1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/if_ether.h>
29 #include <linux/delay.h>
31 #include "e1000_mac.h"
32 #include "e1000_phy.h"
34 static s32
igb_phy_setup_autoneg(struct e1000_hw
*hw
);
35 static void igb_phy_force_speed_duplex_setup(struct e1000_hw
*hw
,
37 static s32
igb_wait_autoneg(struct e1000_hw
*hw
);
39 /* Cable length tables */
40 static const u16 e1000_m88_cable_length_table
[] =
41 { 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED
};
42 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
43 (sizeof(e1000_m88_cable_length_table) / \
44 sizeof(e1000_m88_cable_length_table[0]))
46 static const u16 e1000_igp_2_cable_length_table
[] =
47 { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
48 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
49 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
50 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
51 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
52 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
53 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
54 104, 109, 114, 118, 121, 124};
55 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
56 (sizeof(e1000_igp_2_cable_length_table) / \
57 sizeof(e1000_igp_2_cable_length_table[0]))
60 * igb_check_reset_block - Check if PHY reset is blocked
61 * @hw: pointer to the HW structure
63 * Read the PHY management control register and check whether a PHY reset
64 * is blocked. If a reset is not blocked return 0, otherwise
65 * return E1000_BLK_PHY_RESET (12).
67 s32
igb_check_reset_block(struct e1000_hw
*hw
)
71 manc
= rd32(E1000_MANC
);
73 return (manc
& E1000_MANC_BLK_PHY_RST_ON_IDE
) ?
74 E1000_BLK_PHY_RESET
: 0;
78 * igb_get_phy_id - Retrieve the PHY ID and revision
79 * @hw: pointer to the HW structure
81 * Reads the PHY registers and stores the PHY ID and possibly the PHY
82 * revision in the hardware structure.
84 s32
igb_get_phy_id(struct e1000_hw
*hw
)
86 struct e1000_phy_info
*phy
= &hw
->phy
;
90 ret_val
= phy
->ops
.read_reg(hw
, PHY_ID1
, &phy_id
);
94 phy
->id
= (u32
)(phy_id
<< 16);
96 ret_val
= phy
->ops
.read_reg(hw
, PHY_ID2
, &phy_id
);
100 phy
->id
|= (u32
)(phy_id
& PHY_REVISION_MASK
);
101 phy
->revision
= (u32
)(phy_id
& ~PHY_REVISION_MASK
);
108 * igb_phy_reset_dsp - Reset PHY DSP
109 * @hw: pointer to the HW structure
111 * Reset the digital signal processor.
113 static s32
igb_phy_reset_dsp(struct e1000_hw
*hw
)
117 if (!(hw
->phy
.ops
.write_reg
))
120 ret_val
= hw
->phy
.ops
.write_reg(hw
, M88E1000_PHY_GEN_CONTROL
, 0xC1);
124 ret_val
= hw
->phy
.ops
.write_reg(hw
, M88E1000_PHY_GEN_CONTROL
, 0);
131 * igb_read_phy_reg_mdic - Read MDI control register
132 * @hw: pointer to the HW structure
133 * @offset: register offset to be read
134 * @data: pointer to the read data
136 * Reads the MDI control regsiter in the PHY at offset and stores the
137 * information read to data.
139 s32
igb_read_phy_reg_mdic(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
141 struct e1000_phy_info
*phy
= &hw
->phy
;
145 if (offset
> MAX_PHY_REG_ADDRESS
) {
146 hw_dbg("PHY Address %d is out of range\n", offset
);
147 ret_val
= -E1000_ERR_PARAM
;
152 * Set up Op-code, Phy Address, and register offset in the MDI
153 * Control register. The MAC will take care of interfacing with the
154 * PHY to retrieve the desired data.
156 mdic
= ((offset
<< E1000_MDIC_REG_SHIFT
) |
157 (phy
->addr
<< E1000_MDIC_PHY_SHIFT
) |
158 (E1000_MDIC_OP_READ
));
160 wr32(E1000_MDIC
, mdic
);
163 * Poll the ready bit to see if the MDI read completed
164 * Increasing the time out as testing showed failures with
167 for (i
= 0; i
< (E1000_GEN_POLL_TIMEOUT
* 3); i
++) {
169 mdic
= rd32(E1000_MDIC
);
170 if (mdic
& E1000_MDIC_READY
)
173 if (!(mdic
& E1000_MDIC_READY
)) {
174 hw_dbg("MDI Read did not complete\n");
175 ret_val
= -E1000_ERR_PHY
;
178 if (mdic
& E1000_MDIC_ERROR
) {
179 hw_dbg("MDI Error\n");
180 ret_val
= -E1000_ERR_PHY
;
190 * igb_write_phy_reg_mdic - Write MDI control register
191 * @hw: pointer to the HW structure
192 * @offset: register offset to write to
193 * @data: data to write to register at offset
195 * Writes data to MDI control register in the PHY at offset.
197 s32
igb_write_phy_reg_mdic(struct e1000_hw
*hw
, u32 offset
, u16 data
)
199 struct e1000_phy_info
*phy
= &hw
->phy
;
203 if (offset
> MAX_PHY_REG_ADDRESS
) {
204 hw_dbg("PHY Address %d is out of range\n", offset
);
205 ret_val
= -E1000_ERR_PARAM
;
210 * Set up Op-code, Phy Address, and register offset in the MDI
211 * Control register. The MAC will take care of interfacing with the
212 * PHY to retrieve the desired data.
214 mdic
= (((u32
)data
) |
215 (offset
<< E1000_MDIC_REG_SHIFT
) |
216 (phy
->addr
<< E1000_MDIC_PHY_SHIFT
) |
217 (E1000_MDIC_OP_WRITE
));
219 wr32(E1000_MDIC
, mdic
);
222 * Poll the ready bit to see if the MDI read completed
223 * Increasing the time out as testing showed failures with
226 for (i
= 0; i
< (E1000_GEN_POLL_TIMEOUT
* 3); i
++) {
228 mdic
= rd32(E1000_MDIC
);
229 if (mdic
& E1000_MDIC_READY
)
232 if (!(mdic
& E1000_MDIC_READY
)) {
233 hw_dbg("MDI Write did not complete\n");
234 ret_val
= -E1000_ERR_PHY
;
237 if (mdic
& E1000_MDIC_ERROR
) {
238 hw_dbg("MDI Error\n");
239 ret_val
= -E1000_ERR_PHY
;
248 * igb_read_phy_reg_i2c - Read PHY register using i2c
249 * @hw: pointer to the HW structure
250 * @offset: register offset to be read
251 * @data: pointer to the read data
253 * Reads the PHY register at offset using the i2c interface and stores the
254 * retrieved information in data.
256 s32
igb_read_phy_reg_i2c(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
258 struct e1000_phy_info
*phy
= &hw
->phy
;
263 * Set up Op-code, Phy Address, and register address in the I2CCMD
264 * register. The MAC will take care of interfacing with the
265 * PHY to retrieve the desired data.
267 i2ccmd
= ((offset
<< E1000_I2CCMD_REG_ADDR_SHIFT
) |
268 (phy
->addr
<< E1000_I2CCMD_PHY_ADDR_SHIFT
) |
269 (E1000_I2CCMD_OPCODE_READ
));
271 wr32(E1000_I2CCMD
, i2ccmd
);
273 /* Poll the ready bit to see if the I2C read completed */
274 for (i
= 0; i
< E1000_I2CCMD_PHY_TIMEOUT
; i
++) {
276 i2ccmd
= rd32(E1000_I2CCMD
);
277 if (i2ccmd
& E1000_I2CCMD_READY
)
280 if (!(i2ccmd
& E1000_I2CCMD_READY
)) {
281 hw_dbg("I2CCMD Read did not complete\n");
282 return -E1000_ERR_PHY
;
284 if (i2ccmd
& E1000_I2CCMD_ERROR
) {
285 hw_dbg("I2CCMD Error bit set\n");
286 return -E1000_ERR_PHY
;
289 /* Need to byte-swap the 16-bit value. */
290 *data
= ((i2ccmd
>> 8) & 0x00FF) | ((i2ccmd
<< 8) & 0xFF00);
296 * igb_write_phy_reg_i2c - Write PHY register using i2c
297 * @hw: pointer to the HW structure
298 * @offset: register offset to write to
299 * @data: data to write at register offset
301 * Writes the data to PHY register at the offset using the i2c interface.
