, that fix "works"
3976 * only in this artificial test. Insert some normal data between A and B and we will
3977 * decline of BSD again. Verdict: it is better to remove to trap
3978 * buggy users.
3980 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
3981 !sock_flag(sk, SOCK_URGINLINE) &&
3982 tp->copied_seq != tp->rcv_nxt) {
3983 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
3984 tp->copied_seq++;
3985 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
3986 __skb_unlink(skb, &sk->sk_receive_queue);
3987 __kfree_skb(skb);
3991 tp->urg_data = TCP_URG_NOTYET;
3992 tp->urg_seq = ptr;
3994 /* Disable header prediction. */
3995 tp->pred_flags = 0;
3998 /* This is the 'fast' part of urgent handling. */
3999 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4001 struct tcp_sock *tp = tcp_sk(sk);
4003 /* Check if we get a new urgent pointer - normally not. */
4004 if (th->urg)
4005 tcp_check_urg(sk,th);
4007 /* Do we wait for any urgent data? - normally not... */
4008 if (tp->urg_data == TCP_URG_NOTYET) {
4009 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4010 th->syn;
4012 /* Is the urgent pointer pointing into this packet? */
4013 if (ptr < skb->len) {
4014 u8 tmp;
4015 if (skb_copy_bits(skb, ptr, &tmp, 1))
4016 BUG();
4017 tp->urg_data = TCP_URG_VALID | tmp;
4018 if (!sock_flag(sk, SOCK_DEAD))
4019 sk->sk_data_ready(sk, 0);
4024 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4026 struct tcp_sock *tp = tcp_sk(sk);
4027 int chunk = skb->len - hlen;
4028 int err;
4030 local_bh_enable();
4031 if (skb_csum_unnecessary(skb))
4032 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4033 else
4034 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4035 tp->ucopy.iov);
4037 if (!err) {
4038 tp->ucopy.len -= chunk;
4039 tp->copied_seq += chunk;
4040 tcp_rcv_space_adjust(sk);
4043 local_bh_disable();
4044 return err;
4047 static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4049 __sum16 result;
4051 if (sock_owned_by_user(sk)) {
4052 local_bh_enable();
4053 result = __tcp_checksum_complete(skb);
4054 local_bh_disable();
4055 } else {
4056 result = __tcp_checksum_complete(skb);
4058 return result;
4061 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4063 return !skb_csum_unnecessary(skb) &&
4064 __tcp_checksum_complete_user(sk, skb);
4067 #ifdef CONFIG_NET_DMA
4068 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
4070 struct tcp_sock *tp = tcp_sk(sk);
4071 int chunk = skb->len - hlen;
4072 int dma_cookie;
4073 int copied_early = 0;
4075 if (tp->ucopy.wakeup)
4076 return 0;
4078 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4079 tp->ucopy.dma_chan = get_softnet_dma();
4081 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4083 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4084 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4086 if (dma_cookie < 0)
4087 goto out;
4089 tp->ucopy.dma_cookie = dma_cookie;
4090 copied_early = 1;
4092 tp->ucopy.len -= chunk;
4093 tp->copied_seq += chunk;
4094 tcp_rcv_space_adjust(sk);
4096 if ((tp->ucopy.len == 0) ||
4097 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4098 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4099 tp->ucopy.wakeup = 1;
4100 sk->sk_data_ready(sk, 0);
4102 } else if (chunk > 0) {
4103 tp->ucopy.wakeup = 1;
4104 sk->sk_data_ready(sk, 0);
4106 out:
4107 return copied_early;
4109 #endif /* CONFIG_NET_DMA */
4112 * TCP receive function for the ESTABLISHED state.
4114 * It is split into a fast path and a slow path. The fast path is
4115 * disabled when:
4116 * - A zero window was announced from us - zero window probing
4117 * is only handled properly in the slow path.
4118 * - Out of order segments arrived.
4119 * - Urgent data is expected.
4120 * - There is no buffer space left
4121 * - Unexpected TCP flags/window values/header lengths are received
4122 * (detected by checking the TCP header against pred_flags)
4123 * - Data is sent in both directions. Fast path only supports pure senders
4124 * or pure receivers (this means either the sequence number or the ack
4125 * value must stay constant)
4126 * - Unexpected TCP option.
