firewire: core: check for 1394a compliant IRM, fix inaccessibility of Sony camcorder
[firewire-audio.git] / drivers / net / cris / eth_v10.c
blob7e00027b9f8e8fbaf395f18f30d1ee059a87234f
1 /*
2 * e100net.c: A network driver for the ETRAX 100LX network controller.
4 * Copyright (c) 1998-2002 Axis Communications AB.
6 * The outline of this driver comes from skeleton.c.
8 */
11 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/delay.h>
15 #include <linux/types.h>
16 #include <linux/fcntl.h>
17 #include <linux/interrupt.h>
18 #include <linux/ptrace.h>
19 #include <linux/ioport.h>
20 #include <linux/in.h>
21 #include <linux/string.h>
22 #include <linux/spinlock.h>
23 #include <linux/errno.h>
24 #include <linux/init.h>
25 #include <linux/bitops.h>
27 #include <linux/if.h>
28 #include <linux/mii.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <linux/skbuff.h>
32 #include <linux/ethtool.h>
34 #include <arch/svinto.h>/* DMA and register descriptions */
35 #include <asm/io.h> /* CRIS_LED_* I/O functions */
36 #include <asm/irq.h>
37 #include <asm/dma.h>
38 #include <asm/system.h>
39 #include <asm/ethernet.h>
40 #include <asm/cache.h>
41 #include <arch/io_interface_mux.h>
43 //#define ETHDEBUG
44 #define D(x)
47 * The name of the card. Is used for messages and in the requests for
48 * io regions, irqs and dma channels
51 static const char* cardname = "ETRAX 100LX built-in ethernet controller";
53 /* A default ethernet address. Highlevel SW will set the real one later */
55 static struct sockaddr default_mac = {
57 { 0x00, 0x40, 0x8C, 0xCD, 0x00, 0x00 }
60 /* Information that need to be kept for each board. */
61 struct net_local {
62 struct net_device_stats stats;
63 struct mii_if_info mii_if;
65 /* Tx control lock. This protects the transmit buffer ring
66 * state along with the "tx full" state of the driver. This
67 * means all netif_queue flow control actions are protected
68 * by this lock as well.
70 spinlock_t lock;
72 spinlock_t led_lock; /* Protect LED state */
73 spinlock_t transceiver_lock; /* Protect transceiver state. */
76 typedef struct etrax_eth_descr
78 etrax_dma_descr descr;
79 struct sk_buff* skb;
80 } etrax_eth_descr;
82 /* Some transceivers requires special handling */
83 struct transceiver_ops
85 unsigned int oui;
86 void (*check_speed)(struct net_device* dev);
87 void (*check_duplex)(struct net_device* dev);
90 /* Duplex settings */
91 enum duplex
93 half,
94 full,
95 autoneg
98 /* Dma descriptors etc. */
100 #define MAX_MEDIA_DATA_SIZE 1522
102 #define MIN_PACKET_LEN 46
103 #define ETHER_HEAD_LEN 14
106 ** MDIO constants.
108 #define MDIO_START 0x1
109 #define MDIO_READ 0x2
110 #define MDIO_WRITE 0x1
111 #define MDIO_PREAMBLE 0xfffffffful
113 /* Broadcom specific */
114 #define MDIO_AUX_CTRL_STATUS_REG 0x18
115 #define MDIO_BC_FULL_DUPLEX_IND 0x1
116 #define MDIO_BC_SPEED 0x2
118 /* TDK specific */
119 #define MDIO_TDK_DIAGNOSTIC_REG 18
120 #define MDIO_TDK_DIAGNOSTIC_RATE 0x400
121 #define MDIO_TDK_DIAGNOSTIC_DPLX 0x800
123 /*Intel LXT972A specific*/
124 #define MDIO_INT_STATUS_REG_2 0x0011
125 #define MDIO_INT_FULL_DUPLEX_IND (1 << 9)
126 #define MDIO_INT_SPEED (1 << 14)
128 /* Network flash constants */
129 #define NET_FLASH_TIME (HZ/50) /* 20 ms */
130 #define NET_FLASH_PAUSE (HZ/100) /* 10 ms */
131 #define NET_LINK_UP_CHECK_INTERVAL (2*HZ) /* 2 s */
132 #define NET_DUPLEX_CHECK_INTERVAL (2*HZ) /* 2 s */
134 #define NO_NETWORK_ACTIVITY 0
135 #define NETWORK_ACTIVITY 1
137 #define NBR_OF_RX_DESC 32
138 #define NBR_OF_TX_DESC 16
140 /* Large packets are sent directly to upper layers while small packets are */
141 /* copied (to reduce memory waste). The following constant decides the breakpoint */
142 #define RX_COPYBREAK 256
144 /* Due to a chip bug we need to flush the cache when descriptors are returned */
145 /* to the DMA. To decrease performance impact we return descriptors in chunks. */
146 /* The following constant determines the number of descriptors to return. */
147 #define RX_QUEUE_THRESHOLD NBR_OF_RX_DESC/2
149 #define GET_BIT(bit,val) (((val) >> (bit)) & 0x01)
151 /* Define some macros to access ETRAX 100 registers */
152 #define SETF(var, reg, field, val) var = (var & ~IO_MASK_(reg##_, field##_)) | \
153 IO_FIELD_(reg##_, field##_, val)
154 #define SETS(var, reg, field, val) var = (var & ~IO_MASK_(reg##_, field##_)) | \
155 IO_STATE_(reg##_, field##_, _##val)
157 static etrax_eth_descr *myNextRxDesc; /* Points to the next descriptor to
158 to be processed */
159 static etrax_eth_descr *myLastRxDesc; /* The last processed descriptor */
161 static etrax_eth_descr RxDescList[NBR_OF_RX_DESC] __attribute__ ((aligned(32)));
163 static etrax_eth_descr* myFirstTxDesc; /* First packet not yet sent */
164 static etrax_eth_descr* myLastTxDesc; /* End of send queue */
165 static etrax_eth_descr* myNextTxDesc; /* Next descriptor to use */
166 static etrax_eth_descr TxDescList[NBR_OF_TX_DESC] __attribute__ ((aligned(32)));
168 static unsigned int network_rec_config_shadow = 0;
170 static unsigned int network_tr_ctrl_shadow = 0;
172 /* Network speed indication. */
173 static DEFINE_TIMER(speed_timer, NULL, 0, 0);
174 static DEFINE_TIMER(clear_led_timer, NULL, 0, 0);
175 static int current_speed; /* Speed read from transceiver */
176 static int current_speed_selection; /* Speed selected by user */
177 static unsigned long led_next_time;
178 static int led_active;
179 static int rx_queue_len;
181 /* Duplex */
182 static DEFINE_TIMER(duplex_timer, NULL, 0, 0);
183 static int full_duplex;
184 static enum duplex current_duplex;
186 /* Index to functions, as function prototypes. */
188 static int etrax_ethernet_init(void);
190 static int e100_open(struct net_device *dev);
191 static int e100_set_mac_address(struct net_device *dev, void *addr);
192 static int e100_send_packet(struct sk_buff *skb, struct net_device *dev);
193 static irqreturn_t e100rxtx_interrupt(int irq, void *dev_id);
194 static irqreturn_t e100nw_interrupt(int irq, void *dev_id);
195 static void e100_rx(struct net_device *dev);
196 static int e100_close(struct net_device *dev);
197 static int e100_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
198 static int e100_set_config(struct net_device* dev, struct ifmap* map);
199 static void e100_tx_timeout(struct net_device *dev);
200 static struct net_device_stats *e100_get_stats(struct net_device *dev);
201 static void set_multicast_list(struct net_device *dev);
202 static void e100_hardware_send_packet(struct net_local* np, char *buf, int length);
203 static void update_rx_stats(struct net_device_stats *);
204 static void update_tx_stats(struct net_device_stats *);
205 static int e100_probe_transceiver(struct net_device* dev);
207 static void e100_check_speed(unsigned long priv);
208 static void e100_set_speed(struct net_device* dev, unsigned long speed);
209 static void e100_check_duplex(unsigned long priv);
210 static void e100_set_duplex(struct net_device* dev, enum duplex);
211 static void e100_negotiate(struct net_device* dev);
