[PATCH] net: Fix compiler-error on dgrs.c when !CONFIG_PCI
[firewire-audio.git] / drivers / ide / ide-iops.c
blobaf7af958ab3e4f83d5df42d8fd783b4bc48e674f
1 /*
2 * linux/drivers/ide/ide-iops.c Version 0.37 Mar 05, 2003
4 * Copyright (C) 2000-2002 Andre Hedrick <andre@linux-ide.org>
5 * Copyright (C) 2003 Red Hat <alan@redhat.com>
7 */
9 #include <linux/config.h>
10 #include <linux/module.h>
11 #include <linux/types.h>
12 #include <linux/string.h>
13 #include <linux/kernel.h>
14 #include <linux/timer.h>
15 #include <linux/mm.h>
16 #include <linux/interrupt.h>
17 #include <linux/major.h>
18 #include <linux/errno.h>
19 #include <linux/genhd.h>
20 #include <linux/blkpg.h>
21 #include <linux/slab.h>
22 #include <linux/pci.h>
23 #include <linux/delay.h>
24 #include <linux/hdreg.h>
25 #include <linux/ide.h>
26 #include <linux/bitops.h>
28 #include <asm/byteorder.h>
29 #include <asm/irq.h>
30 #include <asm/uaccess.h>
31 #include <asm/io.h>
34 * Conventional PIO operations for ATA devices
37 static u8 ide_inb (unsigned long port)
39 return (u8) inb(port);
42 static u16 ide_inw (unsigned long port)
44 return (u16) inw(port);
47 static void ide_insw (unsigned long port, void *addr, u32 count)
49 insw(port, addr, count);
52 static u32 ide_inl (unsigned long port)
54 return (u32) inl(port);
57 static void ide_insl (unsigned long port, void *addr, u32 count)
59 insl(port, addr, count);
62 static void ide_outb (u8 val, unsigned long port)
64 outb(val, port);
67 static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
69 outb(addr, port);
72 static void ide_outw (u16 val, unsigned long port)
74 outw(val, port);
77 static void ide_outsw (unsigned long port, void *addr, u32 count)
79 outsw(port, addr, count);
82 static void ide_outl (u32 val, unsigned long port)
84 outl(val, port);
87 static void ide_outsl (unsigned long port, void *addr, u32 count)
89 outsl(port, addr, count);
92 void default_hwif_iops (ide_hwif_t *hwif)
94 hwif->OUTB = ide_outb;
95 hwif->OUTBSYNC = ide_outbsync;
96 hwif->OUTW = ide_outw;
97 hwif->OUTL = ide_outl;
98 hwif->OUTSW = ide_outsw;
99 hwif->OUTSL = ide_outsl;
100 hwif->INB = ide_inb;
101 hwif->INW = ide_inw;
102 hwif->INL = ide_inl;
103 hwif->INSW = ide_insw;
104 hwif->INSL = ide_insl;
108 * MMIO operations, typically used for SATA controllers
111 static u8 ide_mm_inb (unsigned long port)
113 return (u8) readb((void __iomem *) port);
116 static u16 ide_mm_inw (unsigned long port)
118 return (u16) readw((void __iomem *) port);
121 static void ide_mm_insw (unsigned long port, void *addr, u32 count)
123 __ide_mm_insw((void __iomem *) port, addr, count);
126 static u32 ide_mm_inl (unsigned long port)
128 return (u32) readl((void __iomem *) port);
131 static void ide_mm_insl (unsigned long port, void *addr, u32 count)
133 __ide_mm_insl((void __iomem *) port, addr, count);
136 static void ide_mm_outb (u8 value, unsigned long port)
138 writeb(value, (void __iomem *) port);
141 static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
143 writeb(value, (void __iomem *) port);
146 static void ide_mm_outw (u16 value, unsigned long port)
148 writew(value, (void __iomem *) port);
151 static void ide_mm_outsw (unsigned long port, void *addr, u32 count)
153 __ide_mm_outsw((void __iomem *) port, addr, count);
156 static void ide_mm_outl (u32 value, unsigned long port)
158 writel(value, (void __iomem *) port);
161 static void ide_mm_outsl (unsigned long port, void *addr, u32 count)
163 __ide_mm_outsl((void __iomem *) port, addr, count);
166 void default_hwif_mmiops (ide_hwif_t *hwif)
168 hwif->OUTB = ide_mm_outb;
169 /* Most systems will need to override OUTBSYNC, alas however
170 this one is controller specific! */
171 hwif->OUTBSYNC = ide_mm_outbsync;
172 hwif->OUTW = ide_mm_outw;
173 hwif->OUTL = ide_mm_outl;
174 hwif->OUTSW = ide_mm_outsw;
175 hwif->OUTSL = ide_mm_outsl;
176 hwif->INB = ide_mm_inb;
177 hwif->INW = ide_mm_inw;
178 hwif->INL = ide_mm_inl;
179 hwif->INSW = ide_mm_insw;
180 hwif->INSL = ide_mm_insl;
183 EXPORT_SYMBOL(default_hwif_mmiops);
185 u32 ide_read_24 (ide_drive_t *drive)
187 u8 hcyl = HWIF(drive)->INB(IDE_HCYL_REG);
188 u8 lcyl = HWIF(drive)->INB(IDE_LCYL_REG);
189 u8 sect = HWIF(drive)->INB(IDE_SECTOR_REG);
190 return (hcyl<<16)|(lcyl<<8)|sect;
193 void SELECT_DRIVE (ide_drive_t *drive)
195 if (HWIF(drive)->selectproc)
196 HWIF(drive)->selectproc(drive);
197 HWIF(drive)->OUTB(drive->select.all, IDE_SELECT_REG);
200 EXPORT_SYMBOL(SELECT_DRIVE);
202 void SELECT_INTERRUPT (ide_drive_t *drive)
204 if (HWIF(drive)->intrproc)
205 HWIF(drive)->intrproc(drive);
206 else
207 HWIF(drive)->OUTB(drive->ctl|2, IDE_CONTROL_REG);
210 void SELECT_MASK (ide_drive_t *drive, int mask)
212 if (HWIF(drive)->maskproc)
213 HWIF(drive)->maskproc(drive, mask);
216 void QUIRK_LIST (ide_drive_t *drive)
218 if (HWIF(drive)->quirkproc)
219 drive->quirk_list = HWIF(drive)->quirkproc(drive);
223 * Some localbus EIDE interfaces require a special access sequence
224 * when using 32-bit I/O instructions to transfer data. We call this
225 * the "vlb_sync" sequence, which consists of three successive reads
226 * of the sector count register location, with interrupts disabled
227 * to ensure that the reads all happen together.
