[ARM] 3036/1: AAEC-2000 - Add defines for GPIO registers
[firewire-audio.git] / arch / ppc64 / kernel / prom.c
blob7035deb6de9289996636c0741d705008b985fe7a
1 /*
2 *
4 * Procedures for interfacing to Open Firmware.
6 * Paul Mackerras August 1996.
7 * Copyright (C) 1996 Paul Mackerras.
8 *
9 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
10 * {engebret|bergner}@us.ibm.com
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
18 #undef DEBUG
20 #include <stdarg.h>
21 #include <linux/config.h>
22 #include <linux/kernel.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/threads.h>
26 #include <linux/spinlock.h>
27 #include <linux/types.h>
28 #include <linux/pci.h>
29 #include <linux/stringify.h>
30 #include <linux/delay.h>
31 #include <linux/initrd.h>
32 #include <linux/bitops.h>
33 #include <linux/module.h>
35 #include <asm/prom.h>
36 #include <asm/rtas.h>
37 #include <asm/lmb.h>
38 #include <asm/abs_addr.h>
39 #include <asm/page.h>
40 #include <asm/processor.h>
41 #include <asm/irq.h>
42 #include <asm/io.h>
43 #include <asm/smp.h>
44 #include <asm/system.h>
45 #include <asm/mmu.h>
46 #include <asm/pgtable.h>
47 #include <asm/pci.h>
48 #include <asm/iommu.h>
49 #include <asm/bootinfo.h>
50 #include <asm/ppcdebug.h>
51 #include <asm/btext.h>
52 #include <asm/sections.h>
53 #include <asm/machdep.h>
54 #include <asm/pSeries_reconfig.h>
56 #ifdef DEBUG
57 #define DBG(fmt...) udbg_printf(fmt)
58 #else
59 #define DBG(fmt...)
60 #endif
62 struct pci_reg_property {
63 struct pci_address addr;
64 u32 size_hi;
65 u32 size_lo;
68 struct isa_reg_property {
69 u32 space;
70 u32 address;
71 u32 size;
75 typedef int interpret_func(struct device_node *, unsigned long *,
76 int, int, int);
78 extern struct rtas_t rtas;
79 extern struct lmb lmb;
80 extern unsigned long klimit;
82 static int __initdata dt_root_addr_cells;
83 static int __initdata dt_root_size_cells;
84 static int __initdata iommu_is_off;
85 int __initdata iommu_force_on;
86 typedef u32 cell_t;
88 #if 0
89 static struct boot_param_header *initial_boot_params __initdata;
90 #else
91 struct boot_param_header *initial_boot_params;
92 #endif
94 static struct device_node *allnodes = NULL;
96 /* use when traversing tree through the allnext, child, sibling,
97 * or parent members of struct device_node.
99 static DEFINE_RWLOCK(devtree_lock);
101 /* export that to outside world */
102 struct device_node *of_chosen;
105 * Wrapper for allocating memory for various data that needs to be
106 * attached to device nodes as they are processed at boot or when
107 * added to the device tree later (e.g. DLPAR). At boot there is
108 * already a region reserved so we just increment *mem_start by size;
109 * otherwise we call kmalloc.
111 static void * prom_alloc(unsigned long size, unsigned long *mem_start)
113 unsigned long tmp;
115 if (!mem_start)
116 return kmalloc(size, GFP_KERNEL);
118 tmp = *mem_start;
119 *mem_start += size;
120 return (void *)tmp;
124 * Find the device_node with a given phandle.
126 static struct device_node * find_phandle(phandle ph)
128 struct device_node *np;
130 for (np = allnodes; np != 0; np = np->allnext)
131 if (np->linux_phandle == ph)
132 return np;
133 return NULL;
137 * Find the interrupt parent of a node.
139 static struct device_node * __devinit intr_parent(struct device_node *p)
141 phandle *parp;
143 parp = (phandle *) get_property(p, "interrupt-parent", NULL);
144 if (parp == NULL)
145 return p->parent;
146 return find_phandle(*parp);
150 * Find out the size of each entry of the interrupts property
151 * for a node.
153 int __devinit prom_n_intr_cells(struct device_node *np)
155 struct device_node *p;
156 unsigned int *icp;
158 for (p = np; (p = intr_parent(p)) != NULL; ) {
159 icp = (unsigned int *)
160 get_property(p, "#interrupt-cells", NULL);
161 if (icp != NULL)
162 return *icp;
163 if (get_property(p, "interrupt-controller", NULL) != NULL
164 || get_property(p, "interrupt-map", NULL) != NULL) {
165 printk("oops, node %s doesn't have #interrupt-cells\n",
166 p->full_name);
167 return 1;
170 #ifdef DEBUG_IRQ
171 printk("prom_n_intr_cells failed for %s\n", np->full_name);
172 #endif
173 return 1;
177 * Map an interrupt from a device up to the platform interrupt
178 * descriptor.
180 static int __devinit map_interrupt(unsigned int **irq, struct device_node **ictrler,
181 struct device_node *np, unsigned int *ints,
182 int nintrc)
184 struct device_node *p, *ipar;
185 unsigned int *imap, *imask, *ip;
186 int i, imaplen, match;
187 int newintrc = 0, newaddrc = 0;
188 unsigned int *reg;
189 int naddrc;
191 reg = (unsigned int *) get_property(np, "reg", NULL);
192 naddrc = prom_n_addr_cells(np);
193 p = intr_parent(np);
194 while (p != NULL) {
195 if (get_property(p, "interrupt-controller", NULL) != NULL)
196 /* this node is an interrupt controller, stop here */
197 break;
198 imap = (unsigned int *)
199 get_property(p, "interrupt-map", &imaplen);
200 if (imap == NULL) {
201 p = intr_parent(p);
202 continue;
204 imask = (unsigned int *)
205 get_property(p, "interrupt-map-mask", NULL);
206 if (imask == NULL) {
207 printk("oops, %s has interrupt-map but no mask\n",
208 p->full_name);
209 return 0;
211 imaplen /= sizeof(unsigned int);
212 match = 0;
213 ipar = NULL;
214 while (imaplen > 0 && !match) {
215 /* check the child-interrupt field */
216 match = 1;
217 for (i = 0; i < naddrc && match; ++i)
218 match = ((reg[i] ^ imap[i]) & imask[i]) == 0;
219 for (; i < naddrc + nintrc && match; ++i)
220 match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0;
221 imap += naddrc + nintrc;
222 imaplen -= naddrc + nintrc;
223 /* grab the interrupt parent */
224 ipar = find_phandle((phandle) *imap++);
225 --imaplen;
226 if (ipar == NULL) {
227 printk("oops, no int parent %x in map of %s\n",
228 imap[-1], p->full_name);
229 return 0;
231 /* find the parent's # addr and intr cells */
232 ip = (unsigned int *)
233 get_property(ipar, "#interrupt-cells", NULL);
234 if (ip == NULL) {
235 printk("oops, no #interrupt-cells on %s\n",
236 ipar->full_name);
237 return 0;
239 newintrc = *ip;
240 ip = (unsigned int *)
241 get_property(ipar, "#address-cells", NULL);
242 newaddrc = (ip == NULL)? 0: *ip;
243 imap += newaddrc + newintrc;
244 imaplen -= newaddrc + newintrc;
246 if (imaplen < 0) {
247 printk("oops, error decoding int-map on %s, len=%d\n",
248 p->full_name, imaplen);
249 return 0;
251 if (!match) {
252 #ifdef DEBUG_IRQ
253 printk("oops, no match in %s int-map for %s\n",
254 p->full_name, np->full_name);
