firewire: core: check for 1394a compliant IRM, fix inaccessibility of Sony camcorder
[firewire-audio.git] / drivers / net / igb / e1000_phy.c
blobcf1f323009233aed82c601b0d73454bdfe7200e1
1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/if_ether.h>
29 #include <linux/delay.h>
31 #include "e1000_mac.h"
32 #include "e1000_phy.h"
34 static s32 igb_phy_setup_autoneg(struct e1000_hw *hw);
35 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
36 u16 *phy_ctrl);
37 static s32 igb_wait_autoneg(struct e1000_hw *hw);
39 /* Cable length tables */
40 static const u16 e1000_m88_cable_length_table[] =
41 { 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
42 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
43 (sizeof(e1000_m88_cable_length_table) / \
44 sizeof(e1000_m88_cable_length_table[0]))
46 static const u16 e1000_igp_2_cable_length_table[] =
47 { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
48 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
49 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
50 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
51 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
52 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
53 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
54 104, 109, 114, 118, 121, 124};
55 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
56 (sizeof(e1000_igp_2_cable_length_table) / \
57 sizeof(e1000_igp_2_cable_length_table[0]))
59 /**
60 * igb_check_reset_block - Check if PHY reset is blocked
61 * @hw: pointer to the HW structure
63 * Read the PHY management control register and check whether a PHY reset
64 * is blocked. If a reset is not blocked return 0, otherwise
65 * return E1000_BLK_PHY_RESET (12).
66 **/
67 s32 igb_check_reset_block(struct e1000_hw *hw)
69 u32 manc;
71 manc = rd32(E1000_MANC);
73 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
74 E1000_BLK_PHY_RESET : 0;
77 /**
78 * igb_get_phy_id - Retrieve the PHY ID and revision
79 * @hw: pointer to the HW structure
81 * Reads the PHY registers and stores the PHY ID and possibly the PHY
82 * revision in the hardware structure.
83 **/
84 s32 igb_get_phy_id(struct e1000_hw *hw)
86 struct e1000_phy_info *phy = &hw->phy;
87 s32 ret_val = 0;
88 u16 phy_id;
90 ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
91 if (ret_val)
92 goto out;
94 phy->id = (u32)(phy_id << 16);
95 udelay(20);
96 ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
97 if (ret_val)
98 goto out;
100 phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
101 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
103 out:
104 return ret_val;
108 * igb_phy_reset_dsp - Reset PHY DSP
109 * @hw: pointer to the HW structure
111 * Reset the digital signal processor.
113 static s32 igb_phy_reset_dsp(struct e1000_hw *hw)
115 s32 ret_val = 0;
117 if (!(hw->phy.ops.write_reg))
118 goto out;
120 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
121 if (ret_val)
122 goto out;
124 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
126 out:
127 return ret_val;
131 * igb_read_phy_reg_mdic - Read MDI control register
132 * @hw: pointer to the HW structure
133 * @offset: register offset to be read
134 * @data: pointer to the read data
136 * Reads the MDI control regsiter in the PHY at offset and stores the
137 * information read to data.
139 s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
141 struct e1000_phy_info *phy = &hw->phy;
142 u32 i, mdic = 0;
143 s32 ret_val = 0;
145 if (offset > MAX_PHY_REG_ADDRESS) {
146 hw_dbg("PHY Address %d is out of range\n", offset);
147 ret_val = -E1000_ERR_PARAM;
148 goto out;
152 * Set up Op-code, Phy Address, and register offset in the MDI
153 * Control register. The MAC will take care of interfacing with the
154 * PHY to retrieve the desired data.
156 mdic = ((offset << E1000_MDIC_REG_SHIFT) |
157 (phy->addr << E1000_MDIC_PHY_SHIFT) |
158 (E1000_MDIC_OP_READ));
160 wr32(E1000_MDIC, mdic);
163 * Poll the ready bit to see if the MDI read completed
164 * Increasing the time out as testing showed failures with
165 * the lower time out
167 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
168 udelay(50);
169 mdic = rd32(E1000_MDIC);
170 if (mdic & E1000_MDIC_READY)
171 break;
173 if (!(mdic & E1000_MDIC_READY)) {
174 hw_dbg("MDI Read did not complete\n");
175 ret_val = -E1000_ERR_PHY;
176 goto out;
178 if (mdic & E1000_MDIC_ERROR) {
179 hw_dbg("MDI Error\n");
180 ret_val = -E1000_ERR_PHY;
181 goto out;
183 *data = (u16) mdic;
185 out:
186 return ret_val;
190 * igb_write_phy_reg_mdic - Write MDI control register
191 * @hw: pointer to the HW structure
192 * @offset: register offset to write to
193 * @data: data to write to register at offset
195 * Writes data to MDI control register in the PHY at offset.
197 s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
199 struct e1000_phy_info *phy = &hw->phy;
200 u32 i, mdic = 0;
201 s32 ret_val = 0;
203 if (offset > MAX_PHY_REG_ADDRESS) {
204 hw_dbg("PHY Address %d is out of range\n", offset);
205 ret_val = -E1000_ERR_PARAM;
206 goto out;
210 * Set up Op-code, Phy Address, and register offset in the MDI
211 * Control register. The MAC will take care of interfacing with the
212 * PHY to retrieve the desired data.
214 mdic = (((u32)data) |
215 (offset << E1000_MDIC_REG_SHIFT) |
216 (phy->addr << E1000_MDIC_PHY_SHIFT) |
217 (E1000_MDIC_OP_WRITE));
219 wr32(E1000_MDIC, mdic);
222 * Poll the ready bit to see if the MDI read completed
223 * Increasing the time out as testing showed failures with
224 * the lower time out
226 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
227 udelay(50);
228 mdic = rd32(E1000_MDIC);
229 if (mdic & E1000_MDIC_READY)
230 break;
232 if (!(mdic & E1000_MDIC_READY)) {
233 hw_dbg("MDI Write did not complete\n");
234 ret_val = -E1000_ERR_PHY;
235 goto out;
237 if (mdic & E1000_MDIC_ERROR) {
238 hw_dbg("MDI Error\n");
239 ret_val = -E1000_ERR_PHY;
240 goto out;
243 out:
244 return ret_val;
248 * igb_read_phy_reg_i2c - Read PHY register using i2c
249 * @hw: pointer to the HW structure
250 * @offset: register offset to be read
251 * @data: pointer to the read data
253 * Reads the PHY register at offset using the i2c interface and stores the
254 * retrieved information in data.
256 s32 igb_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
258 struct e1000_phy_info *phy = &hw->phy;
259 u32 i, i2ccmd = 0;
263 * Set up Op-code, Phy Address, and register address in the I2CCMD
264 * register. The MAC will take care of interfacing with the
265 * PHY to retrieve the desired data.