213 static int e100_get_mdio_reg(struct net_device *dev, int phy_id, int location);
214 static void e100_set_mdio_reg(struct net_device *dev, int phy_id, int location, int value);
216 static void e100_send_mdio_cmd(unsigned short cmd, int write_cmd);
217 static void e100_send_mdio_bit(unsigned char bit);
218 static unsigned char e100_receive_mdio_bit(void);
219 static void e100_reset_transceiver(struct net_device* net);
221 static void e100_clear_network_leds(unsigned long dummy);
222 static void e100_set_network_leds(int active);
224 static const struct ethtool_ops e100_ethtool_ops;
225 #if defined(CONFIG_ETRAX_NO_PHY)
226 static void dummy_check_speed(struct net_device* dev);
227 static void dummy_check_duplex(struct net_device* dev);
228 #else
229 static void broadcom_check_speed(struct net_device* dev);
230 static void broadcom_check_duplex(struct net_device* dev);
231 static void tdk_check_speed(struct net_device* dev);
232 static void tdk_check_duplex(struct net_device* dev);
233 static void intel_check_speed(struct net_device* dev);
234 static void intel_check_duplex(struct net_device* dev);
235 static void generic_check_speed(struct net_device* dev);
236 static void generic_check_duplex(struct net_device* dev);
237 #endif
238 #ifdef CONFIG_NET_POLL_CONTROLLER
239 static void e100_netpoll(struct net_device* dev);
240 #endif
242 static int autoneg_normal = 1;
244 struct transceiver_ops transceivers[] =
246 #if defined(CONFIG_ETRAX_NO_PHY)
247 {0x0000, dummy_check_speed, dummy_check_duplex} /* Dummy */
248 #else
249 {0x1018, broadcom_check_speed, broadcom_check_duplex}, /* Broadcom */
250 {0xC039, tdk_check_speed, tdk_check_duplex}, /* TDK 2120 */
251 {0x039C, tdk_check_speed, tdk_check_duplex}, /* TDK 2120C */
252 {0x04de, intel_check_speed, intel_check_duplex}, /* Intel LXT972A*/
253 {0x0000, generic_check_speed, generic_check_duplex} /* Generic, must be last */
254 #endif
257 struct transceiver_ops* transceiver = &transceivers[0];
259 static const struct net_device_ops e100_netdev_ops = {
260 .ndo_open = e100_open,
261 .ndo_stop = e100_close,
262 .ndo_start_xmit = e100_send_packet,
263 .ndo_tx_timeout = e100_tx_timeout,
264 .ndo_get_stats = e100_get_stats,
265 .ndo_set_multicast_list = set_multicast_list,
266 .ndo_do_ioctl = e100_ioctl,
267 .ndo_set_mac_address = e100_set_mac_address,
268 .ndo_validate_addr = eth_validate_addr,
269 .ndo_change_mtu = eth_change_mtu,
270 .ndo_set_config = e100_set_config,
271 #ifdef CONFIG_NET_POLL_CONTROLLER
272 .ndo_poll_controller = e100_netpoll,
273 #endif
276 #define tx_done(dev) (*R_DMA_CH0_CMD == 0)
279 * Check for a network adaptor of this type, and return '0' if one exists.
280 * If dev->base_addr == 0, probe all likely locations.
281 * If dev->base_addr == 1, always return failure.
282 * If dev->base_addr == 2, allocate space for the device and return success
283 * (detachable devices only).
286 static int __init
287 etrax_ethernet_init(void)
289 struct net_device *dev;
290 struct net_local* np;
291 int i, err;
293 printk(KERN_INFO
294 "ETRAX 100LX 10/100MBit ethernet v2.0 (c) 1998-2007 Axis Communications AB\n");
296 if (cris_request_io_interface(if_eth, cardname)) {
297 printk(KERN_CRIT "etrax_ethernet_init failed to get IO interface\n");
298 return -EBUSY;
301 dev = alloc_etherdev(sizeof(struct net_local));
302 if (!dev)
303 return -ENOMEM;
305 np = netdev_priv(dev);
307 /* we do our own locking */
308 dev->features |= NETIF_F_LLTX;
310 dev->base_addr = (unsigned int)R_NETWORK_SA_0; /* just to have something to show */
312 /* now setup our etrax specific stuff */
314 dev->irq = NETWORK_DMA_RX_IRQ_NBR; /* we really use DMATX as well... */
315 dev->dma = NETWORK_RX_DMA_NBR;
317 /* fill in our handlers so the network layer can talk to us in the future */
319 dev->ethtool_ops = &e100_ethtool_ops;
320 dev->netdev_ops = &e100_netdev_ops;
322 spin_lock_init(&np->lock);
323 spin_lock_init(&np->led_lock);
324 spin_lock_init(&np->transceiver_lock);
326 /* Initialise the list of Etrax DMA-descriptors */
328 /* Initialise receive descriptors */
330 for (i = 0; i < NBR_OF_RX_DESC; i++) {
331 /* Allocate two extra cachelines to make sure that buffer used
332 * by DMA does not share cacheline with any other data (to
333 * avoid cache bug)
335 RxDescList[i].skb = dev_alloc_skb(MAX_MEDIA_DATA_SIZE + 2 * L1_CACHE_BYTES);
336 if (!RxDescList[i].skb)
337 return -ENOMEM;
338 RxDescList[i].descr.ctrl = 0;
339 RxDescList[i].descr.sw_len = MAX_MEDIA_DATA_SIZE;
340 RxDescList[i].descr.next = virt_to_phys(&RxDescList[i + 1]);
341 RxDescList[i].descr.buf = L1_CACHE_ALIGN(virt_to_phys(RxDescList[i].skb->data));
342 RxDescList[i].descr.status = 0;
343 RxDescList[i].descr.hw_len = 0;
344 prepare_rx_descriptor(&RxDescList[i].descr);
347 RxDescList[NBR_OF_RX_DESC - 1].descr.ctrl = d_eol;
348 RxDescList[NBR_OF_RX_DESC - 1].descr.next = virt_to_phys(&RxDescList[0]);
349 rx_queue_len = 0;
351 /* Initialize transmit descriptors */
352 for (i = 0; i < NBR_OF_TX_DESC; i++) {
353 TxDescList[i].descr.ctrl = 0;
354 TxDescList[i].descr.sw_len = 0;
355 TxDescList[i].descr.next = virt_to_phys(&TxDescList[i + 1].descr);
356 TxDescList[i].descr.buf = 0;
357 TxDescList[i].descr.status = 0;
358 TxDescList[i].descr.hw_len = 0;
359 TxDescList[i].skb = 0;
362 TxDescList[NBR_OF_TX_DESC - 1].descr.ctrl = d_eol;
363 TxDescList[NBR_OF_TX_DESC - 1].descr.next = virt_to_phys(&TxDescList[0].descr);
365 /* Initialise initial pointers */
367 myNextRxDesc = &RxDescList[0];
368 myLastRxDesc = &RxDescList[NBR_OF_RX_DESC - 1];
369 myFirstTxDesc = &TxDescList[0];
370 myNextTxDesc = &TxDescList[0];
371 myLastTxDesc = &TxDescList[NBR_OF_TX_DESC - 1];
373 /* Register device */
374 err = register_netdev(dev);
375 if (err) {
376 free_netdev(dev);
377 return err;
380 /* set the default MAC address */
382 e100_set_mac_address(dev, &default_mac);
384 /* Initialize speed indicator stuff. */
386 current_speed = 10;
387 current_speed_selection = 0; /* Auto */
388 speed_timer.expires = jiffies + NET_LINK_UP_CHECK_INTERVAL;
389 speed_timer.data = (unsigned long)dev;
390 speed_timer.function = e100_check_speed;
392 clear_led_timer.function = e100_clear_network_leds;
393 clear_led_timer.data = (unsigned long)dev;
395 full_duplex = 0;
396 current_duplex = autoneg;
397 duplex_timer.expires = jiffies + NET_DUPLEX_CHECK_INTERVAL;
398 duplex_timer.data = (unsigned long)dev;
399 duplex_timer.function = e100_check_duplex;
401 /* Initialize mii interface */
402 np->mii_if.phy_id_mask = 0x1f;
403 np->mii_if.reg_num_mask = 0x1f;
404 np->mii_if.dev = dev;
405 np->mii_if.mdio_read = e100_get_mdio_reg;
406 np->mii_if.mdio_write = e100_set_mdio_reg;
408 /* Initialize group address registers to make sure that no */
409 /* unwanted addresses are matched */
410 *R_NETWORK_GA_0 = 0x00000000;
411 *R_NETWORK_GA_1 = 0x00000000;
413 /* Initialize next time the led can flash */
414 led_next_time = jiffies;
415 return 0;
418 /* set MAC address of the interface. called from the core after a
419 * SIOCSIFADDR ioctl, and from the bootup above.