229 static void ata_vlb_sync(ide_drive_t *drive, unsigned long port)
231 (void) HWIF(drive)->INB(port);
232 (void) HWIF(drive)->INB(port);
233 (void) HWIF(drive)->INB(port);
237 * This is used for most PIO data transfers *from* the IDE interface
239 static void ata_input_data(ide_drive_t *drive, void *buffer, u32 wcount)
241 ide_hwif_t *hwif = HWIF(drive);
242 u8 io_32bit = drive->io_32bit;
244 if (io_32bit) {
245 if (io_32bit & 2) {
246 unsigned long flags;
247 local_irq_save(flags);
248 ata_vlb_sync(drive, IDE_NSECTOR_REG);
249 hwif->INSL(IDE_DATA_REG, buffer, wcount);
250 local_irq_restore(flags);
251 } else
252 hwif->INSL(IDE_DATA_REG, buffer, wcount);
253 } else {
254 hwif->INSW(IDE_DATA_REG, buffer, wcount<<1);
259 * This is used for most PIO data transfers *to* the IDE interface
261 static void ata_output_data(ide_drive_t *drive, void *buffer, u32 wcount)
263 ide_hwif_t *hwif = HWIF(drive);
264 u8 io_32bit = drive->io_32bit;
266 if (io_32bit) {
267 if (io_32bit & 2) {
268 unsigned long flags;
269 local_irq_save(flags);
270 ata_vlb_sync(drive, IDE_NSECTOR_REG);
271 hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
272 local_irq_restore(flags);
273 } else
274 hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
275 } else {
276 hwif->OUTSW(IDE_DATA_REG, buffer, wcount<<1);
281 * The following routines are mainly used by the ATAPI drivers.
283 * These routines will round up any request for an odd number of bytes,
284 * so if an odd bytecount is specified, be sure that there's at least one
285 * extra byte allocated for the buffer.
288 static void atapi_input_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
290 ide_hwif_t *hwif = HWIF(drive);
292 ++bytecount;
293 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
294 if (MACH_IS_ATARI || MACH_IS_Q40) {
295 /* Atari has a byte-swapped IDE interface */
296 insw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
297 return;
299 #endif /* CONFIG_ATARI || CONFIG_Q40 */
300 hwif->ata_input_data(drive, buffer, bytecount / 4);
301 if ((bytecount & 0x03) >= 2)
302 hwif->INSW(IDE_DATA_REG, ((u8 *)buffer)+(bytecount & ~0x03), 1);
305 static void atapi_output_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
307 ide_hwif_t *hwif = HWIF(drive);
309 ++bytecount;
310 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
311 if (MACH_IS_ATARI || MACH_IS_Q40) {
312 /* Atari has a byte-swapped IDE interface */
313 outsw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
314 return;
316 #endif /* CONFIG_ATARI || CONFIG_Q40 */
317 hwif->ata_output_data(drive, buffer, bytecount / 4);
318 if ((bytecount & 0x03) >= 2)
319 hwif->OUTSW(IDE_DATA_REG, ((u8*)buffer)+(bytecount & ~0x03), 1);
322 void default_hwif_transport(ide_hwif_t *hwif)
324 hwif->ata_input_data = ata_input_data;
325 hwif->ata_output_data = ata_output_data;
326 hwif->atapi_input_bytes = atapi_input_bytes;
327 hwif->atapi_output_bytes = atapi_output_bytes;
331 * Beginning of Taskfile OPCODE Library and feature sets.
