1 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
3 * Copyright (C) 2004 Sun Microsystems Inc.
4 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 of the
9 * License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
21 * This driver uses the sungem driver (c) David Miller
22 * (davem@redhat.com) as its basis.
24 * The cassini chip has a number of features that distinguish it from
26 * 4 transmit descriptor rings that are used for either QoS (VLAN) or
27 * load balancing (non-VLAN mode)
28 * batching of multiple packets
29 * multiple CPU dispatching
30 * page-based RX descriptor engine with separate completion rings
31 * Gigabit support (GMII and PCS interface)
32 * MIF link up/down detection works
34 * RX is handled by page sized buffers that are attached as fragments to
35 * the skb. here's what's done:
36 * -- driver allocates pages at a time and keeps reference counts
38 * -- the upper protocol layers assume that the header is in the skb
39 * itself. as a result, cassini will copy a small amount (64 bytes)
41 * -- driver appends the rest of the data pages as frags to skbuffs
42 * and increments the reference count
43 * -- on page reclamation, the driver swaps the page with a spare page.
44 * if that page is still in use, it frees its reference to that page,
45 * and allocates a new page for use. otherwise, it just recycles the
48 * NOTE: cassini can parse the header. however, it's not worth it
49 * as long as the network stack requires a header copy.
51 * TX has 4 queues. currently these queues are used in a round-robin
52 * fashion for load balancing. They can also be used for QoS. for that
53 * to work, however, QoS information needs to be exposed down to the driver
54 * level so that subqueues get targetted to particular transmit rings.
55 * alternatively, the queues can be configured via use of the all-purpose
58 * RX DATA: the rx completion ring has all the info, but the rx desc
59 * ring has all of the data. RX can conceivably come in under multiple
60 * interrupts, but the INT# assignment needs to be set up properly by
61 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
62 * that. also, the two descriptor rings are designed to distinguish between
63 * encrypted and non-encrypted packets, but we use them for buffering
66 * by default, the selective clear mask is set up to process rx packets.
69 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
71 #include <linux/module.h>
72 #include <linux/kernel.h>
73 #include <linux/types.h>
74 #include <linux/compiler.h>
75 #include <linux/slab.h>
76 #include <linux/delay.h>
77 #include <linux/init.h>
78 #include <linux/vmalloc.h>
79 #include <linux/ioport.h>
80 #include <linux/pci.h>
82 #include <linux/highmem.h>
83 #include <linux/list.h>
84 #include <linux/dma-mapping.h>
86 #include <linux/netdevice.h>
87 #include <linux/etherdevice.h>
88 #include <linux/skbuff.h>
89 #include <linux/ethtool.h>
90 #include <linux/crc32.h>
91 #include <linux/random.h>
92 #include <linux/mii.h>
94 #include <linux/tcp.h>
95 #include <linux/mutex.h>
96 #include <linux/firmware.h>
98 #include <net/checksum.h>
100 #include <asm/atomic.h>
101 #include <asm/system.h>
103 #include <asm/byteorder.h>
104 #include <asm/uaccess.h>
106 #define cas_page_map(x) kmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
107 #define cas_page_unmap(x) kunmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
108 #define CAS_NCPUS num_online_cpus()
110 #ifdef CONFIG_CASSINI_NAPI
112 #define cas_skb_release(x) netif_receive_skb(x)
114 #define cas_skb_release(x) netif_rx(x)
117 /* select which firmware to use */
118 #define USE_HP_WORKAROUND
119 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
120 #define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */
124 #define USE_TX_COMPWB /* use completion writeback registers */
125 #define USE_CSMA_CD_PROTO /* standard CSMA/CD */
126 #define USE_RX_BLANK /* hw interrupt mitigation */
127 #undef USE_ENTROPY_DEV /* don't test for entropy device */
129 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
130 * also, we need to make cp->lock finer-grained.
137 #undef USE_VPD_DEBUG /* debug vpd information if defined */
139 /* rx processing options */
140 #define USE_PAGE_ORDER /* specify to allocate large rx pages */
141 #define RX_DONT_BATCH 0 /* if 1, don't batch flows */
142 #define RX_COPY_ALWAYS 0 /* if 0, use frags */
143 #define RX_COPY_MIN 64 /* copy a little to make upper layers happy */
144 #undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */
146 #define DRV_MODULE_NAME "cassini"
147 #define DRV_MODULE_VERSION "1.6"
148 #define DRV_MODULE_RELDATE "21 May 2008"
150 #define CAS_DEF_MSG_ENABLE \
160 /* length of time before we decide the hardware is borked,
161 * and dev->tx_timeout() should be called to fix the problem
163 #define CAS_TX_TIMEOUT (HZ)
164 #define CAS_LINK_TIMEOUT (22*HZ/10)
165 #define CAS_LINK_FAST_TIMEOUT (1)
167 /* timeout values for state changing. these specify the number
168 * of 10us delays to be used before giving up.
170 #define STOP_TRIES_PHY 1000
171 #define STOP_TRIES 5000
173 /* specify a minimum frame size to deal with some fifo issues
174 * max mtu == 2 * page size - ethernet header - 64 - swivel =
175 * 2 * page_size - 0x50
177 #define CAS_MIN_FRAME 97
178 #define CAS_1000MB_MIN_FRAME 255
179 #define CAS_MIN_MTU 60
180 #define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000)
184 * Eliminate these and use separate atomic counters for each, to
185 * avoid a race condition.
188 #define CAS_RESET_MTU 1
189 #define CAS_RESET_ALL 2
190 #define CAS_RESET_SPARE 3
193 static char version
[] __devinitdata
=
194 DRV_MODULE_NAME
".c:v" DRV_MODULE_VERSION
" (" DRV_MODULE_RELDATE
")\n";
196 static int cassini_debug
= -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */
197 static int link_mode
;
199 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
200 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
201 MODULE_LICENSE("GPL");
202 MODULE_FIRMWARE("sun/cassini.bin");
203 module_param(cassini_debug
, int, 0);
204 MODULE_PARM_DESC(cassini_debug
, "Cassini bitmapped debugging message enable value");
205 module_param(link_mode
, int, 0);
206 MODULE_PARM_DESC(link_mode
, "default link mode");
209 * Work around for a PCS bug in which the link goes down due to the chip
210 * being confused and never showing a link status of "up."
212 #define DEFAULT_LINKDOWN_TIMEOUT 5
214 * Value in seconds, for user input.
216 static int linkdown_timeout
= DEFAULT_LINKDOWN_TIMEOUT
;
217 module_param(linkdown_timeout
, int, 0);
218 MODULE_PARM_DESC(linkdown_timeout
,
219 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
222 * value in 'ticks' (units used by jiffies). Set when we init the
223 * module because 'HZ' in actually a function call on some flavors of
224 * Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
226 static int link_transition_timeout
;
230 static u16 link_modes
[] __devinitdata
= {
231 BMCR_ANENABLE
, /* 0 : autoneg */
232 0, /* 1 : 10bt half duplex */
233 BMCR_SPEED100
, /* 2 : 100bt half duplex */
234 BMCR_FULLDPLX
, /* 3 : 10bt full duplex */
235 BMCR_SPEED100
|BMCR_FULLDPLX
, /* 4 : 100bt full duplex */
236 CAS_BMCR_SPEED1000
|BMCR_FULLDPLX
/* 5 : 1000bt full duplex */
239 static DEFINE_PCI_DEVICE_TABLE(cas_pci_tbl
) = {
240 { PCI_VENDOR_ID_SUN
, PCI_DEVICE_ID_SUN_CASSINI
,
241 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
242 { PCI_VENDOR_ID_NS
, PCI_DEVICE_ID_NS_SATURN
,
243 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
247 MODULE_DEVICE_TABLE(pci
, cas_pci_tbl
);
249 static void cas_set_link_modes(struct cas
*cp
);
251 static inline void cas_lock_tx(struct cas
*cp
)
255 for (i
= 0; i
< N_TX_RINGS
; i
++)
256 spin_lock(&cp
->tx_lock
[i
]);
259 static inline void cas_lock_all(struct cas
*cp
)
261 spin_lock_irq(&cp
->lock
);
265 /* WTZ: QA was finding deadlock problems with the previous
266 * versions after long test runs with multiple cards per machine.
267 * See if replacing cas_lock_all with safer versions helps. The
268 * symptoms QA is reporting match those we'd expect if interrupts
269 * aren't being properly restored, and we fixed a previous deadlock
270 * with similar symptoms by using save/restore versions in other
273 #define cas_lock_all_save(cp, flags) \
275 struct cas *xxxcp = (cp); \
276 spin_lock_irqsave(&xxxcp->lock, flags); \
277 cas_lock_tx(xxxcp); \
280 static inline void cas_unlock_tx(struct cas
*cp
)
284 for (i
= N_TX_RINGS
; i
> 0; i
--)
285 spin_unlock(&cp
->tx_lock
[i
- 1]);
288 static inline void cas_unlock_all(struct cas
*cp
)
291 spin_unlock_irq(&cp
->lock
);
294 #define cas_unlock_all_restore(cp, flags) \
296 struct cas *xxxcp = (cp); \
297 cas_unlock_tx(xxxcp); \
298 spin_unlock_irqrestore(&xxxcp->lock, flags); \
301 static void cas_disable_irq(struct cas
*cp
, const int ring
)
303 /* Make sure we won't get any more interrupts */
305 writel(0xFFFFFFFF, cp
->regs
+ REG_INTR_MASK
);
309 /* disable completion interrupts and selectively mask */
310 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
312 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
322 writel(INTRN_MASK_CLEAR_ALL
| INTRN_MASK_RX_EN
,
323 cp
->regs
+ REG_PLUS_INTRN_MASK(ring
));
327 writel(INTRN_MASK_CLEAR_ALL
, cp
->regs
+
328 REG_PLUS_INTRN_MASK(ring
));
334 static inline void cas_mask_intr(struct cas
*cp
)
338 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++)
339 cas_disable_irq(cp
, i
);
342 static void cas_enable_irq(struct cas
*cp
, const int ring
)
344 if (ring
== 0) { /* all but TX_DONE */
345 writel(INTR_TX_DONE
, cp
->regs
+ REG_INTR_MASK
);
349 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
351 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
361 writel(INTRN_MASK_RX_EN
, cp
->regs
+
362 REG_PLUS_INTRN_MASK(ring
));
371 static inline void cas_unmask_intr(struct cas
*cp
)
375 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++)
376 cas_enable_irq(cp
, i
);
379 static inline void cas_entropy_gather(struct cas
*cp
)
381 #ifdef USE_ENTROPY_DEV
382 if ((cp
->cas_flags
& CAS_FLAG_ENTROPY_DEV
) == 0)
385 batch_entropy_store(readl(cp
->regs
+ REG_ENTROPY_IV
),
386 readl(cp
->regs
+ REG_ENTROPY_IV
),
391 static inline void cas_entropy_reset(struct cas
*cp
)
393 #ifdef USE_ENTROPY_DEV
394 if ((cp
->cas_flags
& CAS_FLAG_ENTROPY_DEV
) == 0)
397 writel(BIM_LOCAL_DEV_PAD
| BIM_LOCAL_DEV_PROM
| BIM_LOCAL_DEV_EXT
,
398 cp
->regs
+ REG_BIM_LOCAL_DEV_EN
);
399 writeb(ENTROPY_RESET_STC_MODE
, cp
->regs
+ REG_ENTROPY_RESET
);
400 writeb(0x55, cp
->regs
+ REG_ENTROPY_RAND_REG
);
402 /* if we read back 0x0, we don't have an entropy device */
403 if (readb(cp
->regs
+ REG_ENTROPY_RAND_REG
) == 0)
404 cp
->cas_flags
&= ~CAS_FLAG_ENTROPY_DEV
;
408 /* access to the phy. the following assumes that we've initialized the MIF to
409 * be in frame rather than bit-bang mode
411 static u16
cas_phy_read(struct cas
*cp
, int reg
)
414 int limit
= STOP_TRIES_PHY
;
416 cmd
= MIF_FRAME_ST
| MIF_FRAME_OP_READ
;
417 cmd
|= CAS_BASE(MIF_FRAME_PHY_ADDR
, cp
->phy_addr
);
418 cmd
|= CAS_BASE(MIF_FRAME_REG_ADDR
, reg
);
419 cmd
|= MIF_FRAME_TURN_AROUND_MSB
;
420 writel(cmd
, cp
->regs
+ REG_MIF_FRAME
);
422 /* poll for completion */
423 while (limit
-- > 0) {
425 cmd
= readl(cp
->regs
+ REG_MIF_FRAME
);
426 if (cmd
& MIF_FRAME_TURN_AROUND_LSB
)
427 return (cmd
& MIF_FRAME_DATA_MASK
);
429 return 0xFFFF; /* -1 */
432 static int cas_phy_write(struct cas
*cp
, int reg
, u16 val
)
434 int limit
= STOP_TRIES_PHY
;
437 cmd
= MIF_FRAME_ST
| MIF_FRAME_OP_WRITE
;
438 cmd
|= CAS_BASE(MIF_FRAME_PHY_ADDR
, cp
->phy_addr
);
439 cmd
|= CAS_BASE(MIF_FRAME_REG_ADDR
, reg
);
440 cmd
|= MIF_FRAME_TURN_AROUND_MSB
;
441 cmd
|= val
& MIF_FRAME_DATA_MASK
;
442 writel(cmd
, cp
->regs
+ REG_MIF_FRAME
);
444 /* poll for completion */
445 while (limit
-- > 0) {
447 cmd
= readl(cp
->regs
+ REG_MIF_FRAME
);
448 if (cmd
& MIF_FRAME_TURN_AROUND_LSB
)
454 static void cas_phy_powerup(struct cas
*cp
)
456 u16 ctl
= cas_phy_read(cp
, MII_BMCR
);
458 if ((ctl
& BMCR_PDOWN
) == 0)
461 cas_phy_write(cp
, MII_BMCR
, ctl
);
464 static void cas_phy_powerdown(struct cas
*cp
)
466 u16 ctl
= cas_phy_read(cp
, MII_BMCR
);
468 if (ctl
& BMCR_PDOWN
)
471 cas_phy_write(cp
, MII_BMCR
, ctl
);
474 /* cp->lock held. note: the last put_page will free the buffer */
475 static int cas_page_free(struct cas
*cp
, cas_page_t
*page
)
477 pci_unmap_page(cp
->pdev
, page
->dma_addr
, cp
->page_size
,
479 __free_pages(page
->buffer
, cp
->page_order
);
484 #ifdef RX_COUNT_BUFFERS
485 #define RX_USED_ADD(x, y) ((x)->used += (y))
486 #define RX_USED_SET(x, y) ((x)->used = (y))
488 #define RX_USED_ADD(x, y)
489 #define RX_USED_SET(x, y)
492 /* local page allocation routines for the receive buffers. jumbo pages
493 * require at least 8K contiguous and 8K aligned buffers.
495 static cas_page_t
*cas_page_alloc(struct cas
*cp
, const gfp_t flags
)
499 page
= kmalloc(sizeof(cas_page_t
), flags
);
503 INIT_LIST_HEAD(&page
->list
);
504 RX_USED_SET(page
, 0);
505 page
->buffer
= alloc_pages(flags
, cp
->page_order
);
508 page
->dma_addr
= pci_map_page(cp
->pdev
, page
->buffer
, 0,
509 cp
->page_size
, PCI_DMA_FROMDEVICE
);
517 /* initialize spare pool of rx buffers, but allocate during the open */
518 static void cas_spare_init(struct cas
*cp
)
520 spin_lock(&cp
->rx_inuse_lock
);
521 INIT_LIST_HEAD(&cp
->rx_inuse_list
);
522 spin_unlock(&cp
->rx_inuse_lock
);
524 spin_lock(&cp
->rx_spare_lock
);
525 INIT_LIST_HEAD(&cp
->rx_spare_list
);
526 cp
->rx_spares_needed
= RX_SPARE_COUNT
;
527 spin_unlock(&cp
->rx_spare_lock
);
530 /* used on close. free all the spare buffers. */
531 static void cas_spare_free(struct cas
*cp
)
533 struct list_head list
, *elem
, *tmp
;
535 /* free spare buffers */
536 INIT_LIST_HEAD(&list
);
537 spin_lock(&cp
->rx_spare_lock
);
538 list_splice_init(&cp
->rx_spare_list
, &list
);
539 spin_unlock(&cp
->rx_spare_lock
);
540 list_for_each_safe(elem
, tmp
, &list
) {
541 cas_page_free(cp
, list_entry(elem
, cas_page_t
, list
));
544 INIT_LIST_HEAD(&list
);
547 * Looks like Adrian had protected this with a different
548 * lock than used everywhere else to manipulate this list.