267 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
268 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
269 (E1000_I2CCMD_OPCODE_READ));
271 wr32(E1000_I2CCMD, i2ccmd);
273 /* Poll the ready bit to see if the I2C read completed */
274 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
275 udelay(50);
276 i2ccmd = rd32(E1000_I2CCMD);
277 if (i2ccmd & E1000_I2CCMD_READY)
278 break;
280 if (!(i2ccmd & E1000_I2CCMD_READY)) {
281 hw_dbg("I2CCMD Read did not complete\n");
282 return -E1000_ERR_PHY;
284 if (i2ccmd & E1000_I2CCMD_ERROR) {
285 hw_dbg("I2CCMD Error bit set\n");
286 return -E1000_ERR_PHY;
289 /* Need to byte-swap the 16-bit value. */
290 *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
292 return 0;
296 * igb_write_phy_reg_i2c - Write PHY register using i2c
297 * @hw: pointer to the HW structure
298 * @offset: register offset to write to
299 * @data: data to write at register offset
301 * Writes the data to PHY register at the offset using the i2c interface.
303 s32 igb_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
305 struct e1000_phy_info *phy = &hw->phy;
306 u32 i, i2ccmd = 0;
307 u16 phy_data_swapped;
310 /* Swap the data bytes for the I2C interface */
311 phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
314 * Set up Op-code, Phy Address, and register address in the I2CCMD
315 * register. The MAC will take care of interfacing with the
316 * PHY to retrieve the desired data.
318 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
319 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
320 E1000_I2CCMD_OPCODE_WRITE |
321 phy_data_swapped);
323 wr32(E1000_I2CCMD, i2ccmd);
325 /* Poll the ready bit to see if the I2C read completed */
326 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
327 udelay(50);
328 i2ccmd = rd32(E1000_I2CCMD);
329 if (i2ccmd & E1000_I2CCMD_READY)
330 break;
332 if (!(i2ccmd & E1000_I2CCMD_READY)) {
333 hw_dbg("I2CCMD Write did not complete\n");
334 return -E1000_ERR_PHY;
336 if (i2ccmd & E1000_I2CCMD_ERROR) {
337 hw_dbg("I2CCMD Error bit set\n");
338 return -E1000_ERR_PHY;
341 return 0;
345 * igb_read_phy_reg_igp - Read igp PHY register
346 * @hw: pointer to the HW structure
347 * @offset: register offset to be read
348 * @data: pointer to the read data
350 * Acquires semaphore, if necessary, then reads the PHY register at offset
351 * and storing the retrieved information in data. Release any acquired
352 * semaphores before exiting.
354 s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
356 s32 ret_val = 0;
358 if (!(hw->phy.ops.acquire))
359 goto out;
361 ret_val = hw->phy.ops.acquire(hw);
362 if (ret_val)
363 goto out;
365 if (offset > MAX_PHY_MULTI_PAGE_REG) {
366 ret_val = igb_write_phy_reg_mdic(hw,
367 IGP01E1000_PHY_PAGE_SELECT,
368 (u16)offset);
369 if (ret_val) {
370 hw->phy.ops.release(hw);
371 goto out;
375 ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
376 data);
378 hw->phy.ops.release(hw);
380 out:
381 return ret_val;
385 * igb_write_phy_reg_igp - Write igp PHY register
386 * @hw: pointer to the HW structure
387 * @offset: register offset to write to
388 * @data: data to write at register offset
390 * Acquires semaphore, if necessary, then writes the data to PHY register
391 * at the offset. Release any acquired semaphores before exiting.
393 s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
395 s32 ret_val = 0;
397 if (!(hw->phy.ops.acquire))
398 goto out;
400 ret_val = hw->phy.ops.acquire(hw);
401 if (ret_val)
402 goto out;
404 if (offset > MAX_PHY_MULTI_PAGE_REG) {
405 ret_val = igb_write_phy_reg_mdic(hw,
406 IGP01E1000_PHY_PAGE_SELECT,
407 (u16)offset);
408 if (ret_val) {
409 hw->phy.ops.release(hw);
410 goto out;
414 ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
415 data);
417 hw->phy.ops.release(hw);
419 out:
420 return ret_val;
424 * igb_copper_link_setup_82580 - Setup 82580 PHY for copper link
425 * @hw: pointer to the HW structure
427 * Sets up Carrier-sense on Transmit and downshift values.
429 s32 igb_copper_link_setup_82580(struct e1000_hw *hw)
431 struct e1000_phy_info *phy = &hw->phy;
432 s32 ret_val;
433 u16 phy_data;
436 if (phy->reset_disable) {
437 ret_val = 0;
438 goto out;
441 if (phy->type == e1000_phy_82580) {
442 ret_val = hw->phy.ops.reset(hw);
443 if (ret_val) {
444 hw_dbg("Error resetting the PHY.\n");
445 goto out;
449 /* Enable CRS on TX. This must be set for half-duplex operation. */
450 ret_val = phy->ops.read_reg(hw, I82580_CFG_REG, &phy_data);
451 if (ret_val)
452 goto out;
454 phy_data |= I82580_CFG_ASSERT_CRS_ON_TX;
456 /* Enable downshift */
457 phy_data |= I82580_CFG_ENABLE_DOWNSHIFT;
459 ret_val = phy->ops.write_reg(hw, I82580_CFG_REG, phy_data);
461 out:
462 return ret_val;
466 * igb_copper_link_setup_m88 - Setup m88 PHY's for copper link
467 * @hw: pointer to the HW structure
469 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
470 * and downshift values are set also.
472 s32 igb_copper_link_setup_m88(struct e1000_hw *hw)
474 struct e1000_phy_info *phy = &hw->phy;
475 s32 ret_val;
476 u16 phy_data;
478 if (phy->reset_disable) {
479 ret_val = 0;
480 goto out;
483 /* Enable CRS on TX. This must be set for half-duplex operation. */
484 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
485 if (ret_val)
486 goto out;
488 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
491 * Options:
492 * MDI/MDI-X = 0 (default)
493 * 0 - Auto for all speeds
494 * 1 - MDI mode
495 * 2 - MDI-X mode
496 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
498 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
500 switch (phy->mdix) {
501 case 1:
502 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
503 break;
504 case 2:
505 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
506 break;
507 case 3:
508 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
509 break;
510 case 0:
511 default:
512 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
513 break;
517 * Options:
518 * disable_polarity_correction = 0 (default)
519 * Automatic Correction for Reversed Cable Polarity
520 * 0 - Disabled
521 * 1 - Enabled
523 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
524 if (phy->disable_polarity_correction == 1)
525 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
527 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
528 if (ret_val)
529 goto out;
531 if (phy->revision < E1000_REVISION_4) {
533 * Force TX_CLK in the Extended PHY Specific Control Register
534 * to 25MHz clock.
536 ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
537 &phy_data);
538 if (ret_val)
539 goto out;
541 phy_data |= M88E1000_EPSCR_TX_CLK_25;
543 if ((phy->revision == E1000_REVISION_2) &&
544 (phy->id == M88E1111_I_PHY_ID)) {
545 /* 82573L PHY - set the downshift counter to 5x. */
546 phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
547 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
548 } else {
549 /* Configure Master and Slave downshift values */
550 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
551 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
552 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
553 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
555 ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
556 phy_data);
557 if (ret_val)
558 goto out;
561 /* Commit the changes. */
562 ret_val = igb_phy_sw_reset(hw);
563 if (ret_val) {
564 hw_dbg("Error committing the PHY changes\n");
565 goto out;
568 out:
569 return ret_val;
573 * igb_copper_link_setup_igp - Setup igp PHY's for copper link
574 * @hw: pointer to the HW structure
576 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
577 * igp PHY's.