422 static int
423 e100_set_mac_address(struct net_device *dev, void *p)
425 struct net_local *np = netdev_priv(dev);
426 struct sockaddr *addr = p;
428 spin_lock(&np->lock); /* preemption protection */
430 /* remember it */
432 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
434 /* Write it to the hardware.
435 * Note the way the address is wrapped:
436 * *R_NETWORK_SA_0 = a0_0 | (a0_1 << 8) | (a0_2 << 16) | (a0_3 << 24);
437 * *R_NETWORK_SA_1 = a0_4 | (a0_5 << 8);
440 *R_NETWORK_SA_0 = dev->dev_addr[0] | (dev->dev_addr[1] << 8) |
441 (dev->dev_addr[2] << 16) | (dev->dev_addr[3] << 24);
442 *R_NETWORK_SA_1 = dev->dev_addr[4] | (dev->dev_addr[5] << 8);
443 *R_NETWORK_SA_2 = 0;
445 /* show it in the log as well */
447 printk(KERN_INFO "%s: changed MAC to %pM\n", dev->name, dev->dev_addr);
449 spin_unlock(&np->lock);
451 return 0;
455 * Open/initialize the board. This is called (in the current kernel)
456 * sometime after booting when the 'ifconfig' program is run.
458 * This routine should set everything up anew at each open, even
459 * registers that "should" only need to be set once at boot, so that
460 * there is non-reboot way to recover if something goes wrong.
463 static int
464 e100_open(struct net_device *dev)
466 unsigned long flags;
468 /* enable the MDIO output pin */
470 *R_NETWORK_MGM_CTRL = IO_STATE(R_NETWORK_MGM_CTRL, mdoe, enable);
472 *R_IRQ_MASK0_CLR =
473 IO_STATE(R_IRQ_MASK0_CLR, overrun, clr) |
474 IO_STATE(R_IRQ_MASK0_CLR, underrun, clr) |
475 IO_STATE(R_IRQ_MASK0_CLR, excessive_col, clr);
477 /* clear dma0 and 1 eop and descr irq masks */
478 *R_IRQ_MASK2_CLR =
479 IO_STATE(R_IRQ_MASK2_CLR, dma0_descr, clr) |
480 IO_STATE(R_IRQ_MASK2_CLR, dma0_eop, clr) |
481 IO_STATE(R_IRQ_MASK2_CLR, dma1_descr, clr) |
482 IO_STATE(R_IRQ_MASK2_CLR, dma1_eop, clr);
484 /* Reset and wait for the DMA channels */
486 RESET_DMA(NETWORK_TX_DMA_NBR);
487 RESET_DMA(NETWORK_RX_DMA_NBR);
488 WAIT_DMA(NETWORK_TX_DMA_NBR);
489 WAIT_DMA(NETWORK_RX_DMA_NBR);
491 /* Initialise the etrax network controller */
493 /* allocate the irq corresponding to the receiving DMA */
495 if (request_irq(NETWORK_DMA_RX_IRQ_NBR, e100rxtx_interrupt,
496 IRQF_SAMPLE_RANDOM, cardname, (void *)dev)) {
497 goto grace_exit0;
500 /* allocate the irq corresponding to the transmitting DMA */
502 if (request_irq(NETWORK_DMA_TX_IRQ_NBR, e100rxtx_interrupt, 0,
503 cardname, (void *)dev)) {
504 goto grace_exit1;
507 /* allocate the irq corresponding to the network errors etc */
509 if (request_irq(NETWORK_STATUS_IRQ_NBR, e100nw_interrupt, 0,
510 cardname, (void *)dev)) {
511 goto grace_exit2;
515 * Always allocate the DMA channels after the IRQ,
516 * and clean up on failure.
519 if (cris_request_dma(NETWORK_TX_DMA_NBR,
520 cardname,
521 DMA_VERBOSE_ON_ERROR,
522 dma_eth)) {
523 goto grace_exit3;
526 if (cris_request_dma(NETWORK_RX_DMA_NBR,
527 cardname,
528 DMA_VERBOSE_ON_ERROR,
529 dma_eth)) {
530 goto grace_exit4;
533 /* give the HW an idea of what MAC address we want */
535 *R_NETWORK_SA_0 = dev->dev_addr[0] | (dev->dev_addr[1] << 8) |
536 (dev->dev_addr[2] << 16) | (dev->dev_addr[3] << 24);
537 *R_NETWORK_SA_1 = dev->dev_addr[4] | (dev->dev_addr[5] << 8);
538 *R_NETWORK_SA_2 = 0;
540 #if 0
541 /* use promiscuous mode for testing */
542 *R_NETWORK_GA_0 = 0xffffffff;
543 *R_NETWORK_GA_1 = 0xffffffff;
545 *R_NETWORK_REC_CONFIG = 0xd; /* broadcast rec, individ. rec, ma0 enabled */
546 #else
547 SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, max_size, size1522);
548 SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, broadcast, receive);
549 SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, ma0, enable);
550 SETF(network_rec_config_shadow, R_NETWORK_REC_CONFIG, duplex, full_duplex);
551 *R_NETWORK_REC_CONFIG = network_rec_config_shadow;
552 #endif
554 *R_NETWORK_GEN_CONFIG =
555 IO_STATE(R_NETWORK_GEN_CONFIG, phy, mii_clk) |
556 IO_STATE(R_NETWORK_GEN_CONFIG, enable, on);
558 SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, clr);
559 SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, delay, none);
560 SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, cancel, dont);
561 SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, cd, enable);
562 SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, retry, enable);
563 SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, pad, enable);
564 SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, crc, enable);
565 *R_NETWORK_TR_CTRL = network_tr_ctrl_shadow;
567 local_irq_save(flags);
569 /* enable the irq's for ethernet DMA */
571 *R_IRQ_MASK2_SET =
572 IO_STATE(R_IRQ_MASK2_SET, dma0_eop, set) |
573 IO_STATE(R_IRQ_MASK2_SET, dma1_eop, set);
575 *R_IRQ_MASK0_SET =
576 IO_STATE(R_IRQ_MASK0_SET, overrun, set) |
577 IO_STATE(R_IRQ_MASK0_SET, underrun, set) |
578 IO_STATE(R_IRQ_MASK0_SET, excessive_col, set);
580 /* make sure the irqs are cleared */
582 *R_DMA_CH0_CLR_INTR = IO_STATE(R_DMA_CH0_CLR_INTR, clr_eop, do);
583 *R_DMA_CH1_CLR_INTR = IO_STATE(R_DMA_CH1_CLR_INTR, clr_eop, do);
585 /* make sure the rec and transmit error counters are cleared */
587 (void)*R_REC_COUNTERS; /* dummy read */
588 (void)*R_TR_COUNTERS; /* dummy read */
590 /* start the receiving DMA channel so we can receive packets from now on */
592 *R_DMA_CH1_FIRST = virt_to_phys(myNextRxDesc);
593 *R_DMA_CH1_CMD = IO_STATE(R_DMA_CH1_CMD, cmd, start);
595 /* Set up transmit DMA channel so it can be restarted later */
597 *R_DMA_CH0_FIRST = 0;
598 *R_DMA_CH0_DESCR = virt_to_phys(myLastTxDesc);
599 netif_start_queue(dev);
601 local_irq_restore(flags);
603 /* Probe for transceiver */
604 if (e100_probe_transceiver(dev))
605 goto grace_exit5;
607 /* Start duplex/speed timers */
608 add_timer(&speed_timer);
609 add_timer(&duplex_timer);
611 /* We are now ready to accept transmit requeusts from
612 * the queueing layer of the networking.
