net: CONFIG_COMPAT redux
[firewire-audio.git] / net / core / sock.c
blobceef50bd131b4ea1b2b54ad758496a04060fcdba
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
83 * To Fix:
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
92 #include <linux/capability.h>
93 #include <linux/errno.h>
94 #include <linux/types.h>
95 #include <linux/socket.h>
96 #include <linux/in.h>
97 #include <linux/kernel.h>
98 #include <linux/module.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/sched.h>
102 #include <linux/timer.h>
103 #include <linux/string.h>
104 #include <linux/sockios.h>
105 #include <linux/net.h>
106 #include <linux/mm.h>
107 #include <linux/slab.h>
108 #include <linux/interrupt.h>
109 #include <linux/poll.h>
110 #include <linux/tcp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
114 #include <asm/uaccess.h>
115 #include <asm/system.h>
117 #include <linux/netdevice.h>
118 #include <net/protocol.h>
119 #include <linux/skbuff.h>
120 #include <net/net_namespace.h>
121 #include <net/request_sock.h>
122 #include <net/sock.h>
123 #include <linux/net_tstamp.h>
124 #include <net/xfrm.h>
125 #include <linux/ipsec.h>
127 #include <linux/filter.h>
129 #ifdef CONFIG_INET
130 #include <net/tcp.h>
131 #endif
134 * Each address family might have different locking rules, so we have
135 * one slock key per address family:
137 static struct lock_class_key af_family_keys[AF_MAX];
138 static struct lock_class_key af_family_slock_keys[AF_MAX];
141 * Make lock validator output more readable. (we pre-construct these
142 * strings build-time, so that runtime initialization of socket
143 * locks is fast):
145 static const char *const af_family_key_strings[AF_MAX+1] = {
146 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
147 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
148 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
149 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
150 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
151 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
152 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
153 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
154 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
155 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
156 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
157 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
158 "sk_lock-AF_IEEE802154",
159 "sk_lock-AF_MAX"
161 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
162 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
163 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
164 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
165 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
166 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
167 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
168 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
169 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
170 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
171 "slock-27" , "slock-28" , "slock-AF_CAN" ,
172 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
173 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
174 "slock-AF_IEEE802154",
175 "slock-AF_MAX"
177 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
178 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
179 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
180 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
181 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
182 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
183 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
184 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
185 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
186 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
187 "clock-27" , "clock-28" , "clock-AF_CAN" ,
188 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
189 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
190 "clock-AF_IEEE802154",
191 "clock-AF_MAX"
195 * sk_callback_lock locking rules are per-address-family,
196 * so split the lock classes by using a per-AF key:
198 static struct lock_class_key af_callback_keys[AF_MAX];
200 /* Take into consideration the size of the struct sk_buff overhead in the
201 * determination of these values, since that is non-constant across
202 * platforms. This makes socket queueing behavior and performance
203 * not depend upon such differences.
205 #define _SK_MEM_PACKETS 256
206 #define _SK_MEM_OVERHEAD (sizeof(struct sk_buff) + 256)
207 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
208 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
210 /* Run time adjustable parameters. */
211 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
212 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
213 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
214 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
216 /* Maximal space eaten by iovec or ancilliary data plus some space */
217 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
218 EXPORT_SYMBOL(sysctl_optmem_max);
220 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
222 struct timeval tv;
224 if (optlen < sizeof(tv))
225 return -EINVAL;
226 if (copy_from_user(&tv, optval, sizeof(tv)))
227 return -EFAULT;
228 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
229 return -EDOM;
231 if (tv.tv_sec < 0) {
232 static int warned __read_mostly;
234 *timeo_p = 0;
235 if (warned < 10 && net_ratelimit()) {
236 warned++;
237 printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
238 "tries to set negative timeout\n",
239 current->comm, task_pid_nr(current));
241 return 0;
243 *timeo_p = MAX_SCHEDULE_TIMEOUT;
244 if (tv.tv_sec == 0 && tv.tv_usec == 0)
245 return 0;
246 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
247 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
248 return 0;
251 static void sock_warn_obsolete_bsdism(const char *name)
253 static int warned;
254 static char warncomm[TASK_COMM_LEN];
255 if (strcmp(warncomm, current->comm) && warned < 5) {
256 strcpy(warncomm, current->comm);
257 printk(KERN_WARNING "process `%s' is using obsolete "
258 "%s SO_BSDCOMPAT\n", warncomm, name);
259 warned++;
263 static void sock_disable_timestamp(struct sock *sk, int flag)
265 if (sock_flag(sk, flag)) {
266 sock_reset_flag(sk, flag);
267 if (!sock_flag(sk, SOCK_TIMESTAMP) &&
268 !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) {
269 net_disable_timestamp();
275 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
277 int err;
278 int skb_len;
279 unsigned long flags;
280 struct sk_buff_head *list = &sk->sk_receive_queue;
282 /* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
283 number of warnings when compiling with -W --ANK
285 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
286 (unsigned)sk->sk_rcvbuf) {
287 atomic_inc(&sk->sk_drops);
288 return -ENOMEM;
291 err = sk_filter(sk, skb);
292 if (err)
293 return err;
295 if (!sk_rmem_schedule(sk, skb->truesize)) {
296 atomic_inc(&sk->sk_drops);
297 return -ENOBUFS;
300 skb->dev = NULL;
301 skb_set_owner_r(skb, sk);
303 /* Cache the SKB length before we tack it onto the receive
304 * queue. Once it is added it no longer belongs to us and
305 * may be freed by other threads of control pulling packets
306 * from the queue.
308 skb_len = skb->len;
310 spin_lock_irqsave(&list->lock, flags);
311 skb->dropcount = atomic_read(&sk->sk_drops);
312 __skb_queue_tail(list, skb);
313 spin_unlock_irqrestore(&list->lock, flags);
315 if (!sock_flag(sk, SOCK_DEAD))
316 sk->sk_data_ready(sk, skb_len);
317 return 0;
319 EXPORT_SYMBOL(sock_queue_rcv_skb);
321 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
323 int rc = NET_RX_SUCCESS;
325 if (sk_filter(sk, skb))
326 goto discard_and_relse;
328 skb->dev = NULL;
330 if (nested)
331 bh_lock_sock_nested(sk);
332 else
333 bh_lock_sock(sk);
334 if (!sock_owned_by_user(sk)) {
336 * trylock + unlock semantics:
338 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
340 rc = sk_backlog_rcv(sk, skb);
342 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
343 } else
344 sk_add_backlog(sk, skb);
345 bh_unlock_sock(sk);
346 out:
347 sock_put(sk);
348 return rc;
349 discard_and_relse:
350 kfree_skb(skb);
351 goto out;
353 EXPORT_SYMBOL(sk_receive_skb);
355 void sk_reset_txq(struct sock *sk)
357 sk_tx_queue_clear(sk);
359 EXPORT_SYMBOL(sk_reset_txq);
361 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
363 struct dst_entry *dst = sk->sk_dst_cache;
365 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
366 sk_tx_queue_clear(sk);
367 sk->sk_dst_cache = NULL;
368 dst_release(dst);
369 return NULL;
372 return dst;
374 EXPORT_SYMBOL(__sk_dst_check);
376 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
378 struct dst_entry *dst = sk_dst_get(sk);
380 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
381 sk_dst_reset(sk);
382 dst_release(dst);
383 return NULL;
386 return dst;
388 EXPORT_SYMBOL(sk_dst_check);
390 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
392 int ret = -ENOPROTOOPT;
393 #ifdef CONFIG_NETDEVICES
394 struct net *net = sock_net(sk);
395 char devname[IFNAMSIZ];
396 int index;
398 /* Sorry... */
399 ret = -EPERM;
400 if (!capable(CAP_NET_RAW))
401 goto out;
403 ret = -EINVAL;
404 if (optlen < 0)
405 goto out;
407 /* Bind this socket to a particular device like "eth0",
408 * as specified in the passed interface name. If the
409 * name is "" or the option length is zero the socket
410 * is not bound.