303 s32
igb_write_phy_reg_i2c(struct e1000_hw
*hw
, u32 offset
, u16 data
)
305 struct e1000_phy_info
*phy
= &hw
->phy
;
307 u16 phy_data_swapped
;
310 /* Swap the data bytes for the I2C interface */
311 phy_data_swapped
= ((data
>> 8) & 0x00FF) | ((data
<< 8) & 0xFF00);
314 * Set up Op-code, Phy Address, and register address in the I2CCMD
315 * register. The MAC will take care of interfacing with the
316 * PHY to retrieve the desired data.
318 i2ccmd
= ((offset
<< E1000_I2CCMD_REG_ADDR_SHIFT
) |
319 (phy
->addr
<< E1000_I2CCMD_PHY_ADDR_SHIFT
) |
320 E1000_I2CCMD_OPCODE_WRITE
|
323 wr32(E1000_I2CCMD
, i2ccmd
);
325 /* Poll the ready bit to see if the I2C read completed */
326 for (i
= 0; i
< E1000_I2CCMD_PHY_TIMEOUT
; i
++) {
328 i2ccmd
= rd32(E1000_I2CCMD
);
329 if (i2ccmd
& E1000_I2CCMD_READY
)
332 if (!(i2ccmd
& E1000_I2CCMD_READY
)) {
333 hw_dbg("I2CCMD Write did not complete\n");
334 return -E1000_ERR_PHY
;
336 if (i2ccmd
& E1000_I2CCMD_ERROR
) {
337 hw_dbg("I2CCMD Error bit set\n");
338 return -E1000_ERR_PHY
;
345 * igb_read_phy_reg_igp - Read igp PHY register
346 * @hw: pointer to the HW structure
347 * @offset: register offset to be read
348 * @data: pointer to the read data
350 * Acquires semaphore, if necessary, then reads the PHY register at offset
351 * and storing the retrieved information in data. Release any acquired
352 * semaphores before exiting.
354 s32
igb_read_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
358 if (!(hw
->phy
.ops
.acquire
))
361 ret_val
= hw
->phy
.ops
.acquire(hw
);
365 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
366 ret_val
= igb_write_phy_reg_mdic(hw
,
367 IGP01E1000_PHY_PAGE_SELECT
,
370 hw
->phy
.ops
.release(hw
);
375 ret_val
= igb_read_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
378 hw
->phy
.ops
.release(hw
);
385 * igb_write_phy_reg_igp - Write igp PHY register
386 * @hw: pointer to the HW structure
387 * @offset: register offset to write to
388 * @data: data to write at register offset
390 * Acquires semaphore, if necessary, then writes the data to PHY register
391 * at the offset. Release any acquired semaphores before exiting.
393 s32
igb_write_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16 data
)
397 if (!(hw
->phy
.ops
.acquire
))
400 ret_val
= hw
->phy
.ops
.acquire(hw
);
404 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
405 ret_val
= igb_write_phy_reg_mdic(hw
,
406 IGP01E1000_PHY_PAGE_SELECT
,
409 hw
->phy
.ops
.release(hw
);
414 ret_val
= igb_write_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
417 hw
->phy
.ops
.release(hw
);
424 * igb_copper_link_setup_82580 - Setup 82580 PHY for copper link
425 * @hw: pointer to the HW structure
427 * Sets up Carrier-sense on Transmit and downshift values.
429 s32
igb_copper_link_setup_82580(struct e1000_hw
*hw
)
431 struct e1000_phy_info
*phy
= &hw
->phy
;
436 if (phy
->reset_disable
) {
441 if (phy
->type
== e1000_phy_82580
) {
442 ret_val
= hw
->phy
.ops
.reset(hw
);
444 hw_dbg("Error resetting the PHY.\n");
449 /* Enable CRS on TX. This must be set for half-duplex operation. */
450 ret_val
= phy
->ops
.read_reg(hw
, I82580_CFG_REG
, &phy_data
);
454 phy_data
|= I82580_CFG_ASSERT_CRS_ON_TX
;
456 /* Enable downshift */
457 phy_data
|= I82580_CFG_ENABLE_DOWNSHIFT
;
459 ret_val
= phy
->ops
.write_reg(hw
, I82580_CFG_REG
, phy_data
);
466 * igb_copper_link_setup_m88 - Setup m88 PHY's for copper link
467 * @hw: pointer to the HW structure
469 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
470 * and downshift values are set also.
472 s32
igb_copper_link_setup_m88(struct e1000_hw
*hw
)
474 struct e1000_phy_info
*phy
= &hw
->phy
;
478 if (phy
->reset_disable
) {
483 /* Enable CRS on TX. This must be set for half-duplex operation. */
484 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
488 phy_data
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
492 * MDI/MDI-X = 0 (default)
493 * 0 - Auto for all speeds
496 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
498 phy_data
&= ~M88E1000_PSCR_AUTO_X_MODE
;
502 phy_data
|= M88E1000_PSCR_MDI_MANUAL_MODE
;
505 phy_data
|= M88E1000_PSCR_MDIX_MANUAL_MODE
;
508 phy_data
|= M88E1000_PSCR_AUTO_X_1000T
;
512 phy_data
|= M88E1000_PSCR_AUTO_X_MODE
;
518 * disable_polarity_correction = 0 (default)
519 * Automatic Correction for Reversed Cable Polarity
523 phy_data
&= ~M88E1000_PSCR_POLARITY_REVERSAL
;
524 if (phy
->disable_polarity_correction
== 1)
525 phy_data
|= M88E1000_PSCR_POLARITY_REVERSAL
;
527 ret_val
= phy
->ops
.write_reg(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
531 if (phy
->revision
< E1000_REVISION_4
) {
533 * Force TX_CLK in the Extended PHY Specific Control Register
536 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_EXT_PHY_SPEC_CTRL
,
541 phy_data
|= M88E1000_EPSCR_TX_CLK_25
;
543 if ((phy
->revision
== E1000_REVISION_2
) &&
544 (phy
->id
== M88E1111_I_PHY_ID
)) {
545 /* 82573L PHY - set the downshift counter to 5x. */
546 phy_data
&= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK
;
547 phy_data
|= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X
;
549 /* Configure Master and Slave downshift values */
550 phy_data
&= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
|
551 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK
);
552 phy_data
|= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
|
553 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X
);
555 ret_val
= phy
->ops
.write_reg(hw
, M88E1000_EXT_PHY_SPEC_CTRL
,
561 /* Commit the changes. */
562 ret_val
= igb_phy_sw_reset(hw
);
564 hw_dbg("Error committing the PHY changes\n");
573 * igb_copper_link_setup_igp - Setup igp PHY's for copper link
574 * @hw: pointer to the HW structure
576 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
579 s32
igb_copper_link_setup_igp(struct e1000_hw
*hw
)
581 struct e1000_phy_info
*phy
= &hw
->phy
;
585 if (phy
->reset_disable
) {
590 ret_val
= phy
->ops
.reset(hw
);
592 hw_dbg("Error resetting the PHY.\n");
597 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
598 * timeout issues when LFS is enabled.
