firewire: ohci: fix compilation on arches without PAGE_KERNEL_RO
[firewire-audio.git] / drivers / parisc / iosapic.c
blob0327894bf2355c23d3e2b3daae80c8a2cadf7aeb
1 /*
2 ** I/O Sapic Driver - PCI interrupt line support
3 **
4 ** (c) Copyright 1999 Grant Grundler
5 ** (c) Copyright 1999 Hewlett-Packard Company
6 **
7 ** This program is free software; you can redistribute it and/or modify
8 ** it under the terms of the GNU General Public License as published by
9 ** the Free Software Foundation; either version 2 of the License, or
10 ** (at your option) any later version.
12 ** The I/O sapic driver manages the Interrupt Redirection Table which is
13 ** the control logic to convert PCI line based interrupts into a Message
14 ** Signaled Interrupt (aka Transaction Based Interrupt, TBI).
16 ** Acronyms
17 ** --------
18 ** HPA Hard Physical Address (aka MMIO address)
19 ** IRQ Interrupt ReQuest. Implies Line based interrupt.
20 ** IRT Interrupt Routing Table (provided by PAT firmware)
21 ** IRdT Interrupt Redirection Table. IRQ line to TXN ADDR/DATA
22 ** table which is implemented in I/O SAPIC.
23 ** ISR Interrupt Service Routine. aka Interrupt handler.
24 ** MSI Message Signaled Interrupt. PCI 2.2 functionality.
25 ** aka Transaction Based Interrupt (or TBI).
26 ** PA Precision Architecture. HP's RISC architecture.
27 ** RISC Reduced Instruction Set Computer.
30 ** What's a Message Signalled Interrupt?
31 ** -------------------------------------
32 ** MSI is a write transaction which targets a processor and is similar
33 ** to a processor write to memory or MMIO. MSIs can be generated by I/O
34 ** devices as well as processors and require *architecture* to work.
36 ** PA only supports MSI. So I/O subsystems must either natively generate
37 ** MSIs (e.g. GSC or HP-PB) or convert line based interrupts into MSIs
38 ** (e.g. PCI and EISA). IA64 supports MSIs via a "local SAPIC" which
39 ** acts on behalf of a processor.
41 ** MSI allows any I/O device to interrupt any processor. This makes
42 ** load balancing of the interrupt processing possible on an SMP platform.
43 ** Interrupts are also ordered WRT to DMA data. It's possible on I/O
44 ** coherent systems to completely eliminate PIO reads from the interrupt
45 ** path. The device and driver must be designed and implemented to
46 ** guarantee all DMA has been issued (issues about atomicity here)
47 ** before the MSI is issued. I/O status can then safely be read from
48 ** DMA'd data by the ISR.
51 ** PA Firmware
52 ** -----------
53 ** PA-RISC platforms have two fundamentally different types of firmware.
54 ** For PCI devices, "Legacy" PDC initializes the "INTERRUPT_LINE" register
55 ** and BARs similar to a traditional PC BIOS.
56 ** The newer "PAT" firmware supports PDC calls which return tables.
57 ** PAT firmware only initializes the PCI Console and Boot interface.
58 ** With these tables, the OS can program all other PCI devices.
60 ** One such PAT PDC call returns the "Interrupt Routing Table" (IRT).
61 ** The IRT maps each PCI slot's INTA-D "output" line to an I/O SAPIC
62 ** input line. If the IRT is not available, this driver assumes
63 ** INTERRUPT_LINE register has been programmed by firmware. The latter
64 ** case also means online addition of PCI cards can NOT be supported
65 ** even if HW support is present.
67 ** All platforms with PAT firmware to date (Oct 1999) use one Interrupt
68 ** Routing Table for the entire platform.
70 ** Where's the iosapic?
71 ** --------------------
72 ** I/O sapic is part of the "Core Electronics Complex". And on HP platforms
73 ** it's integrated as part of the PCI bus adapter, "lba". So no bus walk
74 ** will discover I/O Sapic. I/O Sapic driver learns about each device
75 ** when lba driver advertises the presence of the I/O sapic by calling
76 ** iosapic_register().
79 ** IRQ handling notes
80 ** ------------------
81 ** The IO-SAPIC can indicate to the CPU which interrupt was asserted.
82 ** So, unlike the GSC-ASIC and Dino, we allocate one CPU interrupt per
83 ** IO-SAPIC interrupt and call the device driver's handler directly.
84 ** The IO-SAPIC driver hijacks the CPU interrupt handler so it can
85 ** issue the End Of Interrupt command to the IO-SAPIC.