255 #endif
256 return 0;
258 p = ipar;
259 naddrc = newaddrc;
260 nintrc = newintrc;
261 ints = imap - nintrc;
262 reg = ints - naddrc;
264 if (p == NULL) {
265 #ifdef DEBUG_IRQ
266 printk("hmmm, int tree for %s doesn't have ctrler\n",
267 np->full_name);
268 #endif
269 return 0;
271 *irq = ints;
272 *ictrler = p;
273 return nintrc;
276 static int __devinit finish_node_interrupts(struct device_node *np,
277 unsigned long *mem_start,
278 int measure_only)
280 unsigned int *ints;
281 int intlen, intrcells, intrcount;
282 int i, j, n;
283 unsigned int *irq, virq;
284 struct device_node *ic;
286 ints = (unsigned int *) get_property(np, "interrupts", &intlen);
287 if (ints == NULL)
288 return 0;
289 intrcells = prom_n_intr_cells(np);
290 intlen /= intrcells * sizeof(unsigned int);
292 np->intrs = prom_alloc(intlen * sizeof(*(np->intrs)), mem_start);
293 if (!np->intrs)
294 return -ENOMEM;
296 if (measure_only)
297 return 0;
299 intrcount = 0;
300 for (i = 0; i < intlen; ++i, ints += intrcells) {
301 n = map_interrupt(&irq, &ic, np, ints, intrcells);
302 if (n <= 0)
303 continue;
305 /* don't map IRQ numbers under a cascaded 8259 controller */
306 if (ic && device_is_compatible(ic, "chrp,iic")) {
307 np->intrs[intrcount].line = irq[0];
308 } else {
309 virq = virt_irq_create_mapping(irq[0]);
310 if (virq == NO_IRQ) {
311 printk(KERN_CRIT "Could not allocate interrupt"
312 " number for %s\n", np->full_name);
313 continue;
315 np->intrs[intrcount].line = irq_offset_up(virq);
318 /* We offset irq numbers for the u3 MPIC by 128 in PowerMac */
319 if (systemcfg->platform == PLATFORM_POWERMAC && ic && ic->parent) {
320 char *name = get_property(ic->parent, "name", NULL);
321 if (name && !strcmp(name, "u3"))
322 np->intrs[intrcount].line += 128;
323 else if (!(name && !strcmp(name, "mac-io")))
324 /* ignore other cascaded controllers, such as
325 the k2-sata-root */
326 break;
328 np->intrs[intrcount].sense = 1;
329 if (n > 1)
330 np->intrs[intrcount].sense = irq[1];
331 if (n > 2) {
332 printk("hmmm, got %d intr cells for %s:", n,
333 np->full_name);
334 for (j = 0; j < n; ++j)
335 printk(" %d", irq[j]);
336 printk("\n");
338 ++intrcount;
340 np->n_intrs = intrcount;
342 return 0;
345 static int __devinit interpret_pci_props(struct device_node *np,
346 unsigned long *mem_start,
347 int naddrc, int nsizec,
348 int measure_only)
350 struct address_range *adr;
351 struct pci_reg_property *pci_addrs;
352 int i, l, n_addrs;
354 pci_addrs = (struct pci_reg_property *)
355 get_property(np, "assigned-addresses", &l);
356 if (!pci_addrs)
357 return 0;
359 n_addrs = l / sizeof(*pci_addrs);
361 adr = prom_alloc(n_addrs * sizeof(*adr), mem_start);
362 if (!adr)
363 return -ENOMEM;
365 if (measure_only)
366 return 0;
368 np->addrs = adr;
369 np->n_addrs = n_addrs;
371 for (i = 0; i < n_addrs; i++) {
372 adr[i].space = pci_addrs[i].addr.a_hi;
373 adr[i].address = pci_addrs[i].addr.a_lo |
374 ((u64)pci_addrs[i].addr.a_mid << 32);
375 adr[i].size = pci_addrs[i].size_lo;
378 return 0;
381 static int __init interpret_dbdma_props(struct device_node *np,
382 unsigned long *mem_start,
383 int naddrc, int nsizec,
384 int measure_only)
386 struct reg_property32 *rp;
387 struct address_range *adr;
388 unsigned long base_address;
389 int i, l;
390 struct device_node *db;
392 base_address = 0;
393 if (!measure_only) {
394 for (db = np->parent; db != NULL; db = db->parent) {
395 if (!strcmp(db->type, "dbdma") && db->n_addrs != 0) {
396 base_address = db->addrs[0].address;
397 break;
402 rp = (struct reg_property32 *) get_property(np, "reg", &l);
403 if (rp != 0 && l >= sizeof(struct reg_property32)) {
404 i = 0;
405 adr = (struct address_range *) (*mem_start);
406 while ((l -= sizeof(struct reg_property32)) >= 0) {
407 if (!measure_only) {
408 adr[i].space = 2;
409 adr[i].address = rp[i].address + base_address;
410 adr[i].size = rp[i].size;
412 ++i;
414 np->addrs = adr;
415 np->n_addrs = i;
416 (*mem_start) += i * sizeof(struct address_range);
419 return 0;
422 static int __init interpret_macio_props(struct device_node *np,
423 unsigned long *mem_start,
424 int naddrc, int nsizec,
425 int measure_only)
427 struct reg_property32 *rp;
428 struct address_range *adr;
429 unsigned long base_address;
430 int i, l;
431 struct device_node *db;
433 base_address = 0;
434 if (!measure_only) {
435 for (db = np->parent; db != NULL; db = db->parent) {
436 if (!strcmp(db->type, "mac-io") && db->n_addrs != 0) {
437 base_address = db->addrs[0].address;
438 break;
443 rp = (struct reg_property32 *) get_property(np, "reg", &l);
444 if (rp != 0 && l >= sizeof(struct reg_property32)) {
445 i = 0;
446 adr = (struct address_range *) (*mem_start);
447 while ((l -= sizeof(struct reg_property32)) >= 0) {
448 if (!measure_only) {
449 adr[i].space = 2;
450 adr[i].address = rp[i].address + base_address;
451 adr[i].size = rp[i].size;
453 ++i;
455 np->addrs = adr;
456 np->n_addrs = i;
457 (*mem_start) += i * sizeof(struct address_range);
460 return 0;
463 static int __init interpret_isa_props(struct device_node *np,
464 unsigned long *mem_start,
465 int naddrc, int nsizec,
466 int measure_only)
468 struct isa_reg_property *rp;
469 struct address_range *adr;
470 int i, l;
472 rp = (struct isa_reg_property *) get_property(np, "reg", &l);
473 if (rp != 0 && l >= sizeof(struct isa_reg_property)) {
474 i = 0;
475 adr = (struct address_range *) (*mem_start);
476 while ((l -= sizeof(struct isa_reg_property)) >= 0) {
477 if (!measure_only) {
478 adr[i].space = rp[i].space;
479 adr[i].address = rp[i].address;
480 adr[i].size = rp[i].size;
482 ++i;
484 np->addrs = adr;
485 np->n_addrs = i;
486 (*mem_start) += i * sizeof(struct address_range);
489 return 0;
492 static int __init interpret_root_props(struct device_node *np,
493 unsigned long *mem_start,
494 int naddrc, int nsizec,
495 int measure_only)
497 struct address_range *adr;
498 int i, l;
499 unsigned int *rp;
500 int rpsize = (naddrc + nsizec) * sizeof(unsigned int);
502 rp = (unsigned int *) get_property(np, "reg", &l);
503 if (rp != 0 && l >= rpsize) {
504 i = 0;
505 adr = (struct address_range *) (*mem_start);
506 while ((l -= rpsize) >= 0) {
507 if (!measure_only) {
508 adr[i].space = 0;
509 adr[i].address = rp[naddrc - 1];
510 adr[i].size = rp[naddrc + nsizec - 1];
512 ++i;
513 rp += naddrc + nsizec;
515 np->addrs = adr;
516 np->n_addrs = i;
517 (*mem_start) += i * sizeof(struct address_range);
520 return 0;
523 static int __devinit finish_node(struct device_node *np,
