firewire: core: check for 1394a compliant IRM, fix inaccessibility of Sony camcorder
[firewire-audio.git] / mm / memory.c
blob119b7ccdf39b8ee542d3f4d695bff3c9d5322987
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
61 #include <asm/io.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/tlb.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
68 #include "internal.h"
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
73 struct page *mem_map;
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
77 #endif
79 unsigned long num_physpages;
81 * A number of key systems in x86 including ioremap() rely on the assumption
82 * that high_memory defines the upper bound on direct map memory, then end
83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85 * and ZONE_HIGHMEM.
87 void * high_memory;
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
93 * Randomize the address space (stacks, mmaps, brk, etc.).
95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96 * as ancient (libc5 based) binaries can segfault. )
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
101 #else
103 #endif
105 static int __init disable_randmaps(char *s)
107 randomize_va_space = 0;
108 return 1;
110 __setup("norandmaps", disable_randmaps);
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
118 static int __init init_zero_pfn(void)
120 zero_pfn = page_to_pfn(ZERO_PAGE(0));
121 return 0;
123 core_initcall(init_zero_pfn);
126 #if defined(SPLIT_RSS_COUNTING)
128 static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
130 int i;
132 for (i = 0; i < NR_MM_COUNTERS; i++) {
133 if (task->rss_stat.count[i]) {
134 add_mm_counter(mm, i, task->rss_stat.count[i]);
135 task->rss_stat.count[i] = 0;
138 task->rss_stat.events = 0;
141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
143 struct task_struct *task = current;
145 if (likely(task->mm == mm))
146 task->rss_stat.count[member] += val;
147 else
148 add_mm_counter(mm, member, val);
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH (64)
155 static void check_sync_rss_stat(struct task_struct *task)
157 if (unlikely(task != current))
158 return;
159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160 __sync_task_rss_stat(task, task->mm);
163 unsigned long get_mm_counter(struct mm_struct *mm, int member)
165 long val = 0;
168 * Don't use task->mm here...for avoiding to use task_get_mm()..
169 * The caller must guarantee task->mm is not invalid.
171 val = atomic_long_read(&mm->rss_stat.count[member]);
173 * counter is updated in asynchronous manner and may go to minus.
174 * But it's never be expected number for users.
176 if (val < 0)
177 return 0;
178 return (unsigned long)val;
181 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
183 __sync_task_rss_stat(task, mm);
185 #else
187 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
188 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
190 static void check_sync_rss_stat(struct task_struct *task)
194 #endif
197 * If a p?d_bad entry is found while walking page tables, report
198 * the error, before resetting entry to p?d_none. Usually (but
199 * very seldom) called out from the p?d_none_or_clear_bad macros.
202 void pgd_clear_bad(pgd_t *pgd)
204 pgd_ERROR(*pgd);
205 pgd_clear(pgd);
208 void pud_clear_bad(pud_t *pud)
210 pud_ERROR(*pud);
211 pud_clear(pud);
214 void pmd_clear_bad(pmd_t *pmd)
216 pmd_ERROR(*pmd);
217 pmd_clear(pmd);
221 * Note: this doesn't free the actual pages themselves. That
222 * has been handled earlier when unmapping all the memory regions.
224 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
225 unsigned long addr)
227 pgtable_t token = pmd_pgtable(*pmd);
228 pmd_clear(pmd);
229 pte_free_tlb(tlb, token, addr);
230 tlb->mm->nr_ptes--;
233 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
234 unsigned long addr, unsigned long end,
235 unsigned long floor, unsigned long ceiling)
237 pmd_t *pmd;
238 unsigned long next;
239 unsigned long start;
241 start = addr;
242 pmd = pmd_offset(pud, addr);
243 do {
244 next = pmd_addr_end(addr, end);
245 if (pmd_none_or_clear_bad(pmd))
246 continue;
247 free_pte_range(tlb, pmd, addr);
248 } while (pmd++, addr = next, addr != end);
250 start &= PUD_MASK;
251 if (start < floor)
252 return;
253 if (ceiling) {
254 ceiling &= PUD_MASK;
255 if (!ceiling)
256 return;
258 if (end - 1 > ceiling - 1)
259 return;
261 pmd = pmd_offset(pud, start);
262 pud_clear(pud);
263 pmd_free_tlb(tlb, pmd, start);
266 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
267 unsigned long addr, unsigned long end,
268 unsigned long floor, unsigned long ceiling)
270 pud_t *pud;
271 unsigned long next;
272 unsigned long start;
274 start = addr;
275 pud = pud_offset(pgd, addr);
276 do {
277 next = pud_addr_end(addr, end);
278 if (pud_none_or_clear_bad(pud))
279 continue;
280 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
281 } while (pud++, addr = next, addr != end);
283 start &= PGDIR_MASK;
284 if (start < floor)
285 return;
286 if (ceiling) {
287 ceiling &= PGDIR_MASK;
288 if (!ceiling)
289 return;
291 if (end - 1 > ceiling - 1)
292 return;
294 pud = pud_offset(pgd, start);
295 pgd_clear(pgd);
296 pud_free_tlb(tlb, pud, start);
300 * This function frees user-level page tables of a process.
302 * Must be called with pagetable lock held.
304 void free_pgd_range(struct mmu_gather *tlb,
305 unsigned long addr, unsigned long end,
306 unsigned long floor, unsigned long ceiling)
308 pgd_t *pgd;
309 unsigned long next;
310 unsigned long start;
313 * The next few lines have given us lots of grief...
315 * Why are we testing PMD* at this top level? Because often
316 * there will be no work to do at all, and we'd prefer not to
317 * go all the way down to the bottom just to discover that.
319 * Why all these "- 1"s? Because 0 represents both the bottom
320 * of the address space and the top of it (using -1 for the
321 * top wouldn't help much: the masks would do the wrong thing).
322 * The rule is that addr 0 and floor 0 refer to the bottom of
323 * the address space, but end 0 and ceiling 0 refer to the top
324 * Comparisons need to use "end - 1" and "ceiling - 1" (though
325 * that end 0 case should be mythical).
327 * Wherever addr is brought up or ceiling brought down, we must
328 * be careful to reject "the opposite 0" before it confuses the
329 * subsequent tests. But what about where end is brought down
330 * by PMD_SIZE below? no, end can't go down to 0 there.
332 * Whereas we round start (addr) and ceiling down, by different
333 * masks at different levels, in order to test whether a table
334 * now has no other vmas using it, so can be freed, we don't
335 * bother to round floor or end up - the tests don't need that.
338 addr &= PMD_MASK;
339 if (addr < floor) {
340 addr += PMD_SIZE;
341 if (!addr)
342 return;
344 if (ceiling) {
345 ceiling &= PMD_MASK;
346 if (!ceiling)
347 return;
349 if (end - 1 > ceiling - 1)
350 end -= PMD_SIZE;
351 if (addr > end - 1)
352 return;
354 start = addr;
355 pgd = pgd_offset(tlb->mm, addr);
356 do {
357 next = pgd_addr_end(addr, end);
358 if (pgd_none_or_clear_bad(pgd))
359 continue;
360 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
361 } while (pgd++, addr = next, addr != end);
364 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
365 unsigned long floor, unsigned long ceiling)
367 while (vma) {
368 struct vm_area_struct *next = vma->vm_next;
369 unsigned long addr = vma->vm_start;
372 * Hide vma from rmap and truncate_pagecache before freeing
373 * pgtables
375 unlink_anon_vmas(vma);
376 unlink_file_vma(vma);
378 if (is_vm_hugetlb_page(vma)) {
379 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
380 floor, next? next->vm_start: ceiling);
381 } else {
383 * Optimization: gather nearby vmas into one call down
385 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
386 && !is_vm_hugetlb_page(next)) {
387 vma = next;
388 next = vma->vm_next;
389 unlink_anon_vmas(vma);
390 unlink_file_vma(vma);
392 free_pgd_range(tlb, addr, vma->vm_end,
393 floor, next? next->vm_start: ceiling);
395 vma = next;
399 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
401 pgtable_t new = pte_alloc_one(mm, address);
402 if (!new)
403 return -ENOMEM;
406 * Ensure all pte setup (eg. pte page lock and page clearing) are
407 * visible before the pte is made visible to other CPUs by being
408 * put into page tables.
410 * The other side of the story is the pointer chasing in the page
411 * table walking code (when walking the page table without locking;
412 * ie. most of the time). Fortunately, these data accesses consist
413 * of a chain of data-dependent loads, meaning most CPUs (alpha
414 * being the notable exception) will already guarantee loads are
415 * seen in-order. See the alpha page table accessors for the
416 * smp_read_barrier_depends() barriers in page table walking code.
418 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
420 spin_lock(&mm->page_table_lock);
421 if (!pmd_present(*pmd)) { /* Has another populated it ? */
422 mm->nr_ptes++;
423 pmd_populate(mm, pmd, new);
424 new = NULL;
426 spin_unlock(&mm->page_table_lock);
427 if (new)
428 pte_free(mm, new);
429 return 0;
432 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
434 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
435 if (!new)
436 return -ENOMEM;
438 smp_wmb(); /* See comment in __pte_alloc */
440 spin_lock(&init_mm.page_table_lock);
441 if (!pmd_present(*pmd)) { /* Has another populated it ? */
442 pmd_populate_kernel(&init_mm, pmd, new);
443 new = NULL;
445 spin_unlock(&init_mm.page_table_lock);
446 if (new)
447 pte_free_kernel(&init_mm, new);
448 return 0;
451 static inline void init_rss_vec(int *rss)
453 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
456 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
458 int i;
460 if (current->mm == mm)
461 sync_mm_rss(current, mm);
462 for (i = 0; i < NR_MM_COUNTERS; i++)
463 if (rss[i])
464 add_mm_counter(mm, i, rss[i]);
468 * This function is called to print an error when a bad pte
469 * is found. For example, we might have a PFN-mapped pte in
470 * a region that doesn't allow it.
472 * The calling function must still handle the error.
474 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
475 pte_t pte, struct page *page)
477 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
478 pud_t *pud = pud_offset(pgd, addr);
479 pmd_t *pmd = pmd_offset(pud, addr);
480 struct address_space *mapping;
481 pgoff_t index;
482 static unsigned long resume;
483 static unsigned long nr_shown;
484 static unsigned long nr_unshown;
487 * Allow a burst of 60 reports, then keep quiet for that minute;
488 * or allow a steady drip of one report per second.
490 if (nr_shown == 60) {
491 if (time_before(jiffies, resume)) {
492 nr_unshown++;
493 return;
495 if (nr_unshown) {
496 printk(KERN_ALERT
497 "BUG: Bad page map: %lu messages suppressed\n",
498 nr_unshown);
499 nr_unshown = 0;
501 nr_shown = 0;
503 if (nr_shown++ == 0)
504 resume = jiffies + 60 * HZ;
506 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
507 index = linear_page_index(vma, addr);
509 printk(KERN_ALERT
510 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
511 current->comm,
512 (long long)pte_val(pte), (long long)pmd_val(*pmd));
513 if (page)
514 dump_page(page);
515 printk(KERN_ALERT
516 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
517 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
519 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
521 if (vma->vm_ops)
522 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
523 (unsigned long)vma->vm_ops->fault);
524 if (vma->vm_file && vma->vm_file->f_op)
525 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
526 (unsigned long)vma->vm_file->f_op->mmap);
527 dump_stack();
528 add_taint(TAINT_BAD_PAGE);
531 static inline int is_cow_mapping(unsigned int flags)
533 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
536 #ifndef is_zero_pfn
537 static inline int is_zero_pfn(unsigned long pfn)
539 return pfn == zero_pfn;
541 #endif
543 #ifndef my_zero_pfn
544 static inline unsigned long my_zero_pfn(unsigned long addr)
546 return zero_pfn;
548 #endif
551 * vm_normal_page -- This function gets the "struct page" associated with a pte.
553 * "Special" mappings do not wish to be associated with a "struct page" (either
554 * it doesn't exist, or it exists but they don't want to touch it). In this
555 * case, NULL is returned here. "Normal" mappings do have a struct page.
557 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
558 * pte bit, in which case this function is trivial. Secondly, an architecture
559 * may not have a spare pte bit, which requires a more complicated scheme,
560 * described below.
562 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
563 * special mapping (even if there are underlying and valid "struct pages").
564 * COWed pages of a VM_PFNMAP are always normal.
566 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
567 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
568 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
569 * mapping will always honor the rule
571 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
573 * And for normal mappings this is false.