603 * The NVM settings will configure LPLU in D3 for
606 if (phy
->type
== e1000_phy_igp
) {
607 /* disable lplu d3 during driver init */
608 if (phy
->ops
.set_d3_lplu_state
)
609 ret_val
= phy
->ops
.set_d3_lplu_state(hw
, false);
611 hw_dbg("Error Disabling LPLU D3\n");
616 /* disable lplu d0 during driver init */
617 ret_val
= phy
->ops
.set_d0_lplu_state(hw
, false);
619 hw_dbg("Error Disabling LPLU D0\n");
622 /* Configure mdi-mdix settings */
623 ret_val
= phy
->ops
.read_reg(hw
, IGP01E1000_PHY_PORT_CTRL
, &data
);
627 data
&= ~IGP01E1000_PSCR_AUTO_MDIX
;
631 data
&= ~IGP01E1000_PSCR_FORCE_MDI_MDIX
;
634 data
|= IGP01E1000_PSCR_FORCE_MDI_MDIX
;
638 data
|= IGP01E1000_PSCR_AUTO_MDIX
;
641 ret_val
= phy
->ops
.write_reg(hw
, IGP01E1000_PHY_PORT_CTRL
, data
);
645 /* set auto-master slave resolution settings */
646 if (hw
->mac
.autoneg
) {
648 * when autonegotiation advertisement is only 1000Mbps then we
649 * should disable SmartSpeed and enable Auto MasterSlave
650 * resolution as hardware default.
652 if (phy
->autoneg_advertised
== ADVERTISE_1000_FULL
) {
653 /* Disable SmartSpeed */
654 ret_val
= phy
->ops
.read_reg(hw
,
655 IGP01E1000_PHY_PORT_CONFIG
,
660 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
661 ret_val
= phy
->ops
.write_reg(hw
,
662 IGP01E1000_PHY_PORT_CONFIG
,
667 /* Set auto Master/Slave resolution process */
668 ret_val
= phy
->ops
.read_reg(hw
, PHY_1000T_CTRL
, &data
);
672 data
&= ~CR_1000T_MS_ENABLE
;
673 ret_val
= phy
->ops
.write_reg(hw
, PHY_1000T_CTRL
, data
);
678 ret_val
= phy
->ops
.read_reg(hw
, PHY_1000T_CTRL
, &data
);
682 /* load defaults for future use */
683 phy
->original_ms_type
= (data
& CR_1000T_MS_ENABLE
) ?
684 ((data
& CR_1000T_MS_VALUE
) ?
685 e1000_ms_force_master
:
686 e1000_ms_force_slave
) :
689 switch (phy
->ms_type
) {
690 case e1000_ms_force_master
:
691 data
|= (CR_1000T_MS_ENABLE
| CR_1000T_MS_VALUE
);
693 case e1000_ms_force_slave
:
694 data
|= CR_1000T_MS_ENABLE
;
695 data
&= ~(CR_1000T_MS_VALUE
);
698 data
&= ~CR_1000T_MS_ENABLE
;
702 ret_val
= phy
->ops
.write_reg(hw
, PHY_1000T_CTRL
, data
);
712 * igb_copper_link_autoneg - Setup/Enable autoneg for copper link
713 * @hw: pointer to the HW structure
715 * Performs initial bounds checking on autoneg advertisement parameter, then
716 * configure to advertise the full capability. Setup the PHY to autoneg
717 * and restart the negotiation process between the link partner. If
718 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
720 static s32
igb_copper_link_autoneg(struct e1000_hw
*hw
)
722 struct e1000_phy_info
*phy
= &hw
->phy
;
727 * Perform some bounds checking on the autoneg advertisement
730 phy
->autoneg_advertised
&= phy
->autoneg_mask
;
733 * If autoneg_advertised is zero, we assume it was not defaulted
734 * by the calling code so we set to advertise full capability.
736 if (phy
->autoneg_advertised
== 0)
737 phy
->autoneg_advertised
= phy
->autoneg_mask
;
739 hw_dbg("Reconfiguring auto-neg advertisement params\n");
740 ret_val
= igb_phy_setup_autoneg(hw
);
742 hw_dbg("Error Setting up Auto-Negotiation\n");
745 hw_dbg("Restarting Auto-Neg\n");
748 * Restart auto-negotiation by setting the Auto Neg Enable bit and
749 * the Auto Neg Restart bit in the PHY control register.
751 ret_val
= phy
->ops
.read_reg(hw
, PHY_CONTROL
, &phy_ctrl
);
755 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
| MII_CR_RESTART_AUTO_NEG
);
756 ret_val
= phy
->ops
.write_reg(hw
, PHY_CONTROL
, phy_ctrl
);
761 * Does the user want to wait for Auto-Neg to complete here, or
762 * check at a later time (for example, callback routine).
764 if (phy
->autoneg_wait_to_complete
) {
765 ret_val
= igb_wait_autoneg(hw
);
767 hw_dbg("Error while waiting for "
768 "autoneg to complete\n");
773 hw
->mac
.get_link_status
= true;
780 * igb_phy_setup_autoneg - Configure PHY for auto-negotiation
781 * @hw: pointer to the HW structure
783 * Reads the MII auto-neg advertisement register and/or the 1000T control
784 * register and if the PHY is already setup for auto-negotiation, then
785 * return successful. Otherwise, setup advertisement and flow control to
786 * the appropriate values for the wanted auto-negotiation.
788 static s32
igb_phy_setup_autoneg(struct e1000_hw
*hw
)
790 struct e1000_phy_info
*phy
= &hw
->phy
;
792 u16 mii_autoneg_adv_reg
;
793 u16 mii_1000t_ctrl_reg
= 0;
795 phy
->autoneg_advertised
&= phy
->autoneg_mask
;
797 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
798 ret_val
= phy
->ops
.read_reg(hw
, PHY_AUTONEG_ADV
, &mii_autoneg_adv_reg
);
802 if (phy
->autoneg_mask
& ADVERTISE_1000_FULL
) {
803 /* Read the MII 1000Base-T Control Register (Address 9). */
804 ret_val
= phy
->ops
.read_reg(hw
, PHY_1000T_CTRL
,
805 &mii_1000t_ctrl_reg
);
811 * Need to parse both autoneg_advertised and fc and set up
812 * the appropriate PHY registers. First we will parse for
813 * autoneg_advertised software override. Since we can advertise
814 * a plethora of combinations, we need to check each bit
819 * First we clear all the 10/100 mb speed bits in the Auto-Neg
820 * Advertisement Register (Address 4) and the 1000 mb speed bits in
821 * the 1000Base-T Control Register (Address 9).
823 mii_autoneg_adv_reg
&= ~(NWAY_AR_100TX_FD_CAPS
|
824 NWAY_AR_100TX_HD_CAPS
|
825 NWAY_AR_10T_FD_CAPS
|
826 NWAY_AR_10T_HD_CAPS
);
827 mii_1000t_ctrl_reg
&= ~(CR_1000T_HD_CAPS
| CR_1000T_FD_CAPS
);
829 hw_dbg("autoneg_advertised %x\n", phy
->autoneg_advertised
);
831 /* Do we want to advertise 10 Mb Half Duplex? */
832 if (phy
->autoneg_advertised
& ADVERTISE_10_HALF
) {
833 hw_dbg("Advertise 10mb Half duplex\n");
834 mii_autoneg_adv_reg
|= NWAY_AR_10T_HD_CAPS
;
837 /* Do we want to advertise 10 Mb Full Duplex? */
838 if (phy
->autoneg_advertised
& ADVERTISE_10_FULL
) {
839 hw_dbg("Advertise 10mb Full duplex\n");
840 mii_autoneg_adv_reg
|= NWAY_AR_10T_FD_CAPS
;
843 /* Do we want to advertise 100 Mb Half Duplex? */
844 if (phy
->autoneg_advertised
& ADVERTISE_100_HALF
) {
845 hw_dbg("Advertise 100mb Half duplex\n");
846 mii_autoneg_adv_reg
|= NWAY_AR_100TX_HD_CAPS
;
849 /* Do we want to advertise 100 Mb Full Duplex? */
850 if (phy
->autoneg_advertised
& ADVERTISE_100_FULL
) {
851 hw_dbg("Advertise 100mb Full duplex\n");
852 mii_autoneg_adv_reg
|= NWAY_AR_100TX_FD_CAPS
;
855 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
856 if (phy
->autoneg_advertised
& ADVERTISE_1000_HALF
)
857 hw_dbg("Advertise 1000mb Half duplex request denied!\n");
859 /* Do we want to advertise 1000 Mb Full Duplex? */
860 if (phy
->autoneg_advertised
& ADVERTISE_1000_FULL
) {
861 hw_dbg("Advertise 1000mb Full duplex\n");
862 mii_1000t_ctrl_reg
|= CR_1000T_FD_CAPS
;
866 * Check for a software override of the flow control settings, and
867 * setup the PHY advertisement registers accordingly. If
868 * auto-negotiation is enabled, then software will have to set the
869 * "PAUSE" bits to the correct value in the Auto-Negotiation
870 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
873 * The possible values of the "fc" parameter are:
874 * 0: Flow control is completely disabled
875 * 1: Rx flow control is enabled (we can receive pause frames
876 * but not send pause frames).