614 netif_carrier_on(dev);
616 return 0;
618 grace_exit5:
619 cris_free_dma(NETWORK_RX_DMA_NBR, cardname);
620 grace_exit4:
621 cris_free_dma(NETWORK_TX_DMA_NBR, cardname);
622 grace_exit3:
623 free_irq(NETWORK_STATUS_IRQ_NBR, (void *)dev);
624 grace_exit2:
625 free_irq(NETWORK_DMA_TX_IRQ_NBR, (void *)dev);
626 grace_exit1:
627 free_irq(NETWORK_DMA_RX_IRQ_NBR, (void *)dev);
628 grace_exit0:
629 return -EAGAIN;
632 #if defined(CONFIG_ETRAX_NO_PHY)
633 static void
634 dummy_check_speed(struct net_device* dev)
636 current_speed = 100;
638 #else
639 static void
640 generic_check_speed(struct net_device* dev)
642 unsigned long data;
643 struct net_local *np = netdev_priv(dev);
645 data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_ADVERTISE);
646 if ((data & ADVERTISE_100FULL) ||
647 (data & ADVERTISE_100HALF))
648 current_speed = 100;
649 else
650 current_speed = 10;
653 static void
654 tdk_check_speed(struct net_device* dev)
656 unsigned long data;
657 struct net_local *np = netdev_priv(dev);
659 data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
660 MDIO_TDK_DIAGNOSTIC_REG);
661 current_speed = (data & MDIO_TDK_DIAGNOSTIC_RATE ? 100 : 10);
664 static void
665 broadcom_check_speed(struct net_device* dev)
667 unsigned long data;
668 struct net_local *np = netdev_priv(dev);
670 data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
671 MDIO_AUX_CTRL_STATUS_REG);
672 current_speed = (data & MDIO_BC_SPEED ? 100 : 10);
675 static void
676 intel_check_speed(struct net_device* dev)
678 unsigned long data;
679 struct net_local *np = netdev_priv(dev);
681 data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
682 MDIO_INT_STATUS_REG_2);
683 current_speed = (data & MDIO_INT_SPEED ? 100 : 10);
685 #endif
686 static void
687 e100_check_speed(unsigned long priv)
689 struct net_device* dev = (struct net_device*)priv;
690 struct net_local *np = netdev_priv(dev);
691 static int led_initiated = 0;
692 unsigned long data;
693 int old_speed = current_speed;
695 spin_lock(&np->transceiver_lock);
697 data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_BMSR);
698 if (!(data & BMSR_LSTATUS)) {
699 current_speed = 0;
700 } else {
701 transceiver->check_speed(dev);
704 spin_lock(&np->led_lock);
705 if ((old_speed != current_speed) || !led_initiated) {
706 led_initiated = 1;
707 e100_set_network_leds(NO_NETWORK_ACTIVITY);
708 if (current_speed)
709 netif_carrier_on(dev);
710 else
711 netif_carrier_off(dev);
713 spin_unlock(&np->led_lock);
715 /* Reinitialize the timer. */
716 speed_timer.expires = jiffies + NET_LINK_UP_CHECK_INTERVAL;
717 add_timer(&speed_timer);
719 spin_unlock(&np->transceiver_lock);
722 static void
723 e100_negotiate(struct net_device* dev)
725 struct net_local *np = netdev_priv(dev);
726 unsigned short data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
727 MII_ADVERTISE);
729 /* Discard old speed and duplex settings */
730 data &= ~(ADVERTISE_100HALF | ADVERTISE_100FULL |
731 ADVERTISE_10HALF | ADVERTISE_10FULL);
733 switch (current_speed_selection) {
734 case 10:
735 if (current_duplex == full)
736 data |= ADVERTISE_10FULL;
737 else if (current_duplex == half)
738 data |= ADVERTISE_10HALF;
739 else
740 data |= ADVERTISE_10HALF | ADVERTISE_10FULL;
741 break;
743 case 100:
744 if (current_duplex == full)
745 data |= ADVERTISE_100FULL;
746 else if (current_duplex == half)
747 data |= ADVERTISE_100HALF;
748 else
749 data |= ADVERTISE_100HALF | ADVERTISE_100FULL;
750 break;
752 case 0: /* Auto */
753 if (current_duplex == full)
754 data |= ADVERTISE_100FULL | ADVERTISE_10FULL;
755 else if (current_duplex == half)
756 data |= ADVERTISE_100HALF | ADVERTISE_10HALF;
757 else
758 data |= ADVERTISE_10HALF | ADVERTISE_10FULL |
759 ADVERTISE_100HALF | ADVERTISE_100FULL;
760 break;
762 default: /* assume autoneg speed and duplex */
763 data |= ADVERTISE_10HALF | ADVERTISE_10FULL |
764 ADVERTISE_100HALF | ADVERTISE_100FULL;
765 break;
768 e100_set_mdio_reg(dev, np->mii_if.phy_id, MII_ADVERTISE, data);
770 data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_BMCR);
771 if (autoneg_normal) {
772 /* Renegotiate with link partner */
773 data |= BMCR_ANENABLE | BMCR_ANRESTART;
774 } else {
775 /* Don't negotiate speed or duplex */
776 data &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
778 /* Set speed and duplex static */
779 if (current_speed_selection == 10)
780 data &= ~BMCR_SPEED100;
781 else
782 data |= BMCR_SPEED100;
784 if (current_duplex != full)
785 data &= ~BMCR_FULLDPLX;
786 else
787 data |= BMCR_FULLDPLX;
789 e100_set_mdio_reg(dev, np->mii_if.phy_id, MII_BMCR, data);
792 static void
793 e100_set_speed(struct net_device* dev, unsigned long speed)
795 struct net_local *np = netdev_priv(dev);
797 spin_lock(&np->transceiver_lock);
798 if (speed != current_speed_selection) {
799 current_speed_selection = speed;
800 e100_negotiate(dev);
802 spin_unlock(&np->transceiver_lock);
805 static void
806 e100_check_duplex(unsigned long priv)
808 struct net_device *dev = (struct net_device *)priv;
809 struct net_local *np = netdev_priv(dev);
810 int old_duplex;
812 spin_lock(&np->transceiver_lock);
813 old_duplex = full_duplex;
814 transceiver->check_duplex(dev);
815 if (old_duplex != full_duplex) {
816 /* Duplex changed */
817 SETF(network_rec_config_shadow, R_NETWORK_REC_CONFIG, duplex, full_duplex);
818 *R_NETWORK_REC_CONFIG = network_rec_config_shadow;
821 /* Reinitialize the timer. */
822 duplex_timer.expires = jiffies + NET_DUPLEX_CHECK_INTERVAL;
823 add_timer(&duplex_timer);
824 np->mii_if.full_duplex = full_duplex;
825 spin_unlock(&np->transceiver_lock);
827 #if defined(CONFIG_ETRAX_NO_PHY)
828 static void
829 dummy_check_duplex(struct net_device* dev)
831 full_duplex = 1;
833 #else
834 static void
835 generic_check_duplex(struct net_device* dev)
837 unsigned long data;
838 struct net_local *np = netdev_priv(dev);
840 data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_ADVERTISE);
841 if ((data & ADVERTISE_10FULL) ||
842 (data & ADVERTISE_100FULL))
843 full_duplex = 1;
844 else
845 full_duplex = 0;
848 static void
849 tdk_check_duplex(struct net_device* dev)
851 unsigned long data;
852 struct net_local *np = netdev_priv(dev);
854 data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
855 MDIO_TDK_DIAGNOSTIC_REG);
856 full_duplex = (data & MDIO_TDK_DIAGNOSTIC_DPLX) ? 1 : 0;
859 static void
860 broadcom_check_duplex(struct net_device* dev)
862 unsigned long data;
863 struct net_local *np = netdev_priv(dev);
865 data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
866 MDIO_AUX_CTRL_STATUS_REG);
867 full_duplex = (data & MDIO_BC_FULL_DUPLEX_IND) ? 1 : 0;
870 static void
871 intel_check_duplex(struct net_device* dev)
873 unsigned long data;
874 struct net_local *np = netdev_priv(dev);