550 spin_lock(&cp
->rx_inuse_lock
);
551 list_splice_init(&cp
->rx_inuse_list
, &list
);
552 spin_unlock(&cp
->rx_inuse_lock
);
554 spin_lock(&cp
->rx_spare_lock
);
555 list_splice_init(&cp
->rx_inuse_list
, &list
);
556 spin_unlock(&cp
->rx_spare_lock
);
558 list_for_each_safe(elem
, tmp
, &list
) {
559 cas_page_free(cp
, list_entry(elem
, cas_page_t
, list
));
563 /* replenish spares if needed */
564 static void cas_spare_recover(struct cas
*cp
, const gfp_t flags
)
566 struct list_head list
, *elem
, *tmp
;
569 /* check inuse list. if we don't need any more free buffers,
573 /* make a local copy of the list */
574 INIT_LIST_HEAD(&list
);
575 spin_lock(&cp
->rx_inuse_lock
);
576 list_splice_init(&cp
->rx_inuse_list
, &list
);
577 spin_unlock(&cp
->rx_inuse_lock
);
579 list_for_each_safe(elem
, tmp
, &list
) {
580 cas_page_t
*page
= list_entry(elem
, cas_page_t
, list
);
583 * With the lockless pagecache, cassini buffering scheme gets
584 * slightly less accurate: we might find that a page has an
585 * elevated reference count here, due to a speculative ref,
586 * and skip it as in-use. Ideally we would be able to reclaim
587 * it. However this would be such a rare case, it doesn't
588 * matter too much as we should pick it up the next time round.
590 * Importantly, if we find that the page has a refcount of 1
591 * here (our refcount), then we know it is definitely not inuse
592 * so we can reuse it.
594 if (page_count(page
->buffer
) > 1)
598 spin_lock(&cp
->rx_spare_lock
);
599 if (cp
->rx_spares_needed
> 0) {
600 list_add(elem
, &cp
->rx_spare_list
);
601 cp
->rx_spares_needed
--;
602 spin_unlock(&cp
->rx_spare_lock
);
604 spin_unlock(&cp
->rx_spare_lock
);
605 cas_page_free(cp
, page
);
609 /* put any inuse buffers back on the list */
610 if (!list_empty(&list
)) {
611 spin_lock(&cp
->rx_inuse_lock
);
612 list_splice(&list
, &cp
->rx_inuse_list
);
613 spin_unlock(&cp
->rx_inuse_lock
);
616 spin_lock(&cp
->rx_spare_lock
);
617 needed
= cp
->rx_spares_needed
;
618 spin_unlock(&cp
->rx_spare_lock
);
622 /* we still need spares, so try to allocate some */
623 INIT_LIST_HEAD(&list
);
626 cas_page_t
*spare
= cas_page_alloc(cp
, flags
);
629 list_add(&spare
->list
, &list
);
633 spin_lock(&cp
->rx_spare_lock
);
634 list_splice(&list
, &cp
->rx_spare_list
);
635 cp
->rx_spares_needed
-= i
;
636 spin_unlock(&cp
->rx_spare_lock
);
639 /* pull a page from the list. */
640 static cas_page_t
*cas_page_dequeue(struct cas
*cp
)
642 struct list_head
*entry
;
645 spin_lock(&cp
->rx_spare_lock
);
646 if (list_empty(&cp
->rx_spare_list
)) {
647 /* try to do a quick recovery */
648 spin_unlock(&cp
->rx_spare_lock
);
649 cas_spare_recover(cp
, GFP_ATOMIC
);
650 spin_lock(&cp
->rx_spare_lock
);
651 if (list_empty(&cp
->rx_spare_list
)) {
652 netif_err(cp
, rx_err
, cp
->dev
,
653 "no spare buffers available\n");
654 spin_unlock(&cp
->rx_spare_lock
);
659 entry
= cp
->rx_spare_list
.next
;
661 recover
= ++cp
->rx_spares_needed
;
662 spin_unlock(&cp
->rx_spare_lock
);
664 /* trigger the timer to do the recovery */
665 if ((recover
& (RX_SPARE_RECOVER_VAL
- 1)) == 0) {
667 atomic_inc(&cp
->reset_task_pending
);
668 atomic_inc(&cp
->reset_task_pending_spare
);
669 schedule_work(&cp
->reset_task
);
671 atomic_set(&cp
->reset_task_pending
, CAS_RESET_SPARE
);
672 schedule_work(&cp
->reset_task
);
675 return list_entry(entry
, cas_page_t
, list
);
679 static void cas_mif_poll(struct cas
*cp
, const int enable
)
683 cfg
= readl(cp
->regs
+ REG_MIF_CFG
);
684 cfg
&= (MIF_CFG_MDIO_0
| MIF_CFG_MDIO_1
);
686 if (cp
->phy_type
& CAS_PHY_MII_MDIO1
)
687 cfg
|= MIF_CFG_PHY_SELECT
;
689 /* poll and interrupt on link status change. */
691 cfg
|= MIF_CFG_POLL_EN
;
692 cfg
|= CAS_BASE(MIF_CFG_POLL_REG
, MII_BMSR
);
693 cfg
|= CAS_BASE(MIF_CFG_POLL_PHY
, cp
->phy_addr
);
695 writel((enable
) ? ~(BMSR_LSTATUS
| BMSR_ANEGCOMPLETE
) : 0xFFFF,
696 cp
->regs
+ REG_MIF_MASK
);
697 writel(cfg
, cp
->regs
+ REG_MIF_CFG
);
700 /* Must be invoked under cp->lock */
701 static void cas_begin_auto_negotiation(struct cas
*cp
, struct ethtool_cmd
*ep
)
707 int oldstate
= cp
->lstate
;
708 int link_was_not_down
= !(oldstate
== link_down
);
710 /* Setup link parameters */
713 lcntl
= cp
->link_cntl
;
714 if (ep
->autoneg
== AUTONEG_ENABLE
)
715 cp
->link_cntl
= BMCR_ANENABLE
;
718 if (ep
->speed
== SPEED_100
)
719 cp
->link_cntl
|= BMCR_SPEED100
;
720 else if (ep
->speed
== SPEED_1000
)
721 cp
->link_cntl
|= CAS_BMCR_SPEED1000
;
722 if (ep
->duplex
== DUPLEX_FULL
)
723 cp
->link_cntl
|= BMCR_FULLDPLX
;
726 changed
= (lcntl
!= cp
->link_cntl
);
729 if (cp
->lstate
== link_up
) {
730 netdev_info(cp
->dev
, "PCS link down\n");
733 netdev_info(cp
->dev
, "link configuration changed\n");
736 cp
->lstate
= link_down
;
737 cp
->link_transition
= LINK_TRANSITION_LINK_DOWN
;
742 * WTZ: If the old state was link_up, we turn off the carrier
743 * to replicate everything we do elsewhere on a link-down
744 * event when we were already in a link-up state..
746 if (oldstate
== link_up
)
747 netif_carrier_off(cp
->dev
);
748 if (changed
&& link_was_not_down
) {
750 * WTZ: This branch will simply schedule a full reset after
751 * we explicitly changed link modes in an ioctl. See if this
752 * fixes the link-problems we were having for forced mode.
754 atomic_inc(&cp
->reset_task_pending
);
755 atomic_inc(&cp
->reset_task_pending_all
);
756 schedule_work(&cp
->reset_task
);
758 mod_timer(&cp
->link_timer
, jiffies
+ CAS_LINK_TIMEOUT
);
762 if (cp
->phy_type
& CAS_PHY_SERDES
) {
763 u32 val
= readl(cp
->regs
+ REG_PCS_MII_CTRL
);
765 if (cp
->link_cntl
& BMCR_ANENABLE
) {
766 val
|= (PCS_MII_RESTART_AUTONEG
| PCS_MII_AUTONEG_EN
);
767 cp
->lstate
= link_aneg
;
769 if (cp
->link_cntl
& BMCR_FULLDPLX
)
770 val
|= PCS_MII_CTRL_DUPLEX
;
771 val
&= ~PCS_MII_AUTONEG_EN
;
772 cp
->lstate
= link_force_ok
;
774 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
775 writel(val
, cp
->regs
+ REG_PCS_MII_CTRL
);
779 ctl
= cas_phy_read(cp
, MII_BMCR
);
780 ctl
&= ~(BMCR_FULLDPLX
| BMCR_SPEED100
|
781 CAS_BMCR_SPEED1000
| BMCR_ANENABLE
);
782 ctl
|= cp
->link_cntl
;
783 if (ctl
& BMCR_ANENABLE
) {
784 ctl
|= BMCR_ANRESTART
;
785 cp
->lstate
= link_aneg
;
787 cp
->lstate
= link_force_ok
;
789 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
790 cas_phy_write(cp
, MII_BMCR
, ctl
);
795 mod_timer(&cp
->link_timer
, jiffies
+ CAS_LINK_TIMEOUT
);
798 /* Must be invoked under cp->lock. */
799 static int cas_reset_mii_phy(struct cas
*cp
)
801 int limit
= STOP_TRIES_PHY
;
804 cas_phy_write(cp
, MII_BMCR
, BMCR_RESET
);
807 val
= cas_phy_read(cp
, MII_BMCR
);
808 if ((val
& BMCR_RESET
) == 0)
815 static int cas_saturn_firmware_init(struct cas
*cp
)
817 const struct firmware
*fw
;
818 const char fw_name
[] = "sun/cassini.bin";
821 if (PHY_NS_DP83065
!= cp
->phy_id
)
824 err
= request_firmware(&fw
, fw_name
, &cp
->pdev
->dev
);
826 pr_err("Failed to load firmware \"%s\"\n",
831 pr_err("bogus length %zu in \"%s\"\n",
836 cp
->fw_load_addr
= fw
->data
[1] << 8 | fw
->data
[0];
837 cp
->fw_size
= fw
->size
- 2;
838 cp
->fw_data
= vmalloc(cp
->fw_size
);
841 pr_err("\"%s\" Failed %d\n", fw_name
, err
);
844 memcpy(cp
->fw_data
, &fw
->data
[2], cp
->fw_size
);
846 release_firmware(fw
);
850 static void cas_saturn_firmware_load(struct cas
*cp
)
854 cas_phy_powerdown(cp
);
856 /* expanded memory access mode */
857 cas_phy_write(cp
, DP83065_MII_MEM
, 0x0);
859 /* pointer configuration for new firmware */
860 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ff9);
861 cas_phy_write(cp
, DP83065_MII_REGD
, 0xbd);
862 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ffa);
863 cas_phy_write(cp
, DP83065_MII_REGD
, 0x82);
864 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ffb);
865 cas_phy_write(cp
, DP83065_MII_REGD
, 0x0);
866 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ffc);
867 cas_phy_write(cp
, DP83065_MII_REGD
, 0x39);
869 /* download new firmware */
870 cas_phy_write(cp
, DP83065_MII_MEM
, 0x1);
871 cas_phy_write(cp
, DP83065_MII_REGE
, cp
->fw_load_addr
);
872 for (i
= 0; i
< cp
->fw_size
; i
++)
873 cas_phy_write(cp
, DP83065_MII_REGD
, cp
->fw_data
[i
]);
875 /* enable firmware */
876 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ff8);
877 cas_phy_write(cp
, DP83065_MII_REGD
, 0x1);
881 /* phy initialization */
882 static void cas_phy_init(struct cas
*cp
)
886 /* if we're in MII/GMII mode, set up phy */
887 if (CAS_PHY_MII(cp
->phy_type
)) {
888 writel(PCS_DATAPATH_MODE_MII
,
889 cp
->regs
+ REG_PCS_DATAPATH_MODE
);
892 cas_reset_mii_phy(cp
); /* take out of isolate mode */
894 if (PHY_LUCENT_B0
== cp
->phy_id
) {
895 /* workaround link up/down issue with lucent */
896 cas_phy_write(cp
, LUCENT_MII_REG
, 0x8000);
897 cas_phy_write(cp
, MII_BMCR
, 0x00f1);
898 cas_phy_write(cp
, LUCENT_MII_REG
, 0x0);
900 } else if (PHY_BROADCOM_B0
== (cp
->phy_id
& 0xFFFFFFFC)) {
901 /* workarounds for broadcom phy */
902 cas_phy_write(cp
, BROADCOM_MII_REG8
, 0x0C20);
903 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x0012);
904 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x1804);
905 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x0013);
906 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x1204);
907 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x8006);
908 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x0132);
909 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x8006);
910 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x0232);
911 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x201F);
912 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x0A20);
914 } else if (PHY_BROADCOM_5411
== cp
->phy_id
) {
915 val
= cas_phy_read(cp
, BROADCOM_MII_REG4
);
916 val
= cas_phy_read(cp
, BROADCOM_MII_REG4
);
918 /* link workaround */
919 cas_phy_write(cp
, BROADCOM_MII_REG4
,
923 } else if (cp
->cas_flags
& CAS_FLAG_SATURN
) {
924 writel((cp
->phy_type
& CAS_PHY_MII_MDIO0
) ?
925 SATURN_PCFG_FSI
: 0x0,
926 cp
->regs
+ REG_SATURN_PCFG
);
928 /* load firmware to address 10Mbps auto-negotiation
929 * issue. NOTE: this will need to be changed if the
930 * default firmware gets fixed.
932 if (PHY_NS_DP83065
== cp
->phy_id
) {
933 cas_saturn_firmware_load(cp
);
938 /* advertise capabilities */
939 val
= cas_phy_read(cp
, MII_BMCR
);
940 val
&= ~BMCR_ANENABLE
;
941 cas_phy_write(cp
, MII_BMCR
, val
);
944 cas_phy_write(cp
, MII_ADVERTISE
,
945 cas_phy_read(cp
, MII_ADVERTISE
) |
946 (ADVERTISE_10HALF
| ADVERTISE_10FULL
|
947 ADVERTISE_100HALF
| ADVERTISE_100FULL
|
948 CAS_ADVERTISE_PAUSE
|
949 CAS_ADVERTISE_ASYM_PAUSE
));
951 if (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) {
952 /* make sure that we don't advertise half
953 * duplex to avoid a chip issue
955 val
= cas_phy_read(cp
, CAS_MII_1000_CTRL
);
956 val
&= ~CAS_ADVERTISE_1000HALF
;
957 val
|= CAS_ADVERTISE_1000FULL
;
958 cas_phy_write(cp
, CAS_MII_1000_CTRL
, val
);
962 /* reset pcs for serdes */
966 writel(PCS_DATAPATH_MODE_SERDES
,
967 cp
->regs
+ REG_PCS_DATAPATH_MODE
);
969 /* enable serdes pins on saturn */
970 if (cp
->cas_flags
& CAS_FLAG_SATURN
)
971 writel(0, cp
->regs
+ REG_SATURN_PCFG
);
973 /* Reset PCS unit. */
974 val
= readl(cp
->regs
+ REG_PCS_MII_CTRL
);
975 val
|= PCS_MII_RESET
;
976 writel(val
, cp
->regs
+ REG_PCS_MII_CTRL
);
979 while (--limit
> 0) {
981 if ((readl(cp
->regs
+ REG_PCS_MII_CTRL
) &
986 netdev_warn(cp
->dev
, "PCS reset bit would not clear [%08x]\n",
987 readl(cp
->regs
+ REG_PCS_STATE_MACHINE
));
989 /* Make sure PCS is disabled while changing advertisement
992 writel(0x0, cp
->regs
+ REG_PCS_CFG
);
994 /* Advertise all capabilities except half-duplex. */
995 val
= readl(cp
->regs
+ REG_PCS_MII_ADVERT
);
996 val
&= ~PCS_MII_ADVERT_HD
;
997 val
|= (PCS_MII_ADVERT_FD
| PCS_MII_ADVERT_SYM_PAUSE
|
998 PCS_MII_ADVERT_ASYM_PAUSE
);
999 writel(val
, cp
->regs
+ REG_PCS_MII_ADVERT
);
1002 writel(PCS_CFG_EN
, cp
->regs
+ REG_PCS_CFG
);
1004 /* pcs workaround: enable sync detect */
1005 writel(PCS_SERDES_CTRL_SYNCD_EN
,
1006 cp
->regs
+ REG_PCS_SERDES_CTRL
);
1011 static int cas_pcs_link_check(struct cas
*cp
)
1013 u32 stat
, state_machine
;
1016 /* The link status bit latches on zero, so you must
1017 * read it twice in such a case to see a transition
1018 * to the link being up.
1020 stat
= readl(cp
->regs
+ REG_PCS_MII_STATUS
);
1021 if ((stat
& PCS_MII_STATUS_LINK_STATUS
) == 0)
1022 stat
= readl(cp
->regs
+ REG_PCS_MII_STATUS
);
1024 /* The remote-fault indication is only valid
1025 * when autoneg has completed.