412 if (optlen > IFNAMSIZ - 1)
413 optlen = IFNAMSIZ - 1;
414 memset(devname, 0, sizeof(devname));
416 ret = -EFAULT;
417 if (copy_from_user(devname, optval, optlen))
418 goto out;
420 index = 0;
421 if (devname[0] != '\0') {
422 struct net_device *dev;
424 rcu_read_lock();
425 dev = dev_get_by_name_rcu(net, devname);
426 if (dev)
427 index = dev->ifindex;
428 rcu_read_unlock();
429 ret = -ENODEV;
430 if (!dev)
431 goto out;
434 lock_sock(sk);
435 sk->sk_bound_dev_if = index;
436 sk_dst_reset(sk);
437 release_sock(sk);
439 ret = 0;
441 out:
442 #endif
444 return ret;
447 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
449 if (valbool)
450 sock_set_flag(sk, bit);
451 else
452 sock_reset_flag(sk, bit);
456 * This is meant for all protocols to use and covers goings on
457 * at the socket level. Everything here is generic.
460 int sock_setsockopt(struct socket *sock, int level, int optname,
461 char __user *optval, unsigned int optlen)
463 struct sock *sk = sock->sk;
464 int val;
465 int valbool;
466 struct linger ling;
467 int ret = 0;
470 * Options without arguments
473 if (optname == SO_BINDTODEVICE)
474 return sock_bindtodevice(sk, optval, optlen);
476 if (optlen < sizeof(int))
477 return -EINVAL;
479 if (get_user(val, (int __user *)optval))
480 return -EFAULT;
482 valbool = val ? 1 : 0;
484 lock_sock(sk);
486 switch (optname) {
487 case SO_DEBUG:
488 if (val && !capable(CAP_NET_ADMIN))
489 ret = -EACCES;
490 else
491 sock_valbool_flag(sk, SOCK_DBG, valbool);
492 break;
493 case SO_REUSEADDR:
494 sk->sk_reuse = valbool;
495 break;
496 case SO_TYPE:
497 case SO_PROTOCOL:
498 case SO_DOMAIN:
499 case SO_ERROR:
500 ret = -ENOPROTOOPT;
501 break;
502 case SO_DONTROUTE:
503 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
504 break;
505 case SO_BROADCAST:
506 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
507 break;
508 case SO_SNDBUF:
509 /* Don't error on this BSD doesn't and if you think
510 about it this is right. Otherwise apps have to
511 play 'guess the biggest size' games. RCVBUF/SNDBUF
512 are treated in BSD as hints */
514 if (val > sysctl_wmem_max)
515 val = sysctl_wmem_max;
516 set_sndbuf:
517 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
518 if ((val * 2) < SOCK_MIN_SNDBUF)
519 sk->sk_sndbuf = SOCK_MIN_SNDBUF;
520 else
521 sk->sk_sndbuf = val * 2;
524 * Wake up sending tasks if we
525 * upped the value.
527 sk->sk_write_space(sk);
528 break;
530 case SO_SNDBUFFORCE:
531 if (!capable(CAP_NET_ADMIN)) {
532 ret = -EPERM;
533 break;
535 goto set_sndbuf;
537 case SO_RCVBUF:
538 /* Don't error on this BSD doesn't and if you think
539 about it this is right. Otherwise apps have to
540 play 'guess the biggest size' games. RCVBUF/SNDBUF
541 are treated in BSD as hints */
543 if (val > sysctl_rmem_max)
544 val = sysctl_rmem_max;
545 set_rcvbuf:
546 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
548 * We double it on the way in to account for
549 * "struct sk_buff" etc. overhead. Applications
550 * assume that the SO_RCVBUF setting they make will
551 * allow that much actual data to be received on that
552 * socket.
554 * Applications are unaware that "struct sk_buff" and
555 * other overheads allocate from the receive buffer
556 * during socket buffer allocation.
558 * And after considering the possible alternatives,
559 * returning the value we actually used in getsockopt
560 * is the most desirable behavior.
562 if ((val * 2) < SOCK_MIN_RCVBUF)
563 sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
564 else
565 sk->sk_rcvbuf = val * 2;
566 break;
568 case SO_RCVBUFFORCE:
569 if (!capable(CAP_NET_ADMIN)) {
570 ret = -EPERM;
571 break;
573 goto set_rcvbuf;
575 case SO_KEEPALIVE:
576 #ifdef CONFIG_INET
577 if (sk->sk_protocol == IPPROTO_TCP)
578 tcp_set_keepalive(sk, valbool);
579 #endif
580 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
581 break;
583 case SO_OOBINLINE:
584 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
585 break;
587 case SO_NO_CHECK:
588 sk->sk_no_check = valbool;
589 break;
591 case SO_PRIORITY:
592 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
593 sk->sk_priority = val;
594 else
595 ret = -EPERM;
596 break;
598 case SO_LINGER:
599 if (optlen < sizeof(ling)) {
600 ret = -EINVAL; /* 1003.1g */
601 break;
603 if (copy_from_user(&ling, optval, sizeof(ling))) {
604 ret = -EFAULT;
605 break;
607 if (!ling.l_onoff)
608 sock_reset_flag(sk, SOCK_LINGER);
609 else {
610 #if (BITS_PER_LONG == 32)
611 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
612 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
613 else
614 #endif
615 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
616 sock_set_flag(sk, SOCK_LINGER);
618 break;
620 case SO_BSDCOMPAT:
621 sock_warn_obsolete_bsdism("setsockopt");
622 break;
624 case SO_PASSCRED:
625 if (valbool)
626 set_bit(SOCK_PASSCRED, &sock->flags);
627 else
628 clear_bit(SOCK_PASSCRED, &sock->flags);
629 break;
631 case SO_TIMESTAMP:
632 case SO_TIMESTAMPNS:
633 if (valbool) {
634 if (optname == SO_TIMESTAMP)
635 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
636 else
637 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
638 sock_set_flag(sk, SOCK_RCVTSTAMP);
639 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
640 } else {
641 sock_reset_flag(sk, SOCK_RCVTSTAMP);
642 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
644 break;
646 case SO_TIMESTAMPING:
647 if (val & ~SOF_TIMESTAMPING_MASK) {
648 ret = -EINVAL;
649 break;
651 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
652 val & SOF_TIMESTAMPING_TX_HARDWARE);
653 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
654 val & SOF_TIMESTAMPING_TX_SOFTWARE);
655 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
656 val & SOF_TIMESTAMPING_RX_HARDWARE);
657 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
658 sock_enable_timestamp(sk,
659 SOCK_TIMESTAMPING_RX_SOFTWARE);
660 else
661 sock_disable_timestamp(sk,
662 SOCK_TIMESTAMPING_RX_SOFTWARE);
663 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
664 val & SOF_TIMESTAMPING_SOFTWARE);
665 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
666 val & SOF_TIMESTAMPING_SYS_HARDWARE);
667 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
668 val & SOF_TIMESTAMPING_RAW_HARDWARE);
669 break;
671 case SO_RCVLOWAT:
672 if (val < 0)
673 val = INT_MAX;
674 sk->sk_rcvlowat = val ? : 1;
675 break;
677 case SO_RCVTIMEO:
678 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
679 break;
681 case SO_SNDTIMEO:
682 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
683 break;
685 case SO_ATTACH_FILTER:
686 ret = -EINVAL;
687 if (optlen == sizeof(struct sock_fprog)) {
688 struct sock_fprog fprog;
690 ret = -EFAULT;
691 if (copy_from_user(&fprog, optval, sizeof(fprog)))
692 break;
694 ret = sk_attach_filter(&fprog, sk);