4128 * When these conditions are not satisfied it drops into a standard
4129 * receive procedure patterned after RFC793 to handle all cases.
4130 * The first three cases are guaranteed by proper pred_flags setting,
4131 * the rest is checked inline. Fast processing is turned on in
4132 * tcp_data_queue when everything is OK.
4134 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4135 struct tcphdr *th, unsigned len)
4137 struct tcp_sock *tp = tcp_sk(sk);
4140 * Header prediction.
4141 * The code loosely follows the one in the famous
4142 * "30 instruction TCP receive" Van Jacobson mail.
4144 * Van's trick is to deposit buffers into socket queue
4145 * on a device interrupt, to call tcp_recv function
4146 * on the receive process context and checksum and copy
4147 * the buffer to user space. smart...
4149 * Our current scheme is not silly either but we take the
4150 * extra cost of the net_bh soft interrupt processing...
4151 * We do checksum and copy also but from device to kernel.
4154 tp->rx_opt.saw_tstamp = 0;
4156 /* pred_flags is 0xS?10 << 16 + snd_wnd
4157 * if header_prediction is to be made
4158 * 'S' will always be tp->tcp_header_len >> 2
4159 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4160 * turn it off (when there are holes in the receive
4161 * space for instance)
4162 * PSH flag is ignored.
4165 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4166 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4167 int tcp_header_len = tp->tcp_header_len;
4169 /* Timestamp header prediction: tcp_header_len
4170 * is automatically equal to th->doff*4 due to pred_flags
4171 * match.
4174 /* Check timestamp */
4175 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4176 __be32 *ptr = (__be32 *)(th + 1);
4178 /* No? Slow path! */
4179 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4180 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4181 goto slow_path;
4183 tp->rx_opt.saw_tstamp = 1;
4184 ++ptr;
4185 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4186 ++ptr;
4187 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4189 /* If PAWS failed, check it more carefully in slow path */
4190 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4191 goto slow_path;
4193 /* DO NOT update ts_recent here, if checksum fails
4194 * and timestamp was corrupted part, it will result
4195 * in a hung connection since we will drop all
4196 * future packets due to the PAWS test.
4200 if (len <= tcp_header_len) {
4201 /* Bulk data transfer: sender */
4202 if (len == tcp_header_len) {
4203 /* Predicted packet is in window by definition.
4204 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4205 * Hence, check seq<=rcv_wup reduces to:
4207 if (tcp_header_len ==
4208 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4209 tp->rcv_nxt == tp->rcv_wup)
4210 tcp_store_ts_recent(tp);
4212 /* We know that such packets are checksummed
4213 * on entry.
4215 tcp_ack(sk, skb, 0);
4216 __kfree_skb(skb);
4217 tcp_data_snd_check(sk);
4218 return 0;
4219 } else { /* Header too small */
4220 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4221 goto discard;
4223 } else {
4224 int eaten = 0;
4225 int copied_early = 0;
4227 if (tp->copied_seq == tp->rcv_nxt &&
4228 len - tcp_header_len <= tp->ucopy.len) {
4229 #ifdef CONFIG_NET_DMA
4230 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4231 copied_early = 1;
4232 eaten = 1;
4234 #endif
4235 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4236 __set_current_state(TASK_RUNNING);
4238 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4239 eaten = 1;
4241 if (eaten) {
4242 /* Predicted packet is in window by definition.
4243 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4244 * Hence, check seq<=rcv_wup reduces to:
4246 if (tcp_header_len ==
4247 (sizeof(struct tcphdr) +
4248 TCPOLEN_TSTAMP_ALIGNED) &&
4249 tp->rcv_nxt == tp->rcv_wup)
4250 tcp_store_ts_recent(tp);
4252 tcp_rcv_rtt_measure_ts(sk, skb);
4254 __skb_pull(skb, tcp_header_len);
4255 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4256 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4258 if (copied_early)
4259 tcp_cleanup_rbuf(sk, skb->len);
4261 if (!eaten) {
4262 if (tcp_checksum_complete_user(sk, skb))
4263 goto csum_error;
4265 /* Predicted packet is in window by definition.