579 s32 igb_copper_link_setup_igp(struct e1000_hw *hw)
581 struct e1000_phy_info *phy = &hw->phy;
582 s32 ret_val;
583 u16 data;
585 if (phy->reset_disable) {
586 ret_val = 0;
587 goto out;
590 ret_val = phy->ops.reset(hw);
591 if (ret_val) {
592 hw_dbg("Error resetting the PHY.\n");
593 goto out;
597 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
598 * timeout issues when LFS is enabled.
600 msleep(100);
603 * The NVM settings will configure LPLU in D3 for
604 * non-IGP1 PHYs.
606 if (phy->type == e1000_phy_igp) {
607 /* disable lplu d3 during driver init */
608 if (phy->ops.set_d3_lplu_state)
609 ret_val = phy->ops.set_d3_lplu_state(hw, false);
610 if (ret_val) {
611 hw_dbg("Error Disabling LPLU D3\n");
612 goto out;
616 /* disable lplu d0 during driver init */
617 ret_val = phy->ops.set_d0_lplu_state(hw, false);
618 if (ret_val) {
619 hw_dbg("Error Disabling LPLU D0\n");
620 goto out;
622 /* Configure mdi-mdix settings */
623 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
624 if (ret_val)
625 goto out;
627 data &= ~IGP01E1000_PSCR_AUTO_MDIX;
629 switch (phy->mdix) {
630 case 1:
631 data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
632 break;
633 case 2:
634 data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
635 break;
636 case 0:
637 default:
638 data |= IGP01E1000_PSCR_AUTO_MDIX;
639 break;
641 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
642 if (ret_val)
643 goto out;
645 /* set auto-master slave resolution settings */
646 if (hw->mac.autoneg) {
648 * when autonegotiation advertisement is only 1000Mbps then we
649 * should disable SmartSpeed and enable Auto MasterSlave
650 * resolution as hardware default.
652 if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
653 /* Disable SmartSpeed */
654 ret_val = phy->ops.read_reg(hw,
655 IGP01E1000_PHY_PORT_CONFIG,
656 &data);
657 if (ret_val)
658 goto out;
660 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
661 ret_val = phy->ops.write_reg(hw,
662 IGP01E1000_PHY_PORT_CONFIG,
663 data);
664 if (ret_val)
665 goto out;
667 /* Set auto Master/Slave resolution process */
668 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
669 if (ret_val)
670 goto out;
672 data &= ~CR_1000T_MS_ENABLE;
673 ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
674 if (ret_val)
675 goto out;
678 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
679 if (ret_val)
680 goto out;
682 /* load defaults for future use */
683 phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
684 ((data & CR_1000T_MS_VALUE) ?
685 e1000_ms_force_master :
686 e1000_ms_force_slave) :
687 e1000_ms_auto;
689 switch (phy->ms_type) {
690 case e1000_ms_force_master:
691 data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
692 break;
693 case e1000_ms_force_slave:
694 data |= CR_1000T_MS_ENABLE;
695 data &= ~(CR_1000T_MS_VALUE);
696 break;
697 case e1000_ms_auto:
698 data &= ~CR_1000T_MS_ENABLE;
699 default:
700 break;
702 ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
703 if (ret_val)
704 goto out;
707 out:
708 return ret_val;
712 * igb_copper_link_autoneg - Setup/Enable autoneg for copper link
713 * @hw: pointer to the HW structure
715 * Performs initial bounds checking on autoneg advertisement parameter, then
716 * configure to advertise the full capability. Setup the PHY to autoneg
717 * and restart the negotiation process between the link partner. If
718 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
720 static s32 igb_copper_link_autoneg(struct e1000_hw *hw)
722 struct e1000_phy_info *phy = &hw->phy;
723 s32 ret_val;
724 u16 phy_ctrl;
727 * Perform some bounds checking on the autoneg advertisement
728 * parameter.
730 phy->autoneg_advertised &= phy->autoneg_mask;
733 * If autoneg_advertised is zero, we assume it was not defaulted
734 * by the calling code so we set to advertise full capability.
736 if (phy->autoneg_advertised == 0)
737 phy->autoneg_advertised = phy->autoneg_mask;
739 hw_dbg("Reconfiguring auto-neg advertisement params\n");
740 ret_val = igb_phy_setup_autoneg(hw);
741 if (ret_val) {
742 hw_dbg("Error Setting up Auto-Negotiation\n");
743 goto out;
745 hw_dbg("Restarting Auto-Neg\n");
748 * Restart auto-negotiation by setting the Auto Neg Enable bit and
749 * the Auto Neg Restart bit in the PHY control register.
751 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
752 if (ret_val)
753 goto out;
755 phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
756 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
757 if (ret_val)
758 goto out;
761 * Does the user want to wait for Auto-Neg to complete here, or
762 * check at a later time (for example, callback routine).
764 if (phy->autoneg_wait_to_complete) {
765 ret_val = igb_wait_autoneg(hw);
766 if (ret_val) {
767 hw_dbg("Error while waiting for "
768 "autoneg to complete\n");
769 goto out;
773 hw->mac.get_link_status = true;
775 out:
776 return ret_val;
780 * igb_phy_setup_autoneg - Configure PHY for auto-negotiation
781 * @hw: pointer to the HW structure
783 * Reads the MII auto-neg advertisement register and/or the 1000T control
784 * register and if the PHY is already setup for auto-negotiation, then
785 * return successful. Otherwise, setup advertisement and flow control to
786 * the appropriate values for the wanted auto-negotiation.
788 static s32 igb_phy_setup_autoneg(struct e1000_hw *hw)
790 struct e1000_phy_info *phy = &hw->phy;
791 s32 ret_val;
792 u16 mii_autoneg_adv_reg;
793 u16 mii_1000t_ctrl_reg = 0;
795 phy->autoneg_advertised &= phy->autoneg_mask;
797 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
798 ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
799 if (ret_val)
800 goto out;
802 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
803 /* Read the MII 1000Base-T Control Register (Address 9). */
804 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
805 &mii_1000t_ctrl_reg);
806 if (ret_val)
807 goto out;
811 * Need to parse both autoneg_advertised and fc and set up
812 * the appropriate PHY registers. First we will parse for
813 * autoneg_advertised software override. Since we can advertise
814 * a plethora of combinations, we need to check each bit
815 * individually.
819 * First we clear all the 10/100 mb speed bits in the Auto-Neg
820 * Advertisement Register (Address 4) and the 1000 mb speed bits in
821 * the 1000Base-T Control Register (Address 9).