575 * This restricts such mappings to be a linear translation from virtual address
576 * to pfn. To get around this restriction, we allow arbitrary mappings so long
577 * as the vma is not a COW mapping; in that case, we know that all ptes are
578 * special (because none can have been COWed).
581 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
583 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
584 * page" backing, however the difference is that _all_ pages with a struct
585 * page (that is, those where pfn_valid is true) are refcounted and considered
586 * normal pages by the VM. The disadvantage is that pages are refcounted
587 * (which can be slower and simply not an option for some PFNMAP users). The
588 * advantage is that we don't have to follow the strict linearity rule of
589 * PFNMAP mappings in order to support COWable mappings.
592 #ifdef __HAVE_ARCH_PTE_SPECIAL
593 # define HAVE_PTE_SPECIAL 1
594 #else
595 # define HAVE_PTE_SPECIAL 0
596 #endif
597 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
598 pte_t pte)
600 unsigned long pfn = pte_pfn(pte);
602 if (HAVE_PTE_SPECIAL) {
603 if (likely(!pte_special(pte)))
604 goto check_pfn;
605 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
606 return NULL;
607 if (!is_zero_pfn(pfn))
608 print_bad_pte(vma, addr, pte, NULL);
609 return NULL;
612 /* !HAVE_PTE_SPECIAL case follows: */
614 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
615 if (vma->vm_flags & VM_MIXEDMAP) {
616 if (!pfn_valid(pfn))
617 return NULL;
618 goto out;
619 } else {
620 unsigned long off;
621 off = (addr - vma->vm_start) >> PAGE_SHIFT;
622 if (pfn == vma->vm_pgoff + off)
623 return NULL;
624 if (!is_cow_mapping(vma->vm_flags))
625 return NULL;
629 if (is_zero_pfn(pfn))
630 return NULL;
631 check_pfn:
632 if (unlikely(pfn > highest_memmap_pfn)) {
633 print_bad_pte(vma, addr, pte, NULL);
634 return NULL;
638 * NOTE! We still have PageReserved() pages in the page tables.
639 * eg. VDSO mappings can cause them to exist.
641 out:
642 return pfn_to_page(pfn);
646 * copy one vm_area from one task to the other. Assumes the page tables
647 * already present in the new task to be cleared in the whole range
648 * covered by this vma.
651 static inline unsigned long
652 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
653 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
654 unsigned long addr, int *rss)
656 unsigned long vm_flags = vma->vm_flags;
657 pte_t pte = *src_pte;
658 struct page *page;
660 /* pte contains position in swap or file, so copy. */
661 if (unlikely(!pte_present(pte))) {
662 if (!pte_file(pte)) {
663 swp_entry_t entry = pte_to_swp_entry(pte);
665 if (swap_duplicate(entry) < 0)
666 return entry.val;
668 /* make sure dst_mm is on swapoff's mmlist. */
669 if (unlikely(list_empty(&dst_mm->mmlist))) {
670 spin_lock(&mmlist_lock);
671 if (list_empty(&dst_mm->mmlist))
672 list_add(&dst_mm->mmlist,
673 &src_mm->mmlist);
674 spin_unlock(&mmlist_lock);
676 if (likely(!non_swap_entry(entry)))
677 rss[MM_SWAPENTS]++;
678 else if (is_write_migration_entry(entry) &&
679 is_cow_mapping(vm_flags)) {
681 * COW mappings require pages in both parent
682 * and child to be set to read.
684 make_migration_entry_read(&entry);
685 pte = swp_entry_to_pte(entry);
686 set_pte_at(src_mm, addr, src_pte, pte);
689 goto out_set_pte;
693 * If it's a COW mapping, write protect it both
694 * in the parent and the child
696 if (is_cow_mapping(vm_flags)) {
697 ptep_set_wrprotect(src_mm, addr, src_pte);
698 pte = pte_wrprotect(pte);
702 * If it's a shared mapping, mark it clean in
703 * the child
705 if (vm_flags & VM_SHARED)
706 pte = pte_mkclean(pte);
707 pte = pte_mkold(pte);
709 page = vm_normal_page(vma, addr, pte);
710 if (page) {
711 get_page(page);
712 page_dup_rmap(page);
713 if (PageAnon(page))
714 rss[MM_ANONPAGES]++;
715 else
716 rss[MM_FILEPAGES]++;
719 out_set_pte:
720 set_pte_at(dst_mm, addr, dst_pte, pte);
721 return 0;
724 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
725 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
726 unsigned long addr, unsigned long end)
728 pte_t *orig_src_pte, *orig_dst_pte;
729 pte_t *src_pte, *dst_pte;
730 spinlock_t *src_ptl, *dst_ptl;
731 int progress = 0;
732 int rss[NR_MM_COUNTERS];
733 swp_entry_t entry = (swp_entry_t){0};
735 again:
736 init_rss_vec(rss);
738 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
739 if (!dst_pte)
740 return -ENOMEM;
741 src_pte = pte_offset_map_nested(src_pmd, addr);
742 src_ptl = pte_lockptr(src_mm, src_pmd);
743 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
744 orig_src_pte = src_pte;
745 orig_dst_pte = dst_pte;
746 arch_enter_lazy_mmu_mode();
748 do {
750 * We are holding two locks at this point - either of them
751 * could generate latencies in another task on another CPU.
753 if (progress >= 32) {
754 progress = 0;
755 if (need_resched() ||
756 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
757 break;
759 if (pte_none(*src_pte)) {
760 progress++;
761 continue;
763 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
764 vma, addr, rss);
765 if (entry.val)
766 break;
767 progress += 8;
768 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
770 arch_leave_lazy_mmu_mode();
771 spin_unlock(src_ptl);
772 pte_unmap_nested(orig_src_pte);
773 add_mm_rss_vec(dst_mm, rss);
774 pte_unmap_unlock(orig_dst_pte, dst_ptl);
775 cond_resched();
777 if (entry.val) {
778 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
779 return -ENOMEM;
780 progress = 0;
782 if (addr != end)
783 goto again;
784 return 0;
787 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
788 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
789 unsigned long addr, unsigned long end)
791 pmd_t *src_pmd, *dst_pmd;
792 unsigned long next;
794 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
795 if (!dst_pmd)
796 return -ENOMEM;
797 src_pmd = pmd_offset(src_pud, addr);
798 do {
799 next = pmd_addr_end(addr, end);
800 if (pmd_none_or_clear_bad(src_pmd))
801 continue;
802 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
803 vma, addr, next))
804 return -ENOMEM;
805 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
806 return 0;
809 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
810 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
811 unsigned long addr, unsigned long end)
813 pud_t *src_pud, *dst_pud;
814 unsigned long next;
816 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
817 if (!dst_pud)
818 return -ENOMEM;
819 src_pud = pud_offset(src_pgd, addr);
820 do {
821 next = pud_addr_end(addr, end);
822 if (pud_none_or_clear_bad(src_pud))
823 continue;
824 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
825 vma, addr, next))
826 return -ENOMEM;
827 } while (dst_pud++, src_pud++, addr = next, addr != end);
828 return 0;
831 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
832 struct vm_area_struct *vma)
834 pgd_t *src_pgd, *dst_pgd;
835 unsigned long next;
836 unsigned long addr = vma->vm_start;
837 unsigned long end = vma->vm_end;
838 int ret;
841 * Don't copy ptes where a page fault will fill them correctly.
842 * Fork becomes much lighter when there are big shared or private
843 * readonly mappings. The tradeoff is that copy_page_range is more
844 * efficient than faulting.
846 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
847 if (!vma->anon_vma)
848 return 0;
851 if (is_vm_hugetlb_page(vma))
852 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
854 if (unlikely(is_pfn_mapping(vma))) {
856 * We do not free on error cases below as remove_vma
857 * gets called on error from higher level routine
859 ret = track_pfn_vma_copy(vma);
860 if (ret)
861 return ret;
865 * We need to invalidate the secondary MMU mappings only when
866 * there could be a permission downgrade on the ptes of the
867 * parent mm. And a permission downgrade will only happen if
868 * is_cow_mapping() returns true.
870 if (is_cow_mapping(vma->vm_flags))
871 mmu_notifier_invalidate_range_start(src_mm, addr, end);
873 ret = 0;
874 dst_pgd = pgd_offset(dst_mm, addr);
875 src_pgd = pgd_offset(src_mm, addr);
876 do {
877 next = pgd_addr_end(addr, end);
878 if (pgd_none_or_clear_bad(src_pgd))
879 continue;
880 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
881 vma, addr, next))) {
882 ret = -ENOMEM;
883 break;
885 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
887 if (is_cow_mapping(vma->vm_flags))
888 mmu_notifier_invalidate_range_end(src_mm,
889 vma->vm_start, end);
890 return ret;
893 static unsigned long zap_pte_range(struct mmu_gather *tlb,
894 struct vm_area_struct *vma, pmd_t *pmd,
895 unsigned long addr, unsigned long end,
896 long *zap_work, struct zap_details *details)
898 struct mm_struct *mm = tlb->mm;
899 pte_t *pte;
900 spinlock_t *ptl;
901 int rss[NR_MM_COUNTERS];
903 init_rss_vec(rss);
905 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
906 arch_enter_lazy_mmu_mode();
907 do {
908 pte_t ptent = *pte;
909 if (pte_none(ptent)) {
910 (*zap_work)--;
911 continue;
914 (*zap_work) -= PAGE_SIZE;
916 if (pte_present(ptent)) {
917 struct page *page;
919 page = vm_normal_page(vma, addr, ptent);
920 if (unlikely(details) && page) {
922 * unmap_shared_mapping_pages() wants to
923 * invalidate cache without truncating:
924 * unmap shared but keep private pages.
926 if (details->check_mapping &&
927 details->check_mapping != page->mapping)
928 continue;
930 * Each page->index must be checked when
931 * invalidating or truncating nonlinear.
933 if (details->nonlinear_vma &&
934 (page->index < details->first_index ||
935 page->index > details->last_index))
936 continue;
938 ptent = ptep_get_and_clear_full(mm, addr, pte,
939 tlb->fullmm);
940 tlb_remove_tlb_entry(tlb, pte, addr);
941 if (unlikely(!page))
942 continue;
943 if (unlikely(details) && details->nonlinear_vma
944 && linear_page_index(details->nonlinear_vma,
945 addr) != page->index)
946 set_pte_at(mm, addr, pte,
947 pgoff_to_pte(page->index));
948 if (PageAnon(page))
949 rss[MM_ANONPAGES]--;
950 else {
951 if (pte_dirty(ptent))
952 set_page_dirty(page);
953 if (pte_young(ptent) &&
954 likely(!VM_SequentialReadHint(vma)))
955 mark_page_accessed(page);
956 rss[MM_FILEPAGES]--;
958 page_remove_rmap(page);
959 if (unlikely(page_mapcount(page) < 0))
960 print_bad_pte(vma, addr, ptent, page);
961 tlb_remove_page(tlb, page);
962 continue;
965 * If details->check_mapping, we leave swap entries;
966 * if details->nonlinear_vma, we leave file entries.