1027 if ((stat
& (PCS_MII_STATUS_AUTONEG_COMP
|
1028 PCS_MII_STATUS_REMOTE_FAULT
)) ==
1029 (PCS_MII_STATUS_AUTONEG_COMP
| PCS_MII_STATUS_REMOTE_FAULT
))
1030 netif_info(cp
, link
, cp
->dev
, "PCS RemoteFault\n");
1032 /* work around link detection issue by querying the PCS state
1035 state_machine
= readl(cp
->regs
+ REG_PCS_STATE_MACHINE
);
1036 if ((state_machine
& PCS_SM_LINK_STATE_MASK
) != SM_LINK_STATE_UP
) {
1037 stat
&= ~PCS_MII_STATUS_LINK_STATUS
;
1038 } else if (state_machine
& PCS_SM_WORD_SYNC_STATE_MASK
) {
1039 stat
|= PCS_MII_STATUS_LINK_STATUS
;
1042 if (stat
& PCS_MII_STATUS_LINK_STATUS
) {
1043 if (cp
->lstate
!= link_up
) {
1045 cp
->lstate
= link_up
;
1046 cp
->link_transition
= LINK_TRANSITION_LINK_UP
;
1048 cas_set_link_modes(cp
);
1049 netif_carrier_on(cp
->dev
);
1052 } else if (cp
->lstate
== link_up
) {
1053 cp
->lstate
= link_down
;
1054 if (link_transition_timeout
!= 0 &&
1055 cp
->link_transition
!= LINK_TRANSITION_REQUESTED_RESET
&&
1056 !cp
->link_transition_jiffies_valid
) {
1058 * force a reset, as a workaround for the
1059 * link-failure problem. May want to move this to a
1060 * point a bit earlier in the sequence. If we had
1061 * generated a reset a short time ago, we'll wait for
1062 * the link timer to check the status until a
1063 * timer expires (link_transistion_jiffies_valid is
1064 * true when the timer is running.) Instead of using
1065 * a system timer, we just do a check whenever the
1066 * link timer is running - this clears the flag after
1070 cp
->link_transition
= LINK_TRANSITION_REQUESTED_RESET
;
1071 cp
->link_transition_jiffies
= jiffies
;
1072 cp
->link_transition_jiffies_valid
= 1;
1074 cp
->link_transition
= LINK_TRANSITION_ON_FAILURE
;
1076 netif_carrier_off(cp
->dev
);
1078 netif_info(cp
, link
, cp
->dev
, "PCS link down\n");
1080 /* Cassini only: if you force a mode, there can be
1081 * sync problems on link down. to fix that, the following
1082 * things need to be checked:
1083 * 1) read serialink state register
1084 * 2) read pcs status register to verify link down.
1085 * 3) if link down and serial link == 0x03, then you need
1086 * to global reset the chip.
1088 if ((cp
->cas_flags
& CAS_FLAG_REG_PLUS
) == 0) {
1089 /* should check to see if we're in a forced mode */
1090 stat
= readl(cp
->regs
+ REG_PCS_SERDES_STATE
);
1094 } else if (cp
->lstate
== link_down
) {
1095 if (link_transition_timeout
!= 0 &&
1096 cp
->link_transition
!= LINK_TRANSITION_REQUESTED_RESET
&&
1097 !cp
->link_transition_jiffies_valid
) {
1098 /* force a reset, as a workaround for the
1099 * link-failure problem. May want to move
1100 * this to a point a bit earlier in the
1104 cp
->link_transition
= LINK_TRANSITION_REQUESTED_RESET
;
1105 cp
->link_transition_jiffies
= jiffies
;
1106 cp
->link_transition_jiffies_valid
= 1;
1108 cp
->link_transition
= LINK_TRANSITION_STILL_FAILED
;
1115 static int cas_pcs_interrupt(struct net_device
*dev
,
1116 struct cas
*cp
, u32 status
)
1118 u32 stat
= readl(cp
->regs
+ REG_PCS_INTR_STATUS
);
1120 if ((stat
& PCS_INTR_STATUS_LINK_CHANGE
) == 0)
1122 return cas_pcs_link_check(cp
);
1125 static int cas_txmac_interrupt(struct net_device
*dev
,
1126 struct cas
*cp
, u32 status
)
1128 u32 txmac_stat
= readl(cp
->regs
+ REG_MAC_TX_STATUS
);
1133 netif_printk(cp
, intr
, KERN_DEBUG
, cp
->dev
,
1134 "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat
);
1136 /* Defer timer expiration is quite normal,
1137 * don't even log the event.
1139 if ((txmac_stat
& MAC_TX_DEFER_TIMER
) &&
1140 !(txmac_stat
& ~MAC_TX_DEFER_TIMER
))
1143 spin_lock(&cp
->stat_lock
[0]);
1144 if (txmac_stat
& MAC_TX_UNDERRUN
) {
1145 netdev_err(dev
, "TX MAC xmit underrun\n");
1146 cp
->net_stats
[0].tx_fifo_errors
++;
1149 if (txmac_stat
& MAC_TX_MAX_PACKET_ERR
) {
1150 netdev_err(dev
, "TX MAC max packet size error\n");
1151 cp
->net_stats
[0].tx_errors
++;
1154 /* The rest are all cases of one of the 16-bit TX
1155 * counters expiring.
1157 if (txmac_stat
& MAC_TX_COLL_NORMAL
)
1158 cp
->net_stats
[0].collisions
+= 0x10000;
1160 if (txmac_stat
& MAC_TX_COLL_EXCESS
) {
1161 cp
->net_stats
[0].tx_aborted_errors
+= 0x10000;
1162 cp
->net_stats
[0].collisions
+= 0x10000;
1165 if (txmac_stat
& MAC_TX_COLL_LATE
) {
1166 cp
->net_stats
[0].tx_aborted_errors
+= 0x10000;
1167 cp
->net_stats
[0].collisions
+= 0x10000;
1169 spin_unlock(&cp
->stat_lock
[0]);
1171 /* We do not keep track of MAC_TX_COLL_FIRST and
1172 * MAC_TX_PEAK_ATTEMPTS events.
1177 static void cas_load_firmware(struct cas
*cp
, cas_hp_inst_t
*firmware
)
1179 cas_hp_inst_t
*inst
;
1184 while ((inst
= firmware
) && inst
->note
) {
1185 writel(i
, cp
->regs
+ REG_HP_INSTR_RAM_ADDR
);
1187 val
= CAS_BASE(HP_INSTR_RAM_HI_VAL
, inst
->val
);
1188 val
|= CAS_BASE(HP_INSTR_RAM_HI_MASK
, inst
->mask
);
1189 writel(val
, cp
->regs
+ REG_HP_INSTR_RAM_DATA_HI
);
1191 val
= CAS_BASE(HP_INSTR_RAM_MID_OUTARG
, inst
->outarg
>> 10);
1192 val
|= CAS_BASE(HP_INSTR_RAM_MID_OUTOP
, inst
->outop
);
1193 val
|= CAS_BASE(HP_INSTR_RAM_MID_FNEXT
, inst
->fnext
);
1194 val
|= CAS_BASE(HP_INSTR_RAM_MID_FOFF
, inst
->foff
);
1195 val
|= CAS_BASE(HP_INSTR_RAM_MID_SNEXT
, inst
->snext
);
1196 val
|= CAS_BASE(HP_INSTR_RAM_MID_SOFF
, inst
->soff
);
1197 val
|= CAS_BASE(HP_INSTR_RAM_MID_OP
, inst
->op
);
1198 writel(val
, cp
->regs
+ REG_HP_INSTR_RAM_DATA_MID
);
1200 val
= CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK
, inst
->outmask
);
1201 val
|= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT
, inst
->outshift
);
1202 val
|= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN
, inst
->outenab
);
1203 val
|= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG
, inst
->outarg
);
1204 writel(val
, cp
->regs
+ REG_HP_INSTR_RAM_DATA_LOW
);
1210 static void cas_init_rx_dma(struct cas
*cp
)
1212 u64 desc_dma
= cp
->block_dvma
;
1216 /* rx free descriptors */
1217 val
= CAS_BASE(RX_CFG_SWIVEL
, RX_SWIVEL_OFF_VAL
);
1218 val
|= CAS_BASE(RX_CFG_DESC_RING
, RX_DESC_RINGN_INDEX(0));
1219 val
|= CAS_BASE(RX_CFG_COMP_RING
, RX_COMP_RINGN_INDEX(0));
1220 if ((N_RX_DESC_RINGS
> 1) &&
1221 (cp
->cas_flags
& CAS_FLAG_REG_PLUS
)) /* do desc 2 */
1222 val
|= CAS_BASE(RX_CFG_DESC_RING1
, RX_DESC_RINGN_INDEX(1));
1223 writel(val
, cp
->regs
+ REG_RX_CFG
);
1225 val
= (unsigned long) cp
->init_rxds
[0] -
1226 (unsigned long) cp
->init_block
;
1227 writel((desc_dma
+ val
) >> 32, cp
->regs
+ REG_RX_DB_HI
);
1228 writel((desc_dma
+ val
) & 0xffffffff, cp
->regs
+ REG_RX_DB_LOW
);
1229 writel(RX_DESC_RINGN_SIZE(0) - 4, cp
->regs
+ REG_RX_KICK
);
1231 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
1232 /* rx desc 2 is for IPSEC packets. however,
1233 * we don't it that for that purpose.
1235 val
= (unsigned long) cp
->init_rxds
[1] -
1236 (unsigned long) cp
->init_block
;
1237 writel((desc_dma
+ val
) >> 32, cp
->regs
+ REG_PLUS_RX_DB1_HI
);
1238 writel((desc_dma
+ val
) & 0xffffffff, cp
->regs
+
1239 REG_PLUS_RX_DB1_LOW
);
1240 writel(RX_DESC_RINGN_SIZE(1) - 4, cp
->regs
+
1244 /* rx completion registers */
1245 val
= (unsigned long) cp
->init_rxcs
[0] -
1246 (unsigned long) cp
->init_block
;
1247 writel((desc_dma
+ val
) >> 32, cp
->regs
+ REG_RX_CB_HI
);
1248 writel((desc_dma
+ val
) & 0xffffffff, cp
->regs
+ REG_RX_CB_LOW
);
1250 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
1252 for (i
= 1; i
< MAX_RX_COMP_RINGS
; i
++) {
1253 val
= (unsigned long) cp
->init_rxcs
[i
] -
1254 (unsigned long) cp
->init_block
;
1255 writel((desc_dma
+ val
) >> 32, cp
->regs
+
1256 REG_PLUS_RX_CBN_HI(i
));
1257 writel((desc_dma
+ val
) & 0xffffffff, cp
->regs
+
1258 REG_PLUS_RX_CBN_LOW(i
));
1262 /* read selective clear regs to prevent spurious interrupts
1263 * on reset because complete == kick.
1264 * selective clear set up to prevent interrupts on resets
1266 readl(cp
->regs
+ REG_INTR_STATUS_ALIAS
);
1267 writel(INTR_RX_DONE
| INTR_RX_BUF_UNAVAIL
, cp
->regs
+ REG_ALIAS_CLEAR
);
1268 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
1269 for (i
= 1; i
< N_RX_COMP_RINGS
; i
++)
1270 readl(cp
->regs
+ REG_PLUS_INTRN_STATUS_ALIAS(i
));
1272 /* 2 is different from 3 and 4 */
1273 if (N_RX_COMP_RINGS
> 1)
1274 writel(INTR_RX_DONE_ALT
| INTR_RX_BUF_UNAVAIL_1
,
1275 cp
->regs
+ REG_PLUS_ALIASN_CLEAR(1));
1277 for (i
= 2; i
< N_RX_COMP_RINGS
; i
++)
1278 writel(INTR_RX_DONE_ALT
,
1279 cp
->regs
+ REG_PLUS_ALIASN_CLEAR(i
));
1282 /* set up pause thresholds */
1283 val
= CAS_BASE(RX_PAUSE_THRESH_OFF
,
1284 cp
->rx_pause_off
/ RX_PAUSE_THRESH_QUANTUM
);
1285 val
|= CAS_BASE(RX_PAUSE_THRESH_ON
,
1286 cp
->rx_pause_on
/ RX_PAUSE_THRESH_QUANTUM
);
1287 writel(val
, cp
->regs
+ REG_RX_PAUSE_THRESH
);
1289 /* zero out dma reassembly buffers */
1290 for (i
= 0; i
< 64; i
++) {
1291 writel(i
, cp
->regs
+ REG_RX_TABLE_ADDR
);
1292 writel(0x0, cp
->regs
+ REG_RX_TABLE_DATA_LOW
);
1293 writel(0x0, cp
->regs
+ REG_RX_TABLE_DATA_MID
);
1294 writel(0x0, cp
->regs
+ REG_RX_TABLE_DATA_HI
);
1297 /* make sure address register is 0 for normal operation */
1298 writel(0x0, cp
->regs
+ REG_RX_CTRL_FIFO_ADDR
);
1299 writel(0x0, cp
->regs
+ REG_RX_IPP_FIFO_ADDR
);
1301 /* interrupt mitigation */
1303 val
= CAS_BASE(RX_BLANK_INTR_TIME
, RX_BLANK_INTR_TIME_VAL
);
1304 val
|= CAS_BASE(RX_BLANK_INTR_PKT
, RX_BLANK_INTR_PKT_VAL
);
1305 writel(val
, cp
->regs
+ REG_RX_BLANK
);
1307 writel(0x0, cp
->regs
+ REG_RX_BLANK
);
1310 /* interrupt generation as a function of low water marks for
1311 * free desc and completion entries. these are used to trigger
1312 * housekeeping for rx descs. we don't use the free interrupt
1313 * as it's not very useful
1315 /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1316 val
= CAS_BASE(RX_AE_THRESH_COMP
, RX_AE_COMP_VAL
);
1317 writel(val
, cp
->regs
+ REG_RX_AE_THRESH
);
1318 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
1319 val
= CAS_BASE(RX_AE1_THRESH_FREE
, RX_AE_FREEN_VAL(1));
1320 writel(val
, cp
->regs
+ REG_PLUS_RX_AE1_THRESH
);
1323 /* Random early detect registers. useful for congestion avoidance.
1324 * this should be tunable.
1326 writel(0x0, cp
->regs
+ REG_RX_RED
);
1328 /* receive page sizes. default == 2K (0x800) */
1330 if (cp
->page_size
== 0x1000)
1332 else if (cp
->page_size
== 0x2000)
1334 else if (cp
->page_size
== 0x4000)
1337 /* round mtu + offset. constrain to page size. */
1338 size
= cp
->dev
->mtu
+ 64;
1339 if (size
> cp
->page_size
)
1340 size
= cp
->page_size
;
1344 else if (size
<= 0x800)
1346 else if (size
<= 0x1000)
1351 cp
->mtu_stride
= 1 << (i
+ 10);
1352 val
= CAS_BASE(RX_PAGE_SIZE
, val
);
1353 val
|= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE
, i
);
1354 val
|= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT
, cp
->page_size
>> (i
+ 10));
1355 val
|= CAS_BASE(RX_PAGE_SIZE_MTU_OFF
, 0x1);
1356 writel(val
, cp
->regs
+ REG_RX_PAGE_SIZE
);
1358 /* enable the header parser if desired */
1359 if (CAS_HP_FIRMWARE
== cas_prog_null
)
1362 val
= CAS_BASE(HP_CFG_NUM_CPU
, CAS_NCPUS
> 63 ? 0 : CAS_NCPUS
);
1363 val
|= HP_CFG_PARSE_EN
| HP_CFG_SYN_INC_MASK
;
1364 val
|= CAS_BASE(HP_CFG_TCP_THRESH
, HP_TCP_THRESH_VAL
);
1365 writel(val
, cp
->regs
+ REG_HP_CFG
);
1368 static inline void cas_rxc_init(struct cas_rx_comp
*rxc
)
1370 memset(rxc
, 0, sizeof(*rxc
));
1371 rxc
->word4
= cpu_to_le64(RX_COMP4_ZERO
);
1374 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1375 * flipping is protected by the fact that the chip will not
1376 * hand back the same page index while it's being processed.