876 data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
877 MDIO_INT_STATUS_REG_2);
878 full_duplex = (data & MDIO_INT_FULL_DUPLEX_IND) ? 1 : 0;
880 #endif
881 static void
882 e100_set_duplex(struct net_device* dev, enum duplex new_duplex)
884 struct net_local *np = netdev_priv(dev);
886 spin_lock(&np->transceiver_lock);
887 if (new_duplex != current_duplex) {
888 current_duplex = new_duplex;
889 e100_negotiate(dev);
891 spin_unlock(&np->transceiver_lock);
894 static int
895 e100_probe_transceiver(struct net_device* dev)
897 int ret = 0;
899 #if !defined(CONFIG_ETRAX_NO_PHY)
900 unsigned int phyid_high;
901 unsigned int phyid_low;
902 unsigned int oui;
903 struct transceiver_ops* ops = NULL;
904 struct net_local *np = netdev_priv(dev);
906 spin_lock(&np->transceiver_lock);
908 /* Probe MDIO physical address */
909 for (np->mii_if.phy_id = 0; np->mii_if.phy_id <= 31;
910 np->mii_if.phy_id++) {
911 if (e100_get_mdio_reg(dev,
912 np->mii_if.phy_id, MII_BMSR) != 0xffff)
913 break;
915 if (np->mii_if.phy_id == 32) {
916 ret = -ENODEV;
917 goto out;
920 /* Get manufacturer */
921 phyid_high = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_PHYSID1);
922 phyid_low = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_PHYSID2);
923 oui = (phyid_high << 6) | (phyid_low >> 10);
925 for (ops = &transceivers[0]; ops->oui; ops++) {
926 if (ops->oui == oui)
927 break;
929 transceiver = ops;
930 out:
931 spin_unlock(&np->transceiver_lock);
932 #endif
933 return ret;
936 static int
937 e100_get_mdio_reg(struct net_device *dev, int phy_id, int location)
939 unsigned short cmd; /* Data to be sent on MDIO port */
940 int data; /* Data read from MDIO */
941 int bitCounter;
943 /* Start of frame, OP Code, Physical Address, Register Address */
944 cmd = (MDIO_START << 14) | (MDIO_READ << 12) | (phy_id << 7) |
945 (location << 2);
947 e100_send_mdio_cmd(cmd, 0);
949 data = 0;
951 /* Data... */
952 for (bitCounter=15; bitCounter>=0 ; bitCounter--) {
953 data |= (e100_receive_mdio_bit() << bitCounter);
956 return data;
959 static void
960 e100_set_mdio_reg(struct net_device *dev, int phy_id, int location, int value)
962 int bitCounter;
963 unsigned short cmd;
965 cmd = (MDIO_START << 14) | (MDIO_WRITE << 12) | (phy_id << 7) |
966 (location << 2);
968 e100_send_mdio_cmd(cmd, 1);
970 /* Data... */
971 for (bitCounter=15; bitCounter>=0 ; bitCounter--) {
972 e100_send_mdio_bit(GET_BIT(bitCounter, value));
977 static void
978 e100_send_mdio_cmd(unsigned short cmd, int write_cmd)
980 int bitCounter;
981 unsigned char data = 0x2;
983 /* Preamble */
984 for (bitCounter = 31; bitCounter>= 0; bitCounter--)
985 e100_send_mdio_bit(GET_BIT(bitCounter, MDIO_PREAMBLE));
987 for (bitCounter = 15; bitCounter >= 2; bitCounter--)
988 e100_send_mdio_bit(GET_BIT(bitCounter, cmd));
990 /* Turnaround */
991 for (bitCounter = 1; bitCounter >= 0 ; bitCounter--)
992 if (write_cmd)
993 e100_send_mdio_bit(GET_BIT(bitCounter, data));
994 else
995 e100_receive_mdio_bit();
998 static void
999 e100_send_mdio_bit(unsigned char bit)
1001 *R_NETWORK_MGM_CTRL =
1002 IO_STATE(R_NETWORK_MGM_CTRL, mdoe, enable) |
1003 IO_FIELD(R_NETWORK_MGM_CTRL, mdio, bit);
1004 udelay(1);
1005 *R_NETWORK_MGM_CTRL =
1006 IO_STATE(R_NETWORK_MGM_CTRL, mdoe, enable) |
1007 IO_MASK(R_NETWORK_MGM_CTRL, mdck) |
1008 IO_FIELD(R_NETWORK_MGM_CTRL, mdio, bit);
1009 udelay(1);
1012 static unsigned char
1013 e100_receive_mdio_bit()
1015 unsigned char bit;
1016 *R_NETWORK_MGM_CTRL = 0;
1017 bit = IO_EXTRACT(R_NETWORK_STAT, mdio, *R_NETWORK_STAT);
1018 udelay(1);
1019 *R_NETWORK_MGM_CTRL = IO_MASK(R_NETWORK_MGM_CTRL, mdck);
1020 udelay(1);
1021 return bit;
1024 static void
1025 e100_reset_transceiver(struct net_device* dev)
1027 struct net_local *np = netdev_priv(dev);
1028 unsigned short cmd;
1029 unsigned short data;
1030 int bitCounter;
1032 data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_BMCR);
1034 cmd = (MDIO_START << 14) | (MDIO_WRITE << 12) | (np->mii_if.phy_id << 7) | (MII_BMCR << 2);
1036 e100_send_mdio_cmd(cmd, 1);
1038 data |= 0x8000;
1040 for (bitCounter = 15; bitCounter >= 0 ; bitCounter--) {
1041 e100_send_mdio_bit(GET_BIT(bitCounter, data));
1045 /* Called by upper layers if they decide it took too long to complete
1046 * sending a packet - we need to reset and stuff.
1049 static void
1050 e100_tx_timeout(struct net_device *dev)
1052 struct net_local *np = netdev_priv(dev);
1053 unsigned long flags;
1055 spin_lock_irqsave(&np->lock, flags);
1057 printk(KERN_WARNING "%s: transmit timed out, %s?\n", dev->name,
1058 tx_done(dev) ? "IRQ problem" : "network cable problem");
1060 /* remember we got an error */
1062 np->stats.tx_errors++;
1064 /* reset the TX DMA in case it has hung on something */
1066 RESET_DMA(NETWORK_TX_DMA_NBR);
1067 WAIT_DMA(NETWORK_TX_DMA_NBR);
1069 /* Reset the transceiver. */
1071 e100_reset_transceiver(dev);
1073 /* and get rid of the packets that never got an interrupt */
1074 while (myFirstTxDesc != myNextTxDesc) {
1075 dev_kfree_skb(myFirstTxDesc->skb);
1076 myFirstTxDesc->skb = 0;
1077 myFirstTxDesc = phys_to_virt(myFirstTxDesc->descr.next);
1080 /* Set up transmit DMA channel so it can be restarted later */
1081 *R_DMA_CH0_FIRST = 0;
1082 *R_DMA_CH0_DESCR = virt_to_phys(myLastTxDesc);
1084 /* tell the upper layers we're ok again */
1086 netif_wake_queue(dev);
1087 spin_unlock_irqrestore(&np->lock, flags);
1091 /* This will only be invoked if the driver is _not_ in XOFF state.
1092 * What this means is that we need not check it, and that this
1093 * invariant will hold if we make sure that the netif_*_queue()
1094 * calls are done at the proper times.
1097 static int
1098 e100_send_packet(struct sk_buff *skb, struct net_device *dev)
1100 struct net_local *np = netdev_priv(dev);
1101 unsigned char *buf = skb->data;
1102 unsigned long flags;
1104 #ifdef ETHDEBUG
1105 printk("send packet len %d\n", length);
1106 #endif
1107 spin_lock_irqsave(&np->lock, flags); /* protect from tx_interrupt and ourself */
1109 myNextTxDesc->skb = skb;
1111 dev->trans_start = jiffies; /* NETIF_F_LLTX driver :( */
1113 e100_hardware_send_packet(np, buf, skb->len);
1115 myNextTxDesc = phys_to_virt(myNextTxDesc->descr.next);
1117 /* Stop queue if full */
1118 if (myNextTxDesc == myFirstTxDesc) {
1119 netif_stop_queue(dev);
1122 spin_unlock_irqrestore(&np->lock, flags);
1124 return NETDEV_TX_OK;
1128 * The typical workload of the driver:
1129 * Handle the network interface interrupts.
1132 static irqreturn_t
1133 e100rxtx_interrupt(int irq, void *dev_id)
1135 struct net_device *dev = (struct net_device *)dev_id;
1136 struct net_local *np = netdev_priv(dev);
1137 unsigned long irqbits;
1140 * Note that both rx and tx interrupts are blocked at this point,
1141 * regardless of which got us here.