968 if (unlikely(details))
969 continue;
970 if (pte_file(ptent)) {
971 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
972 print_bad_pte(vma, addr, ptent, NULL);
973 } else {
974 swp_entry_t entry = pte_to_swp_entry(ptent);
976 if (!non_swap_entry(entry))
977 rss[MM_SWAPENTS]--;
978 if (unlikely(!free_swap_and_cache(entry)))
979 print_bad_pte(vma, addr, ptent, NULL);
981 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
982 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
984 add_mm_rss_vec(mm, rss);
985 arch_leave_lazy_mmu_mode();
986 pte_unmap_unlock(pte - 1, ptl);
988 return addr;
991 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
992 struct vm_area_struct *vma, pud_t *pud,
993 unsigned long addr, unsigned long end,
994 long *zap_work, struct zap_details *details)
996 pmd_t *pmd;
997 unsigned long next;
999 pmd = pmd_offset(pud, addr);
1000 do {
1001 next = pmd_addr_end(addr, end);
1002 if (pmd_none_or_clear_bad(pmd)) {
1003 (*zap_work)--;
1004 continue;
1006 next = zap_pte_range(tlb, vma, pmd, addr, next,
1007 zap_work, details);
1008 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
1010 return addr;
1013 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1014 struct vm_area_struct *vma, pgd_t *pgd,
1015 unsigned long addr, unsigned long end,
1016 long *zap_work, struct zap_details *details)
1018 pud_t *pud;
1019 unsigned long next;
1021 pud = pud_offset(pgd, addr);
1022 do {
1023 next = pud_addr_end(addr, end);
1024 if (pud_none_or_clear_bad(pud)) {
1025 (*zap_work)--;
1026 continue;
1028 next = zap_pmd_range(tlb, vma, pud, addr, next,
1029 zap_work, details);
1030 } while (pud++, addr = next, (addr != end && *zap_work > 0));
1032 return addr;
1035 static unsigned long unmap_page_range(struct mmu_gather *tlb,
1036 struct vm_area_struct *vma,
1037 unsigned long addr, unsigned long end,
1038 long *zap_work, struct zap_details *details)
1040 pgd_t *pgd;
1041 unsigned long next;
1043 if (details && !details->check_mapping && !details->nonlinear_vma)
1044 details = NULL;
1046 BUG_ON(addr >= end);
1047 mem_cgroup_uncharge_start();
1048 tlb_start_vma(tlb, vma);
1049 pgd = pgd_offset(vma->vm_mm, addr);
1050 do {
1051 next = pgd_addr_end(addr, end);
1052 if (pgd_none_or_clear_bad(pgd)) {
1053 (*zap_work)--;
1054 continue;
1056 next = zap_pud_range(tlb, vma, pgd, addr, next,
1057 zap_work, details);
1058 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
1059 tlb_end_vma(tlb, vma);
1060 mem_cgroup_uncharge_end();
1062 return addr;
1065 #ifdef CONFIG_PREEMPT
1066 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
1067 #else
1068 /* No preempt: go for improved straight-line efficiency */
1069 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
1070 #endif
1073 * unmap_vmas - unmap a range of memory covered by a list of vma's
1074 * @tlbp: address of the caller's struct mmu_gather
1075 * @vma: the starting vma
1076 * @start_addr: virtual address at which to start unmapping
1077 * @end_addr: virtual address at which to end unmapping
1078 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1079 * @details: details of nonlinear truncation or shared cache invalidation
1081 * Returns the end address of the unmapping (restart addr if interrupted).
1083 * Unmap all pages in the vma list.
1085 * We aim to not hold locks for too long (for scheduling latency reasons).
1086 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
1087 * return the ending mmu_gather to the caller.
1089 * Only addresses between `start' and `end' will be unmapped.
1091 * The VMA list must be sorted in ascending virtual address order.
1093 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1094 * range after unmap_vmas() returns. So the only responsibility here is to
1095 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1096 * drops the lock and schedules.
1098 unsigned long unmap_vmas(struct mmu_gather **tlbp,
1099 struct vm_area_struct *vma, unsigned long start_addr,
1100 unsigned long end_addr, unsigned long *nr_accounted,
1101 struct zap_details *details)
1103 long zap_work = ZAP_BLOCK_SIZE;
1104 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
1105 int tlb_start_valid = 0;
1106 unsigned long start = start_addr;
1107 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
1108 int fullmm = (*tlbp)->fullmm;
1109 struct mm_struct *mm = vma->vm_mm;
1111 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1112 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1113 unsigned long end;
1115 start = max(vma->vm_start, start_addr);
1116 if (start >= vma->vm_end)
1117 continue;
1118 end = min(vma->vm_end, end_addr);
1119 if (end <= vma->vm_start)
1120 continue;
1122 if (vma->vm_flags & VM_ACCOUNT)
1123 *nr_accounted += (end - start) >> PAGE_SHIFT;
1125 if (unlikely(is_pfn_mapping(vma)))
1126 untrack_pfn_vma(vma, 0, 0);
1128 while (start != end) {
1129 if (!tlb_start_valid) {
1130 tlb_start = start;
1131 tlb_start_valid = 1;
1134 if (unlikely(is_vm_hugetlb_page(vma))) {
1136 * It is undesirable to test vma->vm_file as it
1137 * should be non-null for valid hugetlb area.
1138 * However, vm_file will be NULL in the error
1139 * cleanup path of do_mmap_pgoff. When
1140 * hugetlbfs ->mmap method fails,
1141 * do_mmap_pgoff() nullifies vma->vm_file
1142 * before calling this function to clean up.
1143 * Since no pte has actually been setup, it is
1144 * safe to do nothing in this case.
1146 if (vma->vm_file) {
1147 unmap_hugepage_range(vma, start, end, NULL);
1148 zap_work -= (end - start) /
1149 pages_per_huge_page(hstate_vma(vma));
1152 start = end;
1153 } else
1154 start = unmap_page_range(*tlbp, vma,
1155 start, end, &zap_work, details);
1157 if (zap_work > 0) {
1158 BUG_ON(start != end);
1159 break;
1162 tlb_finish_mmu(*tlbp, tlb_start, start);
1164 if (need_resched() ||
1165 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1166 if (i_mmap_lock) {
1167 *tlbp = NULL;
1168 goto out;
1170 cond_resched();
1173 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1174 tlb_start_valid = 0;
1175 zap_work = ZAP_BLOCK_SIZE;
1178 out:
1179 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1180 return start; /* which is now the end (or restart) address */
1184 * zap_page_range - remove user pages in a given range
1185 * @vma: vm_area_struct holding the applicable pages
1186 * @address: starting address of pages to zap
1187 * @size: number of bytes to zap
1188 * @details: details of nonlinear truncation or shared cache invalidation
1190 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1191 unsigned long size, struct zap_details *details)
1193 struct mm_struct *mm = vma->vm_mm;
1194 struct mmu_gather *tlb;
1195 unsigned long end = address + size;
1196 unsigned long nr_accounted = 0;
1198 lru_add_drain();
1199 tlb = tlb_gather_mmu(mm, 0);
1200 update_hiwater_rss(mm);
1201 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1202 if (tlb)
1203 tlb_finish_mmu(tlb, address, end);
1204 return end;
1208 * zap_vma_ptes - remove ptes mapping the vma
1209 * @vma: vm_area_struct holding ptes to be zapped
1210 * @address: starting address of pages to zap
1211 * @size: number of bytes to zap
1213 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1215 * The entire address range must be fully contained within the vma.
1217 * Returns 0 if successful.
1219 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1220 unsigned long size)
1222 if (address < vma->vm_start || address + size > vma->vm_end ||
1223 !(vma->vm_flags & VM_PFNMAP))
1224 return -1;
1225 zap_page_range(vma, address, size, NULL);
1226 return 0;
1228 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1231 * follow_page - look up a page descriptor from a user-virtual address
1232 * @vma: vm_area_struct mapping @address
1233 * @address: virtual address to look up
1234 * @flags: flags modifying lookup behaviour
1236 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1238 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1239 * an error pointer if there is a mapping to something not represented
1240 * by a page descriptor (see also vm_normal_page()).
1242 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1243 unsigned int flags)
1245 pgd_t *pgd;
1246 pud_t *pud;
1247 pmd_t *pmd;
1248 pte_t *ptep, pte;
1249 spinlock_t *ptl;
1250 struct page *page;
1251 struct mm_struct *mm = vma->vm_mm;
1253 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1254 if (!IS_ERR(page)) {
1255 BUG_ON(flags & FOLL_GET);
1256 goto out;
1259 page = NULL;
1260 pgd = pgd_offset(mm, address);
1261 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1262 goto no_page_table;
1264 pud = pud_offset(pgd, address);
1265 if (pud_none(*pud))
1266 goto no_page_table;
1267 if (pud_huge(*pud)) {
1268 BUG_ON(flags & FOLL_GET);
1269 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1270 goto out;
1272 if (unlikely(pud_bad(*pud)))
1273 goto no_page_table;
1275 pmd = pmd_offset(pud, address);
1276 if (pmd_none(*pmd))
1277 goto no_page_table;
1278 if (pmd_huge(*pmd)) {
1279 BUG_ON(flags & FOLL_GET);
1280 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1281 goto out;
1283 if (unlikely(pmd_bad(*pmd)))
1284 goto no_page_table;
1286 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1288 pte = *ptep;
1289 if (!pte_present(pte))
1290 goto no_page;
1291 if ((flags & FOLL_WRITE) && !pte_write(pte))
1292 goto unlock;
1294 page = vm_normal_page(vma, address, pte);
1295 if (unlikely(!page)) {
1296 if ((flags & FOLL_DUMP) ||
1297 !is_zero_pfn(pte_pfn(pte)))
1298 goto bad_page;
1299 page = pte_page(pte);
1302 if (flags & FOLL_GET)
1303 get_page(page);
1304 if (flags & FOLL_TOUCH) {
1305 if ((flags & FOLL_WRITE) &&
1306 !pte_dirty(pte) && !PageDirty(page))
1307 set_page_dirty(page);
1309 * pte_mkyoung() would be more correct here, but atomic care
1310 * is needed to avoid losing the dirty bit: it is easier to use
1311 * mark_page_accessed().
1313 mark_page_accessed(page);
1315 unlock:
1316 pte_unmap_unlock(ptep, ptl);
1317 out:
1318 return page;
1320 bad_page:
1321 pte_unmap_unlock(ptep, ptl);
1322 return ERR_PTR(-EFAULT);
1324 no_page:
1325 pte_unmap_unlock(ptep, ptl);
1326 if (!pte_none(pte))
1327 return page;
1329 no_page_table:
1331 * When core dumping an enormous anonymous area that nobody
1332 * has touched so far, we don't want to allocate unnecessary pages or
1333 * page tables. Return error instead of NULL to skip handle_mm_fault,
1334 * then get_dump_page() will return NULL to leave a hole in the dump.
1335 * But we can only make this optimization where a hole would surely
1336 * be zero-filled if handle_mm_fault() actually did handle it.
1338 if ((flags & FOLL_DUMP) &&
1339 (!vma->vm_ops || !vma->vm_ops->fault))
1340 return ERR_PTR(-EFAULT);
1341 return page;
1344 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1345 unsigned long start, int nr_pages, unsigned int gup_flags,
1346 struct page **pages, struct vm_area_struct **vmas)
1348 int i;
1349 unsigned long vm_flags;
1351 if (nr_pages <= 0)
1352 return 0;
1354 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1357 * Require read or write permissions.
1358 * If FOLL_FORCE is set, we only require the "MAY" flags.
1360 vm_flags = (gup_flags & FOLL_WRITE) ?
1361 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1362 vm_flags &= (gup_flags & FOLL_FORCE) ?
1363 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1364 i = 0;
1366 do {
1367 struct vm_area_struct *vma;
1369 vma = find_extend_vma(mm, start);
1370 if (!vma && in_gate_area(tsk, start)) {
1371 unsigned long pg = start & PAGE_MASK;
1372 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1373 pgd_t *pgd;
1374 pud_t *pud;
1375 pmd_t *pmd;
1376 pte_t *pte;
1378 /* user gate pages are read-only */
1379 if (gup_flags & FOLL_WRITE)
1380 return i ? : -EFAULT;
1381 if (pg > TASK_SIZE)
1382 pgd = pgd_offset_k(pg);
1383 else
1384 pgd = pgd_offset_gate(mm, pg);
1385 BUG_ON(pgd_none(*pgd));
1386 pud = pud_offset(pgd, pg);
1387 BUG_ON(pud_none(*pud));
1388 pmd = pmd_offset(pud, pg);
1389 if (pmd_none(*pmd))
1390 return i ? : -EFAULT;
1391 pte = pte_offset_map(pmd, pg);
1392 if (pte_none(*pte)) {
1393 pte_unmap(pte);
1394 return i ? : -EFAULT;
1396 if (pages) {
1397 struct page *page = vm_normal_page(gate_vma, start, *pte);
1398 pages[i] = page;
1399 if (page)
1400 get_page(page);
1402 pte_unmap(pte);
1403 if (vmas)
1404 vmas[i] = gate_vma;
1405 i++;
1406 start += PAGE_SIZE;
1407 nr_pages--;
1408 continue;
1411 if (!vma ||
1412 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1413 !(vm_flags & vma->vm_flags))
1414 return i ? : -EFAULT;
1416 if (is_vm_hugetlb_page(vma)) {
1417 i = follow_hugetlb_page(mm, vma, pages, vmas,
1418 &start, &nr_pages, i, gup_flags);
1419 continue;
1422 do {
1423 struct page *page;
1424 unsigned int foll_flags = gup_flags;
1427 * If we have a pending SIGKILL, don't keep faulting
1428 * pages and potentially allocating memory.
1430 if (unlikely(fatal_signal_pending(current)))
1431 return i ? i : -ERESTARTSYS;
1433 cond_resched();
1434 while (!(page = follow_page(vma, start, foll_flags))) {
1435 int ret;
1437 ret = handle_mm_fault(mm, vma, start,
1438 (foll_flags & FOLL_WRITE) ?