1378 static inline cas_page_t
*cas_page_spare(struct cas
*cp
, const int index
)
1380 cas_page_t
*page
= cp
->rx_pages
[1][index
];
1383 if (page_count(page
->buffer
) == 1)
1386 new = cas_page_dequeue(cp
);
1388 spin_lock(&cp
->rx_inuse_lock
);
1389 list_add(&page
->list
, &cp
->rx_inuse_list
);
1390 spin_unlock(&cp
->rx_inuse_lock
);
1395 /* this needs to be changed if we actually use the ENC RX DESC ring */
1396 static cas_page_t
*cas_page_swap(struct cas
*cp
, const int ring
,
1399 cas_page_t
**page0
= cp
->rx_pages
[0];
1400 cas_page_t
**page1
= cp
->rx_pages
[1];
1402 /* swap if buffer is in use */
1403 if (page_count(page0
[index
]->buffer
) > 1) {
1404 cas_page_t
*new = cas_page_spare(cp
, index
);
1406 page1
[index
] = page0
[index
];
1410 RX_USED_SET(page0
[index
], 0);
1411 return page0
[index
];
1414 static void cas_clean_rxds(struct cas
*cp
)
1416 /* only clean ring 0 as ring 1 is used for spare buffers */
1417 struct cas_rx_desc
*rxd
= cp
->init_rxds
[0];
1420 /* release all rx flows */
1421 for (i
= 0; i
< N_RX_FLOWS
; i
++) {
1422 struct sk_buff
*skb
;
1423 while ((skb
= __skb_dequeue(&cp
->rx_flows
[i
]))) {
1424 cas_skb_release(skb
);
1428 /* initialize descriptors */
1429 size
= RX_DESC_RINGN_SIZE(0);
1430 for (i
= 0; i
< size
; i
++) {
1431 cas_page_t
*page
= cas_page_swap(cp
, 0, i
);
1432 rxd
[i
].buffer
= cpu_to_le64(page
->dma_addr
);
1433 rxd
[i
].index
= cpu_to_le64(CAS_BASE(RX_INDEX_NUM
, i
) |
1434 CAS_BASE(RX_INDEX_RING
, 0));
1437 cp
->rx_old
[0] = RX_DESC_RINGN_SIZE(0) - 4;
1439 cp
->cas_flags
&= ~CAS_FLAG_RXD_POST(0);
1442 static void cas_clean_rxcs(struct cas
*cp
)
1446 /* take ownership of rx comp descriptors */
1447 memset(cp
->rx_cur
, 0, sizeof(*cp
->rx_cur
)*N_RX_COMP_RINGS
);
1448 memset(cp
->rx_new
, 0, sizeof(*cp
->rx_new
)*N_RX_COMP_RINGS
);
1449 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++) {
1450 struct cas_rx_comp
*rxc
= cp
->init_rxcs
[i
];
1451 for (j
= 0; j
< RX_COMP_RINGN_SIZE(i
); j
++) {
1452 cas_rxc_init(rxc
+ j
);
1458 /* When we get a RX fifo overflow, the RX unit is probably hung
1459 * so we do the following.
1461 * If any part of the reset goes wrong, we return 1 and that causes the
1462 * whole chip to be reset.
1464 static int cas_rxmac_reset(struct cas
*cp
)
1466 struct net_device
*dev
= cp
->dev
;
1470 /* First, reset MAC RX. */
1471 writel(cp
->mac_rx_cfg
& ~MAC_RX_CFG_EN
, cp
->regs
+ REG_MAC_RX_CFG
);
1472 for (limit
= 0; limit
< STOP_TRIES
; limit
++) {
1473 if (!(readl(cp
->regs
+ REG_MAC_RX_CFG
) & MAC_RX_CFG_EN
))
1477 if (limit
== STOP_TRIES
) {
1478 netdev_err(dev
, "RX MAC will not disable, resetting whole chip\n");
1482 /* Second, disable RX DMA. */
1483 writel(0, cp
->regs
+ REG_RX_CFG
);
1484 for (limit
= 0; limit
< STOP_TRIES
; limit
++) {
1485 if (!(readl(cp
->regs
+ REG_RX_CFG
) & RX_CFG_DMA_EN
))
1489 if (limit
== STOP_TRIES
) {
1490 netdev_err(dev
, "RX DMA will not disable, resetting whole chip\n");
1496 /* Execute RX reset command. */
1497 writel(SW_RESET_RX
, cp
->regs
+ REG_SW_RESET
);
1498 for (limit
= 0; limit
< STOP_TRIES
; limit
++) {
1499 if (!(readl(cp
->regs
+ REG_SW_RESET
) & SW_RESET_RX
))
1503 if (limit
== STOP_TRIES
) {
1504 netdev_err(dev
, "RX reset command will not execute, resetting whole chip\n");
1508 /* reset driver rx state */
1512 /* Now, reprogram the rest of RX unit. */
1513 cas_init_rx_dma(cp
);
1516 val
= readl(cp
->regs
+ REG_RX_CFG
);
1517 writel(val
| RX_CFG_DMA_EN
, cp
->regs
+ REG_RX_CFG
);
1518 writel(MAC_RX_FRAME_RECV
, cp
->regs
+ REG_MAC_RX_MASK
);
1519 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
1520 writel(val
| MAC_RX_CFG_EN
, cp
->regs
+ REG_MAC_RX_CFG
);
1525 static int cas_rxmac_interrupt(struct net_device
*dev
, struct cas
*cp
,
1528 u32 stat
= readl(cp
->regs
+ REG_MAC_RX_STATUS
);
1533 netif_dbg(cp
, intr
, cp
->dev
, "rxmac interrupt, stat: 0x%x\n", stat
);
1535 /* these are all rollovers */
1536 spin_lock(&cp
->stat_lock
[0]);
1537 if (stat
& MAC_RX_ALIGN_ERR
)
1538 cp
->net_stats
[0].rx_frame_errors
+= 0x10000;
1540 if (stat
& MAC_RX_CRC_ERR
)
1541 cp
->net_stats
[0].rx_crc_errors
+= 0x10000;
1543 if (stat
& MAC_RX_LEN_ERR
)
1544 cp
->net_stats
[0].rx_length_errors
+= 0x10000;
1546 if (stat
& MAC_RX_OVERFLOW
) {
1547 cp
->net_stats
[0].rx_over_errors
++;
1548 cp
->net_stats
[0].rx_fifo_errors
++;
1551 /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1554 spin_unlock(&cp
->stat_lock
[0]);
1558 static int cas_mac_interrupt(struct net_device
*dev
, struct cas
*cp
,
1561 u32 stat
= readl(cp
->regs
+ REG_MAC_CTRL_STATUS
);
1566 netif_printk(cp
, intr
, KERN_DEBUG
, cp
->dev
,
1567 "mac interrupt, stat: 0x%x\n", stat
);
1569 /* This interrupt is just for pause frame and pause
1570 * tracking. It is useful for diagnostics and debug
1571 * but probably by default we will mask these events.
1573 if (stat
& MAC_CTRL_PAUSE_STATE
)
1574 cp
->pause_entered
++;
1576 if (stat
& MAC_CTRL_PAUSE_RECEIVED
)
1577 cp
->pause_last_time_recvd
= (stat
>> 16);
1583 /* Must be invoked under cp->lock. */
1584 static inline int cas_mdio_link_not_up(struct cas
*cp
)
1588 switch (cp
->lstate
) {
1589 case link_force_ret
:
1590 netif_info(cp
, link
, cp
->dev
, "Autoneg failed again, keeping forced mode\n");
1591 cas_phy_write(cp
, MII_BMCR
, cp
->link_fcntl
);
1592 cp
->timer_ticks
= 5;
1593 cp
->lstate
= link_force_ok
;
1594 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
1598 val
= cas_phy_read(cp
, MII_BMCR
);
1600 /* Try forced modes. we try things in the following order:
1601 * 1000 full -> 100 full/half -> 10 half
1603 val
&= ~(BMCR_ANRESTART
| BMCR_ANENABLE
);
1604 val
|= BMCR_FULLDPLX
;
1605 val
|= (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) ?
1606 CAS_BMCR_SPEED1000
: BMCR_SPEED100
;
1607 cas_phy_write(cp
, MII_BMCR
, val
);
1608 cp
->timer_ticks
= 5;
1609 cp
->lstate
= link_force_try
;
1610 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
1613 case link_force_try
:
1614 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1615 val
= cas_phy_read(cp
, MII_BMCR
);
1616 cp
->timer_ticks
= 5;
1617 if (val
& CAS_BMCR_SPEED1000
) { /* gigabit */
1618 val
&= ~CAS_BMCR_SPEED1000
;
1619 val
|= (BMCR_SPEED100
| BMCR_FULLDPLX
);
1620 cas_phy_write(cp
, MII_BMCR
, val
);
1624 if (val
& BMCR_SPEED100
) {
1625 if (val
& BMCR_FULLDPLX
) /* fd failed */
1626 val
&= ~BMCR_FULLDPLX
;
1627 else { /* 100Mbps failed */
1628 val
&= ~BMCR_SPEED100
;
1630 cas_phy_write(cp
, MII_BMCR
, val
);
1640 /* must be invoked with cp->lock held */
1641 static int cas_mii_link_check(struct cas
*cp
, const u16 bmsr
)
1645 if (bmsr
& BMSR_LSTATUS
) {
1646 /* Ok, here we got a link. If we had it due to a forced
1647 * fallback, and we were configured for autoneg, we
1648 * retry a short autoneg pass. If you know your hub is
1649 * broken, use ethtool ;)
1651 if ((cp
->lstate
== link_force_try
) &&
1652 (cp
->link_cntl
& BMCR_ANENABLE
)) {
1653 cp
->lstate
= link_force_ret
;
1654 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
1655 cas_mif_poll(cp
, 0);
1656 cp
->link_fcntl
= cas_phy_read(cp
, MII_BMCR
);
1657 cp
->timer_ticks
= 5;
1659 netif_info(cp
, link
, cp
->dev
,
1660 "Got link after fallback, retrying autoneg once...\n");
1661 cas_phy_write(cp
, MII_BMCR
,
1662 cp
->link_fcntl
| BMCR_ANENABLE
|
1664 cas_mif_poll(cp
, 1);
1666 } else if (cp
->lstate
!= link_up
) {
1667 cp
->lstate
= link_up
;
1668 cp
->link_transition
= LINK_TRANSITION_LINK_UP
;
1671 cas_set_link_modes(cp
);
1672 netif_carrier_on(cp
->dev
);
1678 /* link not up. if the link was previously up, we restart the
1682 if (cp
->lstate
== link_up
) {
1683 cp
->lstate
= link_down
;
1684 cp
->link_transition
= LINK_TRANSITION_LINK_DOWN
;
1686 netif_carrier_off(cp
->dev
);
1688 netif_info(cp
, link
, cp
->dev
, "Link down\n");
1691 } else if (++cp
->timer_ticks
> 10)
1692 cas_mdio_link_not_up(cp
);
1697 static int cas_mif_interrupt(struct net_device
*dev
, struct cas
*cp
,
1700 u32 stat
= readl(cp
->regs
+ REG_MIF_STATUS
);
1703 /* check for a link change */
1704 if (CAS_VAL(MIF_STATUS_POLL_STATUS
, stat
) == 0)
1707 bmsr
= CAS_VAL(MIF_STATUS_POLL_DATA
, stat
);
1708 return cas_mii_link_check(cp
, bmsr
);
1711 static int cas_pci_interrupt(struct net_device
*dev
, struct cas
*cp
,
1714 u32 stat
= readl(cp
->regs
+ REG_PCI_ERR_STATUS
);
1719 netdev_err(dev
, "PCI error [%04x:%04x]",
1720 stat
, readl(cp
->regs
+ REG_BIM_DIAG
));
1722 /* cassini+ has this reserved */
1723 if ((stat
& PCI_ERR_BADACK
) &&
1724 ((cp
->cas_flags
& CAS_FLAG_REG_PLUS
) == 0))
1725 pr_cont(" <No ACK64# during ABS64 cycle>");
1727 if (stat
& PCI_ERR_DTRTO
)
1728 pr_cont(" <Delayed transaction timeout>");
1729 if (stat
& PCI_ERR_OTHER
)
1730 pr_cont(" <other>");
1731 if (stat
& PCI_ERR_BIM_DMA_WRITE
)
1732 pr_cont(" <BIM DMA 0 write req>");
1733 if (stat
& PCI_ERR_BIM_DMA_READ
)
1734 pr_cont(" <BIM DMA 0 read req>");
1737 if (stat
& PCI_ERR_OTHER
) {
1740 /* Interrogate PCI config space for the
1743 pci_read_config_word(cp
->pdev
, PCI_STATUS
, &cfg
);
1744 netdev_err(dev
, "Read PCI cfg space status [%04x]\n", cfg
);
1745 if (cfg
& PCI_STATUS_PARITY
)
1746 netdev_err(dev
, "PCI parity error detected\n");
1747 if (cfg
& PCI_STATUS_SIG_TARGET_ABORT
)
1748 netdev_err(dev
, "PCI target abort\n");
1749 if (cfg
& PCI_STATUS_REC_TARGET_ABORT
)
1750 netdev_err(dev
, "PCI master acks target abort\n");
1751 if (cfg
& PCI_STATUS_REC_MASTER_ABORT
)
1752 netdev_err(dev
, "PCI master abort\n");
1753 if (cfg
& PCI_STATUS_SIG_SYSTEM_ERROR
)
1754 netdev_err(dev
, "PCI system error SERR#\n");
1755 if (cfg
& PCI_STATUS_DETECTED_PARITY
)
1756 netdev_err(dev
, "PCI parity error\n");
1758 /* Write the error bits back to clear them. */
1759 cfg
&= (PCI_STATUS_PARITY
|
1760 PCI_STATUS_SIG_TARGET_ABORT
|
1761 PCI_STATUS_REC_TARGET_ABORT
|
1762 PCI_STATUS_REC_MASTER_ABORT
|
1763 PCI_STATUS_SIG_SYSTEM_ERROR
|
1764 PCI_STATUS_DETECTED_PARITY
);
1765 pci_write_config_word(cp
->pdev
, PCI_STATUS
, cfg
);
1768 /* For all PCI errors, we should reset the chip. */
1772 /* All non-normal interrupt conditions get serviced here.
1773 * Returns non-zero if we should just exit the interrupt
1774 * handler right now (ie. if we reset the card which invalidates
1775 * all of the other original irq status bits).