87 ** Overview of exported iosapic functions
88 ** --------------------------------------
89 ** (caveat: code isn't finished yet - this is just the plan)
91 ** iosapic_init:
92 ** o initialize globals (lock, etc)
93 ** o try to read IRT. Presence of IRT determines if this is
94 ** a PAT platform or not.
96 ** iosapic_register():
97 ** o create iosapic_info instance data structure
98 ** o allocate vector_info array for this iosapic
99 ** o initialize vector_info - read corresponding IRdT?
101 ** iosapic_xlate_pin: (only called by fixup_irq for PAT platform)
102 ** o intr_pin = read cfg (INTERRUPT_PIN);
103 ** o if (device under PCI-PCI bridge)
104 ** translate slot/pin
106 ** iosapic_fixup_irq:
107 ** o if PAT platform (IRT present)
108 ** intr_pin = iosapic_xlate_pin(isi,pcidev):
109 ** intr_line = find IRT entry(isi, PCI_SLOT(pcidev), intr_pin)
110 ** save IRT entry into vector_info later
111 ** write cfg INTERRUPT_LINE (with intr_line)?
112 ** else
113 ** intr_line = pcidev->irq
114 ** IRT pointer = NULL
115 ** endif
116 ** o locate vector_info (needs: isi, intr_line)
117 ** o allocate processor "irq" and get txn_addr/data
118 ** o request_irq(processor_irq, iosapic_interrupt, vector_info,...)
120 ** iosapic_enable_irq:
121 ** o clear any pending IRQ on that line
122 ** o enable IRdT - call enable_irq(vector[line]->processor_irq)
123 ** o write EOI in case line is already asserted.
125 ** iosapic_disable_irq:
126 ** o disable IRdT - call disable_irq(vector[line]->processor_irq)
130 /* FIXME: determine which include files are really needed */
131 #include <linux/types.h>
132 #include <linux/kernel.h>
133 #include <linux/spinlock.h>
134 #include <linux/pci.h>
135 #include <linux/init.h>
136 #include <linux/slab.h>
137 #include <linux/interrupt.h>
139 #include <asm/byteorder.h> /* get in-line asm for swab */
140 #include <asm/pdc.h>
141 #include <asm/pdcpat.h>
142 #include <asm/page.h>
143 #include <asm/system.h>
144 #include <asm/io.h> /* read/write functions */
145 #ifdef CONFIG_SUPERIO
146 #include <asm/superio.h>
147 #endif
149 #include <asm/ropes.h>
150 #include "./iosapic_private.h"
152 #define MODULE_NAME "iosapic"
154 /* "local" compile flags */
155 #undef PCI_BRIDGE_FUNCS
156 #undef DEBUG_IOSAPIC
157 #undef DEBUG_IOSAPIC_IRT
160 #ifdef DEBUG_IOSAPIC
161 #define DBG(x...) printk(x)
162 #else /* DEBUG_IOSAPIC */
163 #define DBG(x...)
164 #endif /* DEBUG_IOSAPIC */
166 #ifdef DEBUG_IOSAPIC_IRT
167 #define DBG_IRT(x...) printk(x)
168 #else
169 #define DBG_IRT(x...)
170 #endif
172 #ifdef CONFIG_64BIT
173 #define COMPARE_IRTE_ADDR(irte, hpa) ((irte)->dest_iosapic_addr == (hpa))
174 #else
175 #define COMPARE_IRTE_ADDR(irte, hpa) \
176 ((irte)->dest_iosapic_addr == ((hpa) | 0xffffffff00000000ULL))
177 #endif
179 #define IOSAPIC_REG_SELECT 0x00
180 #define IOSAPIC_REG_WINDOW 0x10
181 #define IOSAPIC_REG_EOI 0x40
183 #define IOSAPIC_REG_VERSION 0x1
185 #define IOSAPIC_IRDT_ENTRY(idx) (0x10+(idx)*2)
186 #define IOSAPIC_IRDT_ENTRY_HI(idx) (0x11+(idx)*2)
188 static inline unsigned int iosapic_read(void __iomem *iosapic, unsigned int reg)
190 writel(reg, iosapic + IOSAPIC_REG_SELECT);
191 return readl(iosapic + IOSAPIC_REG_WINDOW);
194 static inline void iosapic_write(void __iomem *iosapic, unsigned int reg, u32 val)
196 writel(reg, iosapic + IOSAPIC_REG_SELECT);
197 writel(val, iosapic + IOSAPIC_REG_WINDOW);
200 #define IOSAPIC_VERSION_MASK 0x000000ff
201 #define IOSAPIC_VERSION(ver) ((int) (ver & IOSAPIC_VERSION_MASK))
203 #define IOSAPIC_MAX_ENTRY_MASK 0x00ff0000
204 #define IOSAPIC_MAX_ENTRY_SHIFT 0x10
205 #define IOSAPIC_IRDT_MAX_ENTRY(ver) \
206 (int) (((ver) & IOSAPIC_MAX_ENTRY_MASK) >> IOSAPIC_MAX_ENTRY_SHIFT)
208 /* bits in the "low" I/O Sapic IRdT entry */
209 #define IOSAPIC_IRDT_ENABLE 0x10000
210 #define IOSAPIC_IRDT_PO_LOW 0x02000
211 #define IOSAPIC_IRDT_LEVEL_TRIG 0x08000
212 #define IOSAPIC_IRDT_MODE_LPRI 0x00100
214 /* bits in the "high" I/O Sapic IRdT entry */
215 #define IOSAPIC_IRDT_ID_EID_SHIFT 0x10
218 static DEFINE_SPINLOCK(iosapic_lock);
220 static inline void iosapic_eoi(void __iomem *addr, unsigned int data)
222 __raw_writel(data, addr);
226 ** REVISIT: future platforms may have more than one IRT.