1439 FAULT_FLAG_WRITE : 0);
1441 if (ret & VM_FAULT_ERROR) {
1442 if (ret & VM_FAULT_OOM)
1443 return i ? i : -ENOMEM;
1444 if (ret &
1445 (VM_FAULT_HWPOISON|VM_FAULT_SIGBUS))
1446 return i ? i : -EFAULT;
1447 BUG();
1449 if (ret & VM_FAULT_MAJOR)
1450 tsk->maj_flt++;
1451 else
1452 tsk->min_flt++;
1455 * The VM_FAULT_WRITE bit tells us that
1456 * do_wp_page has broken COW when necessary,
1457 * even if maybe_mkwrite decided not to set
1458 * pte_write. We can thus safely do subsequent
1459 * page lookups as if they were reads. But only
1460 * do so when looping for pte_write is futile:
1461 * in some cases userspace may also be wanting
1462 * to write to the gotten user page, which a
1463 * read fault here might prevent (a readonly
1464 * page might get reCOWed by userspace write).
1466 if ((ret & VM_FAULT_WRITE) &&
1467 !(vma->vm_flags & VM_WRITE))
1468 foll_flags &= ~FOLL_WRITE;
1470 cond_resched();
1472 if (IS_ERR(page))
1473 return i ? i : PTR_ERR(page);
1474 if (pages) {
1475 pages[i] = page;
1477 flush_anon_page(vma, page, start);
1478 flush_dcache_page(page);
1480 if (vmas)
1481 vmas[i] = vma;
1482 i++;
1483 start += PAGE_SIZE;
1484 nr_pages--;
1485 } while (nr_pages && start < vma->vm_end);
1486 } while (nr_pages);
1487 return i;
1491 * get_user_pages() - pin user pages in memory
1492 * @tsk: task_struct of target task
1493 * @mm: mm_struct of target mm
1494 * @start: starting user address
1495 * @nr_pages: number of pages from start to pin
1496 * @write: whether pages will be written to by the caller
1497 * @force: whether to force write access even if user mapping is
1498 * readonly. This will result in the page being COWed even
1499 * in MAP_SHARED mappings. You do not want this.
1500 * @pages: array that receives pointers to the pages pinned.
1501 * Should be at least nr_pages long. Or NULL, if caller
1502 * only intends to ensure the pages are faulted in.
1503 * @vmas: array of pointers to vmas corresponding to each page.
1504 * Or NULL if the caller does not require them.
1506 * Returns number of pages pinned. This may be fewer than the number
1507 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1508 * were pinned, returns -errno. Each page returned must be released
1509 * with a put_page() call when it is finished with. vmas will only
1510 * remain valid while mmap_sem is held.
1512 * Must be called with mmap_sem held for read or write.
1514 * get_user_pages walks a process's page tables and takes a reference to
1515 * each struct page that each user address corresponds to at a given
1516 * instant. That is, it takes the page that would be accessed if a user
1517 * thread accesses the given user virtual address at that instant.
1519 * This does not guarantee that the page exists in the user mappings when
1520 * get_user_pages returns, and there may even be a completely different
1521 * page there in some cases (eg. if mmapped pagecache has been invalidated
1522 * and subsequently re faulted). However it does guarantee that the page
1523 * won't be freed completely. And mostly callers simply care that the page
1524 * contains data that was valid *at some point in time*. Typically, an IO
1525 * or similar operation cannot guarantee anything stronger anyway because
1526 * locks can't be held over the syscall boundary.
1528 * If write=0, the page must not be written to. If the page is written to,
1529 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1530 * after the page is finished with, and before put_page is called.
1532 * get_user_pages is typically used for fewer-copy IO operations, to get a
1533 * handle on the memory by some means other than accesses via the user virtual
1534 * addresses. The pages may be submitted for DMA to devices or accessed via
1535 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1536 * use the correct cache flushing APIs.
1538 * See also get_user_pages_fast, for performance critical applications.
1540 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1541 unsigned long start, int nr_pages, int write, int force,
1542 struct page **pages, struct vm_area_struct **vmas)
1544 int flags = FOLL_TOUCH;
1546 if (pages)
1547 flags |= FOLL_GET;
1548 if (write)
1549 flags |= FOLL_WRITE;
1550 if (force)
1551 flags |= FOLL_FORCE;
1553 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
1555 EXPORT_SYMBOL(get_user_pages);
1558 * get_dump_page() - pin user page in memory while writing it to core dump
1559 * @addr: user address
1561 * Returns struct page pointer of user page pinned for dump,
1562 * to be freed afterwards by page_cache_release() or put_page().
1564 * Returns NULL on any kind of failure - a hole must then be inserted into
1565 * the corefile, to preserve alignment with its headers; and also returns
1566 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1567 * allowing a hole to be left in the corefile to save diskspace.
1569 * Called without mmap_sem, but after all other threads have been killed.
1571 #ifdef CONFIG_ELF_CORE
1572 struct page *get_dump_page(unsigned long addr)
1574 struct vm_area_struct *vma;
1575 struct page *page;
1577 if (__get_user_pages(current, current->mm, addr, 1,
1578 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma) < 1)
1579 return NULL;
1580 flush_cache_page(vma, addr, page_to_pfn(page));
1581 return page;
1583 #endif /* CONFIG_ELF_CORE */
1585 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1586 spinlock_t **ptl)
1588 pgd_t * pgd = pgd_offset(mm, addr);
1589 pud_t * pud = pud_alloc(mm, pgd, addr);
1590 if (pud) {
1591 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1592 if (pmd)
1593 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1595 return NULL;
1599 * This is the old fallback for page remapping.
1601 * For historical reasons, it only allows reserved pages. Only
1602 * old drivers should use this, and they needed to mark their
1603 * pages reserved for the old functions anyway.
1605 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1606 struct page *page, pgprot_t prot)
1608 struct mm_struct *mm = vma->vm_mm;
1609 int retval;
1610 pte_t *pte;
1611 spinlock_t *ptl;
1613 retval = -EINVAL;
1614 if (PageAnon(page))
1615 goto out;
1616 retval = -ENOMEM;
1617 flush_dcache_page(page);
1618 pte = get_locked_pte(mm, addr, &ptl);
1619 if (!pte)
1620 goto out;
1621 retval = -EBUSY;
1622 if (!pte_none(*pte))
1623 goto out_unlock;
1625 /* Ok, finally just insert the thing.. */
1626 get_page(page);
1627 inc_mm_counter_fast(mm, MM_FILEPAGES);
1628 page_add_file_rmap(page);
1629 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1631 retval = 0;
1632 pte_unmap_unlock(pte, ptl);
1633 return retval;
1634 out_unlock:
1635 pte_unmap_unlock(pte, ptl);
1636 out:
1637 return retval;
1641 * vm_insert_page - insert single page into user vma
1642 * @vma: user vma to map to
1643 * @addr: target user address of this page
1644 * @page: source kernel page
1646 * This allows drivers to insert individual pages they've allocated
1647 * into a user vma.
1649 * The page has to be a nice clean _individual_ kernel allocation.
1650 * If you allocate a compound page, you need to have marked it as
1651 * such (__GFP_COMP), or manually just split the page up yourself
1652 * (see split_page()).
1654 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1655 * took an arbitrary page protection parameter. This doesn't allow
1656 * that. Your vma protection will have to be set up correctly, which
1657 * means that if you want a shared writable mapping, you'd better
1658 * ask for a shared writable mapping!
1660 * The page does not need to be reserved.
1662 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1663 struct page *page)
1665 if (addr < vma->vm_start || addr >= vma->vm_end)
1666 return -EFAULT;
1667 if (!page_count(page))
1668 return -EINVAL;
1669 vma->vm_flags |= VM_INSERTPAGE;
1670 return insert_page(vma, addr, page, vma->vm_page_prot);
1672 EXPORT_SYMBOL(vm_insert_page);
1674 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1675 unsigned long pfn, pgprot_t prot)
1677 struct mm_struct *mm = vma->vm_mm;
1678 int retval;
1679 pte_t *pte, entry;
1680 spinlock_t *ptl;
1682 retval = -ENOMEM;
1683 pte = get_locked_pte(mm, addr, &ptl);
1684 if (!pte)
1685 goto out;
1686 retval = -EBUSY;
1687 if (!pte_none(*pte))
1688 goto out_unlock;
1690 /* Ok, finally just insert the thing.. */
1691 entry = pte_mkspecial(pfn_pte(pfn, prot));
1692 set_pte_at(mm, addr, pte, entry);
1693 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1695 retval = 0;
1696 out_unlock:
1697 pte_unmap_unlock(pte, ptl);
1698 out:
1699 return retval;
1703 * vm_insert_pfn - insert single pfn into user vma
1704 * @vma: user vma to map to
1705 * @addr: target user address of this page
1706 * @pfn: source kernel pfn
1708 * Similar to vm_inert_page, this allows drivers to insert individual pages
1709 * they've allocated into a user vma. Same comments apply.
1711 * This function should only be called from a vm_ops->fault handler, and
1712 * in that case the handler should return NULL.
1714 * vma cannot be a COW mapping.
1716 * As this is called only for pages that do not currently exist, we
1717 * do not need to flush old virtual caches or the TLB.
1719 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1720 unsigned long pfn)
1722 int ret;
1723 pgprot_t pgprot = vma->vm_page_prot;
1725 * Technically, architectures with pte_special can avoid all these
1726 * restrictions (same for remap_pfn_range). However we would like
1727 * consistency in testing and feature parity among all, so we should
1728 * try to keep these invariants in place for everybody.
1730 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1731 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1732 (VM_PFNMAP|VM_MIXEDMAP));
1733 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1734 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1736 if (addr < vma->vm_start || addr >= vma->vm_end)
1737 return -EFAULT;
1738 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
1739 return -EINVAL;
1741 ret = insert_pfn(vma, addr, pfn, pgprot);
1743 if (ret)
1744 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1746 return ret;
1748 EXPORT_SYMBOL(vm_insert_pfn);
1750 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1751 unsigned long pfn)
1753 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1755 if (addr < vma->vm_start || addr >= vma->vm_end)
1756 return -EFAULT;
1759 * If we don't have pte special, then we have to use the pfn_valid()
1760 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1761 * refcount the page if pfn_valid is true (hence insert_page rather
1762 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1763 * without pte special, it would there be refcounted as a normal page.
1765 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1766 struct page *page;
1768 page = pfn_to_page(pfn);
1769 return insert_page(vma, addr, page, vma->vm_page_prot);
1771 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1773 EXPORT_SYMBOL(vm_insert_mixed);
1776 * maps a range of physical memory into the requested pages. the old
1777 * mappings are removed. any references to nonexistent pages results
1778 * in null mappings (currently treated as "copy-on-access")
1780 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1781 unsigned long addr, unsigned long end,
1782 unsigned long pfn, pgprot_t prot)
1784 pte_t *pte;
1785 spinlock_t *ptl;
1787 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1788 if (!pte)
1789 return -ENOMEM;
1790 arch_enter_lazy_mmu_mode();
1791 do {
1792 BUG_ON(!pte_none(*pte));
1793 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1794 pfn++;
1795 } while (pte++, addr += PAGE_SIZE, addr != end);
1796 arch_leave_lazy_mmu_mode();
1797 pte_unmap_unlock(pte - 1, ptl);
1798 return 0;
1801 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1802 unsigned long addr, unsigned long end,
1803 unsigned long pfn, pgprot_t prot)
1805 pmd_t *pmd;
1806 unsigned long next;
1808 pfn -= addr >> PAGE_SHIFT;
1809 pmd = pmd_alloc(mm, pud, addr);
1810 if (!pmd)
1811 return -ENOMEM;
1812 do {
1813 next = pmd_addr_end(addr, end);
1814 if (remap_pte_range(mm, pmd, addr, next,
1815 pfn + (addr >> PAGE_SHIFT), prot))
1816 return -ENOMEM;
1817 } while (pmd++, addr = next, addr != end);
1818 return 0;
1821 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1822 unsigned long addr, unsigned long end,
1823 unsigned long pfn, pgprot_t prot)
1825 pud_t *pud;
1826 unsigned long next;
1828 pfn -= addr >> PAGE_SHIFT;
1829 pud = pud_alloc(mm, pgd, addr);
1830 if (!pud)
1831 return -ENOMEM;
1832 do {
1833 next = pud_addr_end(addr, end);
1834 if (remap_pmd_range(mm, pud, addr, next,
1835 pfn + (addr >> PAGE_SHIFT), prot))
1836 return -ENOMEM;
1837 } while (pud++, addr = next, addr != end);
1838 return 0;
1842 * remap_pfn_range - remap kernel memory to userspace
1843 * @vma: user vma to map to
1844 * @addr: target user address to start at
1845 * @pfn: physical address of kernel memory
1846 * @size: size of map area
1847 * @prot: page protection flags for this mapping
1849 * Note: this is only safe if the mm semaphore is held when called.