877 * 2: Tx flow control is enabled (we can send pause frames
878 * but we do not support receiving pause frames).
879 * 3: Both Rx and TX flow control (symmetric) are enabled.
880 * other: No software override. The flow control configuration
881 * in the EEPROM is used.
883 switch (hw
->fc
.current_mode
) {
886 * Flow control (RX & TX) is completely disabled by a
887 * software over-ride.
889 mii_autoneg_adv_reg
&= ~(NWAY_AR_ASM_DIR
| NWAY_AR_PAUSE
);
891 case e1000_fc_rx_pause
:
893 * RX Flow control is enabled, and TX Flow control is
894 * disabled, by a software over-ride.
896 * Since there really isn't a way to advertise that we are
897 * capable of RX Pause ONLY, we will advertise that we
898 * support both symmetric and asymmetric RX PAUSE. Later
899 * (in e1000_config_fc_after_link_up) we will disable the
900 * hw's ability to send PAUSE frames.
902 mii_autoneg_adv_reg
|= (NWAY_AR_ASM_DIR
| NWAY_AR_PAUSE
);
904 case e1000_fc_tx_pause
:
906 * TX Flow control is enabled, and RX Flow control is
907 * disabled, by a software over-ride.
909 mii_autoneg_adv_reg
|= NWAY_AR_ASM_DIR
;
910 mii_autoneg_adv_reg
&= ~NWAY_AR_PAUSE
;
914 * Flow control (both RX and TX) is enabled by a software
917 mii_autoneg_adv_reg
|= (NWAY_AR_ASM_DIR
| NWAY_AR_PAUSE
);
920 hw_dbg("Flow control param set incorrectly\n");
921 ret_val
= -E1000_ERR_CONFIG
;
925 ret_val
= phy
->ops
.write_reg(hw
, PHY_AUTONEG_ADV
, mii_autoneg_adv_reg
);
929 hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg
);
931 if (phy
->autoneg_mask
& ADVERTISE_1000_FULL
) {
932 ret_val
= phy
->ops
.write_reg(hw
,
944 * igb_setup_copper_link - Configure copper link settings
945 * @hw: pointer to the HW structure
947 * Calls the appropriate function to configure the link for auto-neg or forced
948 * speed and duplex. Then we check for link, once link is established calls
949 * to configure collision distance and flow control are called. If link is
950 * not established, we return -E1000_ERR_PHY (-2).
952 s32
igb_setup_copper_link(struct e1000_hw
*hw
)
958 if (hw
->mac
.autoneg
) {
960 * Setup autoneg and flow control advertisement and perform
963 ret_val
= igb_copper_link_autoneg(hw
);
968 * PHY will be set to 10H, 10F, 100H or 100F
969 * depending on user settings.
971 hw_dbg("Forcing Speed and Duplex\n");
972 ret_val
= hw
->phy
.ops
.force_speed_duplex(hw
);
974 hw_dbg("Error Forcing Speed and Duplex\n");
980 * Check link status. Wait up to 100 microseconds for link to become
983 ret_val
= igb_phy_has_link(hw
,
984 COPPER_LINK_UP_LIMIT
,
991 hw_dbg("Valid link established!!!\n");
992 igb_config_collision_dist(hw
);
993 ret_val
= igb_config_fc_after_link_up(hw
);
995 hw_dbg("Unable to establish link!!!\n");
1003 * igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1004 * @hw: pointer to the HW structure
1006 * Calls the PHY setup function to force speed and duplex. Clears the
1007 * auto-crossover to force MDI manually. Waits for link and returns
1008 * successful if link up is successful, else -E1000_ERR_PHY (-2).
1010 s32
igb_phy_force_speed_duplex_igp(struct e1000_hw
*hw
)
1012 struct e1000_phy_info
*phy
= &hw
->phy
;
1017 ret_val
= phy
->ops
.read_reg(hw
, PHY_CONTROL
, &phy_data
);
1021 igb_phy_force_speed_duplex_setup(hw
, &phy_data
);
1023 ret_val
= phy
->ops
.write_reg(hw
, PHY_CONTROL
, phy_data
);
1028 * Clear Auto-Crossover to force MDI manually. IGP requires MDI
1029 * forced whenever speed and duplex are forced.
1031 ret_val
= phy
->ops
.read_reg(hw
, IGP01E1000_PHY_PORT_CTRL
, &phy_data
);
1035 phy_data
&= ~IGP01E1000_PSCR_AUTO_MDIX
;
1036 phy_data
&= ~IGP01E1000_PSCR_FORCE_MDI_MDIX
;
1038 ret_val
= phy
->ops
.write_reg(hw
, IGP01E1000_PHY_PORT_CTRL
, phy_data
);
1042 hw_dbg("IGP PSCR: %X\n", phy_data
);
1046 if (phy
->autoneg_wait_to_complete
) {
1047 hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1049 ret_val
= igb_phy_has_link(hw
,
1057 hw_dbg("Link taking longer than expected.\n");
1060 ret_val
= igb_phy_has_link(hw
,
1073 * igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1074 * @hw: pointer to the HW structure
1076 * Calls the PHY setup function to force speed and duplex. Clears the
1077 * auto-crossover to force MDI manually. Resets the PHY to commit the
1078 * changes. If time expires while waiting for link up, we reset the DSP.
1079 * After reset, TX_CLK and CRS on TX must be set. Return successful upon
1080 * successful completion, else return corresponding error code.
1082 s32
igb_phy_force_speed_duplex_m88(struct e1000_hw
*hw
)
1084 struct e1000_phy_info
*phy
= &hw
->phy
;
1090 * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
1091 * forced whenever speed and duplex are forced.
1093 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
1097 phy_data
&= ~M88E1000_PSCR_AUTO_X_MODE
;
1098 ret_val
= phy
->ops
.write_reg(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
1102 hw_dbg("M88E1000 PSCR: %X\n", phy_data
);
1104 ret_val
= phy
->ops
.read_reg(hw
, PHY_CONTROL
, &phy_data
);
1108 igb_phy_force_speed_duplex_setup(hw
, &phy_data
);
1110 ret_val
= phy
->ops
.write_reg(hw
, PHY_CONTROL
, phy_data
);
1114 /* Reset the phy to commit changes. */
1115 ret_val
= igb_phy_sw_reset(hw
);
1119 if (phy
->autoneg_wait_to_complete
) {
1120 hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1122 ret_val
= igb_phy_has_link(hw
, PHY_FORCE_LIMIT
, 100000, &link
);
1128 * We didn't get link.
1129 * Reset the DSP and cross our fingers.
1131 ret_val
= phy
->ops
.write_reg(hw
,
1132 M88E1000_PHY_PAGE_SELECT
,
1136 ret_val
= igb_phy_reset_dsp(hw
);
1142 ret_val
= igb_phy_has_link(hw
, PHY_FORCE_LIMIT
,
1148 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_data
);
1153 * Resetting the phy means we need to re-force TX_CLK in the
1154 * Extended PHY Specific Control Register to 25MHz clock from
1155 * the reset value of 2.5MHz.