823 mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
824 NWAY_AR_100TX_HD_CAPS |
825 NWAY_AR_10T_FD_CAPS |
826 NWAY_AR_10T_HD_CAPS);
827 mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
829 hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
831 /* Do we want to advertise 10 Mb Half Duplex? */
832 if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
833 hw_dbg("Advertise 10mb Half duplex\n");
834 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
837 /* Do we want to advertise 10 Mb Full Duplex? */
838 if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
839 hw_dbg("Advertise 10mb Full duplex\n");
840 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
843 /* Do we want to advertise 100 Mb Half Duplex? */
844 if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
845 hw_dbg("Advertise 100mb Half duplex\n");
846 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
849 /* Do we want to advertise 100 Mb Full Duplex? */
850 if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
851 hw_dbg("Advertise 100mb Full duplex\n");
852 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
855 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
856 if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
857 hw_dbg("Advertise 1000mb Half duplex request denied!\n");
859 /* Do we want to advertise 1000 Mb Full Duplex? */
860 if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
861 hw_dbg("Advertise 1000mb Full duplex\n");
862 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
866 * Check for a software override of the flow control settings, and
867 * setup the PHY advertisement registers accordingly. If
868 * auto-negotiation is enabled, then software will have to set the
869 * "PAUSE" bits to the correct value in the Auto-Negotiation
870 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
871 * negotiation.
873 * The possible values of the "fc" parameter are:
874 * 0: Flow control is completely disabled
875 * 1: Rx flow control is enabled (we can receive pause frames
876 * but not send pause frames).
877 * 2: Tx flow control is enabled (we can send pause frames
878 * but we do not support receiving pause frames).
879 * 3: Both Rx and TX flow control (symmetric) are enabled.
880 * other: No software override. The flow control configuration
881 * in the EEPROM is used.
883 switch (hw->fc.current_mode) {
884 case e1000_fc_none:
886 * Flow control (RX & TX) is completely disabled by a
887 * software over-ride.
889 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
890 break;
891 case e1000_fc_rx_pause:
893 * RX Flow control is enabled, and TX Flow control is
894 * disabled, by a software over-ride.
896 * Since there really isn't a way to advertise that we are
897 * capable of RX Pause ONLY, we will advertise that we
898 * support both symmetric and asymmetric RX PAUSE. Later
899 * (in e1000_config_fc_after_link_up) we will disable the
900 * hw's ability to send PAUSE frames.
902 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
903 break;
904 case e1000_fc_tx_pause:
906 * TX Flow control is enabled, and RX Flow control is
907 * disabled, by a software over-ride.
909 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
910 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
911 break;
912 case e1000_fc_full:
914 * Flow control (both RX and TX) is enabled by a software
915 * over-ride.
917 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
918 break;
919 default:
920 hw_dbg("Flow control param set incorrectly\n");
921 ret_val = -E1000_ERR_CONFIG;
922 goto out;
925 ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
926 if (ret_val)
927 goto out;
929 hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
931 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
932 ret_val = phy->ops.write_reg(hw,
933 PHY_1000T_CTRL,
934 mii_1000t_ctrl_reg);
935 if (ret_val)
936 goto out;
939 out:
940 return ret_val;
944 * igb_setup_copper_link - Configure copper link settings
945 * @hw: pointer to the HW structure
947 * Calls the appropriate function to configure the link for auto-neg or forced
948 * speed and duplex. Then we check for link, once link is established calls
949 * to configure collision distance and flow control are called. If link is
950 * not established, we return -E1000_ERR_PHY (-2).
952 s32 igb_setup_copper_link(struct e1000_hw *hw)
954 s32 ret_val;
955 bool link;
958 if (hw->mac.autoneg) {
960 * Setup autoneg and flow control advertisement and perform
961 * autonegotiation.
963 ret_val = igb_copper_link_autoneg(hw);
964 if (ret_val)
965 goto out;
966 } else {
968 * PHY will be set to 10H, 10F, 100H or 100F
969 * depending on user settings.
971 hw_dbg("Forcing Speed and Duplex\n");
972 ret_val = hw->phy.ops.force_speed_duplex(hw);
973 if (ret_val) {
974 hw_dbg("Error Forcing Speed and Duplex\n");
975 goto out;
980 * Check link status. Wait up to 100 microseconds for link to become
981 * valid.
983 ret_val = igb_phy_has_link(hw,
984 COPPER_LINK_UP_LIMIT,
986 &link);
987 if (ret_val)
988 goto out;
990 if (link) {
991 hw_dbg("Valid link established!!!\n");
992 igb_config_collision_dist(hw);
993 ret_val = igb_config_fc_after_link_up(hw);
994 } else {
995 hw_dbg("Unable to establish link!!!\n");
998 out:
999 return ret_val;
1003 * igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1004 * @hw: pointer to the HW structure
1006 * Calls the PHY setup function to force speed and duplex. Clears the
1007 * auto-crossover to force MDI manually. Waits for link and returns
1008 * successful if link up is successful, else -E1000_ERR_PHY (-2).
1010 s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1012 struct e1000_phy_info *phy = &hw->phy;
1013 s32 ret_val;
1014 u16 phy_data;
1015 bool link;
1017 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1018 if (ret_val)
1019 goto out;
1021 igb_phy_force_speed_duplex_setup(hw, &phy_data);
1023 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1024 if (ret_val)
1025 goto out;
1028 * Clear Auto-Crossover to force MDI manually. IGP requires MDI
1029 * forced whenever speed and duplex are forced.
1031 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1032 if (ret_val)
1033 goto out;
1035 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1036 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1038 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1039 if (ret_val)
1040 goto out;
1042 hw_dbg("IGP PSCR: %X\n", phy_data);
1044 udelay(1);
1046 if (phy->autoneg_wait_to_complete) {
1047 hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1049 ret_val = igb_phy_has_link(hw,
1050 PHY_FORCE_LIMIT,
1051 100000,
1052 &link);
1053 if (ret_val)
1054 goto out;
1056 if (!link)
1057 hw_dbg("Link taking longer than expected.\n");
1059 /* Try once more */
1060 ret_val = igb_phy_has_link(hw,
1061 PHY_FORCE_LIMIT,
1062 100000,
1063 &link);
1064 if (ret_val)
1065 goto out;
1068 out:
1069 return ret_val;
1073 * igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1074 * @hw: pointer to the HW structure
1076 * Calls the PHY setup function to force speed and duplex. Clears the
1077 * auto-crossover to force MDI manually. Resets the PHY to commit the
1078 * changes. If time expires while waiting for link up, we reset the DSP.
1079 * After reset, TX_CLK and CRS on TX must be set. Return successful upon
1080 * successful completion, else return corresponding error code.
1082 s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1084 struct e1000_phy_info *phy = &hw->phy;
1085 s32 ret_val;
1086 u16 phy_data;
1087 bool link;
1090 * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
1091 * forced whenever speed and duplex are forced.
1093 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1094 if (ret_val)
1095 goto out;
1097 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1098 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1099 if (ret_val)
1100 goto out;
1102 hw_dbg("M88E1000 PSCR: %X\n", phy_data);
1104 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1105 if (ret_val)
1106 goto out;
1108 igb_phy_force_speed_duplex_setup(hw, &phy_data);
1110 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1111 if (ret_val)
1112 goto out;
1114 /* Reset the phy to commit changes. */
1115 ret_val = igb_phy_sw_reset(hw);
1116 if (ret_val)
1117 goto out;
1119 if (phy->autoneg_wait_to_complete) {
1120 hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1122 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
1123 if (ret_val)
1124 goto out;
1126 if (!link) {
1128 * We didn't get link.