227 ** If so, the following three fields form a structure which
228 ** then be linked into a list. Names are chosen to make searching
229 ** for them easy - not necessarily accurate (eg "cell").
231 ** Alternative: iosapic_info could point to the IRT it's in.
232 ** iosapic_register() could search a list of IRT's.
234 static struct irt_entry *irt_cell;
235 static size_t irt_num_entry;
237 static struct irt_entry *iosapic_alloc_irt(int num_entries)
239 unsigned long a;
241 /* The IRT needs to be 8-byte aligned for the PDC call.
242 * Normally kmalloc would guarantee larger alignment, but
243 * if CONFIG_DEBUG_SLAB is enabled, then we can get only
244 * 4-byte alignment on 32-bit kernels
246 a = (unsigned long)kmalloc(sizeof(struct irt_entry) * num_entries + 8, GFP_KERNEL);
247 a = (a + 7UL) & ~7UL;
248 return (struct irt_entry *)a;
252 * iosapic_load_irt - Fill in the interrupt routing table
253 * @cell_num: The cell number of the CPU we're currently executing on
254 * @irt: The address to place the new IRT at
255 * @return The number of entries found
257 * The "Get PCI INT Routing Table Size" option returns the number of
258 * entries in the PCI interrupt routing table for the cell specified
259 * in the cell_number argument. The cell number must be for a cell
260 * within the caller's protection domain.
262 * The "Get PCI INT Routing Table" option returns, for the cell
263 * specified in the cell_number argument, the PCI interrupt routing
264 * table in the caller allocated memory pointed to by mem_addr.
265 * We assume the IRT only contains entries for I/O SAPIC and
266 * calculate the size based on the size of I/O sapic entries.
268 * The PCI interrupt routing table entry format is derived from the
269 * IA64 SAL Specification 2.4. The PCI interrupt routing table defines
270 * the routing of PCI interrupt signals between the PCI device output
271 * "pins" and the IO SAPICs' input "lines" (including core I/O PCI
272 * devices). This table does NOT include information for devices/slots
273 * behind PCI to PCI bridges. See PCI to PCI Bridge Architecture Spec.
274 * for the architected method of routing of IRQ's behind PPB's.
278 static int __init
279 iosapic_load_irt(unsigned long cell_num, struct irt_entry **irt)
281 long status; /* PDC return value status */
282 struct irt_entry *table; /* start of interrupt routing tbl */
283 unsigned long num_entries = 0UL;
285 BUG_ON(!irt);
287 if (is_pdc_pat()) {
288 /* Use pat pdc routine to get interrupt routing table size */
289 DBG("calling get_irt_size (cell %ld)\n", cell_num);
290 status = pdc_pat_get_irt_size(&num_entries, cell_num);
291 DBG("get_irt_size: %ld\n", status);
293 BUG_ON(status != PDC_OK);
294 BUG_ON(num_entries == 0);
297 ** allocate memory for interrupt routing table
298 ** This interface isn't really right. We are assuming
299 ** the contents of the table are exclusively
300 ** for I/O sapic devices.
302 table = iosapic_alloc_irt(num_entries);
303 if (table == NULL) {
304 printk(KERN_WARNING MODULE_NAME ": read_irt : can "
305 "not alloc mem for IRT\n");
306 return 0;
309 /* get PCI INT routing table */
310 status = pdc_pat_get_irt(table, cell_num);
311 DBG("pdc_pat_get_irt: %ld\n", status);
312 WARN_ON(status != PDC_OK);
313 } else {
315 ** C3000/J5000 (and similar) platforms with Sprockets PDC
316 ** will return exactly one IRT for all iosapics.