1157 phy_data
|= M88E1000_EPSCR_TX_CLK_25
;
1158 ret_val
= phy
->ops
.write_reg(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, phy_data
);
1163 * In addition, we must re-enable CRS on Tx for both half and full
1166 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
1170 phy_data
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
1171 ret_val
= phy
->ops
.write_reg(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
1178 * igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1179 * @hw: pointer to the HW structure
1180 * @phy_ctrl: pointer to current value of PHY_CONTROL
1182 * Forces speed and duplex on the PHY by doing the following: disable flow
1183 * control, force speed/duplex on the MAC, disable auto speed detection,
1184 * disable auto-negotiation, configure duplex, configure speed, configure
1185 * the collision distance, write configuration to CTRL register. The
1186 * caller must write to the PHY_CONTROL register for these settings to
1189 static void igb_phy_force_speed_duplex_setup(struct e1000_hw
*hw
,
1192 struct e1000_mac_info
*mac
= &hw
->mac
;
1195 /* Turn off flow control when forcing speed/duplex */
1196 hw
->fc
.current_mode
= e1000_fc_none
;
1198 /* Force speed/duplex on the mac */
1199 ctrl
= rd32(E1000_CTRL
);
1200 ctrl
|= (E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
1201 ctrl
&= ~E1000_CTRL_SPD_SEL
;
1203 /* Disable Auto Speed Detection */
1204 ctrl
&= ~E1000_CTRL_ASDE
;
1206 /* Disable autoneg on the phy */
1207 *phy_ctrl
&= ~MII_CR_AUTO_NEG_EN
;
1209 /* Forcing Full or Half Duplex? */
1210 if (mac
->forced_speed_duplex
& E1000_ALL_HALF_DUPLEX
) {
1211 ctrl
&= ~E1000_CTRL_FD
;
1212 *phy_ctrl
&= ~MII_CR_FULL_DUPLEX
;
1213 hw_dbg("Half Duplex\n");
1215 ctrl
|= E1000_CTRL_FD
;
1216 *phy_ctrl
|= MII_CR_FULL_DUPLEX
;
1217 hw_dbg("Full Duplex\n");
1220 /* Forcing 10mb or 100mb? */
1221 if (mac
->forced_speed_duplex
& E1000_ALL_100_SPEED
) {
1222 ctrl
|= E1000_CTRL_SPD_100
;
1223 *phy_ctrl
|= MII_CR_SPEED_100
;
1224 *phy_ctrl
&= ~(MII_CR_SPEED_1000
| MII_CR_SPEED_10
);
1225 hw_dbg("Forcing 100mb\n");
1227 ctrl
&= ~(E1000_CTRL_SPD_1000
| E1000_CTRL_SPD_100
);
1228 *phy_ctrl
|= MII_CR_SPEED_10
;
1229 *phy_ctrl
&= ~(MII_CR_SPEED_1000
| MII_CR_SPEED_100
);
1230 hw_dbg("Forcing 10mb\n");
1233 igb_config_collision_dist(hw
);
1235 wr32(E1000_CTRL
, ctrl
);
1239 * igb_set_d3_lplu_state - Sets low power link up state for D3
1240 * @hw: pointer to the HW structure
1241 * @active: boolean used to enable/disable lplu
1243 * Success returns 0, Failure returns 1
1245 * The low power link up (lplu) state is set to the power management level D3
1246 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1247 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1248 * is used during Dx states where the power conservation is most important.
1249 * During driver activity, SmartSpeed should be enabled so performance is
1252 s32
igb_set_d3_lplu_state(struct e1000_hw
*hw
, bool active
)
1254 struct e1000_phy_info
*phy
= &hw
->phy
;
1258 if (!(hw
->phy
.ops
.read_reg
))
1261 ret_val
= phy
->ops
.read_reg(hw
, IGP02E1000_PHY_POWER_MGMT
, &data
);
1266 data
&= ~IGP02E1000_PM_D3_LPLU
;
1267 ret_val
= phy
->ops
.write_reg(hw
, IGP02E1000_PHY_POWER_MGMT
,
1272 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1273 * during Dx states where the power conservation is most
1274 * important. During driver activity we should enable
1275 * SmartSpeed, so performance is maintained.
1277 if (phy
->smart_speed
== e1000_smart_speed_on
) {
1278 ret_val
= phy
->ops
.read_reg(hw
,
1279 IGP01E1000_PHY_PORT_CONFIG
,
1284 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
1285 ret_val
= phy
->ops
.write_reg(hw
,
1286 IGP01E1000_PHY_PORT_CONFIG
,
1290 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
1291 ret_val
= phy
->ops
.read_reg(hw
,
1292 IGP01E1000_PHY_PORT_CONFIG
,
1297 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1298 ret_val
= phy
->ops
.write_reg(hw
,
1299 IGP01E1000_PHY_PORT_CONFIG
,
1304 } else if ((phy
->autoneg_advertised
== E1000_ALL_SPEED_DUPLEX
) ||
1305 (phy
->autoneg_advertised
== E1000_ALL_NOT_GIG
) ||
1306 (phy
->autoneg_advertised
== E1000_ALL_10_SPEED
)) {
1307 data
|= IGP02E1000_PM_D3_LPLU
;
1308 ret_val
= phy
->ops
.write_reg(hw
, IGP02E1000_PHY_POWER_MGMT
,
1313 /* When LPLU is enabled, we should disable SmartSpeed */
1314 ret_val
= phy
->ops
.read_reg(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1319 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1320 ret_val
= phy
->ops
.write_reg(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1329 * igb_check_downshift - Checks whether a downshift in speed occured
1330 * @hw: pointer to the HW structure
1332 * Success returns 0, Failure returns 1
1334 * A downshift is detected by querying the PHY link health.
1336 s32
igb_check_downshift(struct e1000_hw
*hw
)
1338 struct e1000_phy_info
*phy
= &hw
->phy
;
1340 u16 phy_data
, offset
, mask
;
1342 switch (phy
->type
) {
1344 case e1000_phy_gg82563
:
1345 offset
= M88E1000_PHY_SPEC_STATUS
;
1346 mask
= M88E1000_PSSR_DOWNSHIFT
;
1348 case e1000_phy_igp_2
:
1350 case e1000_phy_igp_3
:
1351 offset
= IGP01E1000_PHY_LINK_HEALTH
;
1352 mask
= IGP01E1000_PLHR_SS_DOWNGRADE
;
1355 /* speed downshift not supported */
1356 phy
->speed_downgraded
= false;
1361 ret_val
= phy
->ops
.read_reg(hw
, offset
, &phy_data
);
1364 phy
->speed_downgraded
= (phy_data
& mask
) ? true : false;
1371 * igb_check_polarity_m88 - Checks the polarity.
1372 * @hw: pointer to the HW structure
1374 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1376 * Polarity is determined based on the PHY specific status register.
1378 static s32
igb_check_polarity_m88(struct e1000_hw
*hw
)
1380 struct e1000_phy_info
*phy
= &hw
->phy
;
1384 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_STATUS
, &data
);
1387 phy
->cable_polarity
= (data
& M88E1000_PSSR_REV_POLARITY
)
1388 ? e1000_rev_polarity_reversed
1389 : e1000_rev_polarity_normal
;
1395 * igb_check_polarity_igp - Checks the polarity.
1396 * @hw: pointer to the HW structure
1398 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1400 * Polarity is determined based on the PHY port status register, and the
1401 * current speed (since there is no polarity at 100Mbps).
1403 static s32
igb_check_polarity_igp(struct e1000_hw
*hw
)
1405 struct e1000_phy_info
*phy
= &hw
->phy
;
1407 u16 data
, offset
, mask
;
1410 * Polarity is determined based on the speed of
1413 ret_val
= phy
->ops
.read_reg(hw
, IGP01E1000_PHY_PORT_STATUS
, &data
);
1417 if ((data
& IGP01E1000_PSSR_SPEED_MASK
) ==
1418 IGP01E1000_PSSR_SPEED_1000MBPS
) {
1419 offset
= IGP01E1000_PHY_PCS_INIT_REG
;
1420 mask
= IGP01E1000_PHY_POLARITY_MASK
;
1423 * This really only applies to 10Mbps since
1424 * there is no polarity for 100Mbps (always 0).