1129 * Reset the DSP and cross our fingers.
1131 ret_val = phy->ops.write_reg(hw,
1132 M88E1000_PHY_PAGE_SELECT,
1133 0x001d);
1134 if (ret_val)
1135 goto out;
1136 ret_val = igb_phy_reset_dsp(hw);
1137 if (ret_val)
1138 goto out;
1141 /* Try once more */
1142 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT,
1143 100000, &link);
1144 if (ret_val)
1145 goto out;
1148 ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1149 if (ret_val)
1150 goto out;
1153 * Resetting the phy means we need to re-force TX_CLK in the
1154 * Extended PHY Specific Control Register to 25MHz clock from
1155 * the reset value of 2.5MHz.
1157 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1158 ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1159 if (ret_val)
1160 goto out;
1163 * In addition, we must re-enable CRS on Tx for both half and full
1164 * duplex.
1166 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1167 if (ret_val)
1168 goto out;
1170 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1171 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1173 out:
1174 return ret_val;
1178 * igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1179 * @hw: pointer to the HW structure
1180 * @phy_ctrl: pointer to current value of PHY_CONTROL
1182 * Forces speed and duplex on the PHY by doing the following: disable flow
1183 * control, force speed/duplex on the MAC, disable auto speed detection,
1184 * disable auto-negotiation, configure duplex, configure speed, configure
1185 * the collision distance, write configuration to CTRL register. The
1186 * caller must write to the PHY_CONTROL register for these settings to
1187 * take affect.
1189 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
1190 u16 *phy_ctrl)
1192 struct e1000_mac_info *mac = &hw->mac;
1193 u32 ctrl;
1195 /* Turn off flow control when forcing speed/duplex */
1196 hw->fc.current_mode = e1000_fc_none;
1198 /* Force speed/duplex on the mac */
1199 ctrl = rd32(E1000_CTRL);
1200 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1201 ctrl &= ~E1000_CTRL_SPD_SEL;
1203 /* Disable Auto Speed Detection */
1204 ctrl &= ~E1000_CTRL_ASDE;
1206 /* Disable autoneg on the phy */
1207 *phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1209 /* Forcing Full or Half Duplex? */
1210 if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1211 ctrl &= ~E1000_CTRL_FD;
1212 *phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1213 hw_dbg("Half Duplex\n");
1214 } else {
1215 ctrl |= E1000_CTRL_FD;
1216 *phy_ctrl |= MII_CR_FULL_DUPLEX;
1217 hw_dbg("Full Duplex\n");
1220 /* Forcing 10mb or 100mb? */
1221 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1222 ctrl |= E1000_CTRL_SPD_100;
1223 *phy_ctrl |= MII_CR_SPEED_100;
1224 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1225 hw_dbg("Forcing 100mb\n");
1226 } else {
1227 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1228 *phy_ctrl |= MII_CR_SPEED_10;
1229 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1230 hw_dbg("Forcing 10mb\n");
1233 igb_config_collision_dist(hw);
1235 wr32(E1000_CTRL, ctrl);
1239 * igb_set_d3_lplu_state - Sets low power link up state for D3
1240 * @hw: pointer to the HW structure
1241 * @active: boolean used to enable/disable lplu
1243 * Success returns 0, Failure returns 1
1245 * The low power link up (lplu) state is set to the power management level D3
1246 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1247 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1248 * is used during Dx states where the power conservation is most important.
1249 * During driver activity, SmartSpeed should be enabled so performance is
1250 * maintained.
1252 s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1254 struct e1000_phy_info *phy = &hw->phy;
1255 s32 ret_val = 0;
1256 u16 data;
1258 if (!(hw->phy.ops.read_reg))
1259 goto out;
1261 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1262 if (ret_val)
1263 goto out;
1265 if (!active) {
1266 data &= ~IGP02E1000_PM_D3_LPLU;
1267 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1268 data);
1269 if (ret_val)
1270 goto out;
1272 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1273 * during Dx states where the power conservation is most
1274 * important. During driver activity we should enable
1275 * SmartSpeed, so performance is maintained.
1277 if (phy->smart_speed == e1000_smart_speed_on) {
1278 ret_val = phy->ops.read_reg(hw,
1279 IGP01E1000_PHY_PORT_CONFIG,
1280 &data);
1281 if (ret_val)
1282 goto out;
1284 data |= IGP01E1000_PSCFR_SMART_SPEED;
1285 ret_val = phy->ops.write_reg(hw,
1286 IGP01E1000_PHY_PORT_CONFIG,
1287 data);
1288 if (ret_val)
1289 goto out;
1290 } else if (phy->smart_speed == e1000_smart_speed_off) {
1291 ret_val = phy->ops.read_reg(hw,
1292 IGP01E1000_PHY_PORT_CONFIG,
1293 &data);
1294 if (ret_val)
1295 goto out;
1297 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1298 ret_val = phy->ops.write_reg(hw,
1299 IGP01E1000_PHY_PORT_CONFIG,
1300 data);
1301 if (ret_val)
1302 goto out;
1304 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1305 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1306 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1307 data |= IGP02E1000_PM_D3_LPLU;
1308 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1309 data);
1310 if (ret_val)
1311 goto out;
1313 /* When LPLU is enabled, we should disable SmartSpeed */
1314 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1315 &data);
1316 if (ret_val)
1317 goto out;
1319 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1320 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1321 data);
1324 out:
1325 return ret_val;
1329 * igb_check_downshift - Checks whether a downshift in speed occured
1330 * @hw: pointer to the HW structure
1332 * Success returns 0, Failure returns 1
1334 * A downshift is detected by querying the PHY link health.
1336 s32 igb_check_downshift(struct e1000_hw *hw)
1338 struct e1000_phy_info *phy = &hw->phy;
1339 s32 ret_val;
1340 u16 phy_data, offset, mask;
1342 switch (phy->type) {
1343 case e1000_phy_m88:
1344 case e1000_phy_gg82563:
1345 offset = M88E1000_PHY_SPEC_STATUS;
1346 mask = M88E1000_PSSR_DOWNSHIFT;
1347 break;
1348 case e1000_phy_igp_2:
1349 case e1000_phy_igp:
1350 case e1000_phy_igp_3:
1351 offset = IGP01E1000_PHY_LINK_HEALTH;
1352 mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1353 break;
1354 default:
1355 /* speed downshift not supported */
1356 phy->speed_downgraded = false;
1357 ret_val = 0;
1358 goto out;
1361 ret_val = phy->ops.read_reg(hw, offset, &phy_data);
1363 if (!ret_val)
1364 phy->speed_downgraded = (phy_data & mask) ? true : false;
1366 out:
1367 return ret_val;
1371 * igb_check_polarity_m88 - Checks the polarity.
1372 * @hw: pointer to the HW structure
1374 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1376 * Polarity is determined based on the PHY specific status register.
1378 static s32 igb_check_polarity_m88(struct e1000_hw *hw)
1380 struct e1000_phy_info *phy = &hw->phy;
1381 s32 ret_val;
1382 u16 data;
1384 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
1386 if (!ret_val)
1387 phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1388 ? e1000_rev_polarity_reversed
1389 : e1000_rev_polarity_normal;
1391 return ret_val;
1395 * igb_check_polarity_igp - Checks the polarity.