333 void ide_fix_driveid (struct hd_driveid *id)
335 #ifndef __LITTLE_ENDIAN
336 # ifdef __BIG_ENDIAN
337 int i;
338 u16 *stringcast;
340 id->config = __le16_to_cpu(id->config);
341 id->cyls = __le16_to_cpu(id->cyls);
342 id->reserved2 = __le16_to_cpu(id->reserved2);
343 id->heads = __le16_to_cpu(id->heads);
344 id->track_bytes = __le16_to_cpu(id->track_bytes);
345 id->sector_bytes = __le16_to_cpu(id->sector_bytes);
346 id->sectors = __le16_to_cpu(id->sectors);
347 id->vendor0 = __le16_to_cpu(id->vendor0);
348 id->vendor1 = __le16_to_cpu(id->vendor1);
349 id->vendor2 = __le16_to_cpu(id->vendor2);
350 stringcast = (u16 *)&id->serial_no[0];
351 for (i = 0; i < (20/2); i++)
352 stringcast[i] = __le16_to_cpu(stringcast[i]);
353 id->buf_type = __le16_to_cpu(id->buf_type);
354 id->buf_size = __le16_to_cpu(id->buf_size);
355 id->ecc_bytes = __le16_to_cpu(id->ecc_bytes);
356 stringcast = (u16 *)&id->fw_rev[0];
357 for (i = 0; i < (8/2); i++)
358 stringcast[i] = __le16_to_cpu(stringcast[i]);
359 stringcast = (u16 *)&id->model[0];
360 for (i = 0; i < (40/2); i++)
361 stringcast[i] = __le16_to_cpu(stringcast[i]);
362 id->dword_io = __le16_to_cpu(id->dword_io);
363 id->reserved50 = __le16_to_cpu(id->reserved50);
364 id->field_valid = __le16_to_cpu(id->field_valid);
365 id->cur_cyls = __le16_to_cpu(id->cur_cyls);
366 id->cur_heads = __le16_to_cpu(id->cur_heads);
367 id->cur_sectors = __le16_to_cpu(id->cur_sectors);
368 id->cur_capacity0 = __le16_to_cpu(id->cur_capacity0);
369 id->cur_capacity1 = __le16_to_cpu(id->cur_capacity1);
370 id->lba_capacity = __le32_to_cpu(id->lba_capacity);
371 id->dma_1word = __le16_to_cpu(id->dma_1word);
372 id->dma_mword = __le16_to_cpu(id->dma_mword);
373 id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
374 id->eide_dma_min = __le16_to_cpu(id->eide_dma_min);
375 id->eide_dma_time = __le16_to_cpu(id->eide_dma_time);
376 id->eide_pio = __le16_to_cpu(id->eide_pio);
377 id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
378 for (i = 0; i < 2; ++i)
379 id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
380 for (i = 0; i < 4; ++i)
381 id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
382 id->queue_depth = __le16_to_cpu(id->queue_depth);
383 for (i = 0; i < 4; ++i)
384 id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
385 id->major_rev_num = __le16_to_cpu(id->major_rev_num);
386 id->minor_rev_num = __le16_to_cpu(id->minor_rev_num);
387 id->command_set_1 = __le16_to_cpu(id->command_set_1);
388 id->command_set_2 = __le16_to_cpu(id->command_set_2);
389 id->cfsse = __le16_to_cpu(id->cfsse);
390 id->cfs_enable_1 = __le16_to_cpu(id->cfs_enable_1);
391 id->cfs_enable_2 = __le16_to_cpu(id->cfs_enable_2);
392 id->csf_default = __le16_to_cpu(id->csf_default);
393 id->dma_ultra = __le16_to_cpu(id->dma_ultra);
394 id->trseuc = __le16_to_cpu(id->trseuc);
395 id->trsEuc = __le16_to_cpu(id->trsEuc);
396 id->CurAPMvalues = __le16_to_cpu(id->CurAPMvalues);
397 id->mprc = __le16_to_cpu(id->mprc);
398 id->hw_config = __le16_to_cpu(id->hw_config);
399 id->acoustic = __le16_to_cpu(id->acoustic);
400 id->msrqs = __le16_to_cpu(id->msrqs);
401 id->sxfert = __le16_to_cpu(id->sxfert);
402 id->sal = __le16_to_cpu(id->sal);
403 id->spg = __le32_to_cpu(id->spg);
404 id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
405 for (i = 0; i < 22; i++)
406 id->words104_125[i] = __le16_to_cpu(id->words104_125[i]);
407 id->last_lun = __le16_to_cpu(id->last_lun);
408 id->word127 = __le16_to_cpu(id->word127);
409 id->dlf = __le16_to_cpu(id->dlf);
410 id->csfo = __le16_to_cpu(id->csfo);
411 for (i = 0; i < 26; i++)
412 id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
413 id->word156 = __le16_to_cpu(id->word156);
414 for (i = 0; i < 3; i++)
415 id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
416 id->cfa_power = __le16_to_cpu(id->cfa_power);
417 for (i = 0; i < 14; i++)
418 id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
419 for (i = 0; i < 31; i++)
420 id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
421 for (i = 0; i < 48; i++)
422 id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
423 id->integrity_word = __le16_to_cpu(id->integrity_word);
424 # else
425 # error "Please fix <asm/byteorder.h>"
426 # endif
427 #endif
430 /* FIXME: exported for use by the USB storage (isd200.c) code only */
431 EXPORT_SYMBOL(ide_fix_driveid);
433 void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
435 u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
437 if (byteswap) {
438 /* convert from big-endian to host byte order */
439 for (p = end ; p != s;) {
440 unsigned short *pp = (unsigned short *) (p -= 2);
441 *pp = ntohs(*pp);
444 /* strip leading blanks */
445 while (s != end && *s == ' ')
446 ++s;
447 /* compress internal blanks and strip trailing blanks */
448 while (s != end && *s) {
449 if (*s++ != ' ' || (s != end && *s && *s != ' '))
450 *p++ = *(s-1);
452 /* wipe out trailing garbage */
453 while (p != end)
454 *p++ = '\0';
457 EXPORT_SYMBOL(ide_fixstring);
460 * Needed for PCI irq sharing
462 int drive_is_ready (ide_drive_t *drive)
464 ide_hwif_t *hwif = HWIF(drive);
465 u8 stat = 0;
467 if (drive->waiting_for_dma)
468 return hwif->ide_dma_test_irq(drive);
470 #if 0
471 /* need to guarantee 400ns since last command was issued */
472 udelay(1);
473 #endif
475 #ifdef CONFIG_IDEPCI_SHARE_IRQ
477 * We do a passive status test under shared PCI interrupts on
478 * cards that truly share the ATA side interrupt, but may also share
479 * an interrupt with another pci card/device. We make no assumptions
480 * about possible isa-pnp and pci-pnp issues yet.