696 break;
698 case SO_DETACH_FILTER:
699 ret = sk_detach_filter(sk);
700 break;
702 case SO_PASSSEC:
703 if (valbool)
704 set_bit(SOCK_PASSSEC, &sock->flags);
705 else
706 clear_bit(SOCK_PASSSEC, &sock->flags);
707 break;
708 case SO_MARK:
709 if (!capable(CAP_NET_ADMIN))
710 ret = -EPERM;
711 else
712 sk->sk_mark = val;
713 break;
715 /* We implement the SO_SNDLOWAT etc to
716 not be settable (1003.1g 5.3) */
717 case SO_RXQ_OVFL:
718 if (valbool)
719 sock_set_flag(sk, SOCK_RXQ_OVFL);
720 else
721 sock_reset_flag(sk, SOCK_RXQ_OVFL);
722 break;
723 default:
724 ret = -ENOPROTOOPT;
725 break;
727 release_sock(sk);
728 return ret;
730 EXPORT_SYMBOL(sock_setsockopt);
733 int sock_getsockopt(struct socket *sock, int level, int optname,
734 char __user *optval, int __user *optlen)
736 struct sock *sk = sock->sk;
738 union {
739 int val;
740 struct linger ling;
741 struct timeval tm;
742 } v;
744 int lv = sizeof(int);
745 int len;
747 if (get_user(len, optlen))
748 return -EFAULT;
749 if (len < 0)
750 return -EINVAL;
752 memset(&v, 0, sizeof(v));
754 switch (optname) {
755 case SO_DEBUG:
756 v.val = sock_flag(sk, SOCK_DBG);
757 break;
759 case SO_DONTROUTE:
760 v.val = sock_flag(sk, SOCK_LOCALROUTE);
761 break;
763 case SO_BROADCAST:
764 v.val = !!sock_flag(sk, SOCK_BROADCAST);
765 break;
767 case SO_SNDBUF:
768 v.val = sk->sk_sndbuf;
769 break;
771 case SO_RCVBUF:
772 v.val = sk->sk_rcvbuf;
773 break;
775 case SO_REUSEADDR:
776 v.val = sk->sk_reuse;
777 break;
779 case SO_KEEPALIVE:
780 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
781 break;
783 case SO_TYPE:
784 v.val = sk->sk_type;
785 break;
787 case SO_PROTOCOL:
788 v.val = sk->sk_protocol;
789 break;
791 case SO_DOMAIN:
792 v.val = sk->sk_family;
793 break;
795 case SO_ERROR:
796 v.val = -sock_error(sk);
797 if (v.val == 0)
798 v.val = xchg(&sk->sk_err_soft, 0);
799 break;
801 case SO_OOBINLINE:
802 v.val = !!sock_flag(sk, SOCK_URGINLINE);
803 break;
805 case SO_NO_CHECK:
806 v.val = sk->sk_no_check;
807 break;
809 case SO_PRIORITY:
810 v.val = sk->sk_priority;
811 break;
813 case SO_LINGER:
814 lv = sizeof(v.ling);
815 v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER);
816 v.ling.l_linger = sk->sk_lingertime / HZ;
817 break;
819 case SO_BSDCOMPAT:
820 sock_warn_obsolete_bsdism("getsockopt");
821 break;
823 case SO_TIMESTAMP:
824 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
825 !sock_flag(sk, SOCK_RCVTSTAMPNS);
826 break;
828 case SO_TIMESTAMPNS:
829 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
830 break;
832 case SO_TIMESTAMPING:
833 v.val = 0;
834 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
835 v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
836 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
837 v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
838 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
839 v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
840 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
841 v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
842 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
843 v.val |= SOF_TIMESTAMPING_SOFTWARE;
844 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
845 v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
846 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
847 v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
848 break;
850 case SO_RCVTIMEO:
851 lv = sizeof(struct timeval);
852 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
853 v.tm.tv_sec = 0;
854 v.tm.tv_usec = 0;
855 } else {
856 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
857 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
859 break;
861 case SO_SNDTIMEO:
862 lv = sizeof(struct timeval);
863 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
864 v.tm.tv_sec = 0;
865 v.tm.tv_usec = 0;
866 } else {
867 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
868 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
870 break;
872 case SO_RCVLOWAT:
873 v.val = sk->sk_rcvlowat;
874 break;
876 case SO_SNDLOWAT:
877 v.val = 1;
878 break;
880 case SO_PASSCRED:
881 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
882 break;
884 case SO_PEERCRED:
885 if (len > sizeof(sk->sk_peercred))
886 len = sizeof(sk->sk_peercred);
887 if (copy_to_user(optval, &sk->sk_peercred, len))
888 return -EFAULT;
889 goto lenout;
891 case SO_PEERNAME:
893 char address[128];
895 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
896 return -ENOTCONN;
897 if (lv < len)
898 return -EINVAL;
899 if (copy_to_user(optval, address, len))
900 return -EFAULT;
901 goto lenout;
904 /* Dubious BSD thing... Probably nobody even uses it, but
905 * the UNIX standard wants it for whatever reason... -DaveM
907 case SO_ACCEPTCONN:
908 v.val = sk->sk_state == TCP_LISTEN;
909 break;
911 case SO_PASSSEC:
912 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
913 break;
915 case SO_PEERSEC:
916 return security_socket_getpeersec_stream(sock, optval, optlen, len);
918 case SO_MARK:
919 v.val = sk->sk_mark;
920 break;
922 case SO_RXQ_OVFL:
923 v.val = !!sock_flag(sk, SOCK_RXQ_OVFL);
924 break;
926 default:
927 return -ENOPROTOOPT;
930 if (len > lv)
931 len = lv;
932 if (copy_to_user(optval, &v, len))
933 return -EFAULT;
934 lenout:
935 if (put_user(len, optlen))
936 return -EFAULT;
937 return 0;
941 * Initialize an sk_lock.
943 * (We also register the sk_lock with the lock validator.)
945 static inline void sock_lock_init(struct sock *sk)
947 sock_lock_init_class_and_name(sk,
948 af_family_slock_key_strings[sk->sk_family],
949 af_family_slock_keys + sk->sk_family,
950 af_family_key_strings[sk->sk_family],
951 af_family_keys + sk->sk_family);
955 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
956 * even temporarly, because of RCU lookups. sk_node should also be left as is.
958 static void sock_copy(struct sock *nsk, const struct sock *osk)
960 #ifdef CONFIG_SECURITY_NETWORK
961 void *sptr = nsk->sk_security;
962 #endif
963 BUILD_BUG_ON(offsetof(struct sock, sk_copy_start) !=
964 sizeof(osk->sk_node) + sizeof(osk->sk_refcnt) +
965 sizeof(osk->sk_tx_queue_mapping));
966 memcpy(&nsk->sk_copy_start, &osk->sk_copy_start,
967 osk->sk_prot->obj_size - offsetof(struct sock, sk_copy_start));
968 #ifdef CONFIG_SECURITY_NETWORK
969 nsk->sk_security = sptr;
970 security_sk_clone(osk, nsk);
971 #endif
974 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
975 int family)
977 struct sock *sk;
978 struct kmem_cache *slab;
980 slab = prot->slab;
981 if (slab != NULL) {
982 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
983 if (!sk)
984 return sk;
985 if (priority & __GFP_ZERO) {
987 * caches using SLAB_DESTROY_BY_RCU should let
988 * sk_node.next un-modified. Special care is taken
989 * when initializing object to zero.