1777 static int cas_abnormal_irq(struct net_device
*dev
, struct cas
*cp
,
1780 if (status
& INTR_RX_TAG_ERROR
) {
1781 /* corrupt RX tag framing */
1782 netif_printk(cp
, rx_err
, KERN_DEBUG
, cp
->dev
,
1783 "corrupt rx tag framing\n");
1784 spin_lock(&cp
->stat_lock
[0]);
1785 cp
->net_stats
[0].rx_errors
++;
1786 spin_unlock(&cp
->stat_lock
[0]);
1790 if (status
& INTR_RX_LEN_MISMATCH
) {
1791 /* length mismatch. */
1792 netif_printk(cp
, rx_err
, KERN_DEBUG
, cp
->dev
,
1793 "length mismatch for rx frame\n");
1794 spin_lock(&cp
->stat_lock
[0]);
1795 cp
->net_stats
[0].rx_errors
++;
1796 spin_unlock(&cp
->stat_lock
[0]);
1800 if (status
& INTR_PCS_STATUS
) {
1801 if (cas_pcs_interrupt(dev
, cp
, status
))
1805 if (status
& INTR_TX_MAC_STATUS
) {
1806 if (cas_txmac_interrupt(dev
, cp
, status
))
1810 if (status
& INTR_RX_MAC_STATUS
) {
1811 if (cas_rxmac_interrupt(dev
, cp
, status
))
1815 if (status
& INTR_MAC_CTRL_STATUS
) {
1816 if (cas_mac_interrupt(dev
, cp
, status
))
1820 if (status
& INTR_MIF_STATUS
) {
1821 if (cas_mif_interrupt(dev
, cp
, status
))
1825 if (status
& INTR_PCI_ERROR_STATUS
) {
1826 if (cas_pci_interrupt(dev
, cp
, status
))
1833 atomic_inc(&cp
->reset_task_pending
);
1834 atomic_inc(&cp
->reset_task_pending_all
);
1835 netdev_err(dev
, "reset called in cas_abnormal_irq [0x%x]\n", status
);
1836 schedule_work(&cp
->reset_task
);
1838 atomic_set(&cp
->reset_task_pending
, CAS_RESET_ALL
);
1839 netdev_err(dev
, "reset called in cas_abnormal_irq\n");
1840 schedule_work(&cp
->reset_task
);
1845 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1846 * determining whether to do a netif_stop/wakeup
1848 #define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1849 #define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1850 static inline int cas_calc_tabort(struct cas
*cp
, const unsigned long addr
,
1853 unsigned long off
= addr
+ len
;
1855 if (CAS_TABORT(cp
) == 1)
1857 if ((CAS_ROUND_PAGE(off
) - off
) > TX_TARGET_ABORT_LEN
)
1859 return TX_TARGET_ABORT_LEN
;
1862 static inline void cas_tx_ringN(struct cas
*cp
, int ring
, int limit
)
1864 struct cas_tx_desc
*txds
;
1865 struct sk_buff
**skbs
;
1866 struct net_device
*dev
= cp
->dev
;
1869 spin_lock(&cp
->tx_lock
[ring
]);
1870 txds
= cp
->init_txds
[ring
];
1871 skbs
= cp
->tx_skbs
[ring
];
1872 entry
= cp
->tx_old
[ring
];
1874 count
= TX_BUFF_COUNT(ring
, entry
, limit
);
1875 while (entry
!= limit
) {
1876 struct sk_buff
*skb
= skbs
[entry
];
1882 /* this should never occur */
1883 entry
= TX_DESC_NEXT(ring
, entry
);
1887 /* however, we might get only a partial skb release. */
1888 count
-= skb_shinfo(skb
)->nr_frags
+
1889 + cp
->tx_tiny_use
[ring
][entry
].nbufs
+ 1;
1893 netif_printk(cp
, tx_done
, KERN_DEBUG
, cp
->dev
,
1894 "tx[%d] done, slot %d\n", ring
, entry
);
1897 cp
->tx_tiny_use
[ring
][entry
].nbufs
= 0;
1899 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
1900 struct cas_tx_desc
*txd
= txds
+ entry
;
1902 daddr
= le64_to_cpu(txd
->buffer
);
1903 dlen
= CAS_VAL(TX_DESC_BUFLEN
,
1904 le64_to_cpu(txd
->control
));
1905 pci_unmap_page(cp
->pdev
, daddr
, dlen
,
1907 entry
= TX_DESC_NEXT(ring
, entry
);
1909 /* tiny buffer may follow */
1910 if (cp
->tx_tiny_use
[ring
][entry
].used
) {
1911 cp
->tx_tiny_use
[ring
][entry
].used
= 0;
1912 entry
= TX_DESC_NEXT(ring
, entry
);
1916 spin_lock(&cp
->stat_lock
[ring
]);
1917 cp
->net_stats
[ring
].tx_packets
++;
1918 cp
->net_stats
[ring
].tx_bytes
+= skb
->len
;
1919 spin_unlock(&cp
->stat_lock
[ring
]);
1920 dev_kfree_skb_irq(skb
);
1922 cp
->tx_old
[ring
] = entry
;
1924 /* this is wrong for multiple tx rings. the net device needs
1925 * multiple queues for this to do the right thing. we wait
1926 * for 2*packets to be available when using tiny buffers
1928 if (netif_queue_stopped(dev
) &&
1929 (TX_BUFFS_AVAIL(cp
, ring
) > CAS_TABORT(cp
)*(MAX_SKB_FRAGS
+ 1)))
1930 netif_wake_queue(dev
);
1931 spin_unlock(&cp
->tx_lock
[ring
]);
1934 static void cas_tx(struct net_device
*dev
, struct cas
*cp
,
1938 #ifdef USE_TX_COMPWB
1939 u64 compwb
= le64_to_cpu(cp
->init_block
->tx_compwb
);
1941 netif_printk(cp
, intr
, KERN_DEBUG
, cp
->dev
,
1942 "tx interrupt, status: 0x%x, %llx\n",
1943 status
, (unsigned long long)compwb
);
1944 /* process all the rings */
1945 for (ring
= 0; ring
< N_TX_RINGS
; ring
++) {
1946 #ifdef USE_TX_COMPWB
1947 /* use the completion writeback registers */
1948 limit
= (CAS_VAL(TX_COMPWB_MSB
, compwb
) << 8) |
1949 CAS_VAL(TX_COMPWB_LSB
, compwb
);
1950 compwb
= TX_COMPWB_NEXT(compwb
);
1952 limit
= readl(cp
->regs
+ REG_TX_COMPN(ring
));
1954 if (cp
->tx_old
[ring
] != limit
)
1955 cas_tx_ringN(cp
, ring
, limit
);
1960 static int cas_rx_process_pkt(struct cas
*cp
, struct cas_rx_comp
*rxc
,
1961 int entry
, const u64
*words
,
1962 struct sk_buff
**skbref
)
1964 int dlen
, hlen
, len
, i
, alloclen
;
1965 int off
, swivel
= RX_SWIVEL_OFF_VAL
;
1966 struct cas_page
*page
;
1967 struct sk_buff
*skb
;
1968 void *addr
, *crcaddr
;
1972 hlen
= CAS_VAL(RX_COMP2_HDR_SIZE
, words
[1]);
1973 dlen
= CAS_VAL(RX_COMP1_DATA_SIZE
, words
[0]);
1976 if (RX_COPY_ALWAYS
|| (words
[2] & RX_COMP3_SMALL_PKT
))
1979 alloclen
= max(hlen
, RX_COPY_MIN
);
1981 skb
= dev_alloc_skb(alloclen
+ swivel
+ cp
->crc_size
);
1986 skb_reserve(skb
, swivel
);
1989 addr
= crcaddr
= NULL
;
1990 if (hlen
) { /* always copy header pages */
1991 i
= CAS_VAL(RX_COMP2_HDR_INDEX
, words
[1]);
1992 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
1993 off
= CAS_VAL(RX_COMP2_HDR_OFF
, words
[1]) * 0x100 +
1997 if (!dlen
) /* attach FCS */
1999 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
+ off
, i
,
2000 PCI_DMA_FROMDEVICE
);
2001 addr
= cas_page_map(page
->buffer
);
2002 memcpy(p
, addr
+ off
, i
);
2003 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
+ off
, i
,
2004 PCI_DMA_FROMDEVICE
);
2005 cas_page_unmap(addr
);
2006 RX_USED_ADD(page
, 0x100);
2012 if (alloclen
< (hlen
+ dlen
)) {
2013 skb_frag_t
*frag
= skb_shinfo(skb
)->frags
;
2015 /* normal or jumbo packets. we use frags */
2016 i
= CAS_VAL(RX_COMP1_DATA_INDEX
, words
[0]);
2017 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
2018 off
= CAS_VAL(RX_COMP1_DATA_OFF
, words
[0]) + swivel
;
2020 hlen
= min(cp
->page_size
- off
, dlen
);
2022 netif_printk(cp
, rx_err
, KERN_DEBUG
, cp
->dev
,
2023 "rx page overflow: %d\n", hlen
);
2024 dev_kfree_skb_irq(skb
);
2028 if (i
== dlen
) /* attach FCS */
2030 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
+ off
, i
,
2031 PCI_DMA_FROMDEVICE
);
2033 /* make sure we always copy a header */
2035 if (p
== (char *) skb
->data
) { /* not split */
2036 addr
= cas_page_map(page
->buffer
);
2037 memcpy(p
, addr
+ off
, RX_COPY_MIN
);
2038 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
+ off
, i
,
2039 PCI_DMA_FROMDEVICE
);
2040 cas_page_unmap(addr
);
2042 swivel
= RX_COPY_MIN
;
2043 RX_USED_ADD(page
, cp
->mtu_stride
);
2045 RX_USED_ADD(page
, hlen
);
2047 skb_put(skb
, alloclen
);
2049 skb_shinfo(skb
)->nr_frags
++;
2050 skb
->data_len
+= hlen
- swivel
;
2051 skb
->truesize
+= hlen
- swivel
;
2052 skb
->len
+= hlen
- swivel
;
2054 get_page(page
->buffer
);
2055 frag
->page
= page
->buffer
;
2056 frag
->page_offset
= off
;
2057 frag
->size
= hlen
- swivel
;
2059 /* any more data? */
2060 if ((words
[0] & RX_COMP1_SPLIT_PKT
) && ((dlen
-= hlen
) > 0)) {
2064 i
= CAS_VAL(RX_COMP2_NEXT_INDEX
, words
[1]);
2065 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
2066 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
,
2067 hlen
+ cp
->crc_size
,
2068 PCI_DMA_FROMDEVICE
);
2069 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
,
2070 hlen
+ cp
->crc_size
,
2071 PCI_DMA_FROMDEVICE
);
2073 skb_shinfo(skb
)->nr_frags
++;
2074 skb
->data_len
+= hlen
;
2078 get_page(page
->buffer
);
2079 frag
->page
= page
->buffer
;
2080 frag
->page_offset
= 0;
2082 RX_USED_ADD(page
, hlen
+ cp
->crc_size
);
2086 addr
= cas_page_map(page
->buffer
);
2087 crcaddr
= addr
+ off
+ hlen
;
2091 /* copying packet */
2095 i
= CAS_VAL(RX_COMP1_DATA_INDEX
, words
[0]);
2096 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
2097 off
= CAS_VAL(RX_COMP1_DATA_OFF
, words
[0]) + swivel
;
2098 hlen
= min(cp
->page_size
- off
, dlen
);
2100 netif_printk(cp
, rx_err
, KERN_DEBUG
, cp
->dev
,
2101 "rx page overflow: %d\n", hlen
);
2102 dev_kfree_skb_irq(skb
);
2106 if (i
== dlen
) /* attach FCS */
2108 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
+ off
, i
,
2109 PCI_DMA_FROMDEVICE
);
2110 addr
= cas_page_map(page
->buffer
);
2111 memcpy(p
, addr
+ off
, i
);
2112 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
+ off
, i
,
2113 PCI_DMA_FROMDEVICE
);
2114 cas_page_unmap(addr
);
2115 if (p
== (char *) skb
->data
) /* not split */
2116 RX_USED_ADD(page
, cp
->mtu_stride
);
2118 RX_USED_ADD(page
, i
);
2120 /* any more data? */
2121 if ((words
[0] & RX_COMP1_SPLIT_PKT
) && ((dlen
-= hlen
) > 0)) {
2123 i
= CAS_VAL(RX_COMP2_NEXT_INDEX
, words
[1]);
2124 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
2125 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
,
2126 dlen
+ cp
->crc_size
,
2127 PCI_DMA_FROMDEVICE
);
2128 addr
= cas_page_map(page
->buffer
);
2129 memcpy(p
, addr
, dlen
+ cp
->crc_size
);
2130 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
,
2131 dlen
+ cp
->crc_size
,
2132 PCI_DMA_FROMDEVICE
);
2133 cas_page_unmap(addr
);
2134 RX_USED_ADD(page
, dlen
+ cp
->crc_size
);
2139 crcaddr
= skb
->data
+ alloclen
;
2141 skb_put(skb
, alloclen
);
2144 csum
= (__force __sum16
)htons(CAS_VAL(RX_COMP4_TCP_CSUM
, words
[3]));
2146 /* checksum includes FCS. strip it out. */
2147 csum
= csum_fold(csum_partial(crcaddr
, cp
->crc_size
,
2148 csum_unfold(csum
)));
2150 cas_page_unmap(addr
);
2152 skb
->protocol
= eth_type_trans(skb
, cp
->dev
);
2153 if (skb
->protocol
== htons(ETH_P_IP
)) {
2154 skb
->csum
= csum_unfold(~csum
);
2155 skb
->ip_summed
= CHECKSUM_COMPLETE
;
2157 skb
->ip_summed
= CHECKSUM_NONE
;
2162 /* we can handle up to 64 rx flows at a time. we do the same thing
2163 * as nonreassm except that we batch up the buffers.
2164 * NOTE: we currently just treat each flow as a bunch of packets that
2165 * we pass up. a better way would be to coalesce the packets
2166 * into a jumbo packet. to do that, we need to do the following:
2167 * 1) the first packet will have a clean split between header and
2169 * 2) each time the next flow packet comes in, extend the
2170 * data length and merge the checksums.
2171 * 3) on flow release, fix up the header.
2172 * 4) make sure the higher layer doesn't care.
2173 * because packets get coalesced, we shouldn't run into fragment count
2176 static inline void cas_rx_flow_pkt(struct cas
*cp
, const u64
*words
,
2177 struct sk_buff
*skb
)
2179 int flowid
= CAS_VAL(RX_COMP3_FLOWID
, words
[2]) & (N_RX_FLOWS
- 1);
2180 struct sk_buff_head
*flow
= &cp
->rx_flows
[flowid
];
2182 /* this is protected at a higher layer, so no need to
2183 * do any additional locking here. stick the buffer
2186 __skb_queue_tail(flow
, skb
);
2187 if (words
[0] & RX_COMP1_RELEASE_FLOW
) {
2188 while ((skb
= __skb_dequeue(flow
))) {
2189 cas_skb_release(skb
);
2194 /* put rx descriptor back on ring. if a buffer is in use by a higher
2195 * layer, this will need to put in a replacement.
2197 static void cas_post_page(struct cas
*cp
, const int ring
, const int index
)
2202 entry
= cp
->rx_old
[ring
];
2204 new = cas_page_swap(cp
, ring
, index
);
2205 cp
->init_rxds
[ring
][entry
].buffer
= cpu_to_le64(new->dma_addr
);
2206 cp
->init_rxds
[ring
][entry
].index
=
2207 cpu_to_le64(CAS_BASE(RX_INDEX_NUM
, index
) |
2208 CAS_BASE(RX_INDEX_RING
, ring
));
2210 entry
= RX_DESC_ENTRY(ring
, entry
+ 1);
2211 cp
->rx_old
[ring
] = entry
;
2217 writel(entry
, cp
->regs
+ REG_RX_KICK
);
2218 else if ((N_RX_DESC_RINGS
> 1) &&
2219 (cp
->cas_flags
& CAS_FLAG_REG_PLUS
))
2220 writel(entry
, cp
->regs
+ REG_PLUS_RX_KICK1
);
2224 /* only when things are bad */
2225 static int cas_post_rxds_ringN(struct cas
*cp
, int ring
, int num
)
2227 unsigned int entry
, last
, count
, released
;
2229 cas_page_t
**page
= cp
->rx_pages
[ring
];
2231 entry
= cp
->rx_old
[ring
];
2233 netif_printk(cp
, intr
, KERN_DEBUG
, cp
->dev
,
2234 "rxd[%d] interrupt, done: %d\n", ring
, entry
);
2237 count
= entry
& 0x3;
2238 last
= RX_DESC_ENTRY(ring
, num
? entry
+ num
- 4: entry
- 4);
2240 while (entry
!= last
) {
2241 /* make a new buffer if it's still in use */
2242 if (page_count(page
[entry
]->buffer
) > 1) {
2243 cas_page_t
*new = cas_page_dequeue(cp
);
2245 /* let the timer know that we need to
2248 cp
->cas_flags
|= CAS_FLAG_RXD_POST(ring
);
2249 if (!timer_pending(&cp
->link_timer
))
2250 mod_timer(&cp
->link_timer
, jiffies
+
2251 CAS_LINK_FAST_TIMEOUT
);
2252 cp
->rx_old
[ring
] = entry
;
2253 cp
->rx_last
[ring
] = num
? num
- released
: 0;
2256 spin_lock(&cp
->rx_inuse_lock
);
2257 list_add(&page
[entry
]->list
, &cp
->rx_inuse_list
);
2258 spin_unlock(&cp
->rx_inuse_lock
);
2259 cp
->init_rxds
[ring
][entry
].buffer
=
2260 cpu_to_le64(new->dma_addr
);
2270 entry
= RX_DESC_ENTRY(ring
, entry
+ 1);
2272 cp
->rx_old
[ring
] = entry
;
2278 writel(cluster
, cp
->regs
+ REG_RX_KICK
);
2279 else if ((N_RX_DESC_RINGS
> 1) &&
2280 (cp
->cas_flags
& CAS_FLAG_REG_PLUS
))
2281 writel(cluster
, cp
->regs
+ REG_PLUS_RX_KICK1
);
2286 /* process a completion ring. packets are set up in three basic ways:
2287 * small packets: should be copied header + data in single buffer.
2288 * large packets: header and data in a single buffer.
2289 * split packets: header in a separate buffer from data.
2290 * data may be in multiple pages. data may be > 256
2291 * bytes but in a single page.
2293 * NOTE: RX page posting is done in this routine as well. while there's
2294 * the capability of using multiple RX completion rings, it isn't
2295 * really worthwhile due to the fact that the page posting will
2296 * force serialization on the single descriptor ring.
2298 static int cas_rx_ringN(struct cas
*cp
, int ring
, int budget
)
2300 struct cas_rx_comp
*rxcs
= cp
->init_rxcs
[ring
];
2304 netif_printk(cp
, intr
, KERN_DEBUG
, cp
->dev
,
2305 "rx[%d] interrupt, done: %d/%d\n",
2307 readl(cp
->regs
+ REG_RX_COMP_HEAD
), cp
->rx_new
[ring
]);
2309 entry
= cp
->rx_new
[ring
];
2312 struct cas_rx_comp
*rxc
= rxcs
+ entry
;
2313 struct sk_buff
*uninitialized_var(skb
);
2318 words
[0] = le64_to_cpu(rxc
->word1
);
2319 words
[1] = le64_to_cpu(rxc
->word2
);
2320 words
[2] = le64_to_cpu(rxc
->word3
);
2321 words
[3] = le64_to_cpu(rxc
->word4
);
2323 /* don't touch if still owned by hw */
2324 type
= CAS_VAL(RX_COMP1_TYPE
, words
[0]);
2328 /* hw hasn't cleared the zero bit yet */
2329 if (words
[3] & RX_COMP4_ZERO
) {
2333 /* get info on the packet */
2334 if (words
[3] & (RX_COMP4_LEN_MISMATCH
| RX_COMP4_BAD
)) {
2335 spin_lock(&cp
->stat_lock
[ring
]);
2336 cp
->net_stats
[ring
].rx_errors
++;
2337 if (words
[3] & RX_COMP4_LEN_MISMATCH
)
2338 cp
->net_stats
[ring
].rx_length_errors
++;
2339 if (words
[3] & RX_COMP4_BAD
)
2340 cp
->net_stats
[ring
].rx_crc_errors
++;
2341 spin_unlock(&cp
->stat_lock
[ring
]);
2343 /* We'll just return it to Cassini. */
2345 spin_lock(&cp
->stat_lock
[ring
]);
2346 ++cp
->net_stats
[ring
].rx_dropped
;
2347 spin_unlock(&cp
->stat_lock
[ring
]);
2351 len
= cas_rx_process_pkt(cp
, rxc
, entry
, words
, &skb
);
2357 /* see if it's a flow re-assembly or not. the driver
2358 * itself handles release back up.