482 if (IDE_CONTROL_REG)
483 stat = hwif->INB(IDE_ALTSTATUS_REG);
484 else
485 #endif /* CONFIG_IDEPCI_SHARE_IRQ */
486 /* Note: this may clear a pending IRQ!! */
487 stat = hwif->INB(IDE_STATUS_REG);
489 if (stat & BUSY_STAT)
490 /* drive busy: definitely not interrupting */
491 return 0;
493 /* drive ready: *might* be interrupting */
494 return 1;
497 EXPORT_SYMBOL(drive_is_ready);
500 * Global for All, and taken from ide-pmac.c. Can be called
501 * with spinlock held & IRQs disabled, so don't schedule !
503 int wait_for_ready (ide_drive_t *drive, int timeout)
505 ide_hwif_t *hwif = HWIF(drive);
506 u8 stat = 0;
508 while(--timeout) {
509 stat = hwif->INB(IDE_STATUS_REG);
510 if (!(stat & BUSY_STAT)) {
511 if (drive->ready_stat == 0)
512 break;
513 else if ((stat & drive->ready_stat)||(stat & ERR_STAT))
514 break;
516 mdelay(1);
518 if ((stat & ERR_STAT) || timeout <= 0) {
519 if (stat & ERR_STAT) {
520 printk(KERN_ERR "%s: wait_for_ready, "
521 "error status: %x\n", drive->name, stat);
523 return 1;
525 return 0;
529 * This routine busy-waits for the drive status to be not "busy".
530 * It then checks the status for all of the "good" bits and none
531 * of the "bad" bits, and if all is okay it returns 0. All other
532 * cases return 1 after invoking ide_error() -- caller should just return.
534 * This routine should get fixed to not hog the cpu during extra long waits..
535 * That could be done by busy-waiting for the first jiffy or two, and then
536 * setting a timer to wake up at half second intervals thereafter,
537 * until timeout is achieved, before timing out.
539 int ide_wait_stat (ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
541 ide_hwif_t *hwif = HWIF(drive);
542 u8 stat;
543 int i;
544 unsigned long flags;
546 /* bail early if we've exceeded max_failures */
547 if (drive->max_failures && (drive->failures > drive->max_failures)) {
548 *startstop = ide_stopped;
549 return 1;
552 udelay(1); /* spec allows drive 400ns to assert "BUSY" */
553 if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
554 local_irq_set(flags);
555 timeout += jiffies;
556 while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
557 if (time_after(jiffies, timeout)) {
559 * One last read after the timeout in case
560 * heavy interrupt load made us not make any
561 * progress during the timeout..
563 stat = hwif->INB(IDE_STATUS_REG);
564 if (!(stat & BUSY_STAT))
565 break;
567 local_irq_restore(flags);
568 *startstop = ide_error(drive, "status timeout", stat);
569 return 1;
572 local_irq_restore(flags);
575 * Allow status to settle, then read it again.
576 * A few rare drives vastly violate the 400ns spec here,
577 * so we'll wait up to 10usec for a "good" status
578 * rather than expensively fail things immediately.
579 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
581 for (i = 0; i < 10; i++) {
582 udelay(1);
583 if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), good, bad))
584 return 0;
586 *startstop = ide_error(drive, "status error", stat);
587 return 1;
590 EXPORT_SYMBOL(ide_wait_stat);
593 * All hosts that use the 80c ribbon must use!
594 * The name is derived from upper byte of word 93 and the 80c ribbon.