991 if (offsetof(struct sock, sk_node.next) != 0)
992 memset(sk, 0, offsetof(struct sock, sk_node.next));
993 memset(&sk->sk_node.pprev, 0,
994 prot->obj_size - offsetof(struct sock,
995 sk_node.pprev));
998 else
999 sk = kmalloc(prot->obj_size, priority);
1001 if (sk != NULL) {
1002 kmemcheck_annotate_bitfield(sk, flags);
1004 if (security_sk_alloc(sk, family, priority))
1005 goto out_free;
1007 if (!try_module_get(prot->owner))
1008 goto out_free_sec;
1009 sk_tx_queue_clear(sk);
1012 return sk;
1014 out_free_sec:
1015 security_sk_free(sk);
1016 out_free:
1017 if (slab != NULL)
1018 kmem_cache_free(slab, sk);
1019 else
1020 kfree(sk);
1021 return NULL;
1024 static void sk_prot_free(struct proto *prot, struct sock *sk)
1026 struct kmem_cache *slab;
1027 struct module *owner;
1029 owner = prot->owner;
1030 slab = prot->slab;
1032 security_sk_free(sk);
1033 if (slab != NULL)
1034 kmem_cache_free(slab, sk);
1035 else
1036 kfree(sk);
1037 module_put(owner);
1041 * sk_alloc - All socket objects are allocated here
1042 * @net: the applicable net namespace
1043 * @family: protocol family
1044 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1045 * @prot: struct proto associated with this new sock instance
1047 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1048 struct proto *prot)
1050 struct sock *sk;
1052 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1053 if (sk) {
1054 sk->sk_family = family;
1056 * See comment in struct sock definition to understand
1057 * why we need sk_prot_creator -acme
1059 sk->sk_prot = sk->sk_prot_creator = prot;
1060 sock_lock_init(sk);
1061 sock_net_set(sk, get_net(net));
1062 atomic_set(&sk->sk_wmem_alloc, 1);
1065 return sk;
1067 EXPORT_SYMBOL(sk_alloc);
1069 static void __sk_free(struct sock *sk)
1071 struct sk_filter *filter;
1073 if (sk->sk_destruct)
1074 sk->sk_destruct(sk);
1076 filter = rcu_dereference(sk->sk_filter);
1077 if (filter) {
1078 sk_filter_uncharge(sk, filter);
1079 rcu_assign_pointer(sk->sk_filter, NULL);
1082 sock_disable_timestamp(sk, SOCK_TIMESTAMP);
1083 sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE);
1085 if (atomic_read(&sk->sk_omem_alloc))
1086 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1087 __func__, atomic_read(&sk->sk_omem_alloc));
1089 put_net(sock_net(sk));
1090 sk_prot_free(sk->sk_prot_creator, sk);
1093 void sk_free(struct sock *sk)
1096 * We substract one from sk_wmem_alloc and can know if
1097 * some packets are still in some tx queue.
1098 * If not null, sock_wfree() will call __sk_free(sk) later
1100 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1101 __sk_free(sk);
1103 EXPORT_SYMBOL(sk_free);
1106 * Last sock_put should drop referrence to sk->sk_net. It has already
1107 * been dropped in sk_change_net. Taking referrence to stopping namespace
1108 * is not an option.
1109 * Take referrence to a socket to remove it from hash _alive_ and after that
1110 * destroy it in the context of init_net.
1112 void sk_release_kernel(struct sock *sk)
1114 if (sk == NULL || sk->sk_socket == NULL)
1115 return;
1117 sock_hold(sk);
1118 sock_release(sk->sk_socket);
1119 release_net(sock_net(sk));
1120 sock_net_set(sk, get_net(&init_net));
1121 sock_put(sk);
1123 EXPORT_SYMBOL(sk_release_kernel);
1125 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1127 struct sock *newsk;
1129 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1130 if (newsk != NULL) {
1131 struct sk_filter *filter;
1133 sock_copy(newsk, sk);
1135 /* SANITY */
1136 get_net(sock_net(newsk));
1137 sk_node_init(&newsk->sk_node);
1138 sock_lock_init(newsk);
1139 bh_lock_sock(newsk);
1140 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1142 atomic_set(&newsk->sk_rmem_alloc, 0);
1144 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1146 atomic_set(&newsk->sk_wmem_alloc, 1);
1147 atomic_set(&newsk->sk_omem_alloc, 0);
1148 skb_queue_head_init(&newsk->sk_receive_queue);
1149 skb_queue_head_init(&newsk->sk_write_queue);
1150 #ifdef CONFIG_NET_DMA
1151 skb_queue_head_init(&newsk->sk_async_wait_queue);
1152 #endif
1154 rwlock_init(&newsk->sk_dst_lock);
1155 rwlock_init(&newsk->sk_callback_lock);
1156 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1157 af_callback_keys + newsk->sk_family,
1158 af_family_clock_key_strings[newsk->sk_family]);
1160 newsk->sk_dst_cache = NULL;
1161 newsk->sk_wmem_queued = 0;
1162 newsk->sk_forward_alloc = 0;
1163 newsk->sk_send_head = NULL;
1164 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1166 sock_reset_flag(newsk, SOCK_DONE);
1167 skb_queue_head_init(&newsk->sk_error_queue);
1169 filter = newsk->sk_filter;
1170 if (filter != NULL)
1171 sk_filter_charge(newsk, filter);
1173 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1174 /* It is still raw copy of parent, so invalidate
1175 * destructor and make plain sk_free() */
1176 newsk->sk_destruct = NULL;
1177 sk_free(newsk);
1178 newsk = NULL;
1179 goto out;
1182 newsk->sk_err = 0;
1183 newsk->sk_priority = 0;
1185 * Before updating sk_refcnt, we must commit prior changes to memory
1186 * (Documentation/RCU/rculist_nulls.txt for details)
1188 smp_wmb();
1189 atomic_set(&newsk->sk_refcnt, 2);
1192 * Increment the counter in the same struct proto as the master
1193 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1194 * is the same as sk->sk_prot->socks, as this field was copied
1195 * with memcpy).
1197 * This _changes_ the previous behaviour, where
1198 * tcp_create_openreq_child always was incrementing the
1199 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1200 * to be taken into account in all callers. -acme
1202 sk_refcnt_debug_inc(newsk);
1203 sk_set_socket(newsk, NULL);
1204 newsk->sk_sleep = NULL;
1206 if (newsk->sk_prot->sockets_allocated)
1207 percpu_counter_inc(newsk->sk_prot->sockets_allocated);
1209 if (sock_flag(newsk, SOCK_TIMESTAMP) ||
1210 sock_flag(newsk, SOCK_TIMESTAMPING_RX_SOFTWARE))
1211 net_enable_timestamp();
1213 out:
1214 return newsk;
1216 EXPORT_SYMBOL_GPL(sk_clone);
1218 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1220 __sk_dst_set(sk, dst);
1221 sk->sk_route_caps = dst->dev->features;
1222 if (sk->sk_route_caps & NETIF_F_GSO)
1223 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1224 if (sk_can_gso(sk)) {
1225 if (dst->header_len) {
1226 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1227 } else {
1228 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1229 sk->sk_gso_max_size = dst->dev->gso_max_size;
1233 EXPORT_SYMBOL_GPL(sk_setup_caps);
1235 void __init sk_init(void)
1237 if (totalram_pages <= 4096) {
1238 sysctl_wmem_max = 32767;
1239 sysctl_rmem_max = 32767;
1240 sysctl_wmem_default = 32767;
1241 sysctl_rmem_default = 32767;
1242 } else if (totalram_pages >= 131072) {
1243 sysctl_wmem_max = 131071;
1244 sysctl_rmem_max = 131071;
1249 * Simple resource managers for sockets.
1254 * Write buffer destructor automatically called from kfree_skb.
1256 void sock_wfree(struct sk_buff *skb)
1258 struct sock *sk = skb->sk;
1259 unsigned int len = skb->truesize;
1261 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1263 * Keep a reference on sk_wmem_alloc, this will be released
1264 * after sk_write_space() call
1266 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1267 sk->sk_write_space(sk);
1268 len = 1;
1271 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1272 * could not do because of in-flight packets
1274 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1275 __sk_free(sk);
1277 EXPORT_SYMBOL(sock_wfree);
1280 * Read buffer destructor automatically called from kfree_skb.