1851 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1852 unsigned long pfn, unsigned long size, pgprot_t prot)
1854 pgd_t *pgd;
1855 unsigned long next;
1856 unsigned long end = addr + PAGE_ALIGN(size);
1857 struct mm_struct *mm = vma->vm_mm;
1858 int err;
1861 * Physically remapped pages are special. Tell the
1862 * rest of the world about it:
1863 * VM_IO tells people not to look at these pages
1864 * (accesses can have side effects).
1865 * VM_RESERVED is specified all over the place, because
1866 * in 2.4 it kept swapout's vma scan off this vma; but
1867 * in 2.6 the LRU scan won't even find its pages, so this
1868 * flag means no more than count its pages in reserved_vm,
1869 * and omit it from core dump, even when VM_IO turned off.
1870 * VM_PFNMAP tells the core MM that the base pages are just
1871 * raw PFN mappings, and do not have a "struct page" associated
1872 * with them.
1874 * There's a horrible special case to handle copy-on-write
1875 * behaviour that some programs depend on. We mark the "original"
1876 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1878 if (addr == vma->vm_start && end == vma->vm_end) {
1879 vma->vm_pgoff = pfn;
1880 vma->vm_flags |= VM_PFN_AT_MMAP;
1881 } else if (is_cow_mapping(vma->vm_flags))
1882 return -EINVAL;
1884 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1886 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
1887 if (err) {
1889 * To indicate that track_pfn related cleanup is not
1890 * needed from higher level routine calling unmap_vmas
1892 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
1893 vma->vm_flags &= ~VM_PFN_AT_MMAP;
1894 return -EINVAL;
1897 BUG_ON(addr >= end);
1898 pfn -= addr >> PAGE_SHIFT;
1899 pgd = pgd_offset(mm, addr);
1900 flush_cache_range(vma, addr, end);
1901 do {
1902 next = pgd_addr_end(addr, end);
1903 err = remap_pud_range(mm, pgd, addr, next,
1904 pfn + (addr >> PAGE_SHIFT), prot);
1905 if (err)
1906 break;
1907 } while (pgd++, addr = next, addr != end);
1909 if (err)
1910 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1912 return err;
1914 EXPORT_SYMBOL(remap_pfn_range);
1916 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1917 unsigned long addr, unsigned long end,
1918 pte_fn_t fn, void *data)
1920 pte_t *pte;
1921 int err;
1922 pgtable_t token;
1923 spinlock_t *uninitialized_var(ptl);
1925 pte = (mm == &init_mm) ?
1926 pte_alloc_kernel(pmd, addr) :
1927 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1928 if (!pte)
1929 return -ENOMEM;
1931 BUG_ON(pmd_huge(*pmd));
1933 arch_enter_lazy_mmu_mode();
1935 token = pmd_pgtable(*pmd);
1937 do {
1938 err = fn(pte++, token, addr, data);
1939 if (err)
1940 break;
1941 } while (addr += PAGE_SIZE, addr != end);
1943 arch_leave_lazy_mmu_mode();
1945 if (mm != &init_mm)
1946 pte_unmap_unlock(pte-1, ptl);
1947 return err;
1950 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1951 unsigned long addr, unsigned long end,
1952 pte_fn_t fn, void *data)
1954 pmd_t *pmd;
1955 unsigned long next;
1956 int err;
1958 BUG_ON(pud_huge(*pud));
1960 pmd = pmd_alloc(mm, pud, addr);
1961 if (!pmd)
1962 return -ENOMEM;
1963 do {
1964 next = pmd_addr_end(addr, end);
1965 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1966 if (err)
1967 break;
1968 } while (pmd++, addr = next, addr != end);
1969 return err;
1972 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1973 unsigned long addr, unsigned long end,
1974 pte_fn_t fn, void *data)
1976 pud_t *pud;
1977 unsigned long next;
1978 int err;
1980 pud = pud_alloc(mm, pgd, addr);
1981 if (!pud)
1982 return -ENOMEM;
1983 do {
1984 next = pud_addr_end(addr, end);
1985 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1986 if (err)
1987 break;
1988 } while (pud++, addr = next, addr != end);
1989 return err;
1993 * Scan a region of virtual memory, filling in page tables as necessary
1994 * and calling a provided function on each leaf page table.
1996 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1997 unsigned long size, pte_fn_t fn, void *data)
1999 pgd_t *pgd;
2000 unsigned long next;
2001 unsigned long start = addr, end = addr + size;
2002 int err;
2004 BUG_ON(addr >= end);
2005 mmu_notifier_invalidate_range_start(mm, start, end);
2006 pgd = pgd_offset(mm, addr);
2007 do {
2008 next = pgd_addr_end(addr, end);
2009 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2010 if (err)
2011 break;
2012 } while (pgd++, addr = next, addr != end);
2013 mmu_notifier_invalidate_range_end(mm, start, end);
2014 return err;
2016 EXPORT_SYMBOL_GPL(apply_to_page_range);
2019 * handle_pte_fault chooses page fault handler according to an entry
2020 * which was read non-atomically. Before making any commitment, on
2021 * those architectures or configurations (e.g. i386 with PAE) which
2022 * might give a mix of unmatched parts, do_swap_page and do_file_page
2023 * must check under lock before unmapping the pte and proceeding
2024 * (but do_wp_page is only called after already making such a check;
2025 * and do_anonymous_page and do_no_page can safely check later on).
2027 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2028 pte_t *page_table, pte_t orig_pte)
2030 int same = 1;
2031 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2032 if (sizeof(pte_t) > sizeof(unsigned long)) {
2033 spinlock_t *ptl = pte_lockptr(mm, pmd);
2034 spin_lock(ptl);
2035 same = pte_same(*page_table, orig_pte);
2036 spin_unlock(ptl);
2038 #endif
2039 pte_unmap(page_table);
2040 return same;
2044 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
2045 * servicing faults for write access. In the normal case, do always want
2046 * pte_mkwrite. But get_user_pages can cause write faults for mappings
2047 * that do not have writing enabled, when used by access_process_vm.
2049 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
2051 if (likely(vma->vm_flags & VM_WRITE))
2052 pte = pte_mkwrite(pte);
2053 return pte;
2056 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2059 * If the source page was a PFN mapping, we don't have
2060 * a "struct page" for it. We do a best-effort copy by
2061 * just copying from the original user address. If that
2062 * fails, we just zero-fill it. Live with it.
2064 if (unlikely(!src)) {
2065 void *kaddr = kmap_atomic(dst, KM_USER0);
2066 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2069 * This really shouldn't fail, because the page is there
2070 * in the page tables. But it might just be unreadable,
2071 * in which case we just give up and fill the result with
2072 * zeroes.
2074 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2075 memset(kaddr, 0, PAGE_SIZE);
2076 kunmap_atomic(kaddr, KM_USER0);
2077 flush_dcache_page(dst);
2078 } else
2079 copy_user_highpage(dst, src, va, vma);
2083 * This routine handles present pages, when users try to write
2084 * to a shared page. It is done by copying the page to a new address
2085 * and decrementing the shared-page counter for the old page.
2087 * Note that this routine assumes that the protection checks have been
2088 * done by the caller (the low-level page fault routine in most cases).
2089 * Thus we can safely just mark it writable once we've done any necessary
2090 * COW.
2092 * We also mark the page dirty at this point even though the page will
2093 * change only once the write actually happens. This avoids a few races,
2094 * and potentially makes it more efficient.
2096 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2097 * but allow concurrent faults), with pte both mapped and locked.
2098 * We return with mmap_sem still held, but pte unmapped and unlocked.
2100 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2101 unsigned long address, pte_t *page_table, pmd_t *pmd,
2102 spinlock_t *ptl, pte_t orig_pte)
2104 struct page *old_page, *new_page;
2105 pte_t entry;
2106 int reuse = 0, ret = 0;
2107 int page_mkwrite = 0;
2108 struct page *dirty_page = NULL;
2110 old_page = vm_normal_page(vma, address, orig_pte);
2111 if (!old_page) {
2113 * VM_MIXEDMAP !pfn_valid() case
2115 * We should not cow pages in a shared writeable mapping.
2116 * Just mark the pages writable as we can't do any dirty
2117 * accounting on raw pfn maps.
2119 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2120 (VM_WRITE|VM_SHARED))
2121 goto reuse;
2122 goto gotten;
2126 * Take out anonymous pages first, anonymous shared vmas are
2127 * not dirty accountable.
2129 if (PageAnon(old_page) && !PageKsm(old_page)) {
2130 if (!trylock_page(old_page)) {
2131 page_cache_get(old_page);
2132 pte_unmap_unlock(page_table, ptl);
2133 lock_page(old_page);
2134 page_table = pte_offset_map_lock(mm, pmd, address,
2135 &ptl);
2136 if (!pte_same(*page_table, orig_pte)) {
2137 unlock_page(old_page);
2138 page_cache_release(old_page);
2139 goto unlock;
2141 page_cache_release(old_page);
2143 reuse = reuse_swap_page(old_page);
2144 if (reuse)
2146 * The page is all ours. Move it to our anon_vma so
2147 * the rmap code will not search our parent or siblings.
2148 * Protected against the rmap code by the page lock.
2150 page_move_anon_rmap(old_page, vma, address);
2151 unlock_page(old_page);
2152 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2153 (VM_WRITE|VM_SHARED))) {
2155 * Only catch write-faults on shared writable pages,
2156 * read-only shared pages can get COWed by
2157 * get_user_pages(.write=1, .force=1).
2159 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2160 struct vm_fault vmf;
2161 int tmp;
2163 vmf.virtual_address = (void __user *)(address &
2164 PAGE_MASK);
2165 vmf.pgoff = old_page->index;
2166 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2167 vmf.page = old_page;
2170 * Notify the address space that the page is about to
2171 * become writable so that it can prohibit this or wait
2172 * for the page to get into an appropriate state.
2174 * We do this without the lock held, so that it can
2175 * sleep if it needs to.
2177 page_cache_get(old_page);
2178 pte_unmap_unlock(page_table, ptl);
2180 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2181 if (unlikely(tmp &
2182 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2183 ret = tmp;
2184 goto unwritable_page;
2186 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2187 lock_page(old_page);
2188 if (!old_page->mapping) {
2189 ret = 0; /* retry the fault */
2190 unlock_page(old_page);
2191 goto unwritable_page;
2193 } else
2194 VM_BUG_ON(!PageLocked(old_page));
2197 * Since we dropped the lock we need to revalidate
2198 * the PTE as someone else may have changed it. If
2199 * they did, we just return, as we can count on the
2200 * MMU to tell us if they didn't also make it writable.
2202 page_table = pte_offset_map_lock(mm, pmd, address,
2203 &ptl);
2204 if (!pte_same(*page_table, orig_pte)) {
2205 unlock_page(old_page);
2206 page_cache_release(old_page);
2207 goto unlock;
2210 page_mkwrite = 1;
2212 dirty_page = old_page;
2213 get_page(dirty_page);
2214 reuse = 1;
2217 if (reuse) {
2218 reuse:
2219 flush_cache_page(vma, address, pte_pfn(orig_pte));
2220 entry = pte_mkyoung(orig_pte);
2221 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2222 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2223 update_mmu_cache(vma, address, page_table);
2224 ret |= VM_FAULT_WRITE;
2225 goto unlock;
2229 * Ok, we need to copy. Oh, well..
2231 page_cache_get(old_page);
2232 gotten:
2233 pte_unmap_unlock(page_table, ptl);
2235 if (unlikely(anon_vma_prepare(vma)))
2236 goto oom;
2238 if (is_zero_pfn(pte_pfn(orig_pte))) {
2239 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2240 if (!new_page)
2241 goto oom;
2242 } else {
2243 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2244 if (!new_page)
2245 goto oom;
2246 cow_user_page(new_page, old_page, address, vma);
2248 __SetPageUptodate(new_page);
2251 * Don't let another task, with possibly unlocked vma,
2252 * keep the mlocked page.