1144 irqbits = *R_IRQ_MASK2_RD;
1146 /* Handle received packets */
1147 if (irqbits & IO_STATE(R_IRQ_MASK2_RD, dma1_eop, active)) {
1148 /* acknowledge the eop interrupt */
1150 *R_DMA_CH1_CLR_INTR = IO_STATE(R_DMA_CH1_CLR_INTR, clr_eop, do);
1152 /* check if one or more complete packets were indeed received */
1154 while ((*R_DMA_CH1_FIRST != virt_to_phys(myNextRxDesc)) &&
1155 (myNextRxDesc != myLastRxDesc)) {
1156 /* Take out the buffer and give it to the OS, then
1157 * allocate a new buffer to put a packet in.
1159 e100_rx(dev);
1160 np->stats.rx_packets++;
1161 /* restart/continue on the channel, for safety */
1162 *R_DMA_CH1_CMD = IO_STATE(R_DMA_CH1_CMD, cmd, restart);
1163 /* clear dma channel 1 eop/descr irq bits */
1164 *R_DMA_CH1_CLR_INTR =
1165 IO_STATE(R_DMA_CH1_CLR_INTR, clr_eop, do) |
1166 IO_STATE(R_DMA_CH1_CLR_INTR, clr_descr, do);
1168 /* now, we might have gotten another packet
1169 so we have to loop back and check if so */
1173 /* Report any packets that have been sent */
1174 while (virt_to_phys(myFirstTxDesc) != *R_DMA_CH0_FIRST &&
1175 (netif_queue_stopped(dev) || myFirstTxDesc != myNextTxDesc)) {
1176 np->stats.tx_bytes += myFirstTxDesc->skb->len;
1177 np->stats.tx_packets++;
1179 /* dma is ready with the transmission of the data in tx_skb, so now
1180 we can release the skb memory */
1181 dev_kfree_skb_irq(myFirstTxDesc->skb);
1182 myFirstTxDesc->skb = 0;
1183 myFirstTxDesc = phys_to_virt(myFirstTxDesc->descr.next);
1184 /* Wake up queue. */
1185 netif_wake_queue(dev);
1188 if (irqbits & IO_STATE(R_IRQ_MASK2_RD, dma0_eop, active)) {
1189 /* acknowledge the eop interrupt. */
1190 *R_DMA_CH0_CLR_INTR = IO_STATE(R_DMA_CH0_CLR_INTR, clr_eop, do);
1193 return IRQ_HANDLED;
1196 static irqreturn_t
1197 e100nw_interrupt(int irq, void *dev_id)
1199 struct net_device *dev = (struct net_device *)dev_id;
1200 struct net_local *np = netdev_priv(dev);
1201 unsigned long irqbits = *R_IRQ_MASK0_RD;
1203 /* check for underrun irq */
1204 if (irqbits & IO_STATE(R_IRQ_MASK0_RD, underrun, active)) {
1205 SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, clr);
1206 *R_NETWORK_TR_CTRL = network_tr_ctrl_shadow;
1207 SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, nop);
1208 np->stats.tx_errors++;
1209 D(printk("ethernet receiver underrun!\n"));
1212 /* check for overrun irq */
1213 if (irqbits & IO_STATE(R_IRQ_MASK0_RD, overrun, active)) {
1214 update_rx_stats(&np->stats); /* this will ack the irq */
1215 D(printk("ethernet receiver overrun!\n"));
1217 /* check for excessive collision irq */
1218 if (irqbits & IO_STATE(R_IRQ_MASK0_RD, excessive_col, active)) {
1219 SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, clr);
1220 *R_NETWORK_TR_CTRL = network_tr_ctrl_shadow;
1221 SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, nop);
1222 np->stats.tx_errors++;
1223 D(printk("ethernet excessive collisions!\n"));
1225 return IRQ_HANDLED;
1228 /* We have a good packet(s), get it/them out of the buffers. */
1229 static void
1230 e100_rx(struct net_device *dev)
1232 struct sk_buff *skb;
1233 int length = 0;
1234 struct net_local *np = netdev_priv(dev);
1235 unsigned char *skb_data_ptr;
1236 #ifdef ETHDEBUG
1237 int i;
1238 #endif
1239 etrax_eth_descr *prevRxDesc; /* The descriptor right before myNextRxDesc */
1240 spin_lock(&np->led_lock);
1241 if (!led_active && time_after(jiffies, led_next_time)) {
1242 /* light the network leds depending on the current speed. */
1243 e100_set_network_leds(NETWORK_ACTIVITY);
1245 /* Set the earliest time we may clear the LED */
1246 led_next_time = jiffies + NET_FLASH_TIME;
1247 led_active = 1;
1248 mod_timer(&clear_led_timer, jiffies + HZ/10);
1250 spin_unlock(&np->led_lock);
1252 length = myNextRxDesc->descr.hw_len - 4;
1253 np->stats.rx_bytes += length;
1255 #ifdef ETHDEBUG
1256 printk("Got a packet of length %d:\n", length);
1257 /* dump the first bytes in the packet */
1258 skb_data_ptr = (unsigned char *)phys_to_virt(myNextRxDesc->descr.buf);
1259 for (i = 0; i < 8; i++) {
1260 printk("%d: %.2x %.2x %.2x %.2x %.2x %.2x %.2x %.2x\n", i * 8,
1261 skb_data_ptr[0],skb_data_ptr[1],skb_data_ptr[2],skb_data_ptr[3],
1262 skb_data_ptr[4],skb_data_ptr[5],skb_data_ptr[6],skb_data_ptr[7]);
1263 skb_data_ptr += 8;
1265 #endif
1267 if (length < RX_COPYBREAK) {
1268 /* Small packet, copy data */
1269 skb = dev_alloc_skb(length - ETHER_HEAD_LEN);
1270 if (!skb) {
1271 np->stats.rx_errors++;
1272 printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n", dev->name);
1273 goto update_nextrxdesc;
1276 skb_put(skb, length - ETHER_HEAD_LEN); /* allocate room for the packet body */
1277 skb_data_ptr = skb_push(skb, ETHER_HEAD_LEN); /* allocate room for the header */
1279 #ifdef ETHDEBUG
1280 printk("head = 0x%x, data = 0x%x, tail = 0x%x, end = 0x%x\n",
1281 skb->head, skb->data, skb_tail_pointer(skb),
1282 skb_end_pointer(skb));
1283 printk("copying packet to 0x%x.\n", skb_data_ptr);
1284 #endif
1286 memcpy(skb_data_ptr, phys_to_virt(myNextRxDesc->descr.buf), length);
1288 else {
1289 /* Large packet, send directly to upper layers and allocate new
1290 * memory (aligned to cache line boundary to avoid bug).
1291 * Before sending the skb to upper layers we must make sure
1292 * that skb->data points to the aligned start of the packet.