4266 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4267 * Hence, check seq<=rcv_wup reduces to:
4269 if (tcp_header_len ==
4270 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4271 tp->rcv_nxt == tp->rcv_wup)
4272 tcp_store_ts_recent(tp);
4274 tcp_rcv_rtt_measure_ts(sk, skb);
4276 if ((int)skb->truesize > sk->sk_forward_alloc)
4277 goto step5;
4279 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4281 /* Bulk data transfer: receiver */
4282 __skb_pull(skb,tcp_header_len);
4283 __skb_queue_tail(&sk->sk_receive_queue, skb);
4284 sk_stream_set_owner_r(skb, sk);
4285 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4288 tcp_event_data_recv(sk, skb);
4290 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4291 /* Well, only one small jumplet in fast path... */
4292 tcp_ack(sk, skb, FLAG_DATA);
4293 tcp_data_snd_check(sk);
4294 if (!inet_csk_ack_scheduled(sk))
4295 goto no_ack;
4298 __tcp_ack_snd_check(sk, 0);
4299 no_ack:
4300 #ifdef CONFIG_NET_DMA
4301 if (copied_early)
4302 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4303 else
4304 #endif
4305 if (eaten)
4306 __kfree_skb(skb);
4307 else
4308 sk->sk_data_ready(sk, 0);
4309 return 0;
4313 slow_path:
4314 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4315 goto csum_error;
4318 * RFC1323: H1. Apply PAWS check first.
4320 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4321 tcp_paws_discard(sk, skb)) {
4322 if (!th->rst) {
4323 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4324 tcp_send_dupack(sk, skb);
4325 goto discard;
4327 /* Resets are accepted even if PAWS failed.
4329 ts_recent update must be made after we are sure
4330 that the packet is in window.
4335 * Standard slow path.
4338 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4339 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4340 * (RST) segments are validated by checking their SEQ-fields."
4341 * And page 69: "If an incoming segment is not acceptable,
4342 * an acknowledgment should be sent in reply (unless the RST bit
4343 * is set, if so drop the segment and return)".
4345 if (!th->rst)
4346 tcp_send_dupack(sk, skb);
4347 goto discard;
4350 if (th->rst) {
4351 tcp_reset(sk);
4352 goto discard;
4355 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4357 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4358 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4359 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4360 tcp_reset(sk);
4361 return 1;
4364 step5:
4365 if (th->ack)
4366 tcp_ack(sk, skb, FLAG_SLOWPATH);
4368 tcp_rcv_rtt_measure_ts(sk, skb);
4370 /* Process urgent data. */
4371 tcp_urg(sk, skb, th);
4373 /* step 7: process the segment text */
4374 tcp_data_queue(sk, skb);
4376 tcp_data_snd_check(sk);
4377 tcp_ack_snd_check(sk);
4378 return 0;
4380 csum_error:
4381 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4383 discard:
4384 __kfree_skb(skb);
4385 return 0;
4388 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4389 struct tcphdr *th, unsigned len)
4391 struct tcp_sock *tp = tcp_sk(sk);
4392 struct inet_connection_sock *icsk = inet_csk(sk);
4393 int saved_clamp = tp->rx_opt.mss_clamp;
4395 tcp_parse_options(skb, &tp->rx_opt, 0);
4397 if (th->ack) {
4398 /* rfc793:
4399 * "If the state is SYN-SENT then
4400 * first check the ACK bit
4401 * If the ACK bit is set
4402 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4403 * a reset (unless the RST bit is set, if so drop
4404 * the segment and return)"
4406 * We do not send data with SYN, so that RFC-correct
4407 * test reduces to:
4409 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4410 goto reset_and_undo;
4412 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4413 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4414 tcp_time_stamp)) {
4415 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4416 goto reset_and_undo;
4419 /* Now ACK is acceptable.
4421 * "If the RST bit is set
4422 * If the ACK was acceptable then signal the user "error:
4423 * connection reset", drop the segment, enter CLOSED state,
4424 * delete TCB, and return."
4427 if (th->rst) {
4428 tcp_reset(sk);
4429 goto discard;
4432 /* rfc793:
4433 * "fifth, if neither of the SYN or RST bits is set then
4434 * drop the segment and return."
4436 * See note below!
4437 * --ANK(990513)
4439 if (!th->syn)
4440 goto discard_and_undo;
4442 /* rfc793:
4443 * "If the SYN bit is on ...
4444 * are acceptable then ...
4445 * (our SYN has been ACKed), change the connection
4446 * state to ESTABLISHED..."