317 ** So if we have one, don't need to get it again.
319 if (irt_cell)
320 return 0;
322 /* Should be using the Elroy's HPA, but it's ignored anyway */
323 status = pdc_pci_irt_size(&num_entries, 0);
324 DBG("pdc_pci_irt_size: %ld\n", status);
326 if (status != PDC_OK) {
327 /* Not a "legacy" system with I/O SAPIC either */
328 return 0;
331 BUG_ON(num_entries == 0);
333 table = iosapic_alloc_irt(num_entries);
334 if (!table) {
335 printk(KERN_WARNING MODULE_NAME ": read_irt : can "
336 "not alloc mem for IRT\n");
337 return 0;
340 /* HPA ignored by this call too. */
341 status = pdc_pci_irt(num_entries, 0, table);
342 BUG_ON(status != PDC_OK);
345 /* return interrupt table address */
346 *irt = table;
348 #ifdef DEBUG_IOSAPIC_IRT
350 struct irt_entry *p = table;
351 int i;
353 printk(MODULE_NAME " Interrupt Routing Table (cell %ld)\n", cell_num);
354 printk(MODULE_NAME " start = 0x%p num_entries %ld entry_size %d\n",
355 table,
356 num_entries,
357 (int) sizeof(struct irt_entry));
359 for (i = 0 ; i < num_entries ; i++, p++) {
360 printk(MODULE_NAME " %02x %02x %02x %02x %02x %02x %02x %02x %08x%08x\n",
361 p->entry_type, p->entry_length, p->interrupt_type,
362 p->polarity_trigger, p->src_bus_irq_devno, p->src_bus_id,
363 p->src_seg_id, p->dest_iosapic_intin,
364 ((u32 *) p)[2],
365 ((u32 *) p)[3]
369 #endif /* DEBUG_IOSAPIC_IRT */
371 return num_entries;
376 void __init iosapic_init(void)
378 unsigned long cell = 0;
380 DBG("iosapic_init()\n");
382 #ifdef __LP64__
383 if (is_pdc_pat()) {
384 int status;
385 struct pdc_pat_cell_num cell_info;
387 status = pdc_pat_cell_get_number(&cell_info);
388 if (status == PDC_OK) {
389 cell = cell_info.cell_num;
392 #endif
394 /* get interrupt routing table for this cell */
395 irt_num_entry = iosapic_load_irt(cell, &irt_cell);
396 if (irt_num_entry == 0)
397 irt_cell = NULL; /* old PDC w/o iosapic */
402 ** Return the IRT entry in case we need to look something else up.
404 static struct irt_entry *
405 irt_find_irqline(struct iosapic_info *isi, u8 slot, u8 intr_pin)
407 struct irt_entry *i = irt_cell;
408 int cnt; /* track how many entries we've looked at */
409 u8 irq_devno = (slot << IRT_DEV_SHIFT) | (intr_pin-1);
411 DBG_IRT("irt_find_irqline() SLOT %d pin %d\n", slot, intr_pin);
413 for (cnt=0; cnt < irt_num_entry; cnt++, i++) {
416 ** Validate: entry_type, entry_length, interrupt_type
418 ** Difference between validate vs compare is the former
419 ** should print debug info and is not expected to "fail"
420 ** on current platforms.
422 if (i->entry_type != IRT_IOSAPIC_TYPE) {
423 DBG_IRT(KERN_WARNING MODULE_NAME ":find_irqline(0x%p): skipping entry %d type %d\n", i, cnt, i->entry_type);
424 continue;
427 if (i->entry_length != IRT_IOSAPIC_LENGTH) {
428 DBG_IRT(KERN_WARNING MODULE_NAME ":find_irqline(0x%p): skipping entry %d length %d\n", i, cnt, i->entry_length);
429 continue;
432 if (i->interrupt_type != IRT_VECTORED_INTR) {
433 DBG_IRT(KERN_WARNING MODULE_NAME ":find_irqline(0x%p): skipping entry %d interrupt_type %d\n", i, cnt, i->interrupt_type);
434 continue;
437 if (!COMPARE_IRTE_ADDR(i, isi->isi_hpa))
438 continue;
440 if ((i->src_bus_irq_devno & IRT_IRQ_DEVNO_MASK) != irq_devno)
441 continue;
444 ** Ignore: src_bus_id and rc_seg_id correlate with
445 ** iosapic_info->isi_hpa on HP platforms.
446 ** If needed, pass in "PFA" (aka config space addr)
447 ** instead of slot.