1282 void sock_rfree(struct sk_buff *skb)
1284 struct sock *sk = skb->sk;
1286 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1287 sk_mem_uncharge(skb->sk, skb->truesize);
1289 EXPORT_SYMBOL(sock_rfree);
1292 int sock_i_uid(struct sock *sk)
1294 int uid;
1296 read_lock(&sk->sk_callback_lock);
1297 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1298 read_unlock(&sk->sk_callback_lock);
1299 return uid;
1301 EXPORT_SYMBOL(sock_i_uid);
1303 unsigned long sock_i_ino(struct sock *sk)
1305 unsigned long ino;
1307 read_lock(&sk->sk_callback_lock);
1308 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1309 read_unlock(&sk->sk_callback_lock);
1310 return ino;
1312 EXPORT_SYMBOL(sock_i_ino);
1315 * Allocate a skb from the socket's send buffer.
1317 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1318 gfp_t priority)
1320 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1321 struct sk_buff *skb = alloc_skb(size, priority);
1322 if (skb) {
1323 skb_set_owner_w(skb, sk);
1324 return skb;
1327 return NULL;
1329 EXPORT_SYMBOL(sock_wmalloc);
1332 * Allocate a skb from the socket's receive buffer.
1334 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1335 gfp_t priority)
1337 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1338 struct sk_buff *skb = alloc_skb(size, priority);
1339 if (skb) {
1340 skb_set_owner_r(skb, sk);
1341 return skb;
1344 return NULL;
1348 * Allocate a memory block from the socket's option memory buffer.
1350 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1352 if ((unsigned)size <= sysctl_optmem_max &&
1353 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1354 void *mem;
1355 /* First do the add, to avoid the race if kmalloc
1356 * might sleep.
1358 atomic_add(size, &sk->sk_omem_alloc);
1359 mem = kmalloc(size, priority);
1360 if (mem)
1361 return mem;
1362 atomic_sub(size, &sk->sk_omem_alloc);
1364 return NULL;
1366 EXPORT_SYMBOL(sock_kmalloc);
1369 * Free an option memory block.
1371 void sock_kfree_s(struct sock *sk, void *mem, int size)
1373 kfree(mem);
1374 atomic_sub(size, &sk->sk_omem_alloc);
1376 EXPORT_SYMBOL(sock_kfree_s);
1378 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1379 I think, these locks should be removed for datagram sockets.
1381 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1383 DEFINE_WAIT(wait);
1385 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1386 for (;;) {
1387 if (!timeo)
1388 break;
1389 if (signal_pending(current))
1390 break;
1391 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1392 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1393 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1394 break;
1395 if (sk->sk_shutdown & SEND_SHUTDOWN)
1396 break;
1397 if (sk->sk_err)
1398 break;
1399 timeo = schedule_timeout(timeo);
1401 finish_wait(sk->sk_sleep, &wait);
1402 return timeo;
1407 * Generic send/receive buffer handlers
1410 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1411 unsigned long data_len, int noblock,
1412 int *errcode)
1414 struct sk_buff *skb;
1415 gfp_t gfp_mask;
1416 long timeo;
1417 int err;
1419 gfp_mask = sk->sk_allocation;
1420 if (gfp_mask & __GFP_WAIT)
1421 gfp_mask |= __GFP_REPEAT;
1423 timeo = sock_sndtimeo(sk, noblock);
1424 while (1) {
1425 err = sock_error(sk);
1426 if (err != 0)
1427 goto failure;
1429 err = -EPIPE;
1430 if (sk->sk_shutdown & SEND_SHUTDOWN)
1431 goto failure;
1433 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1434 skb = alloc_skb(header_len, gfp_mask);
1435 if (skb) {
1436 int npages;
1437 int i;
1439 /* No pages, we're done... */
1440 if (!data_len)
1441 break;
1443 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1444 skb->truesize += data_len;
1445 skb_shinfo(skb)->nr_frags = npages;
1446 for (i = 0; i < npages; i++) {
1447 struct page *page;
1448 skb_frag_t *frag;
1450 page = alloc_pages(sk->sk_allocation, 0);
1451 if (!page) {
1452 err = -ENOBUFS;
1453 skb_shinfo(skb)->nr_frags = i;
1454 kfree_skb(skb);
1455 goto failure;
1458 frag = &skb_shinfo(skb)->frags[i];
1459 frag->page = page;
1460 frag->page_offset = 0;
1461 frag->size = (data_len >= PAGE_SIZE ?
1462 PAGE_SIZE :
1463 data_len);
1464 data_len -= PAGE_SIZE;
1467 /* Full success... */
1468 break;
1470 err = -ENOBUFS;
1471 goto failure;
1473 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1474 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1475 err = -EAGAIN;
1476 if (!timeo)
1477 goto failure;
1478 if (signal_pending(current))
1479 goto interrupted;
1480 timeo = sock_wait_for_wmem(sk, timeo);
1483 skb_set_owner_w(skb, sk);
1484 return skb;
1486 interrupted:
1487 err = sock_intr_errno(timeo);
1488 failure:
1489 *errcode = err;
1490 return NULL;
1492 EXPORT_SYMBOL(sock_alloc_send_pskb);
1494 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1495 int noblock, int *errcode)
1497 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1499 EXPORT_SYMBOL(sock_alloc_send_skb);
1501 static void __lock_sock(struct sock *sk)
1503 DEFINE_WAIT(wait);
1505 for (;;) {
1506 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1507 TASK_UNINTERRUPTIBLE);
1508 spin_unlock_bh(&sk->sk_lock.slock);
1509 schedule();
1510 spin_lock_bh(&sk->sk_lock.slock);
1511 if (!sock_owned_by_user(sk))
1512 break;
1514 finish_wait(&sk->sk_lock.wq, &wait);
1517 static void __release_sock(struct sock *sk)
1519 struct sk_buff *skb = sk->sk_backlog.head;
1521 do {
1522 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1523 bh_unlock_sock(sk);
1525 do {
1526 struct sk_buff *next = skb->next;
1528 skb->next = NULL;
1529 sk_backlog_rcv(sk, skb);
1532 * We are in process context here with softirqs
1533 * disabled, use cond_resched_softirq() to preempt.
1534 * This is safe to do because we've taken the backlog
1535 * queue private:
1537 cond_resched_softirq();
1539 skb = next;
1540 } while (skb != NULL);
1542 bh_lock_sock(sk);
1543 } while ((skb = sk->sk_backlog.head) != NULL);
1547 * sk_wait_data - wait for data to arrive at sk_receive_queue
1548 * @sk: sock to wait on
1549 * @timeo: for how long
1551 * Now socket state including sk->sk_err is changed only under lock,
1552 * hence we may omit checks after joining wait queue.
1553 * We check receive queue before schedule() only as optimization;
1554 * it is very likely that release_sock() added new data.
1556 int sk_wait_data(struct sock *sk, long *timeo)
1558 int rc;
1559 DEFINE_WAIT(wait);
1561 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1562 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1563 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1564 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1565 finish_wait(sk->sk_sleep, &wait);
1566 return rc;
1568 EXPORT_SYMBOL(sk_wait_data);
1571 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1572 * @sk: socket
1573 * @size: memory size to allocate
1574 * @kind: allocation type
1576 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1577 * rmem allocation. This function assumes that protocols which have
1578 * memory_pressure use sk_wmem_queued as write buffer accounting.