524 unsigned long *mem_start,
525 interpret_func *ifunc,
526 int naddrc, int nsizec,
527 int measure_only)
529 struct device_node *child;
530 int *ip, rc = 0;
532 /* get the device addresses and interrupts */
533 if (ifunc != NULL)
534 rc = ifunc(np, mem_start, naddrc, nsizec, measure_only);
535 if (rc)
536 goto out;
538 rc = finish_node_interrupts(np, mem_start, measure_only);
539 if (rc)
540 goto out;
542 /* Look for #address-cells and #size-cells properties. */
543 ip = (int *) get_property(np, "#address-cells", NULL);
544 if (ip != NULL)
545 naddrc = *ip;
546 ip = (int *) get_property(np, "#size-cells", NULL);
547 if (ip != NULL)
548 nsizec = *ip;
550 if (!strcmp(np->name, "device-tree") || np->parent == NULL)
551 ifunc = interpret_root_props;
552 else if (np->type == 0)
553 ifunc = NULL;
554 else if (!strcmp(np->type, "pci") || !strcmp(np->type, "vci"))
555 ifunc = interpret_pci_props;
556 else if (!strcmp(np->type, "dbdma"))
557 ifunc = interpret_dbdma_props;
558 else if (!strcmp(np->type, "mac-io") || ifunc == interpret_macio_props)
559 ifunc = interpret_macio_props;
560 else if (!strcmp(np->type, "isa"))
561 ifunc = interpret_isa_props;
562 else if (!strcmp(np->name, "uni-n") || !strcmp(np->name, "u3"))
563 ifunc = interpret_root_props;
564 else if (!((ifunc == interpret_dbdma_props
565 || ifunc == interpret_macio_props)
566 && (!strcmp(np->type, "escc")
567 || !strcmp(np->type, "media-bay"))))
568 ifunc = NULL;
570 for (child = np->child; child != NULL; child = child->sibling) {
571 rc = finish_node(child, mem_start, ifunc,
572 naddrc, nsizec, measure_only);
573 if (rc)
574 goto out;
576 out:
577 return rc;
581 * finish_device_tree is called once things are running normally
582 * (i.e. with text and data mapped to the address they were linked at).
583 * It traverses the device tree and fills in some of the additional,
584 * fields in each node like {n_}addrs and {n_}intrs, the virt interrupt
585 * mapping is also initialized at this point.
587 void __init finish_device_tree(void)
589 unsigned long start, end, size = 0;
591 DBG(" -> finish_device_tree\n");
593 if (ppc64_interrupt_controller == IC_INVALID) {
594 DBG("failed to configure interrupt controller type\n");
595 panic("failed to configure interrupt controller type\n");
598 /* Initialize virtual IRQ map */
599 virt_irq_init();
602 * Finish device-tree (pre-parsing some properties etc...)
603 * We do this in 2 passes. One with "measure_only" set, which
604 * will only measure the amount of memory needed, then we can
605 * allocate that memory, and call finish_node again. However,
606 * we must be careful as most routines will fail nowadays when
607 * prom_alloc() returns 0, so we must make sure our first pass
608 * doesn't start at 0. We pre-initialize size to 16 for that
609 * reason and then remove those additional 16 bytes
611 size = 16;
612 finish_node(allnodes, &size, NULL, 0, 0, 1);
613 size -= 16;
614 end = start = (unsigned long)abs_to_virt(lmb_alloc(size, 128));
615 finish_node(allnodes, &end, NULL, 0, 0, 0);
616 BUG_ON(end != start + size);
618 DBG(" <- finish_device_tree\n");
621 #ifdef DEBUG
622 #define printk udbg_printf
623 #endif
625 static inline char *find_flat_dt_string(u32 offset)
627 return ((char *)initial_boot_params) +
628 initial_boot_params->off_dt_strings + offset;
632 * This function is used to scan the flattened device-tree, it is
633 * used to extract the memory informations at boot before we can
634 * unflatten the tree
636 static int __init scan_flat_dt(int (*it)(unsigned long node,
637 const char *uname, int depth,
638 void *data),
639 void *data)
641 unsigned long p = ((unsigned long)initial_boot_params) +
642 initial_boot_params->off_dt_struct;
643 int rc = 0;
644 int depth = -1;
646 do {
647 u32 tag = *((u32 *)p);
648 char *pathp;
650 p += 4;
651 if (tag == OF_DT_END_NODE) {
652 depth --;
653 continue;
655 if (tag == OF_DT_NOP)
656 continue;
657 if (tag == OF_DT_END)
658 break;
659 if (tag == OF_DT_PROP) {
660 u32 sz = *((u32 *)p);
661 p += 8;
662 if (initial_boot_params->version < 0x10)
663 p = _ALIGN(p, sz >= 8 ? 8 : 4);
664 p += sz;
665 p = _ALIGN(p, 4);
666 continue;
668 if (tag != OF_DT_BEGIN_NODE) {
669 printk(KERN_WARNING "Invalid tag %x scanning flattened"
670 " device tree !\n", tag);
671 return -EINVAL;
673 depth++;
674 pathp = (char *)p;
675 p = _ALIGN(p + strlen(pathp) + 1, 4);
676 if ((*pathp) == '/') {
677 char *lp, *np;
678 for (lp = NULL, np = pathp; *np; np++)
679 if ((*np) == '/')
680 lp = np+1;
681 if (lp != NULL)
682 pathp = lp;
684 rc = it(p, pathp, depth, data);
685 if (rc != 0)
686 break;
687 } while(1);
689 return rc;
693 * This function can be used within scan_flattened_dt callback to get
694 * access to properties
696 static void* __init get_flat_dt_prop(unsigned long node, const char *name,
697 unsigned long *size)
699 unsigned long p = node;
701 do {
702 u32 tag = *((u32 *)p);
703 u32 sz, noff;
704 const char *nstr;
706 p += 4;
707 if (tag == OF_DT_NOP)
708 continue;
709 if (tag != OF_DT_PROP)
710 return NULL;
712 sz = *((u32 *)p);
713 noff = *((u32 *)(p + 4));
714 p += 8;
715 if (initial_boot_params->version < 0x10)
716 p = _ALIGN(p, sz >= 8 ? 8 : 4);
718 nstr = find_flat_dt_string(noff);
719 if (nstr == NULL) {
720 printk(KERN_WARNING "Can't find property index"
721 " name !\n");
722 return NULL;
724 if (strcmp(name, nstr) == 0) {
725 if (size)
726 *size = sz;
727 return (void *)p;
729 p += sz;
730 p = _ALIGN(p, 4);
731 } while(1);
734 static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
735 unsigned long align)
737 void *res;
739 *mem = _ALIGN(*mem, align);
740 res = (void *)*mem;
741 *mem += size;
743 return res;
746 static unsigned long __init unflatten_dt_node(unsigned long mem,
747 unsigned long *p,
748 struct device_node *dad,
749 struct device_node ***allnextpp,
750 unsigned long fpsize)
752 struct device_node *np;
753 struct property *pp, **prev_pp = NULL;
754 char *pathp;
755 u32 tag;
756 unsigned int l, allocl;
757 int has_name = 0;
758 int new_format = 0;
760 tag = *((u32 *)(*p));
761 if (tag != OF_DT_BEGIN_NODE) {
762 printk("Weird tag at start of node: %x\n", tag);
763 return mem;
765 *p += 4;
766 pathp = (char *)*p;
767 l = allocl = strlen(pathp) + 1;
768 *p = _ALIGN(*p + l, 4);
770 /* version 0x10 has a more compact unit name here instead of the full
771 * path. we accumulate the full path size using "fpsize", we'll rebuild
772 * it later. We detect this because the first character of the name is
773 * not '/'.