2254 if ((vma->vm_flags & VM_LOCKED) && old_page) {
2255 lock_page(old_page); /* for LRU manipulation */
2256 clear_page_mlock(old_page);
2257 unlock_page(old_page);
2260 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2261 goto oom_free_new;
2264 * Re-check the pte - we dropped the lock
2266 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2267 if (likely(pte_same(*page_table, orig_pte))) {
2268 if (old_page) {
2269 if (!PageAnon(old_page)) {
2270 dec_mm_counter_fast(mm, MM_FILEPAGES);
2271 inc_mm_counter_fast(mm, MM_ANONPAGES);
2273 } else
2274 inc_mm_counter_fast(mm, MM_ANONPAGES);
2275 flush_cache_page(vma, address, pte_pfn(orig_pte));
2276 entry = mk_pte(new_page, vma->vm_page_prot);
2277 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2279 * Clear the pte entry and flush it first, before updating the
2280 * pte with the new entry. This will avoid a race condition
2281 * seen in the presence of one thread doing SMC and another
2282 * thread doing COW.
2284 ptep_clear_flush(vma, address, page_table);
2285 page_add_new_anon_rmap(new_page, vma, address);
2287 * We call the notify macro here because, when using secondary
2288 * mmu page tables (such as kvm shadow page tables), we want the
2289 * new page to be mapped directly into the secondary page table.
2291 set_pte_at_notify(mm, address, page_table, entry);
2292 update_mmu_cache(vma, address, page_table);
2293 if (old_page) {
2295 * Only after switching the pte to the new page may
2296 * we remove the mapcount here. Otherwise another
2297 * process may come and find the rmap count decremented
2298 * before the pte is switched to the new page, and
2299 * "reuse" the old page writing into it while our pte
2300 * here still points into it and can be read by other
2301 * threads.
2303 * The critical issue is to order this
2304 * page_remove_rmap with the ptp_clear_flush above.
2305 * Those stores are ordered by (if nothing else,)
2306 * the barrier present in the atomic_add_negative
2307 * in page_remove_rmap.
2309 * Then the TLB flush in ptep_clear_flush ensures that
2310 * no process can access the old page before the
2311 * decremented mapcount is visible. And the old page
2312 * cannot be reused until after the decremented
2313 * mapcount is visible. So transitively, TLBs to
2314 * old page will be flushed before it can be reused.
2316 page_remove_rmap(old_page);
2319 /* Free the old page.. */
2320 new_page = old_page;
2321 ret |= VM_FAULT_WRITE;
2322 } else
2323 mem_cgroup_uncharge_page(new_page);
2325 if (new_page)
2326 page_cache_release(new_page);
2327 if (old_page)
2328 page_cache_release(old_page);
2329 unlock:
2330 pte_unmap_unlock(page_table, ptl);
2331 if (dirty_page) {
2333 * Yes, Virginia, this is actually required to prevent a race
2334 * with clear_page_dirty_for_io() from clearing the page dirty
2335 * bit after it clear all dirty ptes, but before a racing
2336 * do_wp_page installs a dirty pte.
2338 * do_no_page is protected similarly.
2340 if (!page_mkwrite) {
2341 wait_on_page_locked(dirty_page);
2342 set_page_dirty_balance(dirty_page, page_mkwrite);
2344 put_page(dirty_page);
2345 if (page_mkwrite) {
2346 struct address_space *mapping = dirty_page->mapping;
2348 set_page_dirty(dirty_page);
2349 unlock_page(dirty_page);
2350 page_cache_release(dirty_page);
2351 if (mapping) {
2353 * Some device drivers do not set page.mapping
2354 * but still dirty their pages
2356 balance_dirty_pages_ratelimited(mapping);
2360 /* file_update_time outside page_lock */
2361 if (vma->vm_file)
2362 file_update_time(vma->vm_file);
2364 return ret;
2365 oom_free_new:
2366 page_cache_release(new_page);
2367 oom:
2368 if (old_page) {
2369 if (page_mkwrite) {
2370 unlock_page(old_page);
2371 page_cache_release(old_page);
2373 page_cache_release(old_page);
2375 return VM_FAULT_OOM;
2377 unwritable_page:
2378 page_cache_release(old_page);
2379 return ret;
2383 * Helper functions for unmap_mapping_range().
2385 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2387 * We have to restart searching the prio_tree whenever we drop the lock,
2388 * since the iterator is only valid while the lock is held, and anyway
2389 * a later vma might be split and reinserted earlier while lock dropped.
2391 * The list of nonlinear vmas could be handled more efficiently, using
2392 * a placeholder, but handle it in the same way until a need is shown.
2393 * It is important to search the prio_tree before nonlinear list: a vma
2394 * may become nonlinear and be shifted from prio_tree to nonlinear list
2395 * while the lock is dropped; but never shifted from list to prio_tree.
2397 * In order to make forward progress despite restarting the search,
2398 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2399 * quickly skip it next time around. Since the prio_tree search only
2400 * shows us those vmas affected by unmapping the range in question, we
2401 * can't efficiently keep all vmas in step with mapping->truncate_count:
2402 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2403 * mapping->truncate_count and vma->vm_truncate_count are protected by
2404 * i_mmap_lock.
2406 * In order to make forward progress despite repeatedly restarting some
2407 * large vma, note the restart_addr from unmap_vmas when it breaks out:
2408 * and restart from that address when we reach that vma again. It might
2409 * have been split or merged, shrunk or extended, but never shifted: so
2410 * restart_addr remains valid so long as it remains in the vma's range.
2411 * unmap_mapping_range forces truncate_count to leap over page-aligned
2412 * values so we can save vma's restart_addr in its truncate_count field.
2414 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2416 static void reset_vma_truncate_counts(struct address_space *mapping)
2418 struct vm_area_struct *vma;
2419 struct prio_tree_iter iter;
2421 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2422 vma->vm_truncate_count = 0;
2423 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2424 vma->vm_truncate_count = 0;
2427 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2428 unsigned long start_addr, unsigned long end_addr,
2429 struct zap_details *details)
2431 unsigned long restart_addr;
2432 int need_break;
2435 * files that support invalidating or truncating portions of the
2436 * file from under mmaped areas must have their ->fault function
2437 * return a locked page (and set VM_FAULT_LOCKED in the return).
2438 * This provides synchronisation against concurrent unmapping here.
2441 again:
2442 restart_addr = vma->vm_truncate_count;
2443 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2444 start_addr = restart_addr;
2445 if (start_addr >= end_addr) {
2446 /* Top of vma has been split off since last time */
2447 vma->vm_truncate_count = details->truncate_count;
2448 return 0;
2452 restart_addr = zap_page_range(vma, start_addr,
2453 end_addr - start_addr, details);
2454 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2456 if (restart_addr >= end_addr) {
2457 /* We have now completed this vma: mark it so */
2458 vma->vm_truncate_count = details->truncate_count;
2459 if (!need_break)
2460 return 0;
2461 } else {
2462 /* Note restart_addr in vma's truncate_count field */
2463 vma->vm_truncate_count = restart_addr;
2464 if (!need_break)
2465 goto again;
2468 spin_unlock(details->i_mmap_lock);
2469 cond_resched();
2470 spin_lock(details->i_mmap_lock);
2471 return -EINTR;
2474 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2475 struct zap_details *details)
2477 struct vm_area_struct *vma;
2478 struct prio_tree_iter iter;
2479 pgoff_t vba, vea, zba, zea;
2481 restart:
2482 vma_prio_tree_foreach(vma, &iter, root,
2483 details->first_index, details->last_index) {
2484 /* Skip quickly over those we have already dealt with */
2485 if (vma->vm_truncate_count == details->truncate_count)
2486 continue;
2488 vba = vma->vm_pgoff;
2489 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2490 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2491 zba = details->first_index;
2492 if (zba < vba)
2493 zba = vba;
2494 zea = details->last_index;
2495 if (zea > vea)
2496 zea = vea;
2498 if (unmap_mapping_range_vma(vma,
2499 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2500 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2501 details) < 0)
2502 goto restart;
2506 static inline void unmap_mapping_range_list(struct list_head *head,
2507 struct zap_details *details)
2509 struct vm_area_struct *vma;
2512 * In nonlinear VMAs there is no correspondence between virtual address
2513 * offset and file offset. So we must perform an exhaustive search
2514 * across *all* the pages in each nonlinear VMA, not just the pages
2515 * whose virtual address lies outside the file truncation point.
2517 restart:
2518 list_for_each_entry(vma, head, shared.vm_set.list) {
2519 /* Skip quickly over those we have already dealt with */
2520 if (vma->vm_truncate_count == details->truncate_count)
2521 continue;
2522 details->nonlinear_vma = vma;
2523 if (unmap_mapping_range_vma(vma, vma->vm_start,
2524 vma->vm_end, details) < 0)
2525 goto restart;
2530 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2531 * @mapping: the address space containing mmaps to be unmapped.
2532 * @holebegin: byte in first page to unmap, relative to the start of
2533 * the underlying file. This will be rounded down to a PAGE_SIZE
2534 * boundary. Note that this is different from truncate_pagecache(), which
2535 * must keep the partial page. In contrast, we must get rid of
2536 * partial pages.
2537 * @holelen: size of prospective hole in bytes. This will be rounded
2538 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2539 * end of the file.
2540 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2541 * but 0 when invalidating pagecache, don't throw away private data.
2543 void unmap_mapping_range(struct address_space *mapping,
2544 loff_t const holebegin, loff_t const holelen, int even_cows)
2546 struct zap_details details;
2547 pgoff_t hba = holebegin >> PAGE_SHIFT;
2548 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2550 /* Check for overflow. */
2551 if (sizeof(holelen) > sizeof(hlen)) {
2552 long long holeend =
2553 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2554 if (holeend & ~(long long)ULONG_MAX)
2555 hlen = ULONG_MAX - hba + 1;
2558 details.check_mapping = even_cows? NULL: mapping;
2559 details.nonlinear_vma = NULL;
2560 details.first_index = hba;
2561 details.last_index = hba + hlen - 1;
2562 if (details.last_index < details.first_index)
2563 details.last_index = ULONG_MAX;
2564 details.i_mmap_lock = &mapping->i_mmap_lock;
2566 spin_lock(&mapping->i_mmap_lock);
2568 /* Protect against endless unmapping loops */
2569 mapping->truncate_count++;
2570 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2571 if (mapping->truncate_count == 0)
2572 reset_vma_truncate_counts(mapping);
2573 mapping->truncate_count++;
2575 details.truncate_count = mapping->truncate_count;
2577 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2578 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2579 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2580 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2581 spin_unlock(&mapping->i_mmap_lock);
2583 EXPORT_SYMBOL(unmap_mapping_range);
2585 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2587 struct address_space *mapping = inode->i_mapping;
2590 * If the underlying filesystem is not going to provide
2591 * a way to truncate a range of blocks (punch a hole) -
2592 * we should return failure right now.
2594 if (!inode->i_op->truncate_range)
2595 return -ENOSYS;
2597 mutex_lock(&inode->i_mutex);
2598 down_write(&inode->i_alloc_sem);
2599 unmap_mapping_range(mapping, offset, (end - offset), 1);
2600 truncate_inode_pages_range(mapping, offset, end);
2601 unmap_mapping_range(mapping, offset, (end - offset), 1);
2602 inode->i_op->truncate_range(inode, offset, end);
2603 up_write(&inode->i_alloc_sem);
2604 mutex_unlock(&inode->i_mutex);
2606 return 0;
2610 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2611 * but allow concurrent faults), and pte mapped but not yet locked.
2612 * We return with mmap_sem still held, but pte unmapped and unlocked.
2614 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2615 unsigned long address, pte_t *page_table, pmd_t *pmd,
2616 unsigned int flags, pte_t orig_pte)
2618 spinlock_t *ptl;
2619 struct page *page;
2620 swp_entry_t entry;
2621 pte_t pte;
2622 struct mem_cgroup *ptr = NULL;
2623 int ret = 0;
2625 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2626 goto out;
2628 entry = pte_to_swp_entry(orig_pte);
2629 if (unlikely(non_swap_entry(entry))) {
2630 if (is_migration_entry(entry)) {
2631 migration_entry_wait(mm, pmd, address);
2632 } else if (is_hwpoison_entry(entry)) {
2633 ret = VM_FAULT_HWPOISON;
2634 } else {
2635 print_bad_pte(vma, address, orig_pte, NULL);
2636 ret = VM_FAULT_SIGBUS;
2638 goto out;
2640 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2641 page = lookup_swap_cache(entry);
2642 if (!page) {
2643 grab_swap_token(mm); /* Contend for token _before_ read-in */
2644 page = swapin_readahead(entry,
2645 GFP_HIGHUSER_MOVABLE, vma, address);
2646 if (!page) {
2648 * Back out if somebody else faulted in this pte
2649 * while we released the pte lock.