1580 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1582 struct proto *prot = sk->sk_prot;
1583 int amt = sk_mem_pages(size);
1584 int allocated;
1586 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1587 allocated = atomic_add_return(amt, prot->memory_allocated);
1589 /* Under limit. */
1590 if (allocated <= prot->sysctl_mem[0]) {
1591 if (prot->memory_pressure && *prot->memory_pressure)
1592 *prot->memory_pressure = 0;
1593 return 1;
1596 /* Under pressure. */
1597 if (allocated > prot->sysctl_mem[1])
1598 if (prot->enter_memory_pressure)
1599 prot->enter_memory_pressure(sk);
1601 /* Over hard limit. */
1602 if (allocated > prot->sysctl_mem[2])
1603 goto suppress_allocation;
1605 /* guarantee minimum buffer size under pressure */
1606 if (kind == SK_MEM_RECV) {
1607 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1608 return 1;
1609 } else { /* SK_MEM_SEND */
1610 if (sk->sk_type == SOCK_STREAM) {
1611 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1612 return 1;
1613 } else if (atomic_read(&sk->sk_wmem_alloc) <
1614 prot->sysctl_wmem[0])
1615 return 1;
1618 if (prot->memory_pressure) {
1619 int alloc;
1621 if (!*prot->memory_pressure)
1622 return 1;
1623 alloc = percpu_counter_read_positive(prot->sockets_allocated);
1624 if (prot->sysctl_mem[2] > alloc *
1625 sk_mem_pages(sk->sk_wmem_queued +
1626 atomic_read(&sk->sk_rmem_alloc) +
1627 sk->sk_forward_alloc))
1628 return 1;
1631 suppress_allocation:
1633 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1634 sk_stream_moderate_sndbuf(sk);
1636 /* Fail only if socket is _under_ its sndbuf.
1637 * In this case we cannot block, so that we have to fail.
1639 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1640 return 1;
1643 /* Alas. Undo changes. */
1644 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1645 atomic_sub(amt, prot->memory_allocated);
1646 return 0;
1648 EXPORT_SYMBOL(__sk_mem_schedule);
1651 * __sk_reclaim - reclaim memory_allocated
1652 * @sk: socket
1654 void __sk_mem_reclaim(struct sock *sk)
1656 struct proto *prot = sk->sk_prot;
1658 atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1659 prot->memory_allocated);
1660 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1662 if (prot->memory_pressure && *prot->memory_pressure &&
1663 (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1664 *prot->memory_pressure = 0;
1666 EXPORT_SYMBOL(__sk_mem_reclaim);
1670 * Set of default routines for initialising struct proto_ops when
1671 * the protocol does not support a particular function. In certain
1672 * cases where it makes no sense for a protocol to have a "do nothing"
1673 * function, some default processing is provided.
1676 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1678 return -EOPNOTSUPP;
1680 EXPORT_SYMBOL(sock_no_bind);
1682 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1683 int len, int flags)
1685 return -EOPNOTSUPP;
1687 EXPORT_SYMBOL(sock_no_connect);
1689 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1691 return -EOPNOTSUPP;
1693 EXPORT_SYMBOL(sock_no_socketpair);
1695 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1697 return -EOPNOTSUPP;
1699 EXPORT_SYMBOL(sock_no_accept);
1701 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1702 int *len, int peer)
1704 return -EOPNOTSUPP;
1706 EXPORT_SYMBOL(sock_no_getname);
1708 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1710 return 0;
1712 EXPORT_SYMBOL(sock_no_poll);
1714 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1716 return -EOPNOTSUPP;
1718 EXPORT_SYMBOL(sock_no_ioctl);
1720 int sock_no_listen(struct socket *sock, int backlog)
1722 return -EOPNOTSUPP;
1724 EXPORT_SYMBOL(sock_no_listen);
1726 int sock_no_shutdown(struct socket *sock, int how)
1728 return -EOPNOTSUPP;
1730 EXPORT_SYMBOL(sock_no_shutdown);
1732 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1733 char __user *optval, unsigned int optlen)
1735 return -EOPNOTSUPP;
1737 EXPORT_SYMBOL(sock_no_setsockopt);
1739 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1740 char __user *optval, int __user *optlen)
1742 return -EOPNOTSUPP;
1744 EXPORT_SYMBOL(sock_no_getsockopt);
1746 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1747 size_t len)
1749 return -EOPNOTSUPP;
1751 EXPORT_SYMBOL(sock_no_sendmsg);
1753 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1754 size_t len, int flags)
1756 return -EOPNOTSUPP;
1758 EXPORT_SYMBOL(sock_no_recvmsg);
1760 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1762 /* Mirror missing mmap method error code */
1763 return -ENODEV;
1765 EXPORT_SYMBOL(sock_no_mmap);
1767 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1769 ssize_t res;
1770 struct msghdr msg = {.msg_flags = flags};
1771 struct kvec iov;
1772 char *kaddr = kmap(page);
1773 iov.iov_base = kaddr + offset;
1774 iov.iov_len = size;
1775 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1776 kunmap(page);
1777 return res;
1779 EXPORT_SYMBOL(sock_no_sendpage);
1782 * Default Socket Callbacks
1785 static void sock_def_wakeup(struct sock *sk)
1787 read_lock(&sk->sk_callback_lock);
1788 if (sk_has_sleeper(sk))
1789 wake_up_interruptible_all(sk->sk_sleep);
1790 read_unlock(&sk->sk_callback_lock);
1793 static void sock_def_error_report(struct sock *sk)
1795 read_lock(&sk->sk_callback_lock);
1796 if (sk_has_sleeper(sk))
1797 wake_up_interruptible_poll(sk->sk_sleep, POLLERR);
1798 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1799 read_unlock(&sk->sk_callback_lock);
1802 static void sock_def_readable(struct sock *sk, int len)
1804 read_lock(&sk->sk_callback_lock);
1805 if (sk_has_sleeper(sk))
1806 wake_up_interruptible_sync_poll(sk->sk_sleep, POLLIN |
1807 POLLRDNORM | POLLRDBAND);
1808 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1809 read_unlock(&sk->sk_callback_lock);
1812 static void sock_def_write_space(struct sock *sk)
1814 read_lock(&sk->sk_callback_lock);
1816 /* Do not wake up a writer until he can make "significant"
1817 * progress. --DaveM
1819 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1820 if (sk_has_sleeper(sk))
1821 wake_up_interruptible_sync_poll(sk->sk_sleep, POLLOUT |
1822 POLLWRNORM | POLLWRBAND);
1824 /* Should agree with poll, otherwise some programs break */
1825 if (sock_writeable(sk))
1826 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1829 read_unlock(&sk->sk_callback_lock);
1832 static void sock_def_destruct(struct sock *sk)
1834 kfree(sk->sk_protinfo);
1837 void sk_send_sigurg(struct sock *sk)
1839 if (sk->sk_socket && sk->sk_socket->file)
1840 if (send_sigurg(&sk->sk_socket->file->f_owner))
1841 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1843 EXPORT_SYMBOL(sk_send_sigurg);
1845 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1846 unsigned long expires)
1848 if (!mod_timer(timer, expires))
1849 sock_hold(sk);
1851 EXPORT_SYMBOL(sk_reset_timer);
1853 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1855 if (timer_pending(timer) && del_timer(timer))