1426 offset
= IGP01E1000_PHY_PORT_STATUS
;
1427 mask
= IGP01E1000_PSSR_POLARITY_REVERSED
;
1430 ret_val
= phy
->ops
.read_reg(hw
, offset
, &data
);
1433 phy
->cable_polarity
= (data
& mask
)
1434 ? e1000_rev_polarity_reversed
1435 : e1000_rev_polarity_normal
;
1442 * igb_wait_autoneg - Wait for auto-neg compeletion
1443 * @hw: pointer to the HW structure
1445 * Waits for auto-negotiation to complete or for the auto-negotiation time
1446 * limit to expire, which ever happens first.
1448 static s32
igb_wait_autoneg(struct e1000_hw
*hw
)
1453 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1454 for (i
= PHY_AUTO_NEG_LIMIT
; i
> 0; i
--) {
1455 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_STATUS
, &phy_status
);
1458 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_STATUS
, &phy_status
);
1461 if (phy_status
& MII_SR_AUTONEG_COMPLETE
)
1467 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1474 * igb_phy_has_link - Polls PHY for link
1475 * @hw: pointer to the HW structure
1476 * @iterations: number of times to poll for link
1477 * @usec_interval: delay between polling attempts
1478 * @success: pointer to whether polling was successful or not
1480 * Polls the PHY status register for link, 'iterations' number of times.
1482 s32
igb_phy_has_link(struct e1000_hw
*hw
, u32 iterations
,
1483 u32 usec_interval
, bool *success
)
1488 for (i
= 0; i
< iterations
; i
++) {
1490 * Some PHYs require the PHY_STATUS register to be read
1491 * twice due to the link bit being sticky. No harm doing
1492 * it across the board.
1494 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_STATUS
, &phy_status
);
1497 * If the first read fails, another entity may have
1498 * ownership of the resources, wait and try again to
1499 * see if they have relinquished the resources yet.
1501 udelay(usec_interval
);
1503 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_STATUS
, &phy_status
);
1506 if (phy_status
& MII_SR_LINK_STATUS
)
1508 if (usec_interval
>= 1000)
1509 mdelay(usec_interval
/1000);
1511 udelay(usec_interval
);
1514 *success
= (i
< iterations
) ? true : false;
1520 * igb_get_cable_length_m88 - Determine cable length for m88 PHY
1521 * @hw: pointer to the HW structure
1523 * Reads the PHY specific status register to retrieve the cable length
1524 * information. The cable length is determined by averaging the minimum and
1525 * maximum values to get the "average" cable length. The m88 PHY has four
1526 * possible cable length values, which are:
1527 * Register Value Cable Length
1531 * 3 110 - 140 meters
1534 s32
igb_get_cable_length_m88(struct e1000_hw
*hw
)
1536 struct e1000_phy_info
*phy
= &hw
->phy
;
1538 u16 phy_data
, index
;
1540 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
1544 index
= (phy_data
& M88E1000_PSSR_CABLE_LENGTH
) >>
1545 M88E1000_PSSR_CABLE_LENGTH_SHIFT
;
1546 if (index
>= M88E1000_CABLE_LENGTH_TABLE_SIZE
- 1) {
1547 ret_val
= -E1000_ERR_PHY
;
1551 phy
->min_cable_length
= e1000_m88_cable_length_table
[index
];
1552 phy
->max_cable_length
= e1000_m88_cable_length_table
[index
+ 1];
1554 phy
->cable_length
= (phy
->min_cable_length
+ phy
->max_cable_length
) / 2;
1561 * igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1562 * @hw: pointer to the HW structure
1564 * The automatic gain control (agc) normalizes the amplitude of the
1565 * received signal, adjusting for the attenuation produced by the
1566 * cable. By reading the AGC registers, which represent the
1567 * combination of coarse and fine gain value, the value can be put
1568 * into a lookup table to obtain the approximate cable length
1571 s32
igb_get_cable_length_igp_2(struct e1000_hw
*hw
)
1573 struct e1000_phy_info
*phy
= &hw
->phy
;
1575 u16 phy_data
, i
, agc_value
= 0;
1576 u16 cur_agc_index
, max_agc_index
= 0;
1577 u16 min_agc_index
= IGP02E1000_CABLE_LENGTH_TABLE_SIZE
- 1;
1578 u16 agc_reg_array
[IGP02E1000_PHY_CHANNEL_NUM
] =
1579 {IGP02E1000_PHY_AGC_A
,
1580 IGP02E1000_PHY_AGC_B
,
1581 IGP02E1000_PHY_AGC_C
,
1582 IGP02E1000_PHY_AGC_D
};
1584 /* Read the AGC registers for all channels */
1585 for (i
= 0; i
< IGP02E1000_PHY_CHANNEL_NUM
; i
++) {
1586 ret_val
= phy
->ops
.read_reg(hw
, agc_reg_array
[i
], &phy_data
);
1591 * Getting bits 15:9, which represent the combination of
1592 * coarse and fine gain values. The result is a number
1593 * that can be put into the lookup table to obtain the
1594 * approximate cable length.
1596 cur_agc_index
= (phy_data
>> IGP02E1000_AGC_LENGTH_SHIFT
) &
1597 IGP02E1000_AGC_LENGTH_MASK
;
1599 /* Array index bound check. */
1600 if ((cur_agc_index
>= IGP02E1000_CABLE_LENGTH_TABLE_SIZE
) ||
1601 (cur_agc_index
== 0)) {
1602 ret_val
= -E1000_ERR_PHY
;
1606 /* Remove min & max AGC values from calculation. */
1607 if (e1000_igp_2_cable_length_table
[min_agc_index
] >
1608 e1000_igp_2_cable_length_table
[cur_agc_index
])
1609 min_agc_index
= cur_agc_index
;
1610 if (e1000_igp_2_cable_length_table
[max_agc_index
] <
1611 e1000_igp_2_cable_length_table
[cur_agc_index
])
1612 max_agc_index
= cur_agc_index
;
1614 agc_value
+= e1000_igp_2_cable_length_table
[cur_agc_index
];
1617 agc_value
-= (e1000_igp_2_cable_length_table
[min_agc_index
] +
1618 e1000_igp_2_cable_length_table
[max_agc_index
]);
1619 agc_value
/= (IGP02E1000_PHY_CHANNEL_NUM
- 2);
1621 /* Calculate cable length with the error range of +/- 10 meters. */
1622 phy
->min_cable_length
= ((agc_value
- IGP02E1000_AGC_RANGE
) > 0) ?
1623 (agc_value
- IGP02E1000_AGC_RANGE
) : 0;
1624 phy
->max_cable_length
= agc_value
+ IGP02E1000_AGC_RANGE
;
1626 phy
->cable_length
= (phy
->min_cable_length
+ phy
->max_cable_length
) / 2;
1633 * igb_get_phy_info_m88 - Retrieve PHY information
1634 * @hw: pointer to the HW structure
1636 * Valid for only copper links. Read the PHY status register (sticky read)
1637 * to verify that link is up. Read the PHY special control register to
1638 * determine the polarity and 10base-T extended distance. Read the PHY
1639 * special status register to determine MDI/MDIx and current speed. If
1640 * speed is 1000, then determine cable length, local and remote receiver.