450 /* Found it! */
451 return i;
454 printk(KERN_WARNING MODULE_NAME ": 0x%lx : no IRT entry for slot %d, pin %d\n",
455 isi->isi_hpa, slot, intr_pin);
456 return NULL;
461 ** xlate_pin() supports the skewing of IRQ lines done by subsidiary bridges.
462 ** Legacy PDC already does this translation for us and stores it in INTR_LINE.
464 ** PAT PDC needs to basically do what legacy PDC does:
465 ** o read PIN
466 ** o adjust PIN in case device is "behind" a PPB
467 ** (eg 4-port 100BT and SCSI/LAN "Combo Card")
468 ** o convert slot/pin to I/O SAPIC input line.
470 ** HP platforms only support:
471 ** o one level of skewing for any number of PPBs
472 ** o only support PCI-PCI Bridges.
474 static struct irt_entry *
475 iosapic_xlate_pin(struct iosapic_info *isi, struct pci_dev *pcidev)
477 u8 intr_pin, intr_slot;
479 pci_read_config_byte(pcidev, PCI_INTERRUPT_PIN, &intr_pin);
481 DBG_IRT("iosapic_xlate_pin(%s) SLOT %d pin %d\n",
482 pcidev->slot_name, PCI_SLOT(pcidev->devfn), intr_pin);
484 if (intr_pin == 0) {
485 /* The device does NOT support/use IRQ lines. */
486 return NULL;
489 /* Check if pcidev behind a PPB */
490 if (pcidev->bus->parent) {
491 /* Convert pcidev INTR_PIN into something we
492 ** can lookup in the IRT.
494 #ifdef PCI_BRIDGE_FUNCS
496 ** Proposal #1:
498 ** call implementation specific translation function
499 ** This is architecturally "cleaner". HP-UX doesn't
500 ** support other secondary bus types (eg. E/ISA) directly.
501 ** May be needed for other processor (eg IA64) architectures
502 ** or by some ambitous soul who wants to watch TV.
504 if (pci_bridge_funcs->xlate_intr_line) {
505 intr_pin = pci_bridge_funcs->xlate_intr_line(pcidev);
507 #else /* PCI_BRIDGE_FUNCS */
508 struct pci_bus *p = pcidev->bus;
510 ** Proposal #2:
511 ** The "pin" is skewed ((pin + dev - 1) % 4).
513 ** This isn't very clean since I/O SAPIC must assume:
514 ** - all platforms only have PCI busses.
515 ** - only PCI-PCI bridge (eg not PCI-EISA, PCI-PCMCIA)
516 ** - IRQ routing is only skewed once regardless of
517 ** the number of PPB's between iosapic and device.
518 ** (Bit3 expansion chassis follows this rule)
520 ** Advantage is it's really easy to implement.
522 intr_pin = pci_swizzle_interrupt_pin(pcidev, intr_pin);
523 #endif /* PCI_BRIDGE_FUNCS */
526 * Locate the host slot of the PPB.
528 while (p->parent->parent)
529 p = p->parent;
531 intr_slot = PCI_SLOT(p->self->devfn);
532 } else {
533 intr_slot = PCI_SLOT(pcidev->devfn);
535 DBG_IRT("iosapic_xlate_pin: bus %d slot %d pin %d\n",
536 pcidev->bus->secondary, intr_slot, intr_pin);
538 return irt_find_irqline(isi, intr_slot, intr_pin);
541 static void iosapic_rd_irt_entry(struct vector_info *vi , u32 *dp0, u32 *dp1)
543 struct iosapic_info *isp = vi->iosapic;
544 u8 idx = vi->irqline;
546 *dp0 = iosapic_read(isp->addr, IOSAPIC_IRDT_ENTRY(idx));
547 *dp1 = iosapic_read(isp->addr, IOSAPIC_IRDT_ENTRY_HI(idx));
551 static void iosapic_wr_irt_entry(struct vector_info *vi, u32 dp0, u32 dp1)
553 struct iosapic_info *isp = vi->iosapic;
555 DBG_IRT("iosapic_wr_irt_entry(): irq %d hpa %lx 0x%x 0x%x\n",
556 vi->irqline, isp->isi_hpa, dp0, dp1);
558 iosapic_write(isp->addr, IOSAPIC_IRDT_ENTRY(vi->irqline), dp0);
560 /* Read the window register to flush the writes down to HW */
561 dp0 = readl(isp->addr+IOSAPIC_REG_WINDOW);
563 iosapic_write(isp->addr, IOSAPIC_IRDT_ENTRY_HI(vi->irqline), dp1);
565 /* Read the window register to flush the writes down to HW */
566 dp1 = readl(isp->addr+IOSAPIC_REG_WINDOW);
570 ** set_irt prepares the data (dp0, dp1) according to the vector_info
571 ** and target cpu (id_eid). dp0/dp1 are then used to program I/O SAPIC
572 ** IRdT for the given "vector" (aka IRQ line).