596 u8 eighty_ninty_three (ide_drive_t *drive)
598 if(HWIF(drive)->udma_four == 0)
599 return 0;
600 if (!(drive->id->hw_config & 0x6000))
601 return 0;
602 #ifndef CONFIG_IDEDMA_IVB
603 if(!(drive->id->hw_config & 0x4000))
604 return 0;
605 #endif /* CONFIG_IDEDMA_IVB */
606 return 1;
609 EXPORT_SYMBOL(eighty_ninty_three);
611 int ide_ata66_check (ide_drive_t *drive, ide_task_t *args)
613 if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) &&
614 (args->tfRegister[IDE_SECTOR_OFFSET] > XFER_UDMA_2) &&
615 (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER)) {
616 #ifndef CONFIG_IDEDMA_IVB
617 if ((drive->id->hw_config & 0x6000) == 0) {
618 #else /* !CONFIG_IDEDMA_IVB */
619 if (((drive->id->hw_config & 0x2000) == 0) ||
620 ((drive->id->hw_config & 0x4000) == 0)) {
621 #endif /* CONFIG_IDEDMA_IVB */
622 printk("%s: Speed warnings UDMA 3/4/5 is not "
623 "functional.\n", drive->name);
624 return 1;
626 if (!HWIF(drive)->udma_four) {
627 printk("%s: Speed warnings UDMA 3/4/5 is not "
628 "functional.\n",
629 HWIF(drive)->name);
630 return 1;
633 return 0;
637 * Backside of HDIO_DRIVE_CMD call of SETFEATURES_XFER.
638 * 1 : Safe to update drive->id DMA registers.
639 * 0 : OOPs not allowed.
641 int set_transfer (ide_drive_t *drive, ide_task_t *args)
643 if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) &&
644 (args->tfRegister[IDE_SECTOR_OFFSET] >= XFER_SW_DMA_0) &&
645 (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER) &&
646 (drive->id->dma_ultra ||
647 drive->id->dma_mword ||
648 drive->id->dma_1word))
649 return 1;
651 return 0;
654 #ifdef CONFIG_BLK_DEV_IDEDMA
655 static u8 ide_auto_reduce_xfer (ide_drive_t *drive)
657 if (!drive->crc_count)
658 return drive->current_speed;
659 drive->crc_count = 0;
661 switch(drive->current_speed) {
662 case XFER_UDMA_7: return XFER_UDMA_6;
663 case XFER_UDMA_6: return XFER_UDMA_5;
664 case XFER_UDMA_5: return XFER_UDMA_4;
665 case XFER_UDMA_4: return XFER_UDMA_3;
666 case XFER_UDMA_3: return XFER_UDMA_2;
667 case XFER_UDMA_2: return XFER_UDMA_1;
668 case XFER_UDMA_1: return XFER_UDMA_0;
670 * OOPS we do not goto non Ultra DMA modes
671 * without iCRC's available we force
672 * the system to PIO and make the user
673 * invoke the ATA-1 ATA-2 DMA modes.
675 case XFER_UDMA_0:
676 default: return XFER_PIO_4;
679 #endif /* CONFIG_BLK_DEV_IDEDMA */
682 * Update the
684 int ide_driveid_update (ide_drive_t *drive)
686 ide_hwif_t *hwif = HWIF(drive);
687 struct hd_driveid *id;
688 #if 0
689 id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
690 if (!id)
691 return 0;
693 taskfile_lib_get_identify(drive, (char *)&id);
695 ide_fix_driveid(id);
696 if (id) {
697 drive->id->dma_ultra = id->dma_ultra;
698 drive->id->dma_mword = id->dma_mword;
699 drive->id->dma_1word = id->dma_1word;
700 /* anything more ? */
701 kfree(id);
703 return 1;
704 #else
706 * Re-read drive->id for possible DMA mode
707 * change (copied from ide-probe.c)
709 unsigned long timeout, flags;
711 SELECT_MASK(drive, 1);
712 if (IDE_CONTROL_REG)
713 hwif->OUTB(drive->ctl,IDE_CONTROL_REG);
714 msleep(50);
715 hwif->OUTB(WIN_IDENTIFY, IDE_COMMAND_REG);
716 timeout = jiffies + WAIT_WORSTCASE;
717 do {
718 if (time_after(jiffies, timeout)) {
719 SELECT_MASK(drive, 0);
720 return 0; /* drive timed-out */
722 msleep(50); /* give drive a breather */
723 } while (hwif->INB(IDE_ALTSTATUS_REG) & BUSY_STAT);
724 msleep(50); /* wait for IRQ and DRQ_STAT */
725 if (!OK_STAT(hwif->INB(IDE_STATUS_REG),DRQ_STAT,BAD_R_STAT)) {
726 SELECT_MASK(drive, 0);
727 printk("%s: CHECK for good STATUS\n", drive->name);
728 return 0;
730 local_irq_save(flags);
731 SELECT_MASK(drive, 0);
732 id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
733 if (!id) {
734 local_irq_restore(flags);
735 return 0;
737 ata_input_data(drive, id, SECTOR_WORDS);
738 (void) hwif->INB(IDE_STATUS_REG); /* clear drive IRQ */
739 local_irq_enable();
740 local_irq_restore(flags);
741 ide_fix_driveid(id);
742 if (id) {
743 drive->id->dma_ultra = id->dma_ultra;
744 drive->id->dma_mword = id->dma_mword;
745 drive->id->dma_1word = id->dma_1word;
746 /* anything more ? */
747 kfree(id);
750 return 1;
751 #endif
755 * Similar to ide_wait_stat(), except it never calls ide_error internally.
756 * This is a kludge to handle the new ide_config_drive_speed() function,
757 * and should not otherwise be used anywhere. Eventually, the tuneproc's
758 * should be updated to return ide_startstop_t, in which case we can get
759 * rid of this abomination again. :) -ml
761 * It is gone..........