1856 __sock_put(sk);
1858 EXPORT_SYMBOL(sk_stop_timer);
1860 void sock_init_data(struct socket *sock, struct sock *sk)
1862 skb_queue_head_init(&sk->sk_receive_queue);
1863 skb_queue_head_init(&sk->sk_write_queue);
1864 skb_queue_head_init(&sk->sk_error_queue);
1865 #ifdef CONFIG_NET_DMA
1866 skb_queue_head_init(&sk->sk_async_wait_queue);
1867 #endif
1869 sk->sk_send_head = NULL;
1871 init_timer(&sk->sk_timer);
1873 sk->sk_allocation = GFP_KERNEL;
1874 sk->sk_rcvbuf = sysctl_rmem_default;
1875 sk->sk_sndbuf = sysctl_wmem_default;
1876 sk->sk_state = TCP_CLOSE;
1877 sk_set_socket(sk, sock);
1879 sock_set_flag(sk, SOCK_ZAPPED);
1881 if (sock) {
1882 sk->sk_type = sock->type;
1883 sk->sk_sleep = &sock->wait;
1884 sock->sk = sk;
1885 } else
1886 sk->sk_sleep = NULL;
1888 rwlock_init(&sk->sk_dst_lock);
1889 rwlock_init(&sk->sk_callback_lock);
1890 lockdep_set_class_and_name(&sk->sk_callback_lock,
1891 af_callback_keys + sk->sk_family,
1892 af_family_clock_key_strings[sk->sk_family]);
1894 sk->sk_state_change = sock_def_wakeup;
1895 sk->sk_data_ready = sock_def_readable;
1896 sk->sk_write_space = sock_def_write_space;
1897 sk->sk_error_report = sock_def_error_report;
1898 sk->sk_destruct = sock_def_destruct;
1900 sk->sk_sndmsg_page = NULL;
1901 sk->sk_sndmsg_off = 0;
1903 sk->sk_peercred.pid = 0;
1904 sk->sk_peercred.uid = -1;
1905 sk->sk_peercred.gid = -1;
1906 sk->sk_write_pending = 0;
1907 sk->sk_rcvlowat = 1;
1908 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1909 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1911 sk->sk_stamp = ktime_set(-1L, 0);
1914 * Before updating sk_refcnt, we must commit prior changes to memory
1915 * (Documentation/RCU/rculist_nulls.txt for details)
1917 smp_wmb();
1918 atomic_set(&sk->sk_refcnt, 1);
1919 atomic_set(&sk->sk_drops, 0);
1921 EXPORT_SYMBOL(sock_init_data);
1923 void lock_sock_nested(struct sock *sk, int subclass)
1925 might_sleep();
1926 spin_lock_bh(&sk->sk_lock.slock);
1927 if (sk->sk_lock.owned)
1928 __lock_sock(sk);
1929 sk->sk_lock.owned = 1;
1930 spin_unlock(&sk->sk_lock.slock);
1932 * The sk_lock has mutex_lock() semantics here:
1934 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1935 local_bh_enable();
1937 EXPORT_SYMBOL(lock_sock_nested);
1939 void release_sock(struct sock *sk)
1942 * The sk_lock has mutex_unlock() semantics:
1944 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1946 spin_lock_bh(&sk->sk_lock.slock);
1947 if (sk->sk_backlog.tail)
1948 __release_sock(sk);
1949 sk->sk_lock.owned = 0;
1950 if (waitqueue_active(&sk->sk_lock.wq))
1951 wake_up(&sk->sk_lock.wq);
1952 spin_unlock_bh(&sk->sk_lock.slock);
1954 EXPORT_SYMBOL(release_sock);
1956 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1958 struct timeval tv;
1959 if (!sock_flag(sk, SOCK_TIMESTAMP))
1960 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
1961 tv = ktime_to_timeval(sk->sk_stamp);
1962 if (tv.tv_sec == -1)
1963 return -ENOENT;
1964 if (tv.tv_sec == 0) {
1965 sk->sk_stamp = ktime_get_real();
1966 tv = ktime_to_timeval(sk->sk_stamp);
1968 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1970 EXPORT_SYMBOL(sock_get_timestamp);
1972 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1974 struct timespec ts;
1975 if (!sock_flag(sk, SOCK_TIMESTAMP))
1976 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
1977 ts = ktime_to_timespec(sk->sk_stamp);
1978 if (ts.tv_sec == -1)
1979 return -ENOENT;
1980 if (ts.tv_sec == 0) {
1981 sk->sk_stamp = ktime_get_real();
1982 ts = ktime_to_timespec(sk->sk_stamp);
1984 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1986 EXPORT_SYMBOL(sock_get_timestampns);
1988 void sock_enable_timestamp(struct sock *sk, int flag)
1990 if (!sock_flag(sk, flag)) {
1991 sock_set_flag(sk, flag);
1993 * we just set one of the two flags which require net
1994 * time stamping, but time stamping might have been on
1995 * already because of the other one
1997 if (!sock_flag(sk,
1998 flag == SOCK_TIMESTAMP ?
1999 SOCK_TIMESTAMPING_RX_SOFTWARE :
2000 SOCK_TIMESTAMP))
2001 net_enable_timestamp();
2006 * Get a socket option on an socket.
2008 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2009 * asynchronous errors should be reported by getsockopt. We assume
2010 * this means if you specify SO_ERROR (otherwise whats the point of it).
2012 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2013 char __user *optval, int __user *optlen)
2015 struct sock *sk = sock->sk;
2017 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2019 EXPORT_SYMBOL(sock_common_getsockopt);
2021 #ifdef CONFIG_COMPAT
2022 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2023 char __user *optval, int __user *optlen)
2025 struct sock *sk = sock->sk;
2027 if (sk->sk_prot->compat_getsockopt != NULL)
2028 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2029 optval, optlen);
2030 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2032 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2033 #endif
2035 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2036 struct msghdr *msg, size_t size, int flags)
2038 struct sock *sk = sock->sk;
2039 int addr_len = 0;
2040 int err;
2042 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2043 flags & ~MSG_DONTWAIT, &addr_len);
2044 if (err >= 0)
2045 msg->msg_namelen = addr_len;
2046 return err;
2048 EXPORT_SYMBOL(sock_common_recvmsg);
2051 * Set socket options on an inet socket.
2053 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2054 char __user *optval, unsigned int optlen)
2056 struct sock *sk = sock->sk;
2058 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2060 EXPORT_SYMBOL(sock_common_setsockopt);
2062 #ifdef CONFIG_COMPAT
2063 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2064 char __user *optval, unsigned int optlen)
2066 struct sock *sk = sock->sk;
2068 if (sk->sk_prot->compat_setsockopt != NULL)
2069 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2070 optval, optlen);
2071 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2073 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2074 #endif
2076 void sk_common_release(struct sock *sk)
2078 if (sk->sk_prot->destroy)
2079 sk->sk_prot->destroy(sk);
2082 * Observation: when sock_common_release is called, processes have
2083 * no access to socket. But net still has.
2084 * Step one, detach it from networking:
2086 * A. Remove from hash tables.
2089 sk->sk_prot->unhash(sk);
2092 * In this point socket cannot receive new packets, but it is possible
2093 * that some packets are in flight because some CPU runs receiver and
2094 * did hash table lookup before we unhashed socket. They will achieve
2095 * receive queue and will be purged by socket destructor.
2097 * Also we still have packets pending on receive queue and probably,
2098 * our own packets waiting in device queues. sock_destroy will drain
2099 * receive queue, but transmitted packets will delay socket destruction
2100 * until the last reference will be released.