1294 int align;
1295 struct sk_buff *new_skb = dev_alloc_skb(MAX_MEDIA_DATA_SIZE + 2 * L1_CACHE_BYTES);
1296 if (!new_skb) {
1297 np->stats.rx_errors++;
1298 printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n", dev->name);
1299 goto update_nextrxdesc;
1301 skb = myNextRxDesc->skb;
1302 align = (int)phys_to_virt(myNextRxDesc->descr.buf) - (int)skb->data;
1303 skb_put(skb, length + align);
1304 skb_pull(skb, align); /* Remove alignment bytes */
1305 myNextRxDesc->skb = new_skb;
1306 myNextRxDesc->descr.buf = L1_CACHE_ALIGN(virt_to_phys(myNextRxDesc->skb->data));
1309 skb->protocol = eth_type_trans(skb, dev);
1311 /* Send the packet to the upper layers */
1312 netif_rx(skb);
1314 update_nextrxdesc:
1315 /* Prepare for next packet */
1316 myNextRxDesc->descr.status = 0;
1317 prevRxDesc = myNextRxDesc;
1318 myNextRxDesc = phys_to_virt(myNextRxDesc->descr.next);
1320 rx_queue_len++;
1322 /* Check if descriptors should be returned */
1323 if (rx_queue_len == RX_QUEUE_THRESHOLD) {
1324 flush_etrax_cache();
1325 prevRxDesc->descr.ctrl |= d_eol;
1326 myLastRxDesc->descr.ctrl &= ~d_eol;
1327 myLastRxDesc = prevRxDesc;
1328 rx_queue_len = 0;
1332 /* The inverse routine to net_open(). */
1333 static int
1334 e100_close(struct net_device *dev)
1336 struct net_local *np = netdev_priv(dev);
1338 printk(KERN_INFO "Closing %s.\n", dev->name);
1340 netif_stop_queue(dev);
1342 *R_IRQ_MASK0_CLR =
1343 IO_STATE(R_IRQ_MASK0_CLR, overrun, clr) |
1344 IO_STATE(R_IRQ_MASK0_CLR, underrun, clr) |
1345 IO_STATE(R_IRQ_MASK0_CLR, excessive_col, clr);
1347 *R_IRQ_MASK2_CLR =
1348 IO_STATE(R_IRQ_MASK2_CLR, dma0_descr, clr) |
1349 IO_STATE(R_IRQ_MASK2_CLR, dma0_eop, clr) |
1350 IO_STATE(R_IRQ_MASK2_CLR, dma1_descr, clr) |
1351 IO_STATE(R_IRQ_MASK2_CLR, dma1_eop, clr);
1353 /* Stop the receiver and the transmitter */
1355 RESET_DMA(NETWORK_TX_DMA_NBR);
1356 RESET_DMA(NETWORK_RX_DMA_NBR);
1358 /* Flush the Tx and disable Rx here. */
1360 free_irq(NETWORK_DMA_RX_IRQ_NBR, (void *)dev);
1361 free_irq(NETWORK_DMA_TX_IRQ_NBR, (void *)dev);
1362 free_irq(NETWORK_STATUS_IRQ_NBR, (void *)dev);
1364 cris_free_dma(NETWORK_TX_DMA_NBR, cardname);
1365 cris_free_dma(NETWORK_RX_DMA_NBR, cardname);
1367 /* Update the statistics here. */
1369 update_rx_stats(&np->stats);
1370 update_tx_stats(&np->stats);
1372 /* Stop speed/duplex timers */
1373 del_timer(&speed_timer);
1374 del_timer(&duplex_timer);
1376 return 0;
1379 static int
1380 e100_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1382 struct mii_ioctl_data *data = if_mii(ifr);
1383 struct net_local *np = netdev_priv(dev);
1384 int rc = 0;
1385 int old_autoneg;
1387 spin_lock(&np->lock); /* Preempt protection */
1388 switch (cmd) {
1389 /* The ioctls below should be considered obsolete but are */
1390 /* still present for compatability with old scripts/apps */
1391 case SET_ETH_SPEED_10: /* 10 Mbps */
1392 e100_set_speed(dev, 10);
1393 break;
1394 case SET_ETH_SPEED_100: /* 100 Mbps */
1395 e100_set_speed(dev, 100);
1396 break;
1397 case SET_ETH_SPEED_AUTO: /* Auto-negotiate speed */
1398 e100_set_speed(dev, 0);
1399 break;
1400 case SET_ETH_DUPLEX_HALF: /* Half duplex */
1401 e100_set_duplex(dev, half);
1402 break;
1403 case SET_ETH_DUPLEX_FULL: /* Full duplex */
1404 e100_set_duplex(dev, full);
1405 break;
1406 case SET_ETH_DUPLEX_AUTO: /* Auto-negotiate duplex */
1407 e100_set_duplex(dev, autoneg);
1408 break;
1409 case SET_ETH_AUTONEG:
1410 old_autoneg = autoneg_normal;
1411 autoneg_normal = *(int*)data;
1412 if (autoneg_normal != old_autoneg)
1413 e100_negotiate(dev);
1414 break;
1415 default:
1416 rc = generic_mii_ioctl(&np->mii_if, if_mii(ifr),
1417 cmd, NULL);
1418 break;
1420 spin_unlock(&np->lock);
1421 return rc;
1424 static int e100_get_settings(struct net_device *dev,
1425 struct ethtool_cmd *cmd)
1427 struct net_local *np = netdev_priv(dev);
1428 int err;
1430 spin_lock_irq(&np->lock);
1431 err = mii_ethtool_gset(&np->mii_if, cmd);
1432 spin_unlock_irq(&np->lock);
1434 /* The PHY may support 1000baseT, but the Etrax100 does not. */
1435 cmd->supported &= ~(SUPPORTED_1000baseT_Half
1436 | SUPPORTED_1000baseT_Full);
1437 return err;
1440 static int e100_set_settings(struct net_device *dev,
1441 struct ethtool_cmd *ecmd)
1443 if (ecmd->autoneg == AUTONEG_ENABLE) {
1444 e100_set_duplex(dev, autoneg);
1445 e100_set_speed(dev, 0);
1446 } else {
1447 e100_set_duplex(dev, ecmd->duplex == DUPLEX_HALF ? half : full);
1448 e100_set_speed(dev, ecmd->speed == SPEED_10 ? 10: 100);
1451 return 0;
1454 static void e100_get_drvinfo(struct net_device *dev,
1455 struct ethtool_drvinfo *info)
1457 strncpy(info->driver, "ETRAX 100LX", sizeof(info->driver) - 1);
1458 strncpy(info->version, "$Revision: 1.31 $", sizeof(info->version) - 1);
1459 strncpy(info->fw_version, "N/A", sizeof(info->fw_version) - 1);
1460 strncpy(info->bus_info, "N/A", sizeof(info->bus_info) - 1);
1463 static int e100_nway_reset(struct net_device *dev)
1465 if (current_duplex == autoneg && current_speed_selection == 0)
1466 e100_negotiate(dev);
1467 return 0;
1470 static const struct ethtool_ops e100_ethtool_ops = {
1471 .get_settings = e100_get_settings,
1472 .set_settings = e100_set_settings,
1473 .get_drvinfo = e100_get_drvinfo,
1474 .nway_reset = e100_nway_reset,
1475 .get_link = ethtool_op_get_link,
1478 static int
1479 e100_set_config(struct net_device *dev, struct ifmap *map)
1481 struct net_local *np = netdev_priv(dev);
1483 spin_lock(&np->lock); /* Preempt protection */
1485 switch(map->port) {
1486 case IF_PORT_UNKNOWN:
1487 /* Use autoneg */
1488 e100_set_speed(dev, 0);
1489 e100_set_duplex(dev, autoneg);
1490 break;
1491 case IF_PORT_10BASET:
1492 e100_set_speed(dev, 10);
1493 e100_set_duplex(dev, autoneg);
1494 break;
1495 case IF_PORT_100BASET:
1496 case IF_PORT_100BASETX:
1497 e100_set_speed(dev, 100);
1498 e100_set_duplex(dev, autoneg);
1499 break;
1500 case IF_PORT_100BASEFX:
1501 case IF_PORT_10BASE2:
1502 case IF_PORT_AUI:
1503 spin_unlock(&np->lock);
1504 return -EOPNOTSUPP;
1505 break;
1506 default:
1507 printk(KERN_ERR "%s: Invalid media selected", dev->name);
1508 spin_unlock(&np->lock);
1509 return -EINVAL;
1511 spin_unlock(&np->lock);
1512 return 0;
1515 static void
1516 update_rx_stats(struct net_device_stats *es)
1518 unsigned long r = *R_REC_COUNTERS;
1519 /* update stats relevant to reception errors */
1520 es->rx_fifo_errors += IO_EXTRACT(R_REC_COUNTERS, congestion, r);
1521 es->rx_crc_errors += IO_EXTRACT(R_REC_COUNTERS, crc_error, r);
1522 es->rx_frame_errors += IO_EXTRACT(R_REC_COUNTERS, alignment_error, r);
1523 es->rx_length_errors += IO_EXTRACT(R_REC_COUNTERS, oversize, r);
1526 static void
1527 update_tx_stats(struct net_device_stats *es)
1529 unsigned long r = *R_TR_COUNTERS;
1530 /* update stats relevant to transmission errors */
1531 es->collisions +=
1532 IO_EXTRACT(R_TR_COUNTERS, single_col, r) +
1533 IO_EXTRACT(R_TR_COUNTERS, multiple_col, r);
1537 * Get the current statistics.