574 static void
575 iosapic_set_irt_data( struct vector_info *vi, u32 *dp0, u32 *dp1)
577 u32 mode = 0;
578 struct irt_entry *p = vi->irte;
580 if ((p->polarity_trigger & IRT_PO_MASK) == IRT_ACTIVE_LO)
581 mode |= IOSAPIC_IRDT_PO_LOW;
583 if (((p->polarity_trigger >> IRT_EL_SHIFT) & IRT_EL_MASK) == IRT_LEVEL_TRIG)
584 mode |= IOSAPIC_IRDT_LEVEL_TRIG;
587 ** IA64 REVISIT
588 ** PA doesn't support EXTINT or LPRIO bits.
591 *dp0 = mode | (u32) vi->txn_data;
594 ** Extracting id_eid isn't a real clean way of getting it.
595 ** But the encoding is the same for both PA and IA64 platforms.
597 if (is_pdc_pat()) {
599 ** PAT PDC just hands it to us "right".
600 ** txn_addr comes from cpu_data[x].txn_addr.
602 *dp1 = (u32) (vi->txn_addr);
603 } else {
605 ** eg if base_addr == 0xfffa0000),
606 ** we want to get 0xa0ff0000.
608 ** eid 0x0ff00000 -> 0x00ff0000
609 ** id 0x000ff000 -> 0xff000000
611 *dp1 = (((u32)vi->txn_addr & 0x0ff00000) >> 4) |
612 (((u32)vi->txn_addr & 0x000ff000) << 12);
614 DBG_IRT("iosapic_set_irt_data(): 0x%x 0x%x\n", *dp0, *dp1);
618 static void iosapic_mask_irq(unsigned int irq)
620 unsigned long flags;
621 struct vector_info *vi = get_irq_chip_data(irq);
622 u32 d0, d1;
624 spin_lock_irqsave(&iosapic_lock, flags);
625 iosapic_rd_irt_entry(vi, &d0, &d1);
626 d0 |= IOSAPIC_IRDT_ENABLE;
627 iosapic_wr_irt_entry(vi, d0, d1);
628 spin_unlock_irqrestore(&iosapic_lock, flags);
631 static void iosapic_unmask_irq(unsigned int irq)
633 struct vector_info *vi = get_irq_chip_data(irq);
634 u32 d0, d1;
636 /* data is initialized by fixup_irq */
637 WARN_ON(vi->txn_irq == 0);
639 iosapic_set_irt_data(vi, &d0, &d1);
640 iosapic_wr_irt_entry(vi, d0, d1);
642 #ifdef DEBUG_IOSAPIC_IRT
644 u32 *t = (u32 *) ((ulong) vi->eoi_addr & ~0xffUL);
645 printk("iosapic_enable_irq(): regs %p", vi->eoi_addr);
646 for ( ; t < vi->eoi_addr; t++)
647 printk(" %x", readl(t));
648 printk("\n");
651 printk("iosapic_enable_irq(): sel ");
653 struct iosapic_info *isp = vi->iosapic;
655 for (d0=0x10; d0<0x1e; d0++) {
656 d1 = iosapic_read(isp->addr, d0);
657 printk(" %x", d1);
660 printk("\n");
661 #endif
664 * Issuing I/O SAPIC an EOI causes an interrupt IFF IRQ line is
665 * asserted. IRQ generally should not be asserted when a driver
666 * enables their IRQ. It can lead to "interesting" race conditions
667 * in the driver initialization sequence.