763 * const char *msg == consider adding for verbose errors.
765 int ide_config_drive_speed (ide_drive_t *drive, u8 speed)
767 ide_hwif_t *hwif = HWIF(drive);
768 int i, error = 1;
769 u8 stat;
771 // while (HWGROUP(drive)->busy)
772 // msleep(50);
774 #ifdef CONFIG_BLK_DEV_IDEDMA
775 if (hwif->ide_dma_check) /* check if host supports DMA */
776 hwif->ide_dma_host_off(drive);
777 #endif
780 * Don't use ide_wait_cmd here - it will
781 * attempt to set_geometry and recalibrate,
782 * but for some reason these don't work at
783 * this point (lost interrupt).
786 * Select the drive, and issue the SETFEATURES command
788 disable_irq_nosync(hwif->irq);
791 * FIXME: we race against the running IRQ here if
792 * this is called from non IRQ context. If we use
793 * disable_irq() we hang on the error path. Work
794 * is needed.
797 udelay(1);
798 SELECT_DRIVE(drive);
799 SELECT_MASK(drive, 0);
800 udelay(1);
801 if (IDE_CONTROL_REG)
802 hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG);
803 hwif->OUTB(speed, IDE_NSECTOR_REG);
804 hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG);
805 hwif->OUTB(WIN_SETFEATURES, IDE_COMMAND_REG);
806 if ((IDE_CONTROL_REG) && (drive->quirk_list == 2))
807 hwif->OUTB(drive->ctl, IDE_CONTROL_REG);
808 udelay(1);
810 * Wait for drive to become non-BUSY
812 if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
813 unsigned long flags, timeout;
814 local_irq_set(flags);
815 timeout = jiffies + WAIT_CMD;
816 while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
817 if (time_after(jiffies, timeout))
818 break;
820 local_irq_restore(flags);
824 * Allow status to settle, then read it again.
825 * A few rare drives vastly violate the 400ns spec here,
826 * so we'll wait up to 10usec for a "good" status
827 * rather than expensively fail things immediately.
828 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
830 for (i = 0; i < 10; i++) {
831 udelay(1);
832 if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), DRIVE_READY, BUSY_STAT|DRQ_STAT|ERR_STAT)) {
833 error = 0;
834 break;
838 SELECT_MASK(drive, 0);
840 enable_irq(hwif->irq);
842 if (error) {
843 (void) ide_dump_status(drive, "set_drive_speed_status", stat);
844 return error;
847 drive->id->dma_ultra &= ~0xFF00;
848 drive->id->dma_mword &= ~0x0F00;
849 drive->id->dma_1word &= ~0x0F00;
851 #ifdef CONFIG_BLK_DEV_IDEDMA
852 if (speed >= XFER_SW_DMA_0)
853 hwif->ide_dma_host_on(drive);
854 else if (hwif->ide_dma_check) /* check if host supports DMA */
855 hwif->ide_dma_off_quietly(drive);
856 #endif
858 switch(speed) {
859 case XFER_UDMA_7: drive->id->dma_ultra |= 0x8080; break;
860 case XFER_UDMA_6: drive->id->dma_ultra |= 0x4040; break;
861 case XFER_UDMA_5: drive->id->dma_ultra |= 0x2020; break;
862 case XFER_UDMA_4: drive->id->dma_ultra |= 0x1010; break;
863 case XFER_UDMA_3: drive->id->dma_ultra |= 0x0808; break;
864 case XFER_UDMA_2: drive->id->dma_ultra |= 0x0404; break;
865 case XFER_UDMA_1: drive->id->dma_ultra |= 0x0202; break;
866 case XFER_UDMA_0: drive->id->dma_ultra |= 0x0101; break;
867 case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
868 case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
869 case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
870 case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
871 case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
872 case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
873 default: break;
875 if (!drive->init_speed)
876 drive->init_speed = speed;
877 drive->current_speed = speed;
878 return error;
881 EXPORT_SYMBOL(ide_config_drive_speed);
885 * This should get invoked any time we exit the driver to
886 * wait for an interrupt response from a drive. handler() points
887 * at the appropriate code to handle the next interrupt, and a
888 * timer is started to prevent us from waiting forever in case
889 * something goes wrong (see the ide_timer_expiry() handler later on).
891 * See also ide_execute_command
893 static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
894 unsigned int timeout, ide_expiry_t *expiry)
896 ide_hwgroup_t *hwgroup = HWGROUP(drive);
898 if (hwgroup->handler != NULL) {
899 printk(KERN_CRIT "%s: ide_set_handler: handler not null; "
900 "old=%p, new=%p\n",
901 drive->name, hwgroup->handler, handler);
903 hwgroup->handler = handler;
904 hwgroup->expiry = expiry;
905 hwgroup->timer.expires = jiffies + timeout;
906 add_timer(&hwgroup->timer);
909 void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
910 unsigned int timeout, ide_expiry_t *expiry)
912 unsigned long flags;
913 spin_lock_irqsave(&ide_lock, flags);
914 __ide_set_handler(drive, handler, timeout, expiry);
915 spin_unlock_irqrestore(&ide_lock, flags);
918 EXPORT_SYMBOL(ide_set_handler);
921 * ide_execute_command - execute an IDE command
922 * @drive: IDE drive to issue the command against
923 * @command: command byte to write
924 * @handler: handler for next phase
925 * @timeout: timeout for command
926 * @expiry: handler to run on timeout
928 * Helper function to issue an IDE command. This handles the
929 * atomicity requirements, command timing and ensures that the
930 * handler and IRQ setup do not race. All IDE command kick off
931 * should go via this function or do equivalent locking.