1642 s32
igb_get_phy_info_m88(struct e1000_hw
*hw
)
1644 struct e1000_phy_info
*phy
= &hw
->phy
;
1649 if (phy
->media_type
!= e1000_media_type_copper
) {
1650 hw_dbg("Phy info is only valid for copper media\n");
1651 ret_val
= -E1000_ERR_CONFIG
;
1655 ret_val
= igb_phy_has_link(hw
, 1, 0, &link
);
1660 hw_dbg("Phy info is only valid if link is up\n");
1661 ret_val
= -E1000_ERR_CONFIG
;
1665 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
1669 phy
->polarity_correction
= (phy_data
& M88E1000_PSCR_POLARITY_REVERSAL
)
1672 ret_val
= igb_check_polarity_m88(hw
);
1676 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
1680 phy
->is_mdix
= (phy_data
& M88E1000_PSSR_MDIX
) ? true : false;
1682 if ((phy_data
& M88E1000_PSSR_SPEED
) == M88E1000_PSSR_1000MBS
) {
1683 ret_val
= phy
->ops
.get_cable_length(hw
);
1687 ret_val
= phy
->ops
.read_reg(hw
, PHY_1000T_STATUS
, &phy_data
);
1691 phy
->local_rx
= (phy_data
& SR_1000T_LOCAL_RX_STATUS
)
1692 ? e1000_1000t_rx_status_ok
1693 : e1000_1000t_rx_status_not_ok
;
1695 phy
->remote_rx
= (phy_data
& SR_1000T_REMOTE_RX_STATUS
)
1696 ? e1000_1000t_rx_status_ok
1697 : e1000_1000t_rx_status_not_ok
;
1699 /* Set values to "undefined" */
1700 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
1701 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
1702 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
1710 * igb_get_phy_info_igp - Retrieve igp PHY information
1711 * @hw: pointer to the HW structure
1713 * Read PHY status to determine if link is up. If link is up, then
1714 * set/determine 10base-T extended distance and polarity correction. Read
1715 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
1716 * determine on the cable length, local and remote receiver.
1718 s32
igb_get_phy_info_igp(struct e1000_hw
*hw
)
1720 struct e1000_phy_info
*phy
= &hw
->phy
;
1725 ret_val
= igb_phy_has_link(hw
, 1, 0, &link
);
1730 hw_dbg("Phy info is only valid if link is up\n");
1731 ret_val
= -E1000_ERR_CONFIG
;
1735 phy
->polarity_correction
= true;
1737 ret_val
= igb_check_polarity_igp(hw
);
1741 ret_val
= phy
->ops
.read_reg(hw
, IGP01E1000_PHY_PORT_STATUS
, &data
);
1745 phy
->is_mdix
= (data
& IGP01E1000_PSSR_MDIX
) ? true : false;
1747 if ((data
& IGP01E1000_PSSR_SPEED_MASK
) ==
1748 IGP01E1000_PSSR_SPEED_1000MBPS
) {
1749 ret_val
= phy
->ops
.get_cable_length(hw
);
1753 ret_val
= phy
->ops
.read_reg(hw
, PHY_1000T_STATUS
, &data
);
1757 phy
->local_rx
= (data
& SR_1000T_LOCAL_RX_STATUS
)
1758 ? e1000_1000t_rx_status_ok
1759 : e1000_1000t_rx_status_not_ok
;
1761 phy
->remote_rx
= (data
& SR_1000T_REMOTE_RX_STATUS
)
1762 ? e1000_1000t_rx_status_ok
1763 : e1000_1000t_rx_status_not_ok
;
1765 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
1766 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
1767 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
1775 * igb_phy_sw_reset - PHY software reset
1776 * @hw: pointer to the HW structure
1778 * Does a software reset of the PHY by reading the PHY control register and
1779 * setting/write the control register reset bit to the PHY.
1781 s32
igb_phy_sw_reset(struct e1000_hw
*hw
)
1786 if (!(hw
->phy
.ops
.read_reg
))
1789 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_CONTROL
, &phy_ctrl
);
1793 phy_ctrl
|= MII_CR_RESET
;
1794 ret_val
= hw
->phy
.ops
.write_reg(hw
, PHY_CONTROL
, phy_ctrl
);
1805 * igb_phy_hw_reset - PHY hardware reset
1806 * @hw: pointer to the HW structure
1808 * Verify the reset block is not blocking us from resetting. Acquire
1809 * semaphore (if necessary) and read/set/write the device control reset
1810 * bit in the PHY. Wait the appropriate delay time for the device to
1811 * reset and relase the semaphore (if necessary).
1813 s32
igb_phy_hw_reset(struct e1000_hw
*hw
)
1815 struct e1000_phy_info
*phy
= &hw
->phy
;
1819 ret_val
= igb_check_reset_block(hw
);
1825 ret_val
= phy
->ops
.acquire(hw
);
1829 ctrl
= rd32(E1000_CTRL
);
1830 wr32(E1000_CTRL
, ctrl
| E1000_CTRL_PHY_RST
);
1833 udelay(phy
->reset_delay_us
);
1835 wr32(E1000_CTRL
, ctrl
);
1840 phy
->ops
.release(hw
);
1842 ret_val
= phy
->ops
.get_cfg_done(hw
);
1849 * igb_phy_init_script_igp3 - Inits the IGP3 PHY
1850 * @hw: pointer to the HW structure
1852 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
1854 s32
igb_phy_init_script_igp3(struct e1000_hw
*hw
)
1856 hw_dbg("Running IGP 3 PHY init script\n");
1858 /* PHY init IGP 3 */
1859 /* Enable rise/fall, 10-mode work in class-A */
1860 hw
->phy
.ops
.write_reg(hw
, 0x2F5B, 0x9018);
1861 /* Remove all caps from Replica path filter */
1862 hw
->phy
.ops
.write_reg(hw
, 0x2F52, 0x0000);
1863 /* Bias trimming for ADC, AFE and Driver (Default) */
1864 hw
->phy
.ops
.write_reg(hw
, 0x2FB1, 0x8B24);
1865 /* Increase Hybrid poly bias */
1866 hw
->phy
.ops
.write_reg(hw
, 0x2FB2, 0xF8F0);
1867 /* Add 4% to TX amplitude in Giga mode */
1868 hw
->phy
.ops
.write_reg(hw
, 0x2010, 0x10B0);
1869 /* Disable trimming (TTT) */
1870 hw
->phy
.ops
.write_reg(hw
, 0x2011, 0x0000);
1871 /* Poly DC correction to 94.6% + 2% for all channels */
1872 hw
->phy
.ops
.write_reg(hw
, 0x20DD, 0x249A);
1873 /* ABS DC correction to 95.9% */
1874 hw
->phy
.ops
.write_reg(hw
, 0x20DE, 0x00D3);
1875 /* BG temp curve trim */
1876 hw
->phy
.ops
.write_reg(hw
, 0x28B4, 0x04CE);
1877 /* Increasing ADC OPAMP stage 1 currents to max */
1878 hw
->phy
.ops
.write_reg(hw
, 0x2F70, 0x29E4);
1879 /* Force 1000 ( required for enabling PHY regs configuration) */
1880 hw
->phy
.ops
.write_reg(hw
, 0x0000, 0x0140);
1881 /* Set upd_freq to 6 */
1882 hw
->phy
.ops
.write_reg(hw
, 0x1F30, 0x1606);
1884 hw
->phy
.ops
.write_reg(hw
, 0x1F31, 0xB814);
1885 /* Disable adaptive fixed FFE (Default) */
1886 hw
->phy
.ops
.write_reg(hw
, 0x1F35, 0x002A);
1887 /* Enable FFE hysteresis */
1888 hw
->phy
.ops
.write_reg(hw
, 0x1F3E, 0x0067);
1889 /* Fixed FFE for short cable lengths */
1890 hw
->phy
.ops
.write_reg(hw
, 0x1F54, 0x0065);
1891 /* Fixed FFE for medium cable lengths */
1892 hw
->phy
.ops
.write_reg(hw
, 0x1F55, 0x002A);
1893 /* Fixed FFE for long cable lengths */
1894 hw
->phy
.ops
.write_reg(hw
, 0x1F56, 0x002A);
1895 /* Enable Adaptive Clip Threshold */
1896 hw
->phy
.ops
.write_reg(hw
, 0x1F72, 0x3FB0);
1897 /* AHT reset limit to 1 */
1898 hw
->phy
.ops
.write_reg(hw
, 0x1F76, 0xC0FF);
1899 /* Set AHT master delay to 127 msec */
1900 hw
->phy
.ops
.write_reg(hw
, 0x1F77, 0x1DEC);
1901 /* Set scan bits for AHT */
1902 hw
->phy
.ops
.write_reg(hw
, 0x1F78, 0xF9EF);
1903 /* Set AHT Preset bits */
1904 hw
->phy
.ops
.write_reg(hw
, 0x1F79, 0x0210);
1905 /* Change integ_factor of channel A to 3 */
1906 hw
->phy
.ops
.write_reg(hw
, 0x1895, 0x0003);
1907 /* Change prop_factor of channels BCD to 8 */
1908 hw
->phy
.ops
.write_reg(hw
, 0x1796, 0x0008);
1909 /* Change cg_icount + enable integbp for channels BCD */
1910 hw
->phy
.ops
.write_reg(hw
, 0x1798, 0xD008);
1912 * Change cg_icount + enable integbp + change prop_factor_master
1913 * to 8 for channel A
1915 hw
->phy
.ops
.write_reg(hw
, 0x1898, 0xD918);
1916 /* Disable AHT in Slave mode on channel A */
1917 hw
->phy
.ops
.write_reg(hw
, 0x187A, 0x0800);
1919 * Enable LPLU and disable AN to 1000 in non-D0a states,
1922 hw
->phy
.ops
.write_reg(hw
, 0x0019, 0x008D);
1923 /* Enable restart AN on an1000_dis change */
1924 hw
->phy
.ops
.write_reg(hw
, 0x001B, 0x2080);
1925 /* Enable wh_fifo read clock in 10/100 modes */
1926 hw
->phy
.ops
.write_reg(hw
, 0x0014, 0x0045);
1927 /* Restart AN, Speed selection is 1000 */
1928 hw
->phy
.ops
.write_reg(hw
, 0x0000, 0x1340);
1934 * igb_power_up_phy_copper - Restore copper link in case of PHY power down
1935 * @hw: pointer to the HW structure
1937 * In the case of a PHY power down to save power, or to turn off link during a
1938 * driver unload, restore the link to previous settings.