669 DBG(KERN_DEBUG "enable_irq(%d): eoi(%p, 0x%x)\n", irq,
670 vi->eoi_addr, vi->eoi_data);
671 iosapic_eoi(vi->eoi_addr, vi->eoi_data);
674 static void iosapic_eoi_irq(unsigned int irq)
676 struct vector_info *vi = get_irq_chip_data(irq);
678 iosapic_eoi(vi->eoi_addr, vi->eoi_data);
679 cpu_eoi_irq(irq);
682 #ifdef CONFIG_SMP
683 static int iosapic_set_affinity_irq(unsigned int irq,
684 const struct cpumask *dest)
686 struct vector_info *vi = get_irq_chip_data(irq);
687 u32 d0, d1, dummy_d0;
688 unsigned long flags;
689 int dest_cpu;
691 dest_cpu = cpu_check_affinity(irq, dest);
692 if (dest_cpu < 0)
693 return -1;
695 cpumask_copy(irq_desc[irq].affinity, cpumask_of(dest_cpu));
696 vi->txn_addr = txn_affinity_addr(irq, dest_cpu);
698 spin_lock_irqsave(&iosapic_lock, flags);
699 /* d1 contains the destination CPU, so only want to set that
700 * entry */
701 iosapic_rd_irt_entry(vi, &d0, &d1);
702 iosapic_set_irt_data(vi, &dummy_d0, &d1);
703 iosapic_wr_irt_entry(vi, d0, d1);
704 spin_unlock_irqrestore(&iosapic_lock, flags);
706 return 0;
708 #endif
710 static struct irq_chip iosapic_interrupt_type = {
711 .name = "IO-SAPIC-level",
712 .unmask = iosapic_unmask_irq,
713 .mask = iosapic_mask_irq,
714 .ack = cpu_ack_irq,
715 .eoi = iosapic_eoi_irq,
716 #ifdef CONFIG_SMP
717 .set_affinity = iosapic_set_affinity_irq,
718 #endif
721 int iosapic_fixup_irq(void *isi_obj, struct pci_dev *pcidev)
723 struct iosapic_info *isi = isi_obj;
724 struct irt_entry *irte = NULL; /* only used if PAT PDC */
725 struct vector_info *vi;
726 int isi_line; /* line used by device */
728 if (!isi) {
729 printk(KERN_WARNING MODULE_NAME ": hpa not registered for %s\n",
730 pci_name(pcidev));
731 return -1;
734 #ifdef CONFIG_SUPERIO
736 * HACK ALERT! (non-compliant PCI device support)
738 * All SuckyIO interrupts are routed through the PIC's on function 1.
739 * But SuckyIO OHCI USB controller gets an IRT entry anyway because
740 * it advertises INT D for INT_PIN. Use that IRT entry to get the
741 * SuckyIO interrupt routing for PICs on function 1 (*BLEECCHH*).
743 if (is_superio_device(pcidev)) {
744 /* We must call superio_fixup_irq() to register the pdev */
745 pcidev->irq = superio_fixup_irq(pcidev);
747 /* Don't return if need to program the IOSAPIC's IRT... */
748 if (PCI_FUNC(pcidev->devfn) != SUPERIO_USB_FN)
749 return pcidev->irq;
751 #endif /* CONFIG_SUPERIO */
753 /* lookup IRT entry for isi/slot/pin set */
754 irte = iosapic_xlate_pin(isi, pcidev);
755 if (!irte) {
756 printk("iosapic: no IRTE for %s (IRQ not connected?)\n",
757 pci_name(pcidev));
758 return -1;
760 DBG_IRT("iosapic_fixup_irq(): irte %p %x %x %x %x %x %x %x %x\n",
761 irte,
762 irte->entry_type,
763 irte->entry_length,
764 irte->polarity_trigger,
765 irte->src_bus_irq_devno,
766 irte->src_bus_id,
767 irte->src_seg_id,
768 irte->dest_iosapic_intin,
769 (u32) irte->dest_iosapic_addr);
770 isi_line = irte->dest_iosapic_intin;
772 /* get vector info for this input line */
773 vi = isi->isi_vector + isi_line;
774 DBG_IRT("iosapic_fixup_irq: line %d vi 0x%p\n", isi_line, vi);
776 /* If this IRQ line has already been setup, skip it */
777 if (vi->irte)
778 goto out;
780 vi->irte = irte;
783 * Allocate processor IRQ
785 * XXX/FIXME The txn_alloc_irq() code and related code should be
786 * moved to enable_irq(). That way we only allocate processor IRQ
787 * bits for devices that actually have drivers claiming them.
788 * Right now we assign an IRQ to every PCI device present,
789 * regardless of whether it's used or not.
791 vi->txn_irq = txn_alloc_irq(8);
793 if (vi->txn_irq < 0)
794 panic("I/O sapic: couldn't get TXN IRQ\n");
796 /* enable_irq() will use txn_* to program IRdT */
797 vi->txn_addr = txn_alloc_addr(vi->txn_irq);
798 vi->txn_data = txn_alloc_data(vi->txn_irq);
800 vi->eoi_addr = isi->addr + IOSAPIC_REG_EOI;
801 vi->eoi_data = cpu_to_le32(vi->txn_data);
803 cpu_claim_irq(vi->txn_irq, &iosapic_interrupt_type, vi);
805 out:
806 pcidev->irq = vi->txn_irq;
808 DBG_IRT("iosapic_fixup_irq() %d:%d %x %x line %d irq %d\n",
809 PCI_SLOT(pcidev->devfn), PCI_FUNC(pcidev->devfn),
810 pcidev->vendor, pcidev->device, isi_line, pcidev->irq);
812 return pcidev->irq;
817 ** squirrel away the I/O Sapic Version
819 static unsigned int
820 iosapic_rd_version(struct iosapic_info *isi)
822 return iosapic_read(isi->addr, IOSAPIC_REG_VERSION);
827 ** iosapic_register() is called by "drivers" with an integrated I/O SAPIC.