934 void ide_execute_command(ide_drive_t *drive, task_ioreg_t cmd, ide_handler_t *handler, unsigned timeout, ide_expiry_t *expiry)
936 unsigned long flags;
937 ide_hwgroup_t *hwgroup = HWGROUP(drive);
938 ide_hwif_t *hwif = HWIF(drive);
940 spin_lock_irqsave(&ide_lock, flags);
942 if(hwgroup->handler)
943 BUG();
944 hwgroup->handler = handler;
945 hwgroup->expiry = expiry;
946 hwgroup->timer.expires = jiffies + timeout;
947 add_timer(&hwgroup->timer);
948 hwif->OUTBSYNC(drive, cmd, IDE_COMMAND_REG);
949 /* Drive takes 400nS to respond, we must avoid the IRQ being
950 serviced before that.
952 FIXME: we could skip this delay with care on non shared
953 devices
955 ndelay(400);
956 spin_unlock_irqrestore(&ide_lock, flags);
959 EXPORT_SYMBOL(ide_execute_command);
962 /* needed below */
963 static ide_startstop_t do_reset1 (ide_drive_t *, int);
966 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
967 * during an atapi drive reset operation. If the drive has not yet responded,
968 * and we have not yet hit our maximum waiting time, then the timer is restarted
969 * for another 50ms.
971 static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
973 ide_hwgroup_t *hwgroup = HWGROUP(drive);
974 ide_hwif_t *hwif = HWIF(drive);
975 u8 stat;
977 SELECT_DRIVE(drive);
978 udelay (10);
980 if (OK_STAT(stat = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
981 printk("%s: ATAPI reset complete\n", drive->name);
982 } else {
983 if (time_before(jiffies, hwgroup->poll_timeout)) {
984 if (HWGROUP(drive)->handler != NULL)
985 BUG();
986 ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
987 /* continue polling */
988 return ide_started;
990 /* end of polling */
991 hwgroup->polling = 0;
992 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
993 drive->name, stat);
994 /* do it the old fashioned way */
995 return do_reset1(drive, 1);
997 /* done polling */
998 hwgroup->polling = 0;
999 return ide_stopped;
1003 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
1004 * during an ide reset operation. If the drives have not yet responded,
1005 * and we have not yet hit our maximum waiting time, then the timer is restarted
1006 * for another 50ms.
1008 static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
1010 ide_hwgroup_t *hwgroup = HWGROUP(drive);
1011 ide_hwif_t *hwif = HWIF(drive);
1012 u8 tmp;
1014 if (hwif->reset_poll != NULL) {
1015 if (hwif->reset_poll(drive)) {
1016 printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
1017 hwif->name, drive->name);
1018 return ide_stopped;
1022 if (!OK_STAT(tmp = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
1023 if (time_before(jiffies, hwgroup->poll_timeout)) {
1024 if (HWGROUP(drive)->handler != NULL)
1025 BUG();
1026 ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1027 /* continue polling */
1028 return ide_started;
1030 printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
1031 drive->failures++;
1032 } else {
1033 printk("%s: reset: ", hwif->name);
1034 if ((tmp = hwif->INB(IDE_ERROR_REG)) == 1) {
1035 printk("success\n");
1036 drive->failures = 0;
1037 } else {
1038 drive->failures++;
1039 printk("master: ");
1040 switch (tmp & 0x7f) {
1041 case 1: printk("passed");
1042 break;
1043 case 2: printk("formatter device error");
1044 break;
1045 case 3: printk("sector buffer error");
1046 break;
1047 case 4: printk("ECC circuitry error");
1048 break;
1049 case 5: printk("controlling MPU error");
1050 break;
1051 default:printk("error (0x%02x?)", tmp);
1053 if (tmp & 0x80)
1054 printk("; slave: failed");
1055 printk("\n");
1058 hwgroup->polling = 0; /* done polling */
1059 return ide_stopped;
1062 static void check_dma_crc(ide_drive_t *drive)
1064 #ifdef CONFIG_BLK_DEV_IDEDMA
1065 if (drive->crc_count) {
1066 (void) HWIF(drive)->ide_dma_off_quietly(drive);
1067 ide_set_xfer_rate(drive, ide_auto_reduce_xfer(drive));
1068 if (drive->current_speed >= XFER_SW_DMA_0)
1069 (void) HWIF(drive)->ide_dma_on(drive);
1070 } else
1071 (void)__ide_dma_off(drive);
1072 #endif
1075 static void ide_disk_pre_reset(ide_drive_t *drive)
1077 int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
1079 drive->special.all = 0;
1080 drive->special.b.set_geometry = legacy;
1081 drive->special.b.recalibrate = legacy;
1082 if (OK_TO_RESET_CONTROLLER)
1083 drive->mult_count = 0;
1084 if (!drive->keep_settings && !drive->using_dma)
1085 drive->mult_req = 0;
1086 if (drive->mult_req != drive->mult_count)
1087 drive->special.b.set_multmode = 1;
1090 static void pre_reset(ide_drive_t *drive)
1092 if (drive->media == ide_disk)
1093 ide_disk_pre_reset(drive);
1094 else
1095 drive->post_reset = 1;
1097 if (!drive->keep_settings) {
1098 if (drive->using_dma) {
1099 check_dma_crc(drive);
1100 } else {
1101 drive->unmask = 0;
1102 drive->io_32bit = 0;
1104 return;
1106 if (drive->using_dma)
1107 check_dma_crc(drive);
1109 if (HWIF(drive)->pre_reset != NULL)
1110 HWIF(drive)->pre_reset(drive);
1115 * do_reset1() attempts to recover a confused drive by resetting it.