775 if ((*pathp) != '/') {
776 new_format = 1;
777 if (fpsize == 0) {
778 /* root node: special case. fpsize accounts for path
779 * plus terminating zero. root node only has '/', so
780 * fpsize should be 2, but we want to avoid the first
781 * level nodes to have two '/' so we use fpsize 1 here
783 fpsize = 1;
784 allocl = 2;
785 } else {
786 /* account for '/' and path size minus terminal 0
787 * already in 'l'
789 fpsize += l;
790 allocl = fpsize;
795 np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
796 __alignof__(struct device_node));
797 if (allnextpp) {
798 memset(np, 0, sizeof(*np));
799 np->full_name = ((char*)np) + sizeof(struct device_node);
800 if (new_format) {
801 char *p = np->full_name;
802 /* rebuild full path for new format */
803 if (dad && dad->parent) {
804 strcpy(p, dad->full_name);
805 #ifdef DEBUG
806 if ((strlen(p) + l + 1) != allocl) {
807 DBG("%s: p: %d, l: %d, a: %d\n",
808 pathp, strlen(p), l, allocl);
810 #endif
811 p += strlen(p);
813 *(p++) = '/';
814 memcpy(p, pathp, l);
815 } else
816 memcpy(np->full_name, pathp, l);
817 prev_pp = &np->properties;
818 **allnextpp = np;
819 *allnextpp = &np->allnext;
820 if (dad != NULL) {
821 np->parent = dad;
822 /* we temporarily use the next field as `last_child'*/
823 if (dad->next == 0)
824 dad->child = np;
825 else
826 dad->next->sibling = np;
827 dad->next = np;
829 kref_init(&np->kref);
831 while(1) {
832 u32 sz, noff;
833 char *pname;
835 tag = *((u32 *)(*p));
836 if (tag == OF_DT_NOP) {
837 *p += 4;
838 continue;
840 if (tag != OF_DT_PROP)
841 break;
842 *p += 4;
843 sz = *((u32 *)(*p));
844 noff = *((u32 *)((*p) + 4));
845 *p += 8;
846 if (initial_boot_params->version < 0x10)
847 *p = _ALIGN(*p, sz >= 8 ? 8 : 4);
849 pname = find_flat_dt_string(noff);
850 if (pname == NULL) {
851 printk("Can't find property name in list !\n");
852 break;
854 if (strcmp(pname, "name") == 0)
855 has_name = 1;
856 l = strlen(pname) + 1;
857 pp = unflatten_dt_alloc(&mem, sizeof(struct property),
858 __alignof__(struct property));
859 if (allnextpp) {
860 if (strcmp(pname, "linux,phandle") == 0) {
861 np->node = *((u32 *)*p);
862 if (np->linux_phandle == 0)
863 np->linux_phandle = np->node;
865 if (strcmp(pname, "ibm,phandle") == 0)
866 np->linux_phandle = *((u32 *)*p);
867 pp->name = pname;
868 pp->length = sz;
869 pp->value = (void *)*p;
870 *prev_pp = pp;
871 prev_pp = &pp->next;
873 *p = _ALIGN((*p) + sz, 4);
875 /* with version 0x10 we may not have the name property, recreate
876 * it here from the unit name if absent
878 if (!has_name) {
879 char *p = pathp, *ps = pathp, *pa = NULL;
880 int sz;
882 while (*p) {
883 if ((*p) == '@')
884 pa = p;
885 if ((*p) == '/')
886 ps = p + 1;
887 p++;
889 if (pa < ps)
890 pa = p;
891 sz = (pa - ps) + 1;
892 pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
893 __alignof__(struct property));
894 if (allnextpp) {
895 pp->name = "name";
896 pp->length = sz;
897 pp->value = (unsigned char *)(pp + 1);
898 *prev_pp = pp;
899 prev_pp = &pp->next;
900 memcpy(pp->value, ps, sz - 1);
901 ((char *)pp->value)[sz - 1] = 0;
902 DBG("fixed up name for %s -> %s\n", pathp, pp->value);
905 if (allnextpp) {
906 *prev_pp = NULL;
907 np->name = get_property(np, "name", NULL);
908 np->type = get_property(np, "device_type", NULL);
910 if (!np->name)
911 np->name = "<NULL>";
912 if (!np->type)
913 np->type = "<NULL>";
915 while (tag == OF_DT_BEGIN_NODE) {
916 mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize);
917 tag = *((u32 *)(*p));
919 if (tag != OF_DT_END_NODE) {
920 printk("Weird tag at end of node: %x\n", tag);
921 return mem;
923 *p += 4;
924 return mem;
929 * unflattens the device-tree passed by the firmware, creating the
930 * tree of struct device_node. It also fills the "name" and "type"
931 * pointers of the nodes so the normal device-tree walking functions
932 * can be used (this used to be done by finish_device_tree)
934 void __init unflatten_device_tree(void)
936 unsigned long start, mem, size;
937 struct device_node **allnextp = &allnodes;
938 char *p = NULL;
939 int l = 0;
941 DBG(" -> unflatten_device_tree()\n");
943 /* First pass, scan for size */
944 start = ((unsigned long)initial_boot_params) +
945 initial_boot_params->off_dt_struct;
946 size = unflatten_dt_node(0, &start, NULL, NULL, 0);
947 size = (size | 3) + 1;
949 DBG(" size is %lx, allocating...\n", size);
951 /* Allocate memory for the expanded device tree */
952 mem = lmb_alloc(size + 4, __alignof__(struct device_node));
953 if (!mem) {
954 DBG("Couldn't allocate memory with lmb_alloc()!\n");
955 panic("Couldn't allocate memory with lmb_alloc()!\n");
957 mem = (unsigned long)abs_to_virt(mem);
959 ((u32 *)mem)[size / 4] = 0xdeadbeef;
961 DBG(" unflattening...\n", mem);
963 /* Second pass, do actual unflattening */
964 start = ((unsigned long)initial_boot_params) +
965 initial_boot_params->off_dt_struct;
966 unflatten_dt_node(mem, &start, NULL, &allnextp, 0);
967 if (*((u32 *)start) != OF_DT_END)
968 printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start));
969 if (((u32 *)mem)[size / 4] != 0xdeadbeef)
970 printk(KERN_WARNING "End of tree marker overwritten: %08x\n",
971 ((u32 *)mem)[size / 4] );
972 *allnextp = NULL;
974 /* Get pointer to OF "/chosen" node for use everywhere */
975 of_chosen = of_find_node_by_path("/chosen");
977 /* Retreive command line */
978 if (of_chosen != NULL) {
979 p = (char *)get_property(of_chosen, "bootargs", &l);
980 if (p != NULL && l > 0)
981 strlcpy(cmd_line, p, min(l, COMMAND_LINE_SIZE));
983 #ifdef CONFIG_CMDLINE
984 if (l == 0 || (l == 1 && (*p) == 0))
985 strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
986 #endif /* CONFIG_CMDLINE */
988 DBG("Command line is: %s\n", cmd_line);
990 DBG(" <- unflatten_device_tree()\n");
994 static int __init early_init_dt_scan_cpus(unsigned long node,
995 const char *uname, int depth, void *data)
997 char *type = get_flat_dt_prop(node, "device_type", NULL);
998 u32 *prop;
999 unsigned long size;
1001 /* We are scanning "cpu" nodes only */
1002 if (type == NULL || strcmp(type, "cpu") != 0)
1003 return 0;
1005 /* On LPAR, look for the first ibm,pft-size property for the hash table size
1007 if (systemcfg->platform == PLATFORM_PSERIES_LPAR && ppc64_pft_size == 0) {