4449 TCP_ECN_rcv_synack(tp, th);
4451 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4452 tcp_ack(sk, skb, FLAG_SLOWPATH);
4454 /* Ok.. it's good. Set up sequence numbers and
4455 * move to established.
4457 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4458 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4460 /* RFC1323: The window in SYN & SYN/ACK segments is
4461 * never scaled.
4463 tp->snd_wnd = ntohs(th->window);
4464 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4466 if (!tp->rx_opt.wscale_ok) {
4467 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4468 tp->window_clamp = min(tp->window_clamp, 65535U);
4471 if (tp->rx_opt.saw_tstamp) {
4472 tp->rx_opt.tstamp_ok = 1;
4473 tp->tcp_header_len =
4474 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4475 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4476 tcp_store_ts_recent(tp);
4477 } else {
4478 tp->tcp_header_len = sizeof(struct tcphdr);
4481 if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
4482 tp->rx_opt.sack_ok |= 2;
4484 tcp_mtup_init(sk);
4485 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4486 tcp_initialize_rcv_mss(sk);
4488 /* Remember, tcp_poll() does not lock socket!
4489 * Change state from SYN-SENT only after copied_seq
4490 * is initialized. */
4491 tp->copied_seq = tp->rcv_nxt;
4492 smp_mb();
4493 tcp_set_state(sk, TCP_ESTABLISHED);
4495 security_inet_conn_established(sk, skb);
4497 /* Make sure socket is routed, for correct metrics. */
4498 icsk->icsk_af_ops->rebuild_header(sk);
4500 tcp_init_metrics(sk);
4502 tcp_init_congestion_control(sk);
4504 /* Prevent spurious tcp_cwnd_restart() on first data
4505 * packet.
4507 tp->lsndtime = tcp_time_stamp;
4509 tcp_init_buffer_space(sk);
4511 if (sock_flag(sk, SOCK_KEEPOPEN))
4512 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4514 if (!tp->rx_opt.snd_wscale)
4515 __tcp_fast_path_on(tp, tp->snd_wnd);
4516 else
4517 tp->pred_flags = 0;
4519 if (!sock_flag(sk, SOCK_DEAD)) {
4520 sk->sk_state_change(sk);
4521 sk_wake_async(sk, 0, POLL_OUT);
4524 if (sk->sk_write_pending ||
4525 icsk->icsk_accept_queue.rskq_defer_accept ||
4526 icsk->icsk_ack.pingpong) {
4527 /* Save one ACK. Data will be ready after
4528 * several ticks, if write_pending is set.
4530 * It may be deleted, but with this feature tcpdumps
4531 * look so _wonderfully_ clever, that I was not able
4532 * to stand against the temptation 8) --ANK
4534 inet_csk_schedule_ack(sk);
4535 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4536 icsk->icsk_ack.ato = TCP_ATO_MIN;
4537 tcp_incr_quickack(sk);
4538 tcp_enter_quickack_mode(sk);
4539 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4540 TCP_DELACK_MAX, TCP_RTO_MAX);
4542 discard:
4543 __kfree_skb(skb);
4544 return 0;
4545 } else {
4546 tcp_send_ack(sk);
4548 return -1;
4551 /* No ACK in the segment */
4553 if (th->rst) {
4554 /* rfc793:
4555 * "If the RST bit is set
4557 * Otherwise (no ACK) drop the segment and return."
4560 goto discard_and_undo;
4563 /* PAWS check. */
4564 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4565 goto discard_and_undo;
4567 if (th->syn) {
4568 /* We see SYN without ACK. It is attempt of
4569 * simultaneous connect with crossed SYNs.
4570 * Particularly, it can be connect to self.
4572 tcp_set_state(sk, TCP_SYN_RECV);
4574 if (tp->rx_opt.saw_tstamp) {
4575 tp->rx_opt.tstamp_ok = 1;
4576 tcp_store_ts_recent(tp);
4577 tp->tcp_header_len =
4578 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4579 } else {
4580 tp->tcp_header_len = sizeof(struct tcphdr);
4583 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4584 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4586 /* RFC1323: The window in SYN & SYN/ACK segments is
4587 * never scaled.
4589 tp->snd_wnd = ntohs(th->window);
4590 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4591 tp->max_window = tp->snd_wnd;
4593 TCP_ECN_rcv_syn(tp, th);
4595 tcp_mtup_init(sk);
4596 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4597 tcp_initialize_rcv_mss(sk);
4600 tcp_send_synack(sk);
4601 #if 0
4602 /* Note, we could accept data and URG from this segment.