2651 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2652 if (likely(pte_same(*page_table, orig_pte)))
2653 ret = VM_FAULT_OOM;
2654 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2655 goto unlock;
2658 /* Had to read the page from swap area: Major fault */
2659 ret = VM_FAULT_MAJOR;
2660 count_vm_event(PGMAJFAULT);
2661 } else if (PageHWPoison(page)) {
2663 * hwpoisoned dirty swapcache pages are kept for killing
2664 * owner processes (which may be unknown at hwpoison time)
2666 ret = VM_FAULT_HWPOISON;
2667 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2668 goto out_release;
2671 lock_page(page);
2672 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2674 page = ksm_might_need_to_copy(page, vma, address);
2675 if (!page) {
2676 ret = VM_FAULT_OOM;
2677 goto out;
2680 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2681 ret = VM_FAULT_OOM;
2682 goto out_page;
2686 * Back out if somebody else already faulted in this pte.
2688 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2689 if (unlikely(!pte_same(*page_table, orig_pte)))
2690 goto out_nomap;
2692 if (unlikely(!PageUptodate(page))) {
2693 ret = VM_FAULT_SIGBUS;
2694 goto out_nomap;
2698 * The page isn't present yet, go ahead with the fault.
2700 * Be careful about the sequence of operations here.
2701 * To get its accounting right, reuse_swap_page() must be called
2702 * while the page is counted on swap but not yet in mapcount i.e.
2703 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2704 * must be called after the swap_free(), or it will never succeed.
2705 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2706 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2707 * in page->private. In this case, a record in swap_cgroup is silently
2708 * discarded at swap_free().
2711 inc_mm_counter_fast(mm, MM_ANONPAGES);
2712 dec_mm_counter_fast(mm, MM_SWAPENTS);
2713 pte = mk_pte(page, vma->vm_page_prot);
2714 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2715 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2716 flags &= ~FAULT_FLAG_WRITE;
2718 flush_icache_page(vma, page);
2719 set_pte_at(mm, address, page_table, pte);
2720 page_add_anon_rmap(page, vma, address);
2721 /* It's better to call commit-charge after rmap is established */
2722 mem_cgroup_commit_charge_swapin(page, ptr);
2724 swap_free(entry);
2725 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2726 try_to_free_swap(page);
2727 unlock_page(page);
2729 if (flags & FAULT_FLAG_WRITE) {
2730 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2731 if (ret & VM_FAULT_ERROR)
2732 ret &= VM_FAULT_ERROR;
2733 goto out;
2736 /* No need to invalidate - it was non-present before */
2737 update_mmu_cache(vma, address, page_table);
2738 unlock:
2739 pte_unmap_unlock(page_table, ptl);
2740 out:
2741 return ret;
2742 out_nomap:
2743 mem_cgroup_cancel_charge_swapin(ptr);
2744 pte_unmap_unlock(page_table, ptl);
2745 out_page:
2746 unlock_page(page);
2747 out_release:
2748 page_cache_release(page);
2749 return ret;
2753 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2754 * but allow concurrent faults), and pte mapped but not yet locked.
2755 * We return with mmap_sem still held, but pte unmapped and unlocked.
2757 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2758 unsigned long address, pte_t *page_table, pmd_t *pmd,
2759 unsigned int flags)
2761 struct page *page;
2762 spinlock_t *ptl;
2763 pte_t entry;
2765 if (!(flags & FAULT_FLAG_WRITE)) {
2766 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2767 vma->vm_page_prot));
2768 ptl = pte_lockptr(mm, pmd);
2769 spin_lock(ptl);
2770 if (!pte_none(*page_table))
2771 goto unlock;
2772 goto setpte;
2775 /* Allocate our own private page. */
2776 pte_unmap(page_table);
2778 if (unlikely(anon_vma_prepare(vma)))
2779 goto oom;
2780 page = alloc_zeroed_user_highpage_movable(vma, address);
2781 if (!page)
2782 goto oom;
2783 __SetPageUptodate(page);
2785 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
2786 goto oom_free_page;
2788 entry = mk_pte(page, vma->vm_page_prot);
2789 if (vma->vm_flags & VM_WRITE)
2790 entry = pte_mkwrite(pte_mkdirty(entry));
2792 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2793 if (!pte_none(*page_table))
2794 goto release;
2796 inc_mm_counter_fast(mm, MM_ANONPAGES);
2797 page_add_new_anon_rmap(page, vma, address);
2798 setpte:
2799 set_pte_at(mm, address, page_table, entry);
2801 /* No need to invalidate - it was non-present before */
2802 update_mmu_cache(vma, address, page_table);
2803 unlock:
2804 pte_unmap_unlock(page_table, ptl);
2805 return 0;
2806 release:
2807 mem_cgroup_uncharge_page(page);
2808 page_cache_release(page);
2809 goto unlock;
2810 oom_free_page:
2811 page_cache_release(page);
2812 oom:
2813 return VM_FAULT_OOM;
2817 * __do_fault() tries to create a new page mapping. It aggressively
2818 * tries to share with existing pages, but makes a separate copy if
2819 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2820 * the next page fault.
2822 * As this is called only for pages that do not currently exist, we
2823 * do not need to flush old virtual caches or the TLB.
2825 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2826 * but allow concurrent faults), and pte neither mapped nor locked.
2827 * We return with mmap_sem still held, but pte unmapped and unlocked.
2829 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2830 unsigned long address, pmd_t *pmd,
2831 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2833 pte_t *page_table;
2834 spinlock_t *ptl;
2835 struct page *page;
2836 pte_t entry;
2837 int anon = 0;
2838 int charged = 0;
2839 struct page *dirty_page = NULL;
2840 struct vm_fault vmf;
2841 int ret;
2842 int page_mkwrite = 0;
2844 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2845 vmf.pgoff = pgoff;
2846 vmf.flags = flags;
2847 vmf.page = NULL;
2849 ret = vma->vm_ops->fault(vma, &vmf);
2850 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2851 return ret;
2853 if (unlikely(PageHWPoison(vmf.page))) {
2854 if (ret & VM_FAULT_LOCKED)
2855 unlock_page(vmf.page);
2856 return VM_FAULT_HWPOISON;
2860 * For consistency in subsequent calls, make the faulted page always
2861 * locked.
2863 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2864 lock_page(vmf.page);
2865 else
2866 VM_BUG_ON(!PageLocked(vmf.page));
2869 * Should we do an early C-O-W break?
2871 page = vmf.page;
2872 if (flags & FAULT_FLAG_WRITE) {
2873 if (!(vma->vm_flags & VM_SHARED)) {
2874 anon = 1;
2875 if (unlikely(anon_vma_prepare(vma))) {
2876 ret = VM_FAULT_OOM;
2877 goto out;
2879 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2880 vma, address);
2881 if (!page) {
2882 ret = VM_FAULT_OOM;
2883 goto out;
2885 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
2886 ret = VM_FAULT_OOM;
2887 page_cache_release(page);
2888 goto out;
2890 charged = 1;
2892 * Don't let another task, with possibly unlocked vma,
2893 * keep the mlocked page.
2895 if (vma->vm_flags & VM_LOCKED)
2896 clear_page_mlock(vmf.page);
2897 copy_user_highpage(page, vmf.page, address, vma);
2898 __SetPageUptodate(page);
2899 } else {
2901 * If the page will be shareable, see if the backing
2902 * address space wants to know that the page is about
2903 * to become writable
2905 if (vma->vm_ops->page_mkwrite) {
2906 int tmp;
2908 unlock_page(page);
2909 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2910 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2911 if (unlikely(tmp &
2912 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2913 ret = tmp;
2914 goto unwritable_page;
2916 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2917 lock_page(page);
2918 if (!page->mapping) {
2919 ret = 0; /* retry the fault */
2920 unlock_page(page);
2921 goto unwritable_page;
2923 } else
2924 VM_BUG_ON(!PageLocked(page));
2925 page_mkwrite = 1;
2931 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2934 * This silly early PAGE_DIRTY setting removes a race
2935 * due to the bad i386 page protection. But it's valid
2936 * for other architectures too.
2938 * Note that if FAULT_FLAG_WRITE is set, we either now have
2939 * an exclusive copy of the page, or this is a shared mapping,
2940 * so we can make it writable and dirty to avoid having to
2941 * handle that later.
2943 /* Only go through if we didn't race with anybody else... */
2944 if (likely(pte_same(*page_table, orig_pte))) {
2945 flush_icache_page(vma, page);
2946 entry = mk_pte(page, vma->vm_page_prot);
2947 if (flags & FAULT_FLAG_WRITE)
2948 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2949 if (anon) {
2950 inc_mm_counter_fast(mm, MM_ANONPAGES);
2951 page_add_new_anon_rmap(page, vma, address);
2952 } else {
2953 inc_mm_counter_fast(mm, MM_FILEPAGES);
2954 page_add_file_rmap(page);
2955 if (flags & FAULT_FLAG_WRITE) {
2956 dirty_page = page;
2957 get_page(dirty_page);
2960 set_pte_at(mm, address, page_table, entry);
2962 /* no need to invalidate: a not-present page won't be cached */
2963 update_mmu_cache(vma, address, page_table);
2964 } else {
2965 if (charged)
2966 mem_cgroup_uncharge_page(page);
2967 if (anon)
2968 page_cache_release(page);
2969 else
2970 anon = 1; /* no anon but release faulted_page */
2973 pte_unmap_unlock(page_table, ptl);
2975 out:
2976 if (dirty_page) {
2977 struct address_space *mapping = page->mapping;
2979 if (set_page_dirty(dirty_page))
2980 page_mkwrite = 1;
2981 unlock_page(dirty_page);
2982 put_page(dirty_page);
2983 if (page_mkwrite && mapping) {
2985 * Some device drivers do not set page.mapping but still
2986 * dirty their pages
2988 balance_dirty_pages_ratelimited(mapping);
2991 /* file_update_time outside page_lock */
2992 if (vma->vm_file)
2993 file_update_time(vma->vm_file);
2994 } else {
2995 unlock_page(vmf.page);
2996 if (anon)
2997 page_cache_release(vmf.page);
3000 return ret;
3002 unwritable_page:
3003 page_cache_release(page);
3004 return ret;
3007 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3008 unsigned long address, pte_t *page_table, pmd_t *pmd,
3009 unsigned int flags, pte_t orig_pte)
3011 pgoff_t pgoff = (((address & PAGE_MASK)
3012 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3014 pte_unmap(page_table);
3015 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3019 * Fault of a previously existing named mapping. Repopulate the pte
3020 * from the encoded file_pte if possible. This enables swappable
3021 * nonlinear vmas.
3023 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3024 * but allow concurrent faults), and pte mapped but not yet locked.
3025 * We return with mmap_sem still held, but pte unmapped and unlocked.
3027 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3028 unsigned long address, pte_t *page_table, pmd_t *pmd,
3029 unsigned int flags, pte_t orig_pte)
3031 pgoff_t pgoff;
3033 flags |= FAULT_FLAG_NONLINEAR;
3035 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3036 return 0;
3038 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3040 * Page table corrupted: show pte and kill process.
3042 print_bad_pte(vma, address, orig_pte, NULL);
3043 return VM_FAULT_SIGBUS;
3046 pgoff = pte_to_pgoff(orig_pte);
3047 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3051 * These routines also need to handle stuff like marking pages dirty
3052 * and/or accessed for architectures that don't do it in hardware (most
3053 * RISC architectures). The early dirtying is also good on the i386.
3055 * There is also a hook called "update_mmu_cache()" that architectures
3056 * with external mmu caches can use to update those (ie the Sparc or
3057 * PowerPC hashed page tables that act as extended TLBs).
3059 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3060 * but allow concurrent faults), and pte mapped but not yet locked.
3061 * We return with mmap_sem still held, but pte unmapped and unlocked.