1538 * This may be called with the card open or closed.
1540 static struct net_device_stats *
1541 e100_get_stats(struct net_device *dev)
1543 struct net_local *lp = netdev_priv(dev);
1544 unsigned long flags;
1546 spin_lock_irqsave(&lp->lock, flags);
1548 update_rx_stats(&lp->stats);
1549 update_tx_stats(&lp->stats);
1551 spin_unlock_irqrestore(&lp->lock, flags);
1552 return &lp->stats;
1556 * Set or clear the multicast filter for this adaptor.
1557 * num_addrs == -1 Promiscuous mode, receive all packets
1558 * num_addrs == 0 Normal mode, clear multicast list
1559 * num_addrs > 0 Multicast mode, receive normal and MC packets,
1560 * and do best-effort filtering.
1562 static void
1563 set_multicast_list(struct net_device *dev)
1565 struct net_local *lp = netdev_priv(dev);
1566 int num_addr = netdev_mc_count(dev);
1567 unsigned long int lo_bits;
1568 unsigned long int hi_bits;
1570 spin_lock(&lp->lock);
1571 if (dev->flags & IFF_PROMISC) {
1572 /* promiscuous mode */
1573 lo_bits = 0xfffffffful;
1574 hi_bits = 0xfffffffful;
1576 /* Enable individual receive */
1577 SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, receive);
1578 *R_NETWORK_REC_CONFIG = network_rec_config_shadow;
1579 } else if (dev->flags & IFF_ALLMULTI) {
1580 /* enable all multicasts */
1581 lo_bits = 0xfffffffful;
1582 hi_bits = 0xfffffffful;
1584 /* Disable individual receive */
1585 SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, discard);
1586 *R_NETWORK_REC_CONFIG = network_rec_config_shadow;
1587 } else if (num_addr == 0) {
1588 /* Normal, clear the mc list */
1589 lo_bits = 0x00000000ul;
1590 hi_bits = 0x00000000ul;
1592 /* Disable individual receive */
1593 SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, discard);
1594 *R_NETWORK_REC_CONFIG = network_rec_config_shadow;
1595 } else {
1596 /* MC mode, receive normal and MC packets */
1597 char hash_ix;
1598 struct netdev_hw_addr *ha;
1599 char *baddr;
1601 lo_bits = 0x00000000ul;
1602 hi_bits = 0x00000000ul;
1603 netdev_for_each_mc_addr(ha, dev) {
1604 /* Calculate the hash index for the GA registers */
1606 hash_ix = 0;
1607 baddr = ha->addr;
1608 hash_ix ^= (*baddr) & 0x3f;
1609 hash_ix ^= ((*baddr) >> 6) & 0x03;
1610 ++baddr;
1611 hash_ix ^= ((*baddr) << 2) & 0x03c;
1612 hash_ix ^= ((*baddr) >> 4) & 0xf;
1613 ++baddr;
1614 hash_ix ^= ((*baddr) << 4) & 0x30;
1615 hash_ix ^= ((*baddr) >> 2) & 0x3f;
1616 ++baddr;
1617 hash_ix ^= (*baddr) & 0x3f;
1618 hash_ix ^= ((*baddr) >> 6) & 0x03;
1619 ++baddr;
1620 hash_ix ^= ((*baddr) << 2) & 0x03c;
1621 hash_ix ^= ((*baddr) >> 4) & 0xf;
1622 ++baddr;
1623 hash_ix ^= ((*baddr) << 4) & 0x30;
1624 hash_ix ^= ((*baddr) >> 2) & 0x3f;
1626 hash_ix &= 0x3f;
1628 if (hash_ix >= 32) {
1629 hi_bits |= (1 << (hash_ix-32));
1630 } else {
1631 lo_bits |= (1 << hash_ix);
1634 /* Disable individual receive */
1635 SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, discard);
1636 *R_NETWORK_REC_CONFIG = network_rec_config_shadow;
1638 *R_NETWORK_GA_0 = lo_bits;
1639 *R_NETWORK_GA_1 = hi_bits;
1640 spin_unlock(&lp->lock);
1643 void
1644 e100_hardware_send_packet(struct net_local *np, char *buf, int length)
1646 D(printk("e100 send pack, buf 0x%x len %d\n", buf, length));
1648 spin_lock(&np->led_lock);
1649 if (!led_active && time_after(jiffies, led_next_time)) {
1650 /* light the network leds depending on the current speed. */
1651 e100_set_network_leds(NETWORK_ACTIVITY);
1653 /* Set the earliest time we may clear the LED */
1654 led_next_time = jiffies + NET_FLASH_TIME;
1655 led_active = 1;
1656 mod_timer(&clear_led_timer, jiffies + HZ/10);
1658 spin_unlock(&np->led_lock);
1660 /* configure the tx dma descriptor */
1661 myNextTxDesc->descr.sw_len = length;
1662 myNextTxDesc->descr.ctrl = d_eop | d_eol | d_wait;
1663 myNextTxDesc->descr.buf = virt_to_phys(buf);
1665 /* Move end of list */
1666 myLastTxDesc->descr.ctrl &= ~d_eol;
1667 myLastTxDesc = myNextTxDesc;
1669 /* Restart DMA channel */
1670 *R_DMA_CH0_CMD = IO_STATE(R_DMA_CH0_CMD, cmd, restart);
1673 static void
1674 e100_clear_network_leds(unsigned long dummy)
1676 struct net_device *dev = (struct net_device *)dummy;
1677 struct net_local *np = netdev_priv(dev);
1679 spin_lock(&np->led_lock);
1681 if (led_active && time_after(jiffies, led_next_time)) {
1682 e100_set_network_leds(NO_NETWORK_ACTIVITY);
1684 /* Set the earliest time we may set the LED */
1685 led_next_time = jiffies + NET_FLASH_PAUSE;
1686 led_active = 0;
1689 spin_unlock(&np->led_lock);
1692 static void
1693 e100_set_network_leds(int active)
1695 #if defined(CONFIG_ETRAX_NETWORK_LED_ON_WHEN_LINK)
1696 int light_leds = (active == NO_NETWORK_ACTIVITY);
1697 #elif defined(CONFIG_ETRAX_NETWORK_LED_ON_WHEN_ACTIVITY)
1698 int light_leds = (active == NETWORK_ACTIVITY);
1699 #else
1700 #error "Define either CONFIG_ETRAX_NETWORK_LED_ON_WHEN_LINK or CONFIG_ETRAX_NETWORK_LED_ON_WHEN_ACTIVITY"
1701 #endif
1703 if (!current_speed) {
1704 /* Make LED red, link is down */
1705 #if defined(CONFIG_ETRAX_NETWORK_RED_ON_NO_CONNECTION)
1706 CRIS_LED_NETWORK_SET(CRIS_LED_RED);
1707 #else
1708 CRIS_LED_NETWORK_SET(CRIS_LED_OFF);
1709 #endif
1710 } else if (light_leds) {
1711 if (current_speed == 10) {
1712 CRIS_LED_NETWORK_SET(CRIS_LED_ORANGE);
1713 } else {
1714 CRIS_LED_NETWORK_SET(CRIS_LED_GREEN);
1716 } else {
1717 CRIS_LED_NETWORK_SET(CRIS_LED_OFF);
1721 #ifdef CONFIG_NET_POLL_CONTROLLER
1722 static void
1723 e100_netpoll(struct net_device* netdev)
1725 e100rxtx_interrupt(NETWORK_DMA_TX_IRQ_NBR, netdev, NULL);
1727 #endif
1729 static int
1730 etrax_init_module(void)
1732 return etrax_ethernet_init();
1735 static int __init
1736 e100_boot_setup(char* str)
1738 struct sockaddr sa = {0};
1739 int i;
1741 /* Parse the colon separated Ethernet station address */
1742 for (i = 0; i < ETH_ALEN; i++) {
1743 unsigned int tmp;
1744 if (sscanf(str + 3*i, "%2x", &tmp) != 1) {
1745 printk(KERN_WARNING "Malformed station address");
1746 return 0;
1748 sa.sa_data[i] = (char)tmp;
1751 default_mac = sa;
1752 return 1;
1755 __setup("etrax100_eth=", e100_boot_setup);
1757 module_init(etrax_init_module);