828 ** Caller must be certain they have an I/O SAPIC and know its MMIO address.
830 ** o allocate iosapic_info and add it to the list
831 ** o read iosapic version and squirrel that away
832 ** o read size of IRdT.
833 ** o allocate and initialize isi_vector[]
834 ** o allocate irq region
836 void *iosapic_register(unsigned long hpa)
838 struct iosapic_info *isi = NULL;
839 struct irt_entry *irte = irt_cell;
840 struct vector_info *vip;
841 int cnt; /* track how many entries we've looked at */
844 * Astro based platforms can only support PCI OLARD if they implement
845 * PAT PDC. Legacy PDC omits LBAs with no PCI devices from the IRT.
846 * Search the IRT and ignore iosapic's which aren't in the IRT.
848 for (cnt=0; cnt < irt_num_entry; cnt++, irte++) {
849 WARN_ON(IRT_IOSAPIC_TYPE != irte->entry_type);
850 if (COMPARE_IRTE_ADDR(irte, hpa))
851 break;
854 if (cnt >= irt_num_entry) {
855 DBG("iosapic_register() ignoring 0x%lx (NOT FOUND)\n", hpa);
856 return NULL;
859 isi = kzalloc(sizeof(struct iosapic_info), GFP_KERNEL);
860 if (!isi) {
861 BUG();
862 return NULL;
865 isi->addr = ioremap_nocache(hpa, 4096);
866 isi->isi_hpa = hpa;
867 isi->isi_version = iosapic_rd_version(isi);
868 isi->isi_num_vectors = IOSAPIC_IRDT_MAX_ENTRY(isi->isi_version) + 1;
870 vip = isi->isi_vector = kcalloc(isi->isi_num_vectors,
871 sizeof(struct vector_info), GFP_KERNEL);
872 if (vip == NULL) {
873 kfree(isi);
874 return NULL;
877 for (cnt=0; cnt < isi->isi_num_vectors; cnt++, vip++) {
878 vip->irqline = (unsigned char) cnt;
879 vip->iosapic = isi;
881 return isi;
885 #ifdef DEBUG_IOSAPIC
887 static void
888 iosapic_prt_irt(void *irt, long num_entry)
890 unsigned int i, *irp = (unsigned int *) irt;
893 printk(KERN_DEBUG MODULE_NAME ": Interrupt Routing Table (%lx entries)\n", num_entry);
895 for (i=0; i<num_entry; i++, irp += 4) {
896 printk(KERN_DEBUG "%p : %2d %.8x %.8x %.8x %.8x\n",
897 irp, i, irp[0], irp[1], irp[2], irp[3]);
902 static void
903 iosapic_prt_vi(struct vector_info *vi)
905 printk(KERN_DEBUG MODULE_NAME ": vector_info[%d] is at %p\n", vi->irqline, vi);
906 printk(KERN_DEBUG "\t\tstatus: %.4x\n", vi->status);
907 printk(KERN_DEBUG "\t\ttxn_irq: %d\n", vi->txn_irq);
908 printk(KERN_DEBUG "\t\ttxn_addr: %lx\n", vi->txn_addr);
909 printk(KERN_DEBUG "\t\ttxn_data: %lx\n", vi->txn_data);
910 printk(KERN_DEBUG "\t\teoi_addr: %p\n", vi->eoi_addr);
911 printk(KERN_DEBUG "\t\teoi_data: %x\n", vi->eoi_data);
915 static void
916 iosapic_prt_isi(struct iosapic_info *isi)
918 printk(KERN_DEBUG MODULE_NAME ": io_sapic_info at %p\n", isi);
919 printk(KERN_DEBUG "\t\tisi_hpa: %lx\n", isi->isi_hpa);
920 printk(KERN_DEBUG "\t\tisi_status: %x\n", isi->isi_status);
921 printk(KERN_DEBUG "\t\tisi_version: %x\n", isi->isi_version);
922 printk(KERN_DEBUG "\t\tisi_vector: %p\n", isi->isi_vector);
924 #endif /* DEBUG_IOSAPIC */