4603 * There are no obstacles to make this.
4605 * However, if we ignore data in ACKless segments sometimes,
4606 * we have no reasons to accept it sometimes.
4607 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4608 * is not flawless. So, discard packet for sanity.
4609 * Uncomment this return to process the data.
4611 return -1;
4612 #else
4613 goto discard;
4614 #endif
4616 /* "fifth, if neither of the SYN or RST bits is set then
4617 * drop the segment and return."
4620 discard_and_undo:
4621 tcp_clear_options(&tp->rx_opt);
4622 tp->rx_opt.mss_clamp = saved_clamp;
4623 goto discard;
4625 reset_and_undo:
4626 tcp_clear_options(&tp->rx_opt);
4627 tp->rx_opt.mss_clamp = saved_clamp;
4628 return 1;
4633 * This function implements the receiving procedure of RFC 793 for
4634 * all states except ESTABLISHED and TIME_WAIT.
4635 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4636 * address independent.
4639 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4640 struct tcphdr *th, unsigned len)
4642 struct tcp_sock *tp = tcp_sk(sk);
4643 struct inet_connection_sock *icsk = inet_csk(sk);
4644 int queued = 0;
4646 tp->rx_opt.saw_tstamp = 0;
4648 switch (sk->sk_state) {
4649 case TCP_CLOSE:
4650 goto discard;
4652 case TCP_LISTEN:
4653 if (th->ack)
4654 return 1;
4656 if (th->rst)
4657 goto discard;
4659 if (th->syn) {
4660 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
4661 return 1;
4663 /* Now we have several options: In theory there is
4664 * nothing else in the frame. KA9Q has an option to
4665 * send data with the syn, BSD accepts data with the
4666 * syn up to the [to be] advertised window and
4667 * Solaris 2.1 gives you a protocol error. For now
4668 * we just ignore it, that fits the spec precisely
4669 * and avoids incompatibilities. It would be nice in
4670 * future to drop through and process the data.
4672 * Now that TTCP is starting to be used we ought to
4673 * queue this data.
4674 * But, this leaves one open to an easy denial of
4675 * service attack, and SYN cookies can't defend
4676 * against this problem. So, we drop the data
4677 * in the interest of security over speed unless
4678 * it's still in use.
4680 kfree_skb(skb);
4681 return 0;
4683 goto discard;
4685 case TCP_SYN_SENT:
4686 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4687 if (queued >= 0)
4688 return queued;
4690 /* Do step6 onward by hand. */
4691 tcp_urg(sk, skb, th);
4692 __kfree_skb(skb);
4693 tcp_data_snd_check(sk);
4694 return 0;
4697 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4698 tcp_paws_discard(sk, skb)) {
4699 if (!th->rst) {
4700 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4701 tcp_send_dupack(sk, skb);
4702 goto discard;
4704 /* Reset is accepted even if it did not pass PAWS. */
4707 /* step 1: check sequence number */
4708 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4709 if (!th->rst)
4710 tcp_send_dupack(sk, skb);
4711 goto discard;
4714 /* step 2: check RST bit */
4715 if (th->rst) {
4716 tcp_reset(sk);
4717 goto discard;
4720 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4722 /* step 3: check security and precedence [ignored] */
4724 /* step 4:
4726 * Check for a SYN in window.
4728 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4729 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4730 tcp_reset(sk);
4731 return 1;
4734 /* step 5: check the ACK field */
4735 if (th->ack) {
4736 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4738 switch (sk->sk_state) {
4739 case TCP_SYN_RECV:
4740 if (acceptable) {
4741 tp->copied_seq = tp->rcv_nxt;
4742 smp_mb();
4743 tcp_set_state(sk, TCP_ESTABLISHED);
4744 sk->sk_state_change(sk);
4746 /* Note, that this wakeup is only for marginal
4747 * crossed SYN case. Passively open sockets
4748 * are not waked up, because sk->sk_sleep ==
4749 * NULL and sk->sk_socket == NULL.