3063 static inline int handle_pte_fault(struct mm_struct *mm,
3064 struct vm_area_struct *vma, unsigned long address,
3065 pte_t *pte, pmd_t *pmd, unsigned int flags)
3067 pte_t entry;
3068 spinlock_t *ptl;
3070 entry = *pte;
3071 if (!pte_present(entry)) {
3072 if (pte_none(entry)) {
3073 if (vma->vm_ops) {
3074 if (likely(vma->vm_ops->fault))
3075 return do_linear_fault(mm, vma, address,
3076 pte, pmd, flags, entry);
3078 return do_anonymous_page(mm, vma, address,
3079 pte, pmd, flags);
3081 if (pte_file(entry))
3082 return do_nonlinear_fault(mm, vma, address,
3083 pte, pmd, flags, entry);
3084 return do_swap_page(mm, vma, address,
3085 pte, pmd, flags, entry);
3088 ptl = pte_lockptr(mm, pmd);
3089 spin_lock(ptl);
3090 if (unlikely(!pte_same(*pte, entry)))
3091 goto unlock;
3092 if (flags & FAULT_FLAG_WRITE) {
3093 if (!pte_write(entry))
3094 return do_wp_page(mm, vma, address,
3095 pte, pmd, ptl, entry);
3096 entry = pte_mkdirty(entry);
3098 entry = pte_mkyoung(entry);
3099 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3100 update_mmu_cache(vma, address, pte);
3101 } else {
3103 * This is needed only for protection faults but the arch code
3104 * is not yet telling us if this is a protection fault or not.
3105 * This still avoids useless tlb flushes for .text page faults
3106 * with threads.
3108 if (flags & FAULT_FLAG_WRITE)
3109 flush_tlb_page(vma, address);
3111 unlock:
3112 pte_unmap_unlock(pte, ptl);
3113 return 0;
3117 * By the time we get here, we already hold the mm semaphore
3119 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3120 unsigned long address, unsigned int flags)
3122 pgd_t *pgd;
3123 pud_t *pud;
3124 pmd_t *pmd;
3125 pte_t *pte;
3127 __set_current_state(TASK_RUNNING);
3129 count_vm_event(PGFAULT);
3131 /* do counter updates before entering really critical section. */
3132 check_sync_rss_stat(current);
3134 if (unlikely(is_vm_hugetlb_page(vma)))
3135 return hugetlb_fault(mm, vma, address, flags);
3137 pgd = pgd_offset(mm, address);
3138 pud = pud_alloc(mm, pgd, address);
3139 if (!pud)
3140 return VM_FAULT_OOM;
3141 pmd = pmd_alloc(mm, pud, address);
3142 if (!pmd)
3143 return VM_FAULT_OOM;
3144 pte = pte_alloc_map(mm, pmd, address);
3145 if (!pte)
3146 return VM_FAULT_OOM;
3148 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3151 #ifndef __PAGETABLE_PUD_FOLDED
3153 * Allocate page upper directory.
3154 * We've already handled the fast-path in-line.
3156 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3158 pud_t *new = pud_alloc_one(mm, address);
3159 if (!new)
3160 return -ENOMEM;
3162 smp_wmb(); /* See comment in __pte_alloc */
3164 spin_lock(&mm->page_table_lock);
3165 if (pgd_present(*pgd)) /* Another has populated it */
3166 pud_free(mm, new);
3167 else
3168 pgd_populate(mm, pgd, new);
3169 spin_unlock(&mm->page_table_lock);
3170 return 0;
3172 #endif /* __PAGETABLE_PUD_FOLDED */
3174 #ifndef __PAGETABLE_PMD_FOLDED
3176 * Allocate page middle directory.
3177 * We've already handled the fast-path in-line.
3179 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3181 pmd_t *new = pmd_alloc_one(mm, address);
3182 if (!new)
3183 return -ENOMEM;
3185 smp_wmb(); /* See comment in __pte_alloc */
3187 spin_lock(&mm->page_table_lock);
3188 #ifndef __ARCH_HAS_4LEVEL_HACK
3189 if (pud_present(*pud)) /* Another has populated it */
3190 pmd_free(mm, new);
3191 else
3192 pud_populate(mm, pud, new);
3193 #else
3194 if (pgd_present(*pud)) /* Another has populated it */
3195 pmd_free(mm, new);
3196 else
3197 pgd_populate(mm, pud, new);
3198 #endif /* __ARCH_HAS_4LEVEL_HACK */
3199 spin_unlock(&mm->page_table_lock);
3200 return 0;
3202 #endif /* __PAGETABLE_PMD_FOLDED */
3204 int make_pages_present(unsigned long addr, unsigned long end)
3206 int ret, len, write;
3207 struct vm_area_struct * vma;
3209 vma = find_vma(current->mm, addr);
3210 if (!vma)
3211 return -ENOMEM;
3212 write = (vma->vm_flags & VM_WRITE) != 0;
3213 BUG_ON(addr >= end);
3214 BUG_ON(end > vma->vm_end);
3215 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3216 ret = get_user_pages(current, current->mm, addr,
3217 len, write, 0, NULL, NULL);
3218 if (ret < 0)
3219 return ret;
3220 return ret == len ? 0 : -EFAULT;
3223 #if !defined(__HAVE_ARCH_GATE_AREA)
3225 #if defined(AT_SYSINFO_EHDR)
3226 static struct vm_area_struct gate_vma;
3228 static int __init gate_vma_init(void)
3230 gate_vma.vm_mm = NULL;
3231 gate_vma.vm_start = FIXADDR_USER_START;
3232 gate_vma.vm_end = FIXADDR_USER_END;
3233 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3234 gate_vma.vm_page_prot = __P101;
3236 * Make sure the vDSO gets into every core dump.
3237 * Dumping its contents makes post-mortem fully interpretable later
3238 * without matching up the same kernel and hardware config to see
3239 * what PC values meant.
3241 gate_vma.vm_flags |= VM_ALWAYSDUMP;
3242 return 0;
3244 __initcall(gate_vma_init);
3245 #endif
3247 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
3249 #ifdef AT_SYSINFO_EHDR
3250 return &gate_vma;
3251 #else
3252 return NULL;
3253 #endif
3256 int in_gate_area_no_task(unsigned long addr)
3258 #ifdef AT_SYSINFO_EHDR
3259 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3260 return 1;
3261 #endif
3262 return 0;
3265 #endif /* __HAVE_ARCH_GATE_AREA */
3267 static int follow_pte(struct mm_struct *mm, unsigned long address,
3268 pte_t **ptepp, spinlock_t **ptlp)
3270 pgd_t *pgd;
3271 pud_t *pud;
3272 pmd_t *pmd;
3273 pte_t *ptep;
3275 pgd = pgd_offset(mm, address);
3276 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3277 goto out;
3279 pud = pud_offset(pgd, address);
3280 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3281 goto out;
3283 pmd = pmd_offset(pud, address);
3284 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3285 goto out;
3287 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3288 if (pmd_huge(*pmd))
3289 goto out;
3291 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3292 if (!ptep)
3293 goto out;
3294 if (!pte_present(*ptep))
3295 goto unlock;
3296 *ptepp = ptep;
3297 return 0;
3298 unlock:
3299 pte_unmap_unlock(ptep, *ptlp);
3300 out:
3301 return -EINVAL;
3305 * follow_pfn - look up PFN at a user virtual address
3306 * @vma: memory mapping
3307 * @address: user virtual address
3308 * @pfn: location to store found PFN
3310 * Only IO mappings and raw PFN mappings are allowed.
3312 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3314 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3315 unsigned long *pfn)
3317 int ret = -EINVAL;
3318 spinlock_t *ptl;
3319 pte_t *ptep;
3321 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3322 return ret;
3324 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3325 if (ret)
3326 return ret;
3327 *pfn = pte_pfn(*ptep);
3328 pte_unmap_unlock(ptep, ptl);
3329 return 0;
3331 EXPORT_SYMBOL(follow_pfn);
3333 #ifdef CONFIG_HAVE_IOREMAP_PROT
3334 int follow_phys(struct vm_area_struct *vma,
3335 unsigned long address, unsigned int flags,
3336 unsigned long *prot, resource_size_t *phys)
3338 int ret = -EINVAL;
3339 pte_t *ptep, pte;
3340 spinlock_t *ptl;
3342 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3343 goto out;
3345 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3346 goto out;
3347 pte = *ptep;
3349 if ((flags & FOLL_WRITE) && !pte_write(pte))
3350 goto unlock;
3352 *prot = pgprot_val(pte_pgprot(pte));
3353 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3355 ret = 0;
3356 unlock:
3357 pte_unmap_unlock(ptep, ptl);
3358 out:
3359 return ret;
3362 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3363 void *buf, int len, int write)
3365 resource_size_t phys_addr;
3366 unsigned long prot = 0;
3367 void __iomem *maddr;
3368 int offset = addr & (PAGE_SIZE-1);
3370 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3371 return -EINVAL;
3373 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3374 if (write)
3375 memcpy_toio(maddr + offset, buf, len);
3376 else
3377 memcpy_fromio(buf, maddr + offset, len);
3378 iounmap(maddr);
3380 return len;
3382 #endif
3385 * Access another process' address space.
3386 * Source/target buffer must be kernel space,
3387 * Do not walk the page table directly, use get_user_pages
3389 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3391 struct mm_struct *mm;
3392 struct vm_area_struct *vma;
3393 void *old_buf = buf;
3395 mm = get_task_mm(tsk);
3396 if (!mm)
3397 return 0;
3399 down_read(&mm->mmap_sem);
3400 /* ignore errors, just check how much was successfully transferred */
3401 while (len) {
3402 int bytes, ret, offset;
3403 void *maddr;
3404 struct page *page = NULL;
3406 ret = get_user_pages(tsk, mm, addr, 1,
3407 write, 1, &page, &vma);
3408 if (ret <= 0) {
3410 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3411 * we can access using slightly different code.
3413 #ifdef CONFIG_HAVE_IOREMAP_PROT
3414 vma = find_vma(mm, addr);
3415 if (!vma)
3416 break;
3417 if (vma->vm_ops && vma->vm_ops->access)
3418 ret = vma->vm_ops->access(vma, addr, buf,
3419 len, write);
3420 if (ret <= 0)
3421 #endif
3422 break;
3423 bytes = ret;
3424 } else {
3425 bytes = len;
3426 offset = addr & (PAGE_SIZE-1);
3427 if (bytes > PAGE_SIZE-offset)
3428 bytes = PAGE_SIZE-offset;
3430 maddr = kmap(page);
3431 if (write) {
3432 copy_to_user_page(vma, page, addr,
3433 maddr + offset, buf, bytes);
3434 set_page_dirty_lock(page);
3435 } else {
3436 copy_from_user_page(vma, page, addr,
3437 buf, maddr + offset, bytes);
3439 kunmap(page);
3440 page_cache_release(page);
3442 len -= bytes;
3443 buf += bytes;
3444 addr += bytes;
3446 up_read(&mm->mmap_sem);
3447 mmput(mm);
3449 return buf - old_buf;
3453 * Print the name of a VMA.
3455 void print_vma_addr(char *prefix, unsigned long ip)
3457 struct mm_struct *mm = current->mm;
3458 struct vm_area_struct *vma;
3461 * Do not print if we are in atomic
3462 * contexts (in exception stacks, etc.):
3464 if (preempt_count())
3465 return;
3467 down_read(&mm->mmap_sem);
3468 vma = find_vma(mm, ip);
3469 if (vma && vma->vm_file) {
3470 struct file *f = vma->vm_file;
3471 char *buf = (char *)__get_free_page(GFP_KERNEL);
3472 if (buf) {
3473 char *p, *s;
3475 p = d_path(&f->f_path, buf, PAGE_SIZE);
3476 if (IS_ERR(p))
3477 p = "?";
3478 s = strrchr(p, '/');
3479 if (s)
3480 p = s+1;
3481 printk("%s%s[%lx+%lx]", prefix, p,
3482 vma->vm_start,
3483 vma->vm_end - vma->vm_start);
3484 free_page((unsigned long)buf);
3487 up_read(&current->mm->mmap_sem);
3490 #ifdef CONFIG_PROVE_LOCKING
3491 void might_fault(void)
3494 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3495 * holding the mmap_sem, this is safe because kernel memory doesn't
3496 * get paged out, therefore we'll never actually fault, and the
3497 * below annotations will generate false positives.
3499 if (segment_eq(get_fs(), KERNEL_DS))
3500 return;
3502 might_sleep();
3504 * it would be nicer only to annotate paths which are not under
3505 * pagefault_disable, however that requires a larger audit and
3506 * providing helpers like get_user_atomic.
3508 if (!in_atomic() && current->mm)
3509 might_lock_read(&current->mm->mmap_sem);
3511 EXPORT_SYMBOL(might_fault);
3512 #endif