1396 * @hw: pointer to the HW structure
1398 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1400 * Polarity is determined based on the PHY port status register, and the
1401 * current speed (since there is no polarity at 100Mbps).
1403 static s32 igb_check_polarity_igp(struct e1000_hw *hw)
1405 struct e1000_phy_info *phy = &hw->phy;
1406 s32 ret_val;
1407 u16 data, offset, mask;
1410 * Polarity is determined based on the speed of
1411 * our connection.
1413 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1414 if (ret_val)
1415 goto out;
1417 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1418 IGP01E1000_PSSR_SPEED_1000MBPS) {
1419 offset = IGP01E1000_PHY_PCS_INIT_REG;
1420 mask = IGP01E1000_PHY_POLARITY_MASK;
1421 } else {
1423 * This really only applies to 10Mbps since
1424 * there is no polarity for 100Mbps (always 0).
1426 offset = IGP01E1000_PHY_PORT_STATUS;
1427 mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1430 ret_val = phy->ops.read_reg(hw, offset, &data);
1432 if (!ret_val)
1433 phy->cable_polarity = (data & mask)
1434 ? e1000_rev_polarity_reversed
1435 : e1000_rev_polarity_normal;
1437 out:
1438 return ret_val;
1442 * igb_wait_autoneg - Wait for auto-neg compeletion
1443 * @hw: pointer to the HW structure
1445 * Waits for auto-negotiation to complete or for the auto-negotiation time
1446 * limit to expire, which ever happens first.
1448 static s32 igb_wait_autoneg(struct e1000_hw *hw)
1450 s32 ret_val = 0;
1451 u16 i, phy_status;
1453 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1454 for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1455 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1456 if (ret_val)
1457 break;
1458 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1459 if (ret_val)
1460 break;
1461 if (phy_status & MII_SR_AUTONEG_COMPLETE)
1462 break;
1463 msleep(100);
1467 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1468 * has completed.
1470 return ret_val;
1474 * igb_phy_has_link - Polls PHY for link
1475 * @hw: pointer to the HW structure
1476 * @iterations: number of times to poll for link
1477 * @usec_interval: delay between polling attempts
1478 * @success: pointer to whether polling was successful or not
1480 * Polls the PHY status register for link, 'iterations' number of times.
1482 s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations,
1483 u32 usec_interval, bool *success)
1485 s32 ret_val = 0;
1486 u16 i, phy_status;
1488 for (i = 0; i < iterations; i++) {
1490 * Some PHYs require the PHY_STATUS register to be read
1491 * twice due to the link bit being sticky. No harm doing
1492 * it across the board.
1494 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1495 if (ret_val) {
1497 * If the first read fails, another entity may have
1498 * ownership of the resources, wait and try again to
1499 * see if they have relinquished the resources yet.
1501 udelay(usec_interval);
1503 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1504 if (ret_val)
1505 break;
1506 if (phy_status & MII_SR_LINK_STATUS)
1507 break;
1508 if (usec_interval >= 1000)
1509 mdelay(usec_interval/1000);
1510 else
1511 udelay(usec_interval);
1514 *success = (i < iterations) ? true : false;
1516 return ret_val;
1520 * igb_get_cable_length_m88 - Determine cable length for m88 PHY
1521 * @hw: pointer to the HW structure
1523 * Reads the PHY specific status register to retrieve the cable length
1524 * information. The cable length is determined by averaging the minimum and
1525 * maximum values to get the "average" cable length. The m88 PHY has four
1526 * possible cable length values, which are:
1527 * Register Value Cable Length
1528 * 0 < 50 meters
1529 * 1 50 - 80 meters
1530 * 2 80 - 110 meters
1531 * 3 110 - 140 meters
1532 * 4 > 140 meters
1534 s32 igb_get_cable_length_m88(struct e1000_hw *hw)
1536 struct e1000_phy_info *phy = &hw->phy;
1537 s32 ret_val;
1538 u16 phy_data, index;
1540 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1541 if (ret_val)
1542 goto out;
1544 index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1545 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1546 if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1547 ret_val = -E1000_ERR_PHY;
1548 goto out;
1551 phy->min_cable_length = e1000_m88_cable_length_table[index];
1552 phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1554 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1556 out:
1557 return ret_val;
1561 * igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1562 * @hw: pointer to the HW structure
1564 * The automatic gain control (agc) normalizes the amplitude of the
1565 * received signal, adjusting for the attenuation produced by the
1566 * cable. By reading the AGC registers, which represent the
1567 * combination of coarse and fine gain value, the value can be put
1568 * into a lookup table to obtain the approximate cable length
1569 * for each channel.
1571 s32 igb_get_cable_length_igp_2(struct e1000_hw *hw)
1573 struct e1000_phy_info *phy = &hw->phy;
1574 s32 ret_val = 0;
1575 u16 phy_data, i, agc_value = 0;
1576 u16 cur_agc_index, max_agc_index = 0;
1577 u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1578 u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
1579 {IGP02E1000_PHY_AGC_A,
1580 IGP02E1000_PHY_AGC_B,
1581 IGP02E1000_PHY_AGC_C,
1582 IGP02E1000_PHY_AGC_D};
1584 /* Read the AGC registers for all channels */
1585 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1586 ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
1587 if (ret_val)
1588 goto out;
1591 * Getting bits 15:9, which represent the combination of
1592 * coarse and fine gain values. The result is a number
1593 * that can be put into the lookup table to obtain the
1594 * approximate cable length.
1596 cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1597 IGP02E1000_AGC_LENGTH_MASK;
1599 /* Array index bound check. */
1600 if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1601 (cur_agc_index == 0)) {
1602 ret_val = -E1000_ERR_PHY;
1603 goto out;
1606 /* Remove min & max AGC values from calculation. */
1607 if (e1000_igp_2_cable_length_table[min_agc_index] >
1608 e1000_igp_2_cable_length_table[cur_agc_index])
1609 min_agc_index = cur_agc_index;
1610 if (e1000_igp_2_cable_length_table[max_agc_index] <
1611 e1000_igp_2_cable_length_table[cur_agc_index])
1612 max_agc_index = cur_agc_index;
1614 agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1617 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1618 e1000_igp_2_cable_length_table[max_agc_index]);
1619 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1621 /* Calculate cable length with the error range of +/- 10 meters. */
1622 phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1623 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1624 phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1626 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1628 out:
1629 return ret_val;
1633 * igb_get_phy_info_m88 - Retrieve PHY information
1634 * @hw: pointer to the HW structure
1636 * Valid for only copper links. Read the PHY status register (sticky read)
1637 * to verify that link is up. Read the PHY special control register to
1638 * determine the polarity and 10base-T extended distance. Read the PHY
1639 * special status register to determine MDI/MDIx and current speed. If
1640 * speed is 1000, then determine cable length, local and remote receiver.