2360 if (RX_DONT_BATCH
|| (type
== 0x2)) {
2361 /* non-reassm: these always get released */
2362 cas_skb_release(skb
);
2364 cas_rx_flow_pkt(cp
, words
, skb
);
2367 spin_lock(&cp
->stat_lock
[ring
]);
2368 cp
->net_stats
[ring
].rx_packets
++;
2369 cp
->net_stats
[ring
].rx_bytes
+= len
;
2370 spin_unlock(&cp
->stat_lock
[ring
]);
2375 /* should it be released? */
2376 if (words
[0] & RX_COMP1_RELEASE_HDR
) {
2377 i
= CAS_VAL(RX_COMP2_HDR_INDEX
, words
[1]);
2378 dring
= CAS_VAL(RX_INDEX_RING
, i
);
2379 i
= CAS_VAL(RX_INDEX_NUM
, i
);
2380 cas_post_page(cp
, dring
, i
);
2383 if (words
[0] & RX_COMP1_RELEASE_DATA
) {
2384 i
= CAS_VAL(RX_COMP1_DATA_INDEX
, words
[0]);
2385 dring
= CAS_VAL(RX_INDEX_RING
, i
);
2386 i
= CAS_VAL(RX_INDEX_NUM
, i
);
2387 cas_post_page(cp
, dring
, i
);
2390 if (words
[0] & RX_COMP1_RELEASE_NEXT
) {
2391 i
= CAS_VAL(RX_COMP2_NEXT_INDEX
, words
[1]);
2392 dring
= CAS_VAL(RX_INDEX_RING
, i
);
2393 i
= CAS_VAL(RX_INDEX_NUM
, i
);
2394 cas_post_page(cp
, dring
, i
);
2397 /* skip to the next entry */
2398 entry
= RX_COMP_ENTRY(ring
, entry
+ 1 +
2399 CAS_VAL(RX_COMP1_SKIP
, words
[0]));
2401 if (budget
&& (npackets
>= budget
))
2405 cp
->rx_new
[ring
] = entry
;
2408 netdev_info(cp
->dev
, "Memory squeeze, deferring packet\n");
2413 /* put completion entries back on the ring */
2414 static void cas_post_rxcs_ringN(struct net_device
*dev
,
2415 struct cas
*cp
, int ring
)
2417 struct cas_rx_comp
*rxc
= cp
->init_rxcs
[ring
];
2420 last
= cp
->rx_cur
[ring
];
2421 entry
= cp
->rx_new
[ring
];
2422 netif_printk(cp
, intr
, KERN_DEBUG
, dev
,
2423 "rxc[%d] interrupt, done: %d/%d\n",
2424 ring
, readl(cp
->regs
+ REG_RX_COMP_HEAD
), entry
);
2426 /* zero and re-mark descriptors */
2427 while (last
!= entry
) {
2428 cas_rxc_init(rxc
+ last
);
2429 last
= RX_COMP_ENTRY(ring
, last
+ 1);
2431 cp
->rx_cur
[ring
] = last
;
2434 writel(last
, cp
->regs
+ REG_RX_COMP_TAIL
);
2435 else if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
)
2436 writel(last
, cp
->regs
+ REG_PLUS_RX_COMPN_TAIL(ring
));
2441 /* cassini can use all four PCI interrupts for the completion ring.
2442 * rings 3 and 4 are identical
2444 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2445 static inline void cas_handle_irqN(struct net_device
*dev
,
2446 struct cas
*cp
, const u32 status
,
2449 if (status
& (INTR_RX_COMP_FULL_ALT
| INTR_RX_COMP_AF_ALT
))
2450 cas_post_rxcs_ringN(dev
, cp
, ring
);
2453 static irqreturn_t
cas_interruptN(int irq
, void *dev_id
)
2455 struct net_device
*dev
= dev_id
;
2456 struct cas
*cp
= netdev_priv(dev
);
2457 unsigned long flags
;
2459 u32 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(ring
));
2461 /* check for shared irq */
2465 ring
= (irq
== cp
->pci_irq_INTC
) ? 2 : 3;
2466 spin_lock_irqsave(&cp
->lock
, flags
);
2467 if (status
& INTR_RX_DONE_ALT
) { /* handle rx separately */
2470 napi_schedule(&cp
->napi
);
2472 cas_rx_ringN(cp
, ring
, 0);
2474 status
&= ~INTR_RX_DONE_ALT
;
2478 cas_handle_irqN(dev
, cp
, status
, ring
);
2479 spin_unlock_irqrestore(&cp
->lock
, flags
);
2485 /* everything but rx packets */
2486 static inline void cas_handle_irq1(struct cas
*cp
, const u32 status
)
2488 if (status
& INTR_RX_BUF_UNAVAIL_1
) {
2489 /* Frame arrived, no free RX buffers available.
2490 * NOTE: we can get this on a link transition. */
2491 cas_post_rxds_ringN(cp
, 1, 0);
2492 spin_lock(&cp
->stat_lock
[1]);
2493 cp
->net_stats
[1].rx_dropped
++;
2494 spin_unlock(&cp
->stat_lock
[1]);
2497 if (status
& INTR_RX_BUF_AE_1
)
2498 cas_post_rxds_ringN(cp
, 1, RX_DESC_RINGN_SIZE(1) -
2499 RX_AE_FREEN_VAL(1));
2501 if (status
& (INTR_RX_COMP_AF
| INTR_RX_COMP_FULL
))
2502 cas_post_rxcs_ringN(cp
, 1);
2505 /* ring 2 handles a few more events than 3 and 4 */
2506 static irqreturn_t
cas_interrupt1(int irq
, void *dev_id
)
2508 struct net_device
*dev
= dev_id
;
2509 struct cas
*cp
= netdev_priv(dev
);
2510 unsigned long flags
;
2511 u32 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(1));
2513 /* check for shared interrupt */
2517 spin_lock_irqsave(&cp
->lock
, flags
);
2518 if (status
& INTR_RX_DONE_ALT
) { /* handle rx separately */
2521 napi_schedule(&cp
->napi
);
2523 cas_rx_ringN(cp
, 1, 0);
2525 status
&= ~INTR_RX_DONE_ALT
;
2528 cas_handle_irq1(cp
, status
);
2529 spin_unlock_irqrestore(&cp
->lock
, flags
);
2534 static inline void cas_handle_irq(struct net_device
*dev
,
2535 struct cas
*cp
, const u32 status
)
2537 /* housekeeping interrupts */
2538 if (status
& INTR_ERROR_MASK
)
2539 cas_abnormal_irq(dev
, cp
, status
);
2541 if (status
& INTR_RX_BUF_UNAVAIL
) {
2542 /* Frame arrived, no free RX buffers available.
2543 * NOTE: we can get this on a link transition.
2545 cas_post_rxds_ringN(cp
, 0, 0);
2546 spin_lock(&cp
->stat_lock
[0]);
2547 cp
->net_stats
[0].rx_dropped
++;
2548 spin_unlock(&cp
->stat_lock
[0]);
2549 } else if (status
& INTR_RX_BUF_AE
) {
2550 cas_post_rxds_ringN(cp
, 0, RX_DESC_RINGN_SIZE(0) -
2551 RX_AE_FREEN_VAL(0));
2554 if (status
& (INTR_RX_COMP_AF
| INTR_RX_COMP_FULL
))
2555 cas_post_rxcs_ringN(dev
, cp
, 0);
2558 static irqreturn_t
cas_interrupt(int irq
, void *dev_id
)
2560 struct net_device
*dev
= dev_id
;
2561 struct cas
*cp
= netdev_priv(dev
);
2562 unsigned long flags
;
2563 u32 status
= readl(cp
->regs
+ REG_INTR_STATUS
);
2568 spin_lock_irqsave(&cp
->lock
, flags
);
2569 if (status
& (INTR_TX_ALL
| INTR_TX_INTME
)) {
2570 cas_tx(dev
, cp
, status
);
2571 status
&= ~(INTR_TX_ALL
| INTR_TX_INTME
);
2574 if (status
& INTR_RX_DONE
) {
2577 napi_schedule(&cp
->napi
);
2579 cas_rx_ringN(cp
, 0, 0);
2581 status
&= ~INTR_RX_DONE
;
2585 cas_handle_irq(dev
, cp
, status
);
2586 spin_unlock_irqrestore(&cp
->lock
, flags
);
2592 static int cas_poll(struct napi_struct
*napi
, int budget
)
2594 struct cas
*cp
= container_of(napi
, struct cas
, napi
);
2595 struct net_device
*dev
= cp
->dev
;
2596 int i
, enable_intr
, credits
;
2597 u32 status
= readl(cp
->regs
+ REG_INTR_STATUS
);
2598 unsigned long flags
;
2600 spin_lock_irqsave(&cp
->lock
, flags
);
2601 cas_tx(dev
, cp
, status
);
2602 spin_unlock_irqrestore(&cp
->lock
, flags
);
2604 /* NAPI rx packets. we spread the credits across all of the
2607 * to make sure we're fair with the work we loop through each
2608 * ring N_RX_COMP_RING times with a request of
2609 * budget / N_RX_COMP_RINGS
2613 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++) {
2615 for (j
= 0; j
< N_RX_COMP_RINGS
; j
++) {
2616 credits
+= cas_rx_ringN(cp
, j
, budget
/ N_RX_COMP_RINGS
);
2617 if (credits
>= budget
) {
2625 /* final rx completion */
2626 spin_lock_irqsave(&cp
->lock
, flags
);
2628 cas_handle_irq(dev
, cp
, status
);
2631 if (N_RX_COMP_RINGS
> 1) {
2632 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(1));
2634 cas_handle_irq1(dev
, cp
, status
);
2639 if (N_RX_COMP_RINGS
> 2) {
2640 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(2));
2642 cas_handle_irqN(dev
, cp
, status
, 2);
2647 if (N_RX_COMP_RINGS
> 3) {
2648 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(3));
2650 cas_handle_irqN(dev
, cp
, status
, 3);
2653 spin_unlock_irqrestore(&cp
->lock
, flags
);
2655 napi_complete(napi
);
2656 cas_unmask_intr(cp
);
2662 #ifdef CONFIG_NET_POLL_CONTROLLER
2663 static void cas_netpoll(struct net_device
*dev
)
2665 struct cas
*cp
= netdev_priv(dev
);
2667 cas_disable_irq(cp
, 0);
2668 cas_interrupt(cp
->pdev
->irq
, dev
);
2669 cas_enable_irq(cp
, 0);
2672 if (N_RX_COMP_RINGS
> 1) {
2673 /* cas_interrupt1(); */
2677 if (N_RX_COMP_RINGS
> 2) {
2678 /* cas_interruptN(); */
2682 if (N_RX_COMP_RINGS
> 3) {
2683 /* cas_interruptN(); */
2689 static void cas_tx_timeout(struct net_device
*dev
)
2691 struct cas
*cp
= netdev_priv(dev
);
2693 netdev_err(dev
, "transmit timed out, resetting\n");
2694 if (!cp
->hw_running
) {
2695 netdev_err(dev
, "hrm.. hw not running!\n");
2699 netdev_err(dev
, "MIF_STATE[%08x]\n",
2700 readl(cp
->regs
+ REG_MIF_STATE_MACHINE
));
2702 netdev_err(dev
, "MAC_STATE[%08x]\n",
2703 readl(cp
->regs
+ REG_MAC_STATE_MACHINE
));
2705 netdev_err(dev
, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2706 readl(cp
->regs
+ REG_TX_CFG
),
2707 readl(cp
->regs
+ REG_MAC_TX_STATUS
),
2708 readl(cp
->regs
+ REG_MAC_TX_CFG
),
2709 readl(cp
->regs
+ REG_TX_FIFO_PKT_CNT
),
2710 readl(cp
->regs
+ REG_TX_FIFO_WRITE_PTR
),
2711 readl(cp
->regs
+ REG_TX_FIFO_READ_PTR
),
2712 readl(cp
->regs
+ REG_TX_SM_1
),
2713 readl(cp
->regs
+ REG_TX_SM_2
));
2715 netdev_err(dev
, "RX_STATE[%08x:%08x:%08x]\n",
2716 readl(cp
->regs
+ REG_RX_CFG
),
2717 readl(cp
->regs
+ REG_MAC_RX_STATUS
),
2718 readl(cp
->regs
+ REG_MAC_RX_CFG
));
2720 netdev_err(dev
, "HP_STATE[%08x:%08x:%08x:%08x]\n",
2721 readl(cp
->regs
+ REG_HP_STATE_MACHINE
),
2722 readl(cp
->regs
+ REG_HP_STATUS0
),
2723 readl(cp
->regs
+ REG_HP_STATUS1
),
2724 readl(cp
->regs
+ REG_HP_STATUS2
));
2727 atomic_inc(&cp
->reset_task_pending
);
2728 atomic_inc(&cp
->reset_task_pending_all
);
2729 schedule_work(&cp
->reset_task
);
2731 atomic_set(&cp
->reset_task_pending
, CAS_RESET_ALL
);
2732 schedule_work(&cp
->reset_task
);
2736 static inline int cas_intme(int ring
, int entry
)
2738 /* Algorithm: IRQ every 1/2 of descriptors. */
2739 if (!(entry
& ((TX_DESC_RINGN_SIZE(ring
) >> 1) - 1)))
2745 static void cas_write_txd(struct cas
*cp
, int ring
, int entry
,
2746 dma_addr_t mapping
, int len
, u64 ctrl
, int last
)
2748 struct cas_tx_desc
*txd
= cp
->init_txds
[ring
] + entry
;
2750 ctrl
|= CAS_BASE(TX_DESC_BUFLEN
, len
);
2751 if (cas_intme(ring
, entry
))
2752 ctrl
|= TX_DESC_INTME
;
2754 ctrl
|= TX_DESC_EOF
;
2755 txd
->control
= cpu_to_le64(ctrl
);
2756 txd
->buffer
= cpu_to_le64(mapping
);
2759 static inline void *tx_tiny_buf(struct cas
*cp
, const int ring
,
2762 return cp
->tx_tiny_bufs
[ring
] + TX_TINY_BUF_LEN
*entry
;
2765 static inline dma_addr_t
tx_tiny_map(struct cas
*cp
, const int ring
,
2766 const int entry
, const int tentry
)
2768 cp
->tx_tiny_use
[ring
][tentry
].nbufs
++;
2769 cp
->tx_tiny_use
[ring
][entry
].used
= 1;
2770 return cp
->tx_tiny_dvma
[ring
] + TX_TINY_BUF_LEN
*entry
;
2773 static inline int cas_xmit_tx_ringN(struct cas
*cp
, int ring
,
2774 struct sk_buff
*skb
)
2776 struct net_device
*dev
= cp
->dev
;
2777 int entry
, nr_frags
, frag
, tabort
, tentry
;
2779 unsigned long flags
;
2783 spin_lock_irqsave(&cp
->tx_lock
[ring
], flags
);
2785 /* This is a hard error, log it. */
2786 if (TX_BUFFS_AVAIL(cp
, ring
) <=
2787 CAS_TABORT(cp
)*(skb_shinfo(skb
)->nr_frags
+ 1)) {
2788 netif_stop_queue(dev
);
2789 spin_unlock_irqrestore(&cp
->tx_lock
[ring
], flags
);
2790 netdev_err(dev
, "BUG! Tx Ring full when queue awake!\n");
2795 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2796 const u64 csum_start_off
= skb_transport_offset(skb
);
2797 const u64 csum_stuff_off
= csum_start_off
+ skb
->csum_offset
;
2799 ctrl
= TX_DESC_CSUM_EN
|
2800 CAS_BASE(TX_DESC_CSUM_START
, csum_start_off
) |
2801 CAS_BASE(TX_DESC_CSUM_STUFF
, csum_stuff_off
);
2804 entry
= cp
->tx_new
[ring
];
2805 cp
->tx_skbs
[ring
][entry
] = skb
;
2807 nr_frags
= skb_shinfo(skb
)->nr_frags
;
2808 len
= skb_headlen(skb
);
2809 mapping
= pci_map_page(cp
->pdev
, virt_to_page(skb
->data
),
2810 offset_in_page(skb
->data
), len
,
2814 tabort
= cas_calc_tabort(cp
, (unsigned long) skb
->data
, len
);
2815 if (unlikely(tabort
)) {
2816 /* NOTE: len is always > tabort */
2817 cas_write_txd(cp
, ring
, entry
, mapping
, len
- tabort
,
2818 ctrl
| TX_DESC_SOF
, 0);
2819 entry
= TX_DESC_NEXT(ring
, entry
);
2821 skb_copy_from_linear_data_offset(skb
, len
- tabort
,
2822 tx_tiny_buf(cp
, ring
, entry
), tabort
);
2823 mapping
= tx_tiny_map(cp
, ring
, entry
, tentry
);
2824 cas_write_txd(cp
, ring
, entry
, mapping
, tabort
, ctrl
,
2827 cas_write_txd(cp
, ring
, entry
, mapping
, len
, ctrl
|
2828 TX_DESC_SOF
, (nr_frags
== 0));
2830 entry
= TX_DESC_NEXT(ring
, entry
);
2832 for (frag
= 0; frag
< nr_frags
; frag
++) {
2833 skb_frag_t
*fragp
= &skb_shinfo(skb
)->frags
[frag
];
2836 mapping
= pci_map_page(cp
->pdev
, fragp
->page
,
2837 fragp
->page_offset
, len
,
2840 tabort
= cas_calc_tabort(cp
, fragp
->page_offset
, len
);
2841 if (unlikely(tabort
)) {
2844 /* NOTE: len is always > tabort */
2845 cas_write_txd(cp
, ring
, entry
, mapping
, len
- tabort
,
2847 entry
= TX_DESC_NEXT(ring
, entry
);
2849 addr
= cas_page_map(fragp
->page
);
2850 memcpy(tx_tiny_buf(cp
, ring
, entry
),
2851 addr
+ fragp
->page_offset
+ len
- tabort
,
2853 cas_page_unmap(addr
);
2854 mapping
= tx_tiny_map(cp
, ring
, entry
, tentry
);
2858 cas_write_txd(cp
, ring
, entry
, mapping
, len
, ctrl
,
2859 (frag
+ 1 == nr_frags
));
2860 entry
= TX_DESC_NEXT(ring
, entry
);
2863 cp
->tx_new
[ring
] = entry
;
2864 if (TX_BUFFS_AVAIL(cp
, ring
) <= CAS_TABORT(cp
)*(MAX_SKB_FRAGS
+ 1))
2865 netif_stop_queue(dev
);
2867 netif_printk(cp
, tx_queued
, KERN_DEBUG
, dev
,
2868 "tx[%d] queued, slot %d, skblen %d, avail %d\n",
2869 ring
, entry
, skb
->len
, TX_BUFFS_AVAIL(cp
, ring
));
2870 writel(entry
, cp
->regs
+ REG_TX_KICKN(ring
));
2871 spin_unlock_irqrestore(&cp
->tx_lock
[ring
], flags
);
2875 static netdev_tx_t
cas_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
2877 struct cas
*cp
= netdev_priv(dev
);
2879 /* this is only used as a load-balancing hint, so it doesn't
2880 * need to be SMP safe
2884 if (skb_padto(skb
, cp
->min_frame_size
))
2885 return NETDEV_TX_OK
;
2887 /* XXX: we need some higher-level QoS hooks to steer packets to
2888 * individual queues.