1008 u32 *pft_size;
1009 pft_size = (u32 *)get_flat_dt_prop(node, "ibm,pft-size", NULL);
1010 if (pft_size != NULL) {
1011 /* pft_size[0] is the NUMA CEC cookie */
1012 ppc64_pft_size = pft_size[1];
1016 if (initial_boot_params && initial_boot_params->version >= 2) {
1017 /* version 2 of the kexec param format adds the phys cpuid
1018 * of booted proc.
1020 boot_cpuid_phys = initial_boot_params->boot_cpuid_phys;
1021 boot_cpuid = 0;
1022 } else {
1023 /* Check if it's the boot-cpu, set it's hw index in paca now */
1024 if (get_flat_dt_prop(node, "linux,boot-cpu", NULL) != NULL) {
1025 u32 *prop = get_flat_dt_prop(node, "reg", NULL);
1026 set_hard_smp_processor_id(0, prop == NULL ? 0 : *prop);
1027 boot_cpuid_phys = get_hard_smp_processor_id(0);
1031 #ifdef CONFIG_ALTIVEC
1032 /* Check if we have a VMX and eventually update CPU features */
1033 prop = (u32 *)get_flat_dt_prop(node, "ibm,vmx", NULL);
1034 if (prop && (*prop) > 0) {
1035 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
1036 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
1039 /* Same goes for Apple's "altivec" property */
1040 prop = (u32 *)get_flat_dt_prop(node, "altivec", NULL);
1041 if (prop) {
1042 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
1043 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
1045 #endif /* CONFIG_ALTIVEC */
1048 * Check for an SMT capable CPU and set the CPU feature. We do
1049 * this by looking at the size of the ibm,ppc-interrupt-server#s
1050 * property
1052 prop = (u32 *)get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s",
1053 &size);
1054 cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
1055 if (prop && ((size / sizeof(u32)) > 1))
1056 cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
1058 return 0;
1061 static int __init early_init_dt_scan_chosen(unsigned long node,
1062 const char *uname, int depth, void *data)
1064 u32 *prop;
1065 u64 *prop64;
1066 extern unsigned long memory_limit, tce_alloc_start, tce_alloc_end;
1068 DBG("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1070 if (depth != 1 || strcmp(uname, "chosen") != 0)
1071 return 0;
1073 /* get platform type */
1074 prop = (u32 *)get_flat_dt_prop(node, "linux,platform", NULL);
1075 if (prop == NULL)
1076 return 0;
1077 systemcfg->platform = *prop;
1079 /* check if iommu is forced on or off */
1080 if (get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
1081 iommu_is_off = 1;
1082 if (get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
1083 iommu_force_on = 1;
1085 prop64 = (u64*)get_flat_dt_prop(node, "linux,memory-limit", NULL);
1086 if (prop64)
1087 memory_limit = *prop64;
1089 prop64 = (u64*)get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
1090 if (prop64)
1091 tce_alloc_start = *prop64;
1093 prop64 = (u64*)get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
1094 if (prop64)
1095 tce_alloc_end = *prop64;
1097 #ifdef CONFIG_PPC_RTAS
1098 /* To help early debugging via the front panel, we retreive a minimal
1099 * set of RTAS infos now if available
1102 u64 *basep, *entryp;
1104 basep = (u64*)get_flat_dt_prop(node, "linux,rtas-base", NULL);
1105 entryp = (u64*)get_flat_dt_prop(node, "linux,rtas-entry", NULL);
1106 prop = (u32*)get_flat_dt_prop(node, "linux,rtas-size", NULL);
1107 if (basep && entryp && prop) {
1108 rtas.base = *basep;
1109 rtas.entry = *entryp;
1110 rtas.size = *prop;
1113 #endif /* CONFIG_PPC_RTAS */
1115 /* break now */
1116 return 1;
1119 static int __init early_init_dt_scan_root(unsigned long node,
1120 const char *uname, int depth, void *data)
1122 u32 *prop;
1124 if (depth != 0)
1125 return 0;
1127 prop = (u32 *)get_flat_dt_prop(node, "#size-cells", NULL);
1128 dt_root_size_cells = (prop == NULL) ? 1 : *prop;
1129 DBG("dt_root_size_cells = %x\n", dt_root_size_cells);
1131 prop = (u32 *)get_flat_dt_prop(node, "#address-cells", NULL);
1132 dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
1133 DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1135 /* break now */
1136 return 1;
1139 static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp)
1141 cell_t *p = *cellp;
1142 unsigned long r = 0;
1144 /* Ignore more than 2 cells */
1145 while (s > 2) {
1146 p++;
1147 s--;
1149 while (s) {
1150 r <<= 32;
1151 r |= *(p++);
1152 s--;
1155 *cellp = p;
1156 return r;
1160 static int __init early_init_dt_scan_memory(unsigned long node,
1161 const char *uname, int depth, void *data)
1163 char *type = get_flat_dt_prop(node, "device_type", NULL);
1164 cell_t *reg, *endp;
1165 unsigned long l;
1167 /* We are scanning "memory" nodes only */
1168 if (type == NULL || strcmp(type, "memory") != 0)
1169 return 0;
1171 reg = (cell_t *)get_flat_dt_prop(node, "reg", &l);
1172 if (reg == NULL)
1173 return 0;
1175 endp = reg + (l / sizeof(cell_t));
1177 DBG("memory scan node %s ..., reg size %ld, data: %x %x %x %x, ...\n",
1178 uname, l, reg[0], reg[1], reg[2], reg[3]);
1180 while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1181 unsigned long base, size;
1183 base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1184 size = dt_mem_next_cell(dt_root_size_cells, &reg);
1186 if (size == 0)
1187 continue;
1188 DBG(" - %lx , %lx\n", base, size);
1189 if (iommu_is_off) {
1190 if (base >= 0x80000000ul)
1191 continue;
1192 if ((base + size) > 0x80000000ul)
1193 size = 0x80000000ul - base;
1195 lmb_add(base, size);
1197 return 0;
1200 static void __init early_reserve_mem(void)
1202 u64 base, size;
1203 u64 *reserve_map = (u64 *)(((unsigned long)initial_boot_params) +
1204 initial_boot_params->off_mem_rsvmap);
1205 while (1) {
1206 base = *(reserve_map++);
1207 size = *(reserve_map++);
1208 if (size == 0)
1209 break;
1210 DBG("reserving: %lx -> %lx\n", base, size);
1211 lmb_reserve(base, size);
1214 #if 0
1215 DBG("memory reserved, lmbs :\n");
1216 lmb_dump_all();
1217 #endif
1220 void __init early_init_devtree(void *params)
1222 DBG(" -> early_init_devtree()\n");
1224 /* Setup flat device-tree pointer */
1225 initial_boot_params = params;
1227 /* By default, hash size is not set */
1228 ppc64_pft_size = 0;
1230 /* Retreive various informations from the /chosen node of the
1231 * device-tree, including the platform type, initrd location and
1232 * size, TCE reserve, and more ...