1642 s32 igb_get_phy_info_m88(struct e1000_hw *hw)
1644 struct e1000_phy_info *phy = &hw->phy;
1645 s32 ret_val;
1646 u16 phy_data;
1647 bool link;
1649 if (phy->media_type != e1000_media_type_copper) {
1650 hw_dbg("Phy info is only valid for copper media\n");
1651 ret_val = -E1000_ERR_CONFIG;
1652 goto out;
1655 ret_val = igb_phy_has_link(hw, 1, 0, &link);
1656 if (ret_val)
1657 goto out;
1659 if (!link) {
1660 hw_dbg("Phy info is only valid if link is up\n");
1661 ret_val = -E1000_ERR_CONFIG;
1662 goto out;
1665 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1666 if (ret_val)
1667 goto out;
1669 phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
1670 ? true : false;
1672 ret_val = igb_check_polarity_m88(hw);
1673 if (ret_val)
1674 goto out;
1676 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1677 if (ret_val)
1678 goto out;
1680 phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false;
1682 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1683 ret_val = phy->ops.get_cable_length(hw);
1684 if (ret_val)
1685 goto out;
1687 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
1688 if (ret_val)
1689 goto out;
1691 phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1692 ? e1000_1000t_rx_status_ok
1693 : e1000_1000t_rx_status_not_ok;
1695 phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1696 ? e1000_1000t_rx_status_ok
1697 : e1000_1000t_rx_status_not_ok;
1698 } else {
1699 /* Set values to "undefined" */
1700 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1701 phy->local_rx = e1000_1000t_rx_status_undefined;
1702 phy->remote_rx = e1000_1000t_rx_status_undefined;
1705 out:
1706 return ret_val;
1710 * igb_get_phy_info_igp - Retrieve igp PHY information
1711 * @hw: pointer to the HW structure
1713 * Read PHY status to determine if link is up. If link is up, then
1714 * set/determine 10base-T extended distance and polarity correction. Read
1715 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
1716 * determine on the cable length, local and remote receiver.
1718 s32 igb_get_phy_info_igp(struct e1000_hw *hw)
1720 struct e1000_phy_info *phy = &hw->phy;
1721 s32 ret_val;
1722 u16 data;
1723 bool link;
1725 ret_val = igb_phy_has_link(hw, 1, 0, &link);
1726 if (ret_val)
1727 goto out;
1729 if (!link) {
1730 hw_dbg("Phy info is only valid if link is up\n");
1731 ret_val = -E1000_ERR_CONFIG;
1732 goto out;
1735 phy->polarity_correction = true;
1737 ret_val = igb_check_polarity_igp(hw);
1738 if (ret_val)
1739 goto out;
1741 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1742 if (ret_val)
1743 goto out;
1745 phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false;
1747 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1748 IGP01E1000_PSSR_SPEED_1000MBPS) {
1749 ret_val = phy->ops.get_cable_length(hw);
1750 if (ret_val)
1751 goto out;
1753 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
1754 if (ret_val)
1755 goto out;
1757 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
1758 ? e1000_1000t_rx_status_ok
1759 : e1000_1000t_rx_status_not_ok;
1761 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
1762 ? e1000_1000t_rx_status_ok
1763 : e1000_1000t_rx_status_not_ok;
1764 } else {
1765 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1766 phy->local_rx = e1000_1000t_rx_status_undefined;
1767 phy->remote_rx = e1000_1000t_rx_status_undefined;
1770 out:
1771 return ret_val;
1775 * igb_phy_sw_reset - PHY software reset
1776 * @hw: pointer to the HW structure
1778 * Does a software reset of the PHY by reading the PHY control register and
1779 * setting/write the control register reset bit to the PHY.
1781 s32 igb_phy_sw_reset(struct e1000_hw *hw)
1783 s32 ret_val = 0;
1784 u16 phy_ctrl;
1786 if (!(hw->phy.ops.read_reg))
1787 goto out;
1789 ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
1790 if (ret_val)
1791 goto out;
1793 phy_ctrl |= MII_CR_RESET;
1794 ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
1795 if (ret_val)
1796 goto out;
1798 udelay(1);
1800 out:
1801 return ret_val;
1805 * igb_phy_hw_reset - PHY hardware reset
1806 * @hw: pointer to the HW structure
1808 * Verify the reset block is not blocking us from resetting. Acquire
1809 * semaphore (if necessary) and read/set/write the device control reset
1810 * bit in the PHY. Wait the appropriate delay time for the device to
1811 * reset and relase the semaphore (if necessary).
1813 s32 igb_phy_hw_reset(struct e1000_hw *hw)
1815 struct e1000_phy_info *phy = &hw->phy;
1816 s32 ret_val;
1817 u32 ctrl;
1819 ret_val = igb_check_reset_block(hw);
1820 if (ret_val) {
1821 ret_val = 0;
1822 goto out;
1825 ret_val = phy->ops.acquire(hw);
1826 if (ret_val)
1827 goto out;
1829 ctrl = rd32(E1000_CTRL);
1830 wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
1831 wrfl();
1833 udelay(phy->reset_delay_us);
1835 wr32(E1000_CTRL, ctrl);
1836 wrfl();
1838 udelay(150);
1840 phy->ops.release(hw);
1842 ret_val = phy->ops.get_cfg_done(hw);
1844 out:
1845 return ret_val;
1849 * igb_phy_init_script_igp3 - Inits the IGP3 PHY
1850 * @hw: pointer to the HW structure
1852 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
1854 s32 igb_phy_init_script_igp3(struct e1000_hw *hw)
1856 hw_dbg("Running IGP 3 PHY init script\n");
1858 /* PHY init IGP 3 */
1859 /* Enable rise/fall, 10-mode work in class-A */
1860 hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
1861 /* Remove all caps from Replica path filter */
1862 hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
1863 /* Bias trimming for ADC, AFE and Driver (Default) */
1864 hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
1865 /* Increase Hybrid poly bias */
1866 hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
1867 /* Add 4% to TX amplitude in Giga mode */
1868 hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
1869 /* Disable trimming (TTT) */
1870 hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
1871 /* Poly DC correction to 94.6% + 2% for all channels */
1872 hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
1873 /* ABS DC correction to 95.9% */
1874 hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
1875 /* BG temp curve trim */
1876 hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
1877 /* Increasing ADC OPAMP stage 1 currents to max */
1878 hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
1879 /* Force 1000 ( required for enabling PHY regs configuration) */
1880 hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
1881 /* Set upd_freq to 6 */
1882 hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
1883 /* Disable NPDFE */
1884 hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
1885 /* Disable adaptive fixed FFE (Default) */
1886 hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
1887 /* Enable FFE hysteresis */
1888 hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
1889 /* Fixed FFE for short cable lengths */
1890 hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
1891 /* Fixed FFE for medium cable lengths */
1892 hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
1893 /* Fixed FFE for long cable lengths */
1894 hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
1895 /* Enable Adaptive Clip Threshold */
1896 hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
1897 /* AHT reset limit to 1 */
1898 hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
1899 /* Set AHT master delay to 127 msec */
1900 hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
1901 /* Set scan bits for AHT */
1902 hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
1903 /* Set AHT Preset bits */
1904 hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
1905 /* Change integ_factor of channel A to 3 */
1906 hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
1907 /* Change prop_factor of channels BCD to 8 */
1908 hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
1909 /* Change cg_icount + enable integbp for channels BCD */
1910 hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
1912 * Change cg_icount + enable integbp + change prop_factor_master
1913 * to 8 for channel A
1915 hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
1916 /* Disable AHT in Slave mode on channel A */
1917 hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
1919 * Enable LPLU and disable AN to 1000 in non-D0a states,
1920 * Enable SPD+B2B
1922 hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
1923 /* Enable restart AN on an1000_dis change */
1924 hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
1925 /* Enable wh_fifo read clock in 10/100 modes */
1926 hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
1927 /* Restart AN, Speed selection is 1000 */
1928 hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
1930 return 0;
1934 * igb_power_up_phy_copper - Restore copper link in case of PHY power down
1935 * @hw: pointer to the HW structure
1937 * In the case of a PHY power down to save power, or to turn off link during a
1938 * driver unload, restore the link to previous settings.