2890 if (cas_xmit_tx_ringN(cp
, ring
++ & N_TX_RINGS_MASK
, skb
))
2891 return NETDEV_TX_BUSY
;
2892 return NETDEV_TX_OK
;
2895 static void cas_init_tx_dma(struct cas
*cp
)
2897 u64 desc_dma
= cp
->block_dvma
;
2902 /* set up tx completion writeback registers. must be 8-byte aligned */
2903 #ifdef USE_TX_COMPWB
2904 off
= offsetof(struct cas_init_block
, tx_compwb
);
2905 writel((desc_dma
+ off
) >> 32, cp
->regs
+ REG_TX_COMPWB_DB_HI
);
2906 writel((desc_dma
+ off
) & 0xffffffff, cp
->regs
+ REG_TX_COMPWB_DB_LOW
);
2909 /* enable completion writebacks, enable paced mode,
2910 * disable read pipe, and disable pre-interrupt compwbs
2912 val
= TX_CFG_COMPWB_Q1
| TX_CFG_COMPWB_Q2
|
2913 TX_CFG_COMPWB_Q3
| TX_CFG_COMPWB_Q4
|
2914 TX_CFG_DMA_RDPIPE_DIS
| TX_CFG_PACED_MODE
|
2915 TX_CFG_INTR_COMPWB_DIS
;
2917 /* write out tx ring info and tx desc bases */
2918 for (i
= 0; i
< MAX_TX_RINGS
; i
++) {
2919 off
= (unsigned long) cp
->init_txds
[i
] -
2920 (unsigned long) cp
->init_block
;
2922 val
|= CAS_TX_RINGN_BASE(i
);
2923 writel((desc_dma
+ off
) >> 32, cp
->regs
+ REG_TX_DBN_HI(i
));
2924 writel((desc_dma
+ off
) & 0xffffffff, cp
->regs
+
2926 /* don't zero out the kick register here as the system
2930 writel(val
, cp
->regs
+ REG_TX_CFG
);
2932 /* program max burst sizes. these numbers should be different
2936 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_0
);
2937 writel(0x1600, cp
->regs
+ REG_TX_MAXBURST_1
);
2938 writel(0x2400, cp
->regs
+ REG_TX_MAXBURST_2
);
2939 writel(0x4800, cp
->regs
+ REG_TX_MAXBURST_3
);
2941 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_0
);
2942 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_1
);
2943 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_2
);
2944 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_3
);
2948 /* Must be invoked under cp->lock. */
2949 static inline void cas_init_dma(struct cas
*cp
)
2951 cas_init_tx_dma(cp
);
2952 cas_init_rx_dma(cp
);
2955 static void cas_process_mc_list(struct cas
*cp
)
2959 struct netdev_hw_addr
*ha
;
2962 memset(hash_table
, 0, sizeof(hash_table
));
2963 netdev_for_each_mc_addr(ha
, cp
->dev
) {
2964 if (i
<= CAS_MC_EXACT_MATCH_SIZE
) {
2965 /* use the alternate mac address registers for the
2966 * first 15 multicast addresses
2968 writel((ha
->addr
[4] << 8) | ha
->addr
[5],
2969 cp
->regs
+ REG_MAC_ADDRN(i
*3 + 0));
2970 writel((ha
->addr
[2] << 8) | ha
->addr
[3],
2971 cp
->regs
+ REG_MAC_ADDRN(i
*3 + 1));
2972 writel((ha
->addr
[0] << 8) | ha
->addr
[1],
2973 cp
->regs
+ REG_MAC_ADDRN(i
*3 + 2));
2977 /* use hw hash table for the next series of
2978 * multicast addresses
2980 crc
= ether_crc_le(ETH_ALEN
, ha
->addr
);
2982 hash_table
[crc
>> 4] |= 1 << (15 - (crc
& 0xf));
2985 for (i
= 0; i
< 16; i
++)
2986 writel(hash_table
[i
], cp
->regs
+ REG_MAC_HASH_TABLEN(i
));
2989 /* Must be invoked under cp->lock. */
2990 static u32
cas_setup_multicast(struct cas
*cp
)
2995 if (cp
->dev
->flags
& IFF_PROMISC
) {
2996 rxcfg
|= MAC_RX_CFG_PROMISC_EN
;
2998 } else if (cp
->dev
->flags
& IFF_ALLMULTI
) {
2999 for (i
=0; i
< 16; i
++)
3000 writel(0xFFFF, cp
->regs
+ REG_MAC_HASH_TABLEN(i
));
3001 rxcfg
|= MAC_RX_CFG_HASH_FILTER_EN
;
3004 cas_process_mc_list(cp
);
3005 rxcfg
|= MAC_RX_CFG_HASH_FILTER_EN
;
3011 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
3012 static void cas_clear_mac_err(struct cas
*cp
)
3014 writel(0, cp
->regs
+ REG_MAC_COLL_NORMAL
);
3015 writel(0, cp
->regs
+ REG_MAC_COLL_FIRST
);
3016 writel(0, cp
->regs
+ REG_MAC_COLL_EXCESS
);
3017 writel(0, cp
->regs
+ REG_MAC_COLL_LATE
);
3018 writel(0, cp
->regs
+ REG_MAC_TIMER_DEFER
);
3019 writel(0, cp
->regs
+ REG_MAC_ATTEMPTS_PEAK
);
3020 writel(0, cp
->regs
+ REG_MAC_RECV_FRAME
);
3021 writel(0, cp
->regs
+ REG_MAC_LEN_ERR
);
3022 writel(0, cp
->regs
+ REG_MAC_ALIGN_ERR
);
3023 writel(0, cp
->regs
+ REG_MAC_FCS_ERR
);
3024 writel(0, cp
->regs
+ REG_MAC_RX_CODE_ERR
);
3028 static void cas_mac_reset(struct cas
*cp
)
3032 /* do both TX and RX reset */
3033 writel(0x1, cp
->regs
+ REG_MAC_TX_RESET
);
3034 writel(0x1, cp
->regs
+ REG_MAC_RX_RESET
);
3039 if (readl(cp
->regs
+ REG_MAC_TX_RESET
) == 0)
3047 if (readl(cp
->regs
+ REG_MAC_RX_RESET
) == 0)
3052 if (readl(cp
->regs
+ REG_MAC_TX_RESET
) |
3053 readl(cp
->regs
+ REG_MAC_RX_RESET
))
3054 netdev_err(cp
->dev
, "mac tx[%d]/rx[%d] reset failed [%08x]\n",
3055 readl(cp
->regs
+ REG_MAC_TX_RESET
),
3056 readl(cp
->regs
+ REG_MAC_RX_RESET
),
3057 readl(cp
->regs
+ REG_MAC_STATE_MACHINE
));
3061 /* Must be invoked under cp->lock. */
3062 static void cas_init_mac(struct cas
*cp
)
3064 unsigned char *e
= &cp
->dev
->dev_addr
[0];
3066 #ifdef CONFIG_CASSINI_MULTICAST_REG_WRITE
3071 /* setup core arbitration weight register */
3072 writel(CAWR_RR_DIS
, cp
->regs
+ REG_CAWR
);
3074 /* XXX Use pci_dma_burst_advice() */
3075 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3076 /* set the infinite burst register for chips that don't have
3079 if ((cp
->cas_flags
& CAS_FLAG_TARGET_ABORT
) == 0)
3080 writel(INF_BURST_EN
, cp
->regs
+ REG_INF_BURST
);
3083 writel(0x1BF0, cp
->regs
+ REG_MAC_SEND_PAUSE
);
3085 writel(0x00, cp
->regs
+ REG_MAC_IPG0
);
3086 writel(0x08, cp
->regs
+ REG_MAC_IPG1
);
3087 writel(0x04, cp
->regs
+ REG_MAC_IPG2
);
3089 /* change later for 802.3z */
3090 writel(0x40, cp
->regs
+ REG_MAC_SLOT_TIME
);
3092 /* min frame + FCS */
3093 writel(ETH_ZLEN
+ 4, cp
->regs
+ REG_MAC_FRAMESIZE_MIN
);
3095 /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3096 * specify the maximum frame size to prevent RX tag errors on
3099 writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST
, 0x2000) |
3100 CAS_BASE(MAC_FRAMESIZE_MAX_FRAME
,
3101 (CAS_MAX_MTU
+ ETH_HLEN
+ 4 + 4)),
3102 cp
->regs
+ REG_MAC_FRAMESIZE_MAX
);
3104 /* NOTE: crc_size is used as a surrogate for half-duplex.
3105 * workaround saturn half-duplex issue by increasing preamble
3108 if ((cp
->cas_flags
& CAS_FLAG_SATURN
) && cp
->crc_size
)
3109 writel(0x41, cp
->regs
+ REG_MAC_PA_SIZE
);
3111 writel(0x07, cp
->regs
+ REG_MAC_PA_SIZE
);
3112 writel(0x04, cp
->regs
+ REG_MAC_JAM_SIZE
);
3113 writel(0x10, cp
->regs
+ REG_MAC_ATTEMPT_LIMIT
);
3114 writel(0x8808, cp
->regs
+ REG_MAC_CTRL_TYPE
);
3116 writel((e
[5] | (e
[4] << 8)) & 0x3ff, cp
->regs
+ REG_MAC_RANDOM_SEED
);
3118 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER0
);
3119 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER1
);
3120 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER2
);
3121 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER2_1_MASK
);
3122 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER0_MASK
);
3124 /* setup mac address in perfect filter array */
3125 for (i
= 0; i
< 45; i
++)
3126 writel(0x0, cp
->regs
+ REG_MAC_ADDRN(i
));
3128 writel((e
[4] << 8) | e
[5], cp
->regs
+ REG_MAC_ADDRN(0));
3129 writel((e
[2] << 8) | e
[3], cp
->regs
+ REG_MAC_ADDRN(1));
3130 writel((e
[0] << 8) | e
[1], cp
->regs
+ REG_MAC_ADDRN(2));
3132 writel(0x0001, cp
->regs
+ REG_MAC_ADDRN(42));
3133 writel(0xc200, cp
->regs
+ REG_MAC_ADDRN(43));
3134 writel(0x0180, cp
->regs
+ REG_MAC_ADDRN(44));
3136 #ifndef CONFIG_CASSINI_MULTICAST_REG_WRITE
3137 cp
->mac_rx_cfg
= cas_setup_multicast(cp
);
3139 /* WTZ: Do what Adrian did in cas_set_multicast. Doing
3140 * a writel does not seem to be necessary because Cassini
3141 * seems to preserve the configuration when we do the reset.
3142 * If the chip is in trouble, though, it is not clear if we
3143 * can really count on this behavior. cas_set_multicast uses
3144 * spin_lock_irqsave, but we are called only in cas_init_hw and
3145 * cas_init_hw is protected by cas_lock_all, which calls
3146 * spin_lock_irq (so it doesn't need to save the flags, and
3147 * we should be OK for the writel, as that is the only
3150 cp
->mac_rx_cfg
= rxcfg
= cas_setup_multicast(cp
);
3151 writel(rxcfg
, cp
->regs
+ REG_MAC_RX_CFG
);
3153 spin_lock(&cp
->stat_lock
[N_TX_RINGS
]);
3154 cas_clear_mac_err(cp
);
3155 spin_unlock(&cp
->stat_lock
[N_TX_RINGS
]);
3157 /* Setup MAC interrupts. We want to get all of the interesting
3158 * counter expiration events, but we do not want to hear about
3159 * normal rx/tx as the DMA engine tells us that.
3161 writel(MAC_TX_FRAME_XMIT
, cp
->regs
+ REG_MAC_TX_MASK
);
3162 writel(MAC_RX_FRAME_RECV
, cp
->regs
+ REG_MAC_RX_MASK
);
3164 /* Don't enable even the PAUSE interrupts for now, we
3165 * make no use of those events other than to record them.
3167 writel(0xffffffff, cp
->regs
+ REG_MAC_CTRL_MASK
);
3170 /* Must be invoked under cp->lock. */
3171 static void cas_init_pause_thresholds(struct cas
*cp
)
3173 /* Calculate pause thresholds. Setting the OFF threshold to the
3174 * full RX fifo size effectively disables PAUSE generation
3176 if (cp
->rx_fifo_size
<= (2 * 1024)) {
3177 cp
->rx_pause_off
= cp
->rx_pause_on
= cp
->rx_fifo_size
;
3179 int max_frame
= (cp
->dev
->mtu
+ ETH_HLEN
+ 4 + 4 + 64) & ~63;
3180 if (max_frame
* 3 > cp
->rx_fifo_size
) {
3181 cp
->rx_pause_off
= 7104;
3182 cp
->rx_pause_on
= 960;
3184 int off
= (cp
->rx_fifo_size
- (max_frame
* 2));
3185 int on
= off
- max_frame
;
3186 cp
->rx_pause_off
= off
;
3187 cp
->rx_pause_on
= on
;
3192 static int cas_vpd_match(const void __iomem
*p
, const char *str
)
3194 int len
= strlen(str
) + 1;
3197 for (i
= 0; i
< len
; i
++) {
3198 if (readb(p
+ i
) != str
[i
])
3205 /* get the mac address by reading the vpd information in the rom.
3206 * also get the phy type and determine if there's an entropy generator.
3207 * NOTE: this is a bit convoluted for the following reasons:
3208 * 1) vpd info has order-dependent mac addresses for multinic cards
3209 * 2) the only way to determine the nic order is to use the slot
3211 * 3) fiber cards don't have bridges, so their slot numbers don't
3213 * 4) we don't actually know we have a fiber card until after
3214 * the mac addresses are parsed.