1940 void igb_power_up_phy_copper(struct e1000_hw
*hw
)
1944 /* The PHY will retain its settings across a power down/up cycle */
1945 hw
->phy
.ops
.read_reg(hw
, PHY_CONTROL
, &mii_reg
);
1946 mii_reg
&= ~MII_CR_POWER_DOWN
;
1947 hw
->phy
.ops
.write_reg(hw
, PHY_CONTROL
, mii_reg
);
1951 * igb_power_down_phy_copper - Power down copper PHY
1952 * @hw: pointer to the HW structure
1954 * Power down PHY to save power when interface is down and wake on lan
1957 void igb_power_down_phy_copper(struct e1000_hw
*hw
)
1961 /* The PHY will retain its settings across a power down/up cycle */
1962 hw
->phy
.ops
.read_reg(hw
, PHY_CONTROL
, &mii_reg
);
1963 mii_reg
|= MII_CR_POWER_DOWN
;
1964 hw
->phy
.ops
.write_reg(hw
, PHY_CONTROL
, mii_reg
);
1969 * igb_check_polarity_82580 - Checks the polarity.
1970 * @hw: pointer to the HW structure
1972 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1974 * Polarity is determined based on the PHY specific status register.
1976 static s32
igb_check_polarity_82580(struct e1000_hw
*hw
)
1978 struct e1000_phy_info
*phy
= &hw
->phy
;
1983 ret_val
= phy
->ops
.read_reg(hw
, I82580_PHY_STATUS_2
, &data
);
1986 phy
->cable_polarity
= (data
& I82580_PHY_STATUS2_REV_POLARITY
)
1987 ? e1000_rev_polarity_reversed
1988 : e1000_rev_polarity_normal
;
1994 * igb_phy_force_speed_duplex_82580 - Force speed/duplex for I82580 PHY
1995 * @hw: pointer to the HW structure
1997 * Calls the PHY setup function to force speed and duplex. Clears the
1998 * auto-crossover to force MDI manually. Waits for link and returns
1999 * successful if link up is successful, else -E1000_ERR_PHY (-2).
2001 s32
igb_phy_force_speed_duplex_82580(struct e1000_hw
*hw
)
2003 struct e1000_phy_info
*phy
= &hw
->phy
;
2009 ret_val
= phy
->ops
.read_reg(hw
, PHY_CONTROL
, &phy_data
);
2013 igb_phy_force_speed_duplex_setup(hw
, &phy_data
);
2015 ret_val
= phy
->ops
.write_reg(hw
, PHY_CONTROL
, phy_data
);
2020 * Clear Auto-Crossover to force MDI manually. 82580 requires MDI
2021 * forced whenever speed and duplex are forced.
2023 ret_val
= phy
->ops
.read_reg(hw
, I82580_PHY_CTRL_2
, &phy_data
);
2027 phy_data
&= ~I82580_PHY_CTRL2_AUTO_MDIX
;
2028 phy_data
&= ~I82580_PHY_CTRL2_FORCE_MDI_MDIX
;
2030 ret_val
= phy
->ops
.write_reg(hw
, I82580_PHY_CTRL_2
, phy_data
);
2034 hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data
);
2038 if (phy
->autoneg_wait_to_complete
) {
2039 hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n");
2041 ret_val
= igb_phy_has_link(hw
,
2049 hw_dbg("Link taking longer than expected.\n");
2052 ret_val
= igb_phy_has_link(hw
,
2065 * igb_get_phy_info_82580 - Retrieve I82580 PHY information
2066 * @hw: pointer to the HW structure
2068 * Read PHY status to determine if link is up. If link is up, then
2069 * set/determine 10base-T extended distance and polarity correction. Read
2070 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
2071 * determine on the cable length, local and remote receiver.
2073 s32
igb_get_phy_info_82580(struct e1000_hw
*hw
)
2075 struct e1000_phy_info
*phy
= &hw
->phy
;
2081 ret_val
= igb_phy_has_link(hw
, 1, 0, &link
);
2086 hw_dbg("Phy info is only valid if link is up\n");
2087 ret_val
= -E1000_ERR_CONFIG
;
2091 phy
->polarity_correction
= true;
2093 ret_val
= igb_check_polarity_82580(hw
);
2097 ret_val
= phy
->ops
.read_reg(hw
, I82580_PHY_STATUS_2
, &data
);
2101 phy
->is_mdix
= (data
& I82580_PHY_STATUS2_MDIX
) ? true : false;
2103 if ((data
& I82580_PHY_STATUS2_SPEED_MASK
) ==
2104 I82580_PHY_STATUS2_SPEED_1000MBPS
) {
2105 ret_val
= hw
->phy
.ops
.get_cable_length(hw
);
2109 ret_val
= phy
->ops
.read_reg(hw
, PHY_1000T_STATUS
, &data
);
2113 phy
->local_rx
= (data
& SR_1000T_LOCAL_RX_STATUS
)
2114 ? e1000_1000t_rx_status_ok
2115 : e1000_1000t_rx_status_not_ok
;
2117 phy
->remote_rx
= (data
& SR_1000T_REMOTE_RX_STATUS
)
2118 ? e1000_1000t_rx_status_ok
2119 : e1000_1000t_rx_status_not_ok
;
2121 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
2122 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
2123 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
2131 * igb_get_cable_length_82580 - Determine cable length for 82580 PHY
2132 * @hw: pointer to the HW structure
2134 * Reads the diagnostic status register and verifies result is valid before
2135 * placing it in the phy_cable_length field.
2137 s32
igb_get_cable_length_82580(struct e1000_hw
*hw
)
2139 struct e1000_phy_info
*phy
= &hw
->phy
;
2141 u16 phy_data
, length
;
2144 ret_val
= phy
->ops
.read_reg(hw
, I82580_PHY_DIAG_STATUS
, &phy_data
);
2148 length
= (phy_data
& I82580_DSTATUS_CABLE_LENGTH
) >>
2149 I82580_DSTATUS_CABLE_LENGTH_SHIFT
;
2151 if (length
== E1000_CABLE_LENGTH_UNDEFINED
)
2152 ret_val
= -E1000_ERR_PHY
;
2154 phy
->cable_length
= length
;