1234 scan_flat_dt(early_init_dt_scan_chosen, NULL);
1236 /* Scan memory nodes and rebuild LMBs */
1237 lmb_init();
1238 scan_flat_dt(early_init_dt_scan_root, NULL);
1239 scan_flat_dt(early_init_dt_scan_memory, NULL);
1240 lmb_enforce_memory_limit();
1241 lmb_analyze();
1242 systemcfg->physicalMemorySize = lmb_phys_mem_size();
1243 lmb_reserve(0, __pa(klimit));
1245 DBG("Phys. mem: %lx\n", systemcfg->physicalMemorySize);
1247 /* Reserve LMB regions used by kernel, initrd, dt, etc... */
1248 early_reserve_mem();
1250 DBG("Scanning CPUs ...\n");
1252 /* Retreive hash table size from flattened tree plus other
1253 * CPU related informations (altivec support, boot CPU ID, ...)
1255 scan_flat_dt(early_init_dt_scan_cpus, NULL);
1257 /* If hash size wasn't obtained above, we calculate it now based on
1258 * the total RAM size
1260 if (ppc64_pft_size == 0) {
1261 unsigned long rnd_mem_size, pteg_count;
1263 /* round mem_size up to next power of 2 */
1264 rnd_mem_size = 1UL << __ilog2(systemcfg->physicalMemorySize);
1265 if (rnd_mem_size < systemcfg->physicalMemorySize)
1266 rnd_mem_size <<= 1;
1268 /* # pages / 2 */
1269 pteg_count = max(rnd_mem_size >> (12 + 1), 1UL << 11);
1271 ppc64_pft_size = __ilog2(pteg_count << 7);
1274 DBG("Hash pftSize: %x\n", (int)ppc64_pft_size);
1275 DBG(" <- early_init_devtree()\n");
1278 #undef printk
1281 prom_n_addr_cells(struct device_node* np)
1283 int* ip;
1284 do {
1285 if (np->parent)
1286 np = np->parent;
1287 ip = (int *) get_property(np, "#address-cells", NULL);
1288 if (ip != NULL)
1289 return *ip;
1290 } while (np->parent);
1291 /* No #address-cells property for the root node, default to 1 */
1292 return 1;
1296 prom_n_size_cells(struct device_node* np)
1298 int* ip;
1299 do {
1300 if (np->parent)
1301 np = np->parent;
1302 ip = (int *) get_property(np, "#size-cells", NULL);
1303 if (ip != NULL)
1304 return *ip;
1305 } while (np->parent);
1306 /* No #size-cells property for the root node, default to 1 */
1307 return 1;
1311 * Work out the sense (active-low level / active-high edge)
1312 * of each interrupt from the device tree.
1314 void __init prom_get_irq_senses(unsigned char *senses, int off, int max)
1316 struct device_node *np;
1317 int i, j;
1319 /* default to level-triggered */
1320 memset(senses, 1, max - off);
1322 for (np = allnodes; np != 0; np = np->allnext) {
1323 for (j = 0; j < np->n_intrs; j++) {
1324 i = np->intrs[j].line;
1325 if (i >= off && i < max)
1326 senses[i-off] = np->intrs[j].sense ?
1327 IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE :
1328 IRQ_SENSE_EDGE | IRQ_POLARITY_POSITIVE;
1334 * Construct and return a list of the device_nodes with a given name.
1336 struct device_node *
1337 find_devices(const char *name)
1339 struct device_node *head, **prevp, *np;
1341 prevp = &head;
1342 for (np = allnodes; np != 0; np = np->allnext) {
1343 if (np->name != 0 && strcasecmp(np->name, name) == 0) {
1344 *prevp = np;
1345 prevp = &np->next;
1348 *prevp = NULL;
1349 return head;
1351 EXPORT_SYMBOL(find_devices);
1354 * Construct and return a list of the device_nodes with a given type.
1356 struct device_node *
1357 find_type_devices(const char *type)
1359 struct device_node *head, **prevp, *np;
1361 prevp = &head;
1362 for (np = allnodes; np != 0; np = np->allnext) {
1363 if (np->type != 0 && strcasecmp(np->type, type) == 0) {
1364 *prevp = np;
1365 prevp = &np->next;
1368 *prevp = NULL;
1369 return head;
1371 EXPORT_SYMBOL(find_type_devices);
1374 * Returns all nodes linked together
1376 struct device_node *
1377 find_all_nodes(void)
1379 struct device_node *head, **prevp, *np;
1381 prevp = &head;
1382 for (np = allnodes; np != 0; np = np->allnext) {
1383 *prevp = np;
1384 prevp = &np->next;
1386 *prevp = NULL;
1387 return head;
1389 EXPORT_SYMBOL(find_all_nodes);
1391 /** Checks if the given "compat" string matches one of the strings in
1392 * the device's "compatible" property
1395 device_is_compatible(struct device_node *device, const char *compat)
1397 const char* cp;
1398 int cplen, l;
1400 cp = (char *) get_property(device, "compatible", &cplen);
1401 if (cp == NULL)
1402 return 0;
1403 while (cplen > 0) {
1404 if (strncasecmp(cp, compat, strlen(compat)) == 0)
1405 return 1;
1406 l = strlen(cp) + 1;
1407 cp += l;
1408 cplen -= l;
1411 return 0;
1413 EXPORT_SYMBOL(device_is_compatible);
1417 * Indicates whether the root node has a given value in its
1418 * compatible property.
1421 machine_is_compatible(const char *compat)
1423 struct device_node *root;
1424 int rc = 0;
1426 root = of_find_node_by_path("/");
1427 if (root) {
1428 rc = device_is_compatible(root, compat);
1429 of_node_put(root);
1431 return rc;
1433 EXPORT_SYMBOL(machine_is_compatible);
1436 * Construct and return a list of the device_nodes with a given type
1437 * and compatible property.