2103 sock_orphan(sk);
2105 xfrm_sk_free_policy(sk);
2107 sk_refcnt_debug_release(sk);
2108 sock_put(sk);
2110 EXPORT_SYMBOL(sk_common_release);
2112 static DEFINE_RWLOCK(proto_list_lock);
2113 static LIST_HEAD(proto_list);
2115 #ifdef CONFIG_PROC_FS
2116 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2117 struct prot_inuse {
2118 int val[PROTO_INUSE_NR];
2121 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2123 #ifdef CONFIG_NET_NS
2124 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2126 int cpu = smp_processor_id();
2127 per_cpu_ptr(net->core.inuse, cpu)->val[prot->inuse_idx] += val;
2129 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2131 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2133 int cpu, idx = prot->inuse_idx;
2134 int res = 0;
2136 for_each_possible_cpu(cpu)
2137 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2139 return res >= 0 ? res : 0;
2141 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2143 static int __net_init sock_inuse_init_net(struct net *net)
2145 net->core.inuse = alloc_percpu(struct prot_inuse);
2146 return net->core.inuse ? 0 : -ENOMEM;
2149 static void __net_exit sock_inuse_exit_net(struct net *net)
2151 free_percpu(net->core.inuse);
2154 static struct pernet_operations net_inuse_ops = {
2155 .init = sock_inuse_init_net,
2156 .exit = sock_inuse_exit_net,
2159 static __init int net_inuse_init(void)
2161 if (register_pernet_subsys(&net_inuse_ops))
2162 panic("Cannot initialize net inuse counters");
2164 return 0;
2167 core_initcall(net_inuse_init);
2168 #else
2169 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2171 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2173 __get_cpu_var(prot_inuse).val[prot->inuse_idx] += val;
2175 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2177 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2179 int cpu, idx = prot->inuse_idx;
2180 int res = 0;
2182 for_each_possible_cpu(cpu)
2183 res += per_cpu(prot_inuse, cpu).val[idx];
2185 return res >= 0 ? res : 0;
2187 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2188 #endif
2190 static void assign_proto_idx(struct proto *prot)
2192 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2194 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2195 printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2196 return;
2199 set_bit(prot->inuse_idx, proto_inuse_idx);
2202 static void release_proto_idx(struct proto *prot)
2204 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2205 clear_bit(prot->inuse_idx, proto_inuse_idx);
2207 #else
2208 static inline void assign_proto_idx(struct proto *prot)
2212 static inline void release_proto_idx(struct proto *prot)
2215 #endif
2217 int proto_register(struct proto *prot, int alloc_slab)
2219 if (alloc_slab) {
2220 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2221 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2222 NULL);
2224 if (prot->slab == NULL) {
2225 printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2226 prot->name);
2227 goto out;
2230 if (prot->rsk_prot != NULL) {
2231 static const char mask[] = "request_sock_%s";
2233 prot->rsk_prot->slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2234 if (prot->rsk_prot->slab_name == NULL)
2235 goto out_free_sock_slab;
2237 sprintf(prot->rsk_prot->slab_name, mask, prot->name);
2238 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2239 prot->rsk_prot->obj_size, 0,
2240 SLAB_HWCACHE_ALIGN, NULL);
2242 if (prot->rsk_prot->slab == NULL) {
2243 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2244 prot->name);
2245 goto out_free_request_sock_slab_name;
2249 if (prot->twsk_prot != NULL) {
2250 static const char mask[] = "tw_sock_%s";
2252 prot->twsk_prot->twsk_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2254 if (prot->twsk_prot->twsk_slab_name == NULL)
2255 goto out_free_request_sock_slab;
2257 sprintf(prot->twsk_prot->twsk_slab_name, mask, prot->name);
2258 prot->twsk_prot->twsk_slab =
2259 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2260 prot->twsk_prot->twsk_obj_size,
2262 SLAB_HWCACHE_ALIGN |
2263 prot->slab_flags,
2264 NULL);
2265 if (prot->twsk_prot->twsk_slab == NULL)
2266 goto out_free_timewait_sock_slab_name;
2270 write_lock(&proto_list_lock);
2271 list_add(&prot->node, &proto_list);
2272 assign_proto_idx(prot);
2273 write_unlock(&proto_list_lock);
2274 return 0;
2276 out_free_timewait_sock_slab_name:
2277 kfree(prot->twsk_prot->twsk_slab_name);
2278 out_free_request_sock_slab:
2279 if (prot->rsk_prot && prot->rsk_prot->slab) {
2280 kmem_cache_destroy(prot->rsk_prot->slab);
2281 prot->rsk_prot->slab = NULL;
2283 out_free_request_sock_slab_name:
2284 kfree(prot->rsk_prot->slab_name);
2285 out_free_sock_slab:
2286 kmem_cache_destroy(prot->slab);
2287 prot->slab = NULL;
2288 out:
2289 return -ENOBUFS;
2291 EXPORT_SYMBOL(proto_register);
2293 void proto_unregister(struct proto *prot)
2295 write_lock(&proto_list_lock);
2296 release_proto_idx(prot);
2297 list_del(&prot->node);
2298 write_unlock(&proto_list_lock);
2300 if (prot->slab != NULL) {
2301 kmem_cache_destroy(prot->slab);
2302 prot->slab = NULL;
2305 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2306 kmem_cache_destroy(prot->rsk_prot->slab);
2307 kfree(prot->rsk_prot->slab_name);
2308 prot->rsk_prot->slab = NULL;
2311 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2312 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2313 kfree(prot->twsk_prot->twsk_slab_name);
2314 prot->twsk_prot->twsk_slab = NULL;
2317 EXPORT_SYMBOL(proto_unregister);
2319 #ifdef CONFIG_PROC_FS
2320 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2321 __acquires(proto_list_lock)
2323 read_lock(&proto_list_lock);
2324 return seq_list_start_head(&proto_list, *pos);
2327 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2329 return seq_list_next(v, &proto_list, pos);
2332 static void proto_seq_stop(struct seq_file *seq, void *v)
2333 __releases(proto_list_lock)
2335 read_unlock(&proto_list_lock);
2338 static char proto_method_implemented(const void *method)
2340 return method == NULL ? 'n' : 'y';
2343 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2345 seq_printf(seq, "%-9s %4u %6d %6d %-3s %6u %-3s %-10s "
2346 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2347 proto->name,
2348 proto->obj_size,
2349 sock_prot_inuse_get(seq_file_net(seq), proto),
2350 proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
2351 proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2352 proto->max_header,
2353 proto->slab == NULL ? "no" : "yes",
2354 module_name(proto->owner),
2355 proto_method_implemented(proto->close),
2356 proto_method_implemented(proto->connect),
2357 proto_method_implemented(proto->disconnect),
2358 proto_method_implemented(proto->accept),
2359 proto_method_implemented(proto->ioctl),
2360 proto_method_implemented(proto->init),
2361 proto_method_implemented(proto->destroy),
2362 proto_method_implemented(proto->shutdown),
2363 proto_method_implemented(proto->setsockopt),
2364 proto_method_implemented(proto->getsockopt),
2365 proto_method_implemented(proto->sendmsg),
2366 proto_method_implemented(proto->recvmsg),
2367 proto_method_implemented(proto->sendpage),
2368 proto_method_implemented(proto->bind),
2369 proto_method_implemented(proto->backlog_rcv),
2370 proto_method_implemented(proto->hash),
2371 proto_method_implemented(proto->unhash),
2372 proto_method_implemented(proto->get_port),
2373 proto_method_implemented(proto->enter_memory_pressure));
2376 static int proto_seq_show(struct seq_file *seq, void *v)
2378 if (v == &proto_list)
2379 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2380 "protocol",
2381 "size",
2382 "sockets",
2383 "memory",
2384 "press",
2385 "maxhdr",
2386 "slab",
2387 "module",
2388 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2389 else
2390 proto_seq_printf(seq, list_entry(v, struct proto, node));
2391 return 0;
2394 static const struct seq_operations proto_seq_ops = {
2395 .start = proto_seq_start,
2396 .next = proto_seq_next,
2397 .stop = proto_seq_stop,
2398 .show = proto_seq_show,
2401 static int proto_seq_open(struct inode *inode, struct file *file)
2403 return seq_open_net(inode, file, &proto_seq_ops,
2404 sizeof(struct seq_net_private));
2407 static const struct file_operations proto_seq_fops = {
2408 .owner = THIS_MODULE,
2409 .open = proto_seq_open,
2410 .read = seq_read,
2411 .llseek = seq_lseek,
2412 .release = seq_release_net,
2415 static __net_init int proto_init_net(struct net *net)
2417 if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2418 return -ENOMEM;
2420 return 0;
2423 static __net_exit void proto_exit_net(struct net *net)
2425 proc_net_remove(net, "protocols");
2429 static __net_initdata struct pernet_operations proto_net_ops = {
2430 .init = proto_init_net,
2431 .exit = proto_exit_net,
2434 static int __init proto_init(void)
2436 return register_pernet_subsys(&proto_net_ops);
2439 subsys_initcall(proto_init);
2441 #endif /* PROC_FS */