4751 if (sk->sk_socket) {
4752 sk_wake_async(sk,0,POLL_OUT);
4755 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4756 tp->snd_wnd = ntohs(th->window) <<
4757 tp->rx_opt.snd_wscale;
4758 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4759 TCP_SKB_CB(skb)->seq);
4761 /* tcp_ack considers this ACK as duplicate
4762 * and does not calculate rtt.
4763 * Fix it at least with timestamps.
4765 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4766 !tp->srtt)
4767 tcp_ack_saw_tstamp(sk, 0);
4769 if (tp->rx_opt.tstamp_ok)
4770 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4772 /* Make sure socket is routed, for
4773 * correct metrics.
4775 icsk->icsk_af_ops->rebuild_header(sk);
4777 tcp_init_metrics(sk);
4779 tcp_init_congestion_control(sk);
4781 /* Prevent spurious tcp_cwnd_restart() on
4782 * first data packet.
4784 tp->lsndtime = tcp_time_stamp;
4786 tcp_mtup_init(sk);
4787 tcp_initialize_rcv_mss(sk);
4788 tcp_init_buffer_space(sk);
4789 tcp_fast_path_on(tp);
4790 } else {
4791 return 1;
4793 break;
4795 case TCP_FIN_WAIT1:
4796 if (tp->snd_una == tp->write_seq) {
4797 tcp_set_state(sk, TCP_FIN_WAIT2);
4798 sk->sk_shutdown |= SEND_SHUTDOWN;
4799 dst_confirm(sk->sk_dst_cache);
4801 if (!sock_flag(sk, SOCK_DEAD))
4802 /* Wake up lingering close() */
4803 sk->sk_state_change(sk);
4804 else {
4805 int tmo;
4807 if (tp->linger2 < 0 ||
4808 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4809 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4810 tcp_done(sk);
4811 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4812 return 1;
4815 tmo = tcp_fin_time(sk);
4816 if (tmo > TCP_TIMEWAIT_LEN) {
4817 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
4818 } else if (th->fin || sock_owned_by_user(sk)) {
4819 /* Bad case. We could lose such FIN otherwise.
4820 * It is not a big problem, but it looks confusing
4821 * and not so rare event. We still can lose it now,
4822 * if it spins in bh_lock_sock(), but it is really
4823 * marginal case.
4825 inet_csk_reset_keepalive_timer(sk, tmo);
4826 } else {
4827 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4828 goto discard;
4832 break;
4834 case TCP_CLOSING:
4835 if (tp->snd_una == tp->write_seq) {
4836 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4837 goto discard;
4839 break;
4841 case TCP_LAST_ACK:
4842 if (tp->snd_una == tp->write_seq) {
4843 tcp_update_metrics(sk);
4844 tcp_done(sk);
4845 goto discard;
4847 break;
4849 } else
4850 goto discard;
4852 /* step 6: check the URG bit */
4853 tcp_urg(sk, skb, th);
4855 /* step 7: process the segment text */
4856 switch (sk->sk_state) {
4857 case TCP_CLOSE_WAIT:
4858 case TCP_CLOSING:
4859 case TCP_LAST_ACK:
4860 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4861 break;
4862 case TCP_FIN_WAIT1:
4863 case TCP_FIN_WAIT2:
4864 /* RFC 793 says to queue data in these states,
4865 * RFC 1122 says we MUST send a reset.
4866 * BSD 4.4 also does reset.
4868 if (sk->sk_shutdown & RCV_SHUTDOWN) {
4869 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4870 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4871 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4872 tcp_reset(sk);
4873 return 1;
4876 /* Fall through */
4877 case TCP_ESTABLISHED:
4878 tcp_data_queue(sk, skb);
4879 queued = 1;
4880 break;
4883 /* tcp_data could move socket to TIME-WAIT */
4884 if (sk->sk_state != TCP_CLOSE) {
4885 tcp_data_snd_check(sk);
4886 tcp_ack_snd_check(sk);
4889 if (!queued) {
4890 discard:
4891 __kfree_skb(skb);
4893 return 0;
4896 EXPORT_SYMBOL(sysctl_tcp_ecn);
4897 EXPORT_SYMBOL(sysctl_tcp_reordering);
4898 EXPORT_SYMBOL(tcp_parse_options);
4899 EXPORT_SYMBOL(tcp_rcv_established);
4900 EXPORT_SYMBOL(tcp_rcv_state_process);
4901 EXPORT_SYMBOL(tcp_initialize_rcv_mss);