1439 struct device_node *
1440 find_compatible_devices(const char *type, const char *compat)
1442 struct device_node *head, **prevp, *np;
1444 prevp = &head;
1445 for (np = allnodes; np != 0; np = np->allnext) {
1446 if (type != NULL
1447 && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1448 continue;
1449 if (device_is_compatible(np, compat)) {
1450 *prevp = np;
1451 prevp = &np->next;
1454 *prevp = NULL;
1455 return head;
1457 EXPORT_SYMBOL(find_compatible_devices);
1460 * Find the device_node with a given full_name.
1462 struct device_node *
1463 find_path_device(const char *path)
1465 struct device_node *np;
1467 for (np = allnodes; np != 0; np = np->allnext)
1468 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
1469 return np;
1470 return NULL;
1472 EXPORT_SYMBOL(find_path_device);
1474 /*******
1476 * New implementation of the OF "find" APIs, return a refcounted
1477 * object, call of_node_put() when done. The device tree and list
1478 * are protected by a rw_lock.
1480 * Note that property management will need some locking as well,
1481 * this isn't dealt with yet.
1483 *******/
1486 * of_find_node_by_name - Find a node by its "name" property
1487 * @from: The node to start searching from or NULL, the node
1488 * you pass will not be searched, only the next one
1489 * will; typically, you pass what the previous call
1490 * returned. of_node_put() will be called on it
1491 * @name: The name string to match against
1493 * Returns a node pointer with refcount incremented, use
1494 * of_node_put() on it when done.
1496 struct device_node *of_find_node_by_name(struct device_node *from,
1497 const char *name)
1499 struct device_node *np;
1501 read_lock(&devtree_lock);
1502 np = from ? from->allnext : allnodes;
1503 for (; np != 0; np = np->allnext)
1504 if (np->name != 0 && strcasecmp(np->name, name) == 0
1505 && of_node_get(np))
1506 break;
1507 if (from)
1508 of_node_put(from);
1509 read_unlock(&devtree_lock);
1510 return np;
1512 EXPORT_SYMBOL(of_find_node_by_name);
1515 * of_find_node_by_type - Find a node by its "device_type" property
1516 * @from: The node to start searching from or NULL, the node
1517 * you pass will not be searched, only the next one
1518 * will; typically, you pass what the previous call
1519 * returned. of_node_put() will be called on it
1520 * @name: The type string to match against
1522 * Returns a node pointer with refcount incremented, use
1523 * of_node_put() on it when done.
1525 struct device_node *of_find_node_by_type(struct device_node *from,
1526 const char *type)
1528 struct device_node *np;
1530 read_lock(&devtree_lock);
1531 np = from ? from->allnext : allnodes;
1532 for (; np != 0; np = np->allnext)
1533 if (np->type != 0 && strcasecmp(np->type, type) == 0
1534 && of_node_get(np))
1535 break;
1536 if (from)
1537 of_node_put(from);
1538 read_unlock(&devtree_lock);
1539 return np;
1541 EXPORT_SYMBOL(of_find_node_by_type);
1544 * of_find_compatible_node - Find a node based on type and one of the
1545 * tokens in its "compatible" property
1546 * @from: The node to start searching from or NULL, the node
1547 * you pass will not be searched, only the next one
1548 * will; typically, you pass what the previous call
1549 * returned. of_node_put() will be called on it
1550 * @type: The type string to match "device_type" or NULL to ignore
1551 * @compatible: The string to match to one of the tokens in the device
1552 * "compatible" list.
1554 * Returns a node pointer with refcount incremented, use
1555 * of_node_put() on it when done.
1557 struct device_node *of_find_compatible_node(struct device_node *from,
1558 const char *type, const char *compatible)
1560 struct device_node *np;
1562 read_lock(&devtree_lock);
1563 np = from ? from->allnext : allnodes;
1564 for (; np != 0; np = np->allnext) {
1565 if (type != NULL
1566 && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1567 continue;
1568 if (device_is_compatible(np, compatible) && of_node_get(np))
1569 break;
1571 if (from)
1572 of_node_put(from);
1573 read_unlock(&devtree_lock);
1574 return np;
1576 EXPORT_SYMBOL(of_find_compatible_node);
1579 * of_find_node_by_path - Find a node matching a full OF path
1580 * @path: The full path to match
1582 * Returns a node pointer with refcount incremented, use
1583 * of_node_put() on it when done.
1585 struct device_node *of_find_node_by_path(const char *path)
1587 struct device_node *np = allnodes;
1589 read_lock(&devtree_lock);
1590 for (; np != 0; np = np->allnext) {
1591 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0
1592 && of_node_get(np))
1593 break;
1595 read_unlock(&devtree_lock);
1596 return np;
1598 EXPORT_SYMBOL(of_find_node_by_path);
1601 * of_find_node_by_phandle - Find a node given a phandle
1602 * @handle: phandle of the node to find
1604 * Returns a node pointer with refcount incremented, use
1605 * of_node_put() on it when done.
1607 struct device_node *of_find_node_by_phandle(phandle handle)
1609 struct device_node *np;
1611 read_lock(&devtree_lock);
1612 for (np = allnodes; np != 0; np = np->allnext)
1613 if (np->linux_phandle == handle)
1614 break;
1615 if (np)
1616 of_node_get(np);
1617 read_unlock(&devtree_lock);
1618 return np;
1620 EXPORT_SYMBOL(of_find_node_by_phandle);
1623 * of_find_all_nodes - Get next node in global list
1624 * @prev: Previous node or NULL to start iteration
1625 * of_node_put() will be called on it
1627 * Returns a node pointer with refcount incremented, use
1628 * of_node_put() on it when done.
1630 struct device_node *of_find_all_nodes(struct device_node *prev)
1632 struct device_node *np;
1634 read_lock(&devtree_lock);
1635 np = prev ? prev->allnext : allnodes;
1636 for (; np != 0; np = np->allnext)
1637 if (of_node_get(np))
1638 break;
1639 if (prev)
1640 of_node_put(prev);
1641 read_unlock(&devtree_lock);
1642 return np;
1644 EXPORT_SYMBOL(of_find_all_nodes);
1647 * of_get_parent - Get a node's parent if any
1648 * @node: Node to get parent
1650 * Returns a node pointer with refcount incremented, use
1651 * of_node_put() on it when done.
1653 struct device_node *of_get_parent(const struct device_node *node)
1655 struct device_node *np;
1657 if (!node)
1658 return NULL;
1660 read_lock(&devtree_lock);
1661 np = of_node_get(node->parent);
1662 read_unlock(&devtree_lock);
1663 return np;
1665 EXPORT_SYMBOL(of_get_parent);
1668 * of_get_next_child - Iterate a node childs
1669 * @node: parent node
1670 * @prev: previous child of the parent node, or NULL to get first
1672 * Returns a node pointer with refcount incremented, use
1673 * of_node_put() on it when done.
1675 struct device_node *of_get_next_child(const struct device_node *node,
1676 struct device_node *prev)
1678 struct device_node *next;
1680 read_lock(&devtree_lock);
1681 next = prev ? prev->sibling : node->child;
1682 for (; next != 0; next = next->sibling)
1683 if (of_node_get(next))
1684 break;
1685 if (prev)
1686 of_node_put(prev);
1687 read_unlock(&devtree_lock);
1688 return next;
1690 EXPORT_SYMBOL(of_get_next_child);
1693 * of_node_get - Increment refcount of a node
1694 * @node: Node to inc refcount, NULL is supported to
1695 * simplify writing of callers
1697 * Returns node.