1116 * Unfortunately, resetting a disk drive actually resets all devices on
1117 * the same interface, so it can really be thought of as resetting the
1118 * interface rather than resetting the drive.
1120 * ATAPI devices have their own reset mechanism which allows them to be
1121 * individually reset without clobbering other devices on the same interface.
1123 * Unfortunately, the IDE interface does not generate an interrupt to let
1124 * us know when the reset operation has finished, so we must poll for this.
1125 * Equally poor, though, is the fact that this may a very long time to complete,
1126 * (up to 30 seconds worstcase). So, instead of busy-waiting here for it,
1127 * we set a timer to poll at 50ms intervals.
1129 static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1131 unsigned int unit;
1132 unsigned long flags;
1133 ide_hwif_t *hwif;
1134 ide_hwgroup_t *hwgroup;
1136 spin_lock_irqsave(&ide_lock, flags);
1137 hwif = HWIF(drive);
1138 hwgroup = HWGROUP(drive);
1140 /* We must not reset with running handlers */
1141 if(hwgroup->handler != NULL)
1142 BUG();
1144 /* For an ATAPI device, first try an ATAPI SRST. */
1145 if (drive->media != ide_disk && !do_not_try_atapi) {
1146 pre_reset(drive);
1147 SELECT_DRIVE(drive);
1148 udelay (20);
1149 hwif->OUTBSYNC(drive, WIN_SRST, IDE_COMMAND_REG);
1150 ndelay(400);
1151 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1152 hwgroup->polling = 1;
1153 __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1154 spin_unlock_irqrestore(&ide_lock, flags);
1155 return ide_started;
1159 * First, reset any device state data we were maintaining
1160 * for any of the drives on this interface.
1162 for (unit = 0; unit < MAX_DRIVES; ++unit)
1163 pre_reset(&hwif->drives[unit]);
1165 #if OK_TO_RESET_CONTROLLER
1166 if (!IDE_CONTROL_REG) {
1167 spin_unlock_irqrestore(&ide_lock, flags);
1168 return ide_stopped;
1172 * Note that we also set nIEN while resetting the device,
1173 * to mask unwanted interrupts from the interface during the reset.
1174 * However, due to the design of PC hardware, this will cause an
1175 * immediate interrupt due to the edge transition it produces.
1176 * This single interrupt gives us a "fast poll" for drives that
1177 * recover from reset very quickly, saving us the first 50ms wait time.
1179 /* set SRST and nIEN */
1180 hwif->OUTBSYNC(drive, drive->ctl|6,IDE_CONTROL_REG);
1181 /* more than enough time */
1182 udelay(10);
1183 if (drive->quirk_list == 2) {
1184 /* clear SRST and nIEN */
1185 hwif->OUTBSYNC(drive, drive->ctl, IDE_CONTROL_REG);
1186 } else {
1187 /* clear SRST, leave nIEN */
1188 hwif->OUTBSYNC(drive, drive->ctl|2, IDE_CONTROL_REG);
1190 /* more than enough time */
1191 udelay(10);
1192 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1193 hwgroup->polling = 1;
1194 __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1197 * Some weird controller like resetting themselves to a strange
1198 * state when the disks are reset this way. At least, the Winbond
1199 * 553 documentation says that
1201 if (hwif->resetproc != NULL) {
1202 hwif->resetproc(drive);
1205 #endif /* OK_TO_RESET_CONTROLLER */
1207 spin_unlock_irqrestore(&ide_lock, flags);
1208 return ide_started;
1212 * ide_do_reset() is the entry point to the drive/interface reset code.
1215 ide_startstop_t ide_do_reset (ide_drive_t *drive)
1217 return do_reset1(drive, 0);
1220 EXPORT_SYMBOL(ide_do_reset);
1223 * ide_wait_not_busy() waits for the currently selected device on the hwif
1224 * to report a non-busy status, see comments in probe_hwif().
1226 int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1228 u8 stat = 0;
1230 while(timeout--) {
1232 * Turn this into a schedule() sleep once I'm sure
1233 * about locking issues (2.5 work ?).
1235 mdelay(1);
1236 stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1237 if ((stat & BUSY_STAT) == 0)
1238 return 0;
1240 * Assume a value of 0xff means nothing is connected to
1241 * the interface and it doesn't implement the pull-down
1242 * resistor on D7.
1244 if (stat == 0xff)
1245 return -ENODEV;
1247 return -EBUSY;
1250 EXPORT_SYMBOL_GPL(ide_wait_not_busy);