1940 void igb_power_up_phy_copper(struct e1000_hw *hw)
1942 u16 mii_reg = 0;
1944 /* The PHY will retain its settings across a power down/up cycle */
1945 hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
1946 mii_reg &= ~MII_CR_POWER_DOWN;
1947 hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
1951 * igb_power_down_phy_copper - Power down copper PHY
1952 * @hw: pointer to the HW structure
1954 * Power down PHY to save power when interface is down and wake on lan
1955 * is not enabled.
1957 void igb_power_down_phy_copper(struct e1000_hw *hw)
1959 u16 mii_reg = 0;
1961 /* The PHY will retain its settings across a power down/up cycle */
1962 hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
1963 mii_reg |= MII_CR_POWER_DOWN;
1964 hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
1965 msleep(1);
1969 * igb_check_polarity_82580 - Checks the polarity.
1970 * @hw: pointer to the HW structure
1972 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1974 * Polarity is determined based on the PHY specific status register.
1976 static s32 igb_check_polarity_82580(struct e1000_hw *hw)
1978 struct e1000_phy_info *phy = &hw->phy;
1979 s32 ret_val;
1980 u16 data;
1983 ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
1985 if (!ret_val)
1986 phy->cable_polarity = (data & I82580_PHY_STATUS2_REV_POLARITY)
1987 ? e1000_rev_polarity_reversed
1988 : e1000_rev_polarity_normal;
1990 return ret_val;
1994 * igb_phy_force_speed_duplex_82580 - Force speed/duplex for I82580 PHY
1995 * @hw: pointer to the HW structure
1997 * Calls the PHY setup function to force speed and duplex. Clears the
1998 * auto-crossover to force MDI manually. Waits for link and returns
1999 * successful if link up is successful, else -E1000_ERR_PHY (-2).
2001 s32 igb_phy_force_speed_duplex_82580(struct e1000_hw *hw)
2003 struct e1000_phy_info *phy = &hw->phy;
2004 s32 ret_val;
2005 u16 phy_data;
2006 bool link;
2009 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
2010 if (ret_val)
2011 goto out;
2013 igb_phy_force_speed_duplex_setup(hw, &phy_data);
2015 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
2016 if (ret_val)
2017 goto out;
2020 * Clear Auto-Crossover to force MDI manually. 82580 requires MDI
2021 * forced whenever speed and duplex are forced.
2023 ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
2024 if (ret_val)
2025 goto out;
2027 phy_data &= ~I82580_PHY_CTRL2_AUTO_MDIX;
2028 phy_data &= ~I82580_PHY_CTRL2_FORCE_MDI_MDIX;
2030 ret_val = phy->ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
2031 if (ret_val)
2032 goto out;
2034 hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data);
2036 udelay(1);
2038 if (phy->autoneg_wait_to_complete) {
2039 hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n");
2041 ret_val = igb_phy_has_link(hw,
2042 PHY_FORCE_LIMIT,
2043 100000,
2044 &link);
2045 if (ret_val)
2046 goto out;
2048 if (!link)
2049 hw_dbg("Link taking longer than expected.\n");
2051 /* Try once more */
2052 ret_val = igb_phy_has_link(hw,
2053 PHY_FORCE_LIMIT,
2054 100000,
2055 &link);
2056 if (ret_val)
2057 goto out;
2060 out:
2061 return ret_val;
2065 * igb_get_phy_info_82580 - Retrieve I82580 PHY information
2066 * @hw: pointer to the HW structure
2068 * Read PHY status to determine if link is up. If link is up, then
2069 * set/determine 10base-T extended distance and polarity correction. Read
2070 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
2071 * determine on the cable length, local and remote receiver.
2073 s32 igb_get_phy_info_82580(struct e1000_hw *hw)
2075 struct e1000_phy_info *phy = &hw->phy;
2076 s32 ret_val;
2077 u16 data;
2078 bool link;
2081 ret_val = igb_phy_has_link(hw, 1, 0, &link);
2082 if (ret_val)
2083 goto out;
2085 if (!link) {
2086 hw_dbg("Phy info is only valid if link is up\n");
2087 ret_val = -E1000_ERR_CONFIG;
2088 goto out;
2091 phy->polarity_correction = true;
2093 ret_val = igb_check_polarity_82580(hw);
2094 if (ret_val)
2095 goto out;
2097 ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2098 if (ret_val)
2099 goto out;
2101 phy->is_mdix = (data & I82580_PHY_STATUS2_MDIX) ? true : false;
2103 if ((data & I82580_PHY_STATUS2_SPEED_MASK) ==
2104 I82580_PHY_STATUS2_SPEED_1000MBPS) {
2105 ret_val = hw->phy.ops.get_cable_length(hw);
2106 if (ret_val)
2107 goto out;
2109 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2110 if (ret_val)
2111 goto out;
2113 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2114 ? e1000_1000t_rx_status_ok
2115 : e1000_1000t_rx_status_not_ok;
2117 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2118 ? e1000_1000t_rx_status_ok
2119 : e1000_1000t_rx_status_not_ok;
2120 } else {
2121 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2122 phy->local_rx = e1000_1000t_rx_status_undefined;
2123 phy->remote_rx = e1000_1000t_rx_status_undefined;
2126 out:
2127 return ret_val;
2131 * igb_get_cable_length_82580 - Determine cable length for 82580 PHY
2132 * @hw: pointer to the HW structure
2134 * Reads the diagnostic status register and verifies result is valid before
2135 * placing it in the phy_cable_length field.
2137 s32 igb_get_cable_length_82580(struct e1000_hw *hw)
2139 struct e1000_phy_info *phy = &hw->phy;
2140 s32 ret_val;
2141 u16 phy_data, length;
2144 ret_val = phy->ops.read_reg(hw, I82580_PHY_DIAG_STATUS, &phy_data);
2145 if (ret_val)
2146 goto out;
2148 length = (phy_data & I82580_DSTATUS_CABLE_LENGTH) >>
2149 I82580_DSTATUS_CABLE_LENGTH_SHIFT;
2151 if (length == E1000_CABLE_LENGTH_UNDEFINED)
2152 ret_val = -E1000_ERR_PHY;
2154 phy->cable_length = length;
2156 out:
2157 return ret_val;