1699 struct device_node *of_node_get(struct device_node *node)
1701 if (node)
1702 kref_get(&node->kref);
1703 return node;
1705 EXPORT_SYMBOL(of_node_get);
1707 static inline struct device_node * kref_to_device_node(struct kref *kref)
1709 return container_of(kref, struct device_node, kref);
1713 * of_node_release - release a dynamically allocated node
1714 * @kref: kref element of the node to be released
1716 * In of_node_put() this function is passed to kref_put()
1717 * as the destructor.
1719 static void of_node_release(struct kref *kref)
1721 struct device_node *node = kref_to_device_node(kref);
1722 struct property *prop = node->properties;
1724 if (!OF_IS_DYNAMIC(node))
1725 return;
1726 while (prop) {
1727 struct property *next = prop->next;
1728 kfree(prop->name);
1729 kfree(prop->value);
1730 kfree(prop);
1731 prop = next;
1733 kfree(node->intrs);
1734 kfree(node->addrs);
1735 kfree(node->full_name);
1736 kfree(node->data);
1737 kfree(node);
1741 * of_node_put - Decrement refcount of a node
1742 * @node: Node to dec refcount, NULL is supported to
1743 * simplify writing of callers
1746 void of_node_put(struct device_node *node)
1748 if (node)
1749 kref_put(&node->kref, of_node_release);
1751 EXPORT_SYMBOL(of_node_put);
1754 * Fix up the uninitialized fields in a new device node:
1755 * name, type, n_addrs, addrs, n_intrs, intrs, and pci-specific fields
1757 * A lot of boot-time code is duplicated here, because functions such
1758 * as finish_node_interrupts, interpret_pci_props, etc. cannot use the
1759 * slab allocator.
1761 * This should probably be split up into smaller chunks.
1764 static int of_finish_dynamic_node(struct device_node *node,
1765 unsigned long *unused1, int unused2,
1766 int unused3, int unused4)
1768 struct device_node *parent = of_get_parent(node);
1769 int err = 0;
1770 phandle *ibm_phandle;
1772 node->name = get_property(node, "name", NULL);
1773 node->type = get_property(node, "device_type", NULL);
1775 if (!parent) {
1776 err = -ENODEV;
1777 goto out;
1780 /* We don't support that function on PowerMac, at least
1781 * not yet
1783 if (systemcfg->platform == PLATFORM_POWERMAC)
1784 return -ENODEV;
1786 /* fix up new node's linux_phandle field */
1787 if ((ibm_phandle = (unsigned int *)get_property(node, "ibm,phandle", NULL)))
1788 node->linux_phandle = *ibm_phandle;
1790 out:
1791 of_node_put(parent);
1792 return err;
1796 * Plug a device node into the tree and global list.
1798 void of_attach_node(struct device_node *np)
1800 write_lock(&devtree_lock);
1801 np->sibling = np->parent->child;
1802 np->allnext = allnodes;
1803 np->parent->child = np;
1804 allnodes = np;
1805 write_unlock(&devtree_lock);
1809 * "Unplug" a node from the device tree. The caller must hold
1810 * a reference to the node. The memory associated with the node
1811 * is not freed until its refcount goes to zero.
1813 void of_detach_node(const struct device_node *np)
1815 struct device_node *parent;
1817 write_lock(&devtree_lock);
1819 parent = np->parent;
1821 if (allnodes == np)
1822 allnodes = np->allnext;
1823 else {
1824 struct device_node *prev;
1825 for (prev = allnodes;
1826 prev->allnext != np;
1827 prev = prev->allnext)
1829 prev->allnext = np->allnext;
1832 if (parent->child == np)
1833 parent->child = np->sibling;
1834 else {
1835 struct device_node *prevsib;
1836 for (prevsib = np->parent->child;
1837 prevsib->sibling != np;
1838 prevsib = prevsib->sibling)
1840 prevsib->sibling = np->sibling;
1843 write_unlock(&devtree_lock);
1846 static int prom_reconfig_notifier(struct notifier_block *nb, unsigned long action, void *node)
1848 int err;
1850 switch (action) {
1851 case PSERIES_RECONFIG_ADD:
1852 err = finish_node(node, NULL, of_finish_dynamic_node, 0, 0, 0);
1853 if (err < 0) {
1854 printk(KERN_ERR "finish_node returned %d\n", err);
1855 err = NOTIFY_BAD;
1857 break;
1858 default:
1859 err = NOTIFY_DONE;
1860 break;
1862 return err;
1865 static struct notifier_block prom_reconfig_nb = {
1866 .notifier_call = prom_reconfig_notifier,
1867 .priority = 10, /* This one needs to run first */
1870 static int __init prom_reconfig_setup(void)
1872 return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
1874 __initcall(prom_reconfig_setup);
1877 * Find a property with a given name for a given node
1878 * and return the value.
1880 unsigned char *
1881 get_property(struct device_node *np, const char *name, int *lenp)
1883 struct property *pp;
1885 for (pp = np->properties; pp != 0; pp = pp->next)
1886 if (strcmp(pp->name, name) == 0) {
1887 if (lenp != 0)
1888 *lenp = pp->length;
1889 return pp->value;
1891 return NULL;
1893 EXPORT_SYMBOL(get_property);
1896 * Add a property to a node
1898 void
1899 prom_add_property(struct device_node* np, struct property* prop)
1901 struct property **next = &np->properties;
1903 prop->next = NULL;
1904 while (*next)
1905 next = &(*next)->next;
1906 *next = prop;
1909 #if 0
1910 void
1911 print_properties(struct device_node *np)
1913 struct property *pp;
1914 char *cp;
1915 int i, n;
1917 for (pp = np->properties; pp != 0; pp = pp->next) {
1918 printk(KERN_INFO "%s", pp->name);
1919 for (i = strlen(pp->name); i < 16; ++i)
1920 printk(" ");
1921 cp = (char *) pp->value;
1922 for (i = pp->length; i > 0; --i, ++cp)
1923 if ((i > 1 && (*cp < 0x20 || *cp > 0x7e))
1924 || (i == 1 && *cp != 0))
1925 break;
1926 if (i == 0 && pp->length > 1) {
1927 /* looks like a string */
1928 printk(" %s\n", (char *) pp->value);
1929 } else {
1930 /* dump it in hex */
1931 n = pp->length;
1932 if (n > 64)
1933 n = 64;
1934 if (pp->length % 4 == 0) {
1935 unsigned int *p = (unsigned int *) pp->value;
1937 n /= 4;
1938 for (i = 0; i < n; ++i) {
1939 if (i != 0 && (i % 4) == 0)
1940 printk("\n ");
1941 printk(" %08x", *p++);
1943 } else {
1944 unsigned char *bp = pp->value;
1946 for (i = 0; i < n; ++i) {
1947 if (i != 0 && (i % 16) == 0)
1948 printk("\n ");
1949 printk(" %02x", *bp++);
1952 printk("\n");
1953 if (pp->length > 64)
1954 printk(" ... (length = %d)\n",
1955 pp->length);
1959 #endif