3216 static int cas_get_vpd_info(struct cas
*cp
, unsigned char *dev_addr
,
3219 void __iomem
*p
= cp
->regs
+ REG_EXPANSION_ROM_RUN_START
;
3220 void __iomem
*base
, *kstart
;
3223 #define VPD_FOUND_MAC 0x01
3224 #define VPD_FOUND_PHY 0x02
3226 int phy_type
= CAS_PHY_MII_MDIO0
; /* default phy type */
3229 /* give us access to the PROM */
3230 writel(BIM_LOCAL_DEV_PROM
| BIM_LOCAL_DEV_PAD
,
3231 cp
->regs
+ REG_BIM_LOCAL_DEV_EN
);
3233 /* check for an expansion rom */
3234 if (readb(p
) != 0x55 || readb(p
+ 1) != 0xaa)
3235 goto use_random_mac_addr
;
3237 /* search for beginning of vpd */
3239 for (i
= 2; i
< EXPANSION_ROM_SIZE
; i
++) {
3240 /* check for PCIR */
3241 if ((readb(p
+ i
+ 0) == 0x50) &&
3242 (readb(p
+ i
+ 1) == 0x43) &&
3243 (readb(p
+ i
+ 2) == 0x49) &&
3244 (readb(p
+ i
+ 3) == 0x52)) {
3245 base
= p
+ (readb(p
+ i
+ 8) |
3246 (readb(p
+ i
+ 9) << 8));
3251 if (!base
|| (readb(base
) != 0x82))
3252 goto use_random_mac_addr
;
3254 i
= (readb(base
+ 1) | (readb(base
+ 2) << 8)) + 3;
3255 while (i
< EXPANSION_ROM_SIZE
) {
3256 if (readb(base
+ i
) != 0x90) /* no vpd found */
3257 goto use_random_mac_addr
;
3259 /* found a vpd field */
3260 len
= readb(base
+ i
+ 1) | (readb(base
+ i
+ 2) << 8);
3262 /* extract keywords */
3263 kstart
= base
+ i
+ 3;
3265 while ((p
- kstart
) < len
) {
3266 int klen
= readb(p
+ 2);
3272 /* look for the following things:
3273 * -- correct length == 29
3274 * 3 (type) + 2 (size) +
3275 * 18 (strlen("local-mac-address") + 1) +
3277 * -- VPD Instance 'I'
3278 * -- VPD Type Bytes 'B'
3279 * -- VPD data length == 6
3280 * -- property string == local-mac-address
3282 * -- correct length == 24
3283 * 3 (type) + 2 (size) +
3284 * 12 (strlen("entropy-dev") + 1) +
3285 * 7 (strlen("vms110") + 1)
3286 * -- VPD Instance 'I'
3287 * -- VPD Type String 'B'
3288 * -- VPD data length == 7
3289 * -- property string == entropy-dev
3291 * -- correct length == 18
3292 * 3 (type) + 2 (size) +
3293 * 9 (strlen("phy-type") + 1) +
3294 * 4 (strlen("pcs") + 1)
3295 * -- VPD Instance 'I'
3296 * -- VPD Type String 'S'
3297 * -- VPD data length == 4
3298 * -- property string == phy-type
3300 * -- correct length == 23
3301 * 3 (type) + 2 (size) +
3302 * 14 (strlen("phy-interface") + 1) +
3303 * 4 (strlen("pcs") + 1)
3304 * -- VPD Instance 'I'
3305 * -- VPD Type String 'S'
3306 * -- VPD data length == 4
3307 * -- property string == phy-interface
3309 if (readb(p
) != 'I')
3312 /* finally, check string and length */
3313 type
= readb(p
+ 3);
3315 if ((klen
== 29) && readb(p
+ 4) == 6 &&
3316 cas_vpd_match(p
+ 5,
3317 "local-mac-address")) {
3318 if (mac_off
++ > offset
)
3321 /* set mac address */
3322 for (j
= 0; j
< 6; j
++)
3332 #ifdef USE_ENTROPY_DEV
3334 cas_vpd_match(p
+ 5, "entropy-dev") &&
3335 cas_vpd_match(p
+ 17, "vms110")) {
3336 cp
->cas_flags
|= CAS_FLAG_ENTROPY_DEV
;
3341 if (found
& VPD_FOUND_PHY
)
3344 if ((klen
== 18) && readb(p
+ 4) == 4 &&
3345 cas_vpd_match(p
+ 5, "phy-type")) {
3346 if (cas_vpd_match(p
+ 14, "pcs")) {
3347 phy_type
= CAS_PHY_SERDES
;
3352 if ((klen
== 23) && readb(p
+ 4) == 4 &&
3353 cas_vpd_match(p
+ 5, "phy-interface")) {
3354 if (cas_vpd_match(p
+ 19, "pcs")) {
3355 phy_type
= CAS_PHY_SERDES
;
3360 found
|= VPD_FOUND_MAC
;
3364 found
|= VPD_FOUND_PHY
;
3372 use_random_mac_addr
:
3373 if (found
& VPD_FOUND_MAC
)
3376 /* Sun MAC prefix then 3 random bytes. */
3377 pr_info("MAC address not found in ROM VPD\n");
3381 get_random_bytes(dev_addr
+ 3, 3);
3384 writel(0, cp
->regs
+ REG_BIM_LOCAL_DEV_EN
);
3388 /* check pci invariants */
3389 static void cas_check_pci_invariants(struct cas
*cp
)
3391 struct pci_dev
*pdev
= cp
->pdev
;
3394 if ((pdev
->vendor
== PCI_VENDOR_ID_SUN
) &&
3395 (pdev
->device
== PCI_DEVICE_ID_SUN_CASSINI
)) {
3396 if (pdev
->revision
>= CAS_ID_REVPLUS
)
3397 cp
->cas_flags
|= CAS_FLAG_REG_PLUS
;
3398 if (pdev
->revision
< CAS_ID_REVPLUS02u
)
3399 cp
->cas_flags
|= CAS_FLAG_TARGET_ABORT
;
3401 /* Original Cassini supports HW CSUM, but it's not
3402 * enabled by default as it can trigger TX hangs.
3404 if (pdev
->revision
< CAS_ID_REV2
)
3405 cp
->cas_flags
|= CAS_FLAG_NO_HW_CSUM
;
3407 /* Only sun has original cassini chips. */
3408 cp
->cas_flags
|= CAS_FLAG_REG_PLUS
;
3410 /* We use a flag because the same phy might be externally
3413 if ((pdev
->vendor
== PCI_VENDOR_ID_NS
) &&
3414 (pdev
->device
== PCI_DEVICE_ID_NS_SATURN
))
3415 cp
->cas_flags
|= CAS_FLAG_SATURN
;
3420 static int cas_check_invariants(struct cas
*cp
)
3422 struct pci_dev
*pdev
= cp
->pdev
;
3426 /* get page size for rx buffers. */
3428 #ifdef USE_PAGE_ORDER
3429 if (PAGE_SHIFT
< CAS_JUMBO_PAGE_SHIFT
) {
3430 /* see if we can allocate larger pages */
3431 struct page
*page
= alloc_pages(GFP_ATOMIC
,
3432 CAS_JUMBO_PAGE_SHIFT
-
3435 __free_pages(page
, CAS_JUMBO_PAGE_SHIFT
- PAGE_SHIFT
);
3436 cp
->page_order
= CAS_JUMBO_PAGE_SHIFT
- PAGE_SHIFT
;
3438 printk("MTU limited to %d bytes\n", CAS_MAX_MTU
);
3442 cp
->page_size
= (PAGE_SIZE
<< cp
->page_order
);
3444 /* Fetch the FIFO configurations. */
3445 cp
->tx_fifo_size
= readl(cp
->regs
+ REG_TX_FIFO_SIZE
) * 64;
3446 cp
->rx_fifo_size
= RX_FIFO_SIZE
;
3448 /* finish phy determination. MDIO1 takes precedence over MDIO0 if
3449 * they're both connected.
3451 cp
->phy_type
= cas_get_vpd_info(cp
, cp
->dev
->dev_addr
,
3452 PCI_SLOT(pdev
->devfn
));
3453 if (cp
->phy_type
& CAS_PHY_SERDES
) {
3454 cp
->cas_flags
|= CAS_FLAG_1000MB_CAP
;
3455 return 0; /* no more checking needed */
3459 cfg
= readl(cp
->regs
+ REG_MIF_CFG
);
3460 if (cfg
& MIF_CFG_MDIO_1
) {
3461 cp
->phy_type
= CAS_PHY_MII_MDIO1
;
3462 } else if (cfg
& MIF_CFG_MDIO_0
) {
3463 cp
->phy_type
= CAS_PHY_MII_MDIO0
;
3466 cas_mif_poll(cp
, 0);
3467 writel(PCS_DATAPATH_MODE_MII
, cp
->regs
+ REG_PCS_DATAPATH_MODE
);
3469 for (i
= 0; i
< 32; i
++) {
3473 for (j
= 0; j
< 3; j
++) {
3475 phy_id
= cas_phy_read(cp
, MII_PHYSID1
) << 16;
3476 phy_id
|= cas_phy_read(cp
, MII_PHYSID2
);
3477 if (phy_id
&& (phy_id
!= 0xFFFFFFFF)) {
3478 cp
->phy_id
= phy_id
;
3483 pr_err("MII phy did not respond [%08x]\n",
3484 readl(cp
->regs
+ REG_MIF_STATE_MACHINE
));
3488 /* see if we can do gigabit */
3489 cfg
= cas_phy_read(cp
, MII_BMSR
);
3490 if ((cfg
& CAS_BMSR_1000_EXTEND
) &&
3491 cas_phy_read(cp
, CAS_MII_1000_EXTEND
))
3492 cp
->cas_flags
|= CAS_FLAG_1000MB_CAP
;
3496 /* Must be invoked under cp->lock. */
3497 static inline void cas_start_dma(struct cas
*cp
)
3504 val
= readl(cp
->regs
+ REG_TX_CFG
) | TX_CFG_DMA_EN
;
3505 writel(val
, cp
->regs
+ REG_TX_CFG
);
3506 val
= readl(cp
->regs
+ REG_RX_CFG
) | RX_CFG_DMA_EN
;
3507 writel(val
, cp
->regs
+ REG_RX_CFG
);
3509 /* enable the mac */
3510 val
= readl(cp
->regs
+ REG_MAC_TX_CFG
) | MAC_TX_CFG_EN
;
3511 writel(val
, cp
->regs
+ REG_MAC_TX_CFG
);
3512 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
) | MAC_RX_CFG_EN
;
3513 writel(val
, cp
->regs
+ REG_MAC_RX_CFG
);
3517 val
= readl(cp
->regs
+ REG_MAC_TX_CFG
);
3518 if ((val
& MAC_TX_CFG_EN
))
3522 if (i
< 0) txfailed
= 1;
3525 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
3526 if ((val
& MAC_RX_CFG_EN
)) {
3529 "enabling mac failed [tx:%08x:%08x]\n",
3530 readl(cp
->regs
+ REG_MIF_STATE_MACHINE
),
3531 readl(cp
->regs
+ REG_MAC_STATE_MACHINE
));
3533 goto enable_rx_done
;
3537 netdev_err(cp
->dev
, "enabling mac failed [%s:%08x:%08x]\n",
3538 (txfailed
? "tx,rx" : "rx"),
3539 readl(cp
->regs
+ REG_MIF_STATE_MACHINE
),
3540 readl(cp
->regs
+ REG_MAC_STATE_MACHINE
));
3543 cas_unmask_intr(cp
); /* enable interrupts */
3544 writel(RX_DESC_RINGN_SIZE(0) - 4, cp
->regs
+ REG_RX_KICK
);
3545 writel(0, cp
->regs
+ REG_RX_COMP_TAIL
);
3547 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
3548 if (N_RX_DESC_RINGS
> 1)
3549 writel(RX_DESC_RINGN_SIZE(1) - 4,
3550 cp
->regs
+ REG_PLUS_RX_KICK1
);
3552 for (i
= 1; i
< N_RX_COMP_RINGS
; i
++)
3553 writel(0, cp
->regs
+ REG_PLUS_RX_COMPN_TAIL(i
));
3557 /* Must be invoked under cp->lock. */
3558 static void cas_read_pcs_link_mode(struct cas
*cp
, int *fd
, int *spd
,
3561 u32 val
= readl(cp
->regs
+ REG_PCS_MII_LPA
);
3562 *fd
= (val
& PCS_MII_LPA_FD
) ? 1 : 0;
3563 *pause
= (val
& PCS_MII_LPA_SYM_PAUSE
) ? 0x01 : 0x00;
3564 if (val
& PCS_MII_LPA_ASYM_PAUSE
)
3569 /* Must be invoked under cp->lock. */
3570 static void cas_read_mii_link_mode(struct cas
*cp
, int *fd
, int *spd
,
3579 /* use GMII registers */
3580 val
= cas_phy_read(cp
, MII_LPA
);
3581 if (val
& CAS_LPA_PAUSE
)
3584 if (val
& CAS_LPA_ASYM_PAUSE
)
3587 if (val
& LPA_DUPLEX
)
3592 if (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) {
3593 val
= cas_phy_read(cp
, CAS_MII_1000_STATUS
);
3594 if (val
& (CAS_LPA_1000FULL
| CAS_LPA_1000HALF
))
3596 if (val
& CAS_LPA_1000FULL
)
3601 /* A link-up condition has occurred, initialize and enable the
3604 * Must be invoked under cp->lock.
3606 static void cas_set_link_modes(struct cas
*cp
)
3609 int full_duplex
, speed
, pause
;
3615 if (CAS_PHY_MII(cp
->phy_type
)) {
3616 cas_mif_poll(cp
, 0);
3617 val
= cas_phy_read(cp
, MII_BMCR
);
3618 if (val
& BMCR_ANENABLE
) {
3619 cas_read_mii_link_mode(cp
, &full_duplex
, &speed
,
3622 if (val
& BMCR_FULLDPLX
)
3625 if (val
& BMCR_SPEED100
)
3627 else if (val
& CAS_BMCR_SPEED1000
)
3628 speed
= (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) ?
3631 cas_mif_poll(cp
, 1);
3634 val
= readl(cp
->regs
+ REG_PCS_MII_CTRL
);
3635 cas_read_pcs_link_mode(cp
, &full_duplex
, &speed
, &pause
);
3636 if ((val
& PCS_MII_AUTONEG_EN
) == 0) {
3637 if (val
& PCS_MII_CTRL_DUPLEX
)
3642 netif_info(cp
, link
, cp
->dev
, "Link up at %d Mbps, %s-duplex\n",
3643 speed
, full_duplex
? "full" : "half");
3645 val
= MAC_XIF_TX_MII_OUTPUT_EN
| MAC_XIF_LINK_LED
;
3646 if (CAS_PHY_MII(cp
->phy_type
)) {
3647 val
|= MAC_XIF_MII_BUFFER_OUTPUT_EN
;
3649 val
|= MAC_XIF_DISABLE_ECHO
;
3652 val
|= MAC_XIF_FDPLX_LED
;
3654 val
|= MAC_XIF_GMII_MODE
;
3655 writel(val
, cp
->regs
+ REG_MAC_XIF_CFG
);
3657 /* deal with carrier and collision detect. */
3658 val
= MAC_TX_CFG_IPG_EN
;
3660 val
|= MAC_TX_CFG_IGNORE_CARRIER
;
3661 val
|= MAC_TX_CFG_IGNORE_COLL
;
3663 #ifndef USE_CSMA_CD_PROTO
3664 val
|= MAC_TX_CFG_NEVER_GIVE_UP_EN
;
3665 val
|= MAC_TX_CFG_NEVER_GIVE_UP_LIM
;
3668 /* val now set up for REG_MAC_TX_CFG */
3670 /* If gigabit and half-duplex, enable carrier extension
3671 * mode. increase slot time to 512 bytes as well.
3672 * else, disable it and make sure slot time is 64 bytes.
3673 * also activate checksum bug workaround
3675 if ((speed
== 1000) && !full_duplex
) {
3676 writel(val
| MAC_TX_CFG_CARRIER_EXTEND
,
3677 cp
->regs
+ REG_MAC_TX_CFG
);
3679 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
3680 val
&= ~MAC_RX_CFG_STRIP_FCS
; /* checksum workaround */
3681 writel(val
| MAC_RX_CFG_CARRIER_EXTEND
,
3682 cp
->regs
+ REG_MAC_RX_CFG
);
3684 writel(0x200, cp
->regs
+ REG_MAC_SLOT_TIME
);
3687 /* minimum size gigabit frame at half duplex */
3688 cp
->min_frame_size
= CAS_1000MB_MIN_FRAME
;
3691 writel(val
, cp
->regs
+ REG_MAC_TX_CFG
);
3693 /* checksum bug workaround. don't strip FCS when in
3696 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
3698 val
|= MAC_RX_CFG_STRIP_FCS
;
3700 cp
->min_frame_size
= CAS_MIN_MTU
;
3702 val
&= ~MAC_RX_CFG_STRIP_FCS
;
3704 cp
->min_frame_size
= CAS_MIN_FRAME
;
3706 writel(val
& ~MAC_RX_CFG_CARRIER_EXTEND
,
3707 cp
->regs
+ REG_MAC_RX_CFG
);
3708 writel(0x40, cp
->regs
+ REG_MAC_SLOT_TIME
);
3711 if (netif_msg_link(cp
)) {
3713 netdev_info(cp
->dev
, "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
3717 } else if (pause
& 0x10) {
3718 netdev_info(cp
->dev
, "TX pause enabled\n");
3720 netdev_info(cp
->dev
, "Pause is disabled\n");
3724 val
= readl(cp
->regs
+ REG_MAC_CTRL_CFG
);
3725 val
&= ~(MAC_CTRL_CFG_SEND_PAUSE_EN
| MAC_CTRL_CFG_RECV_PAUSE_EN
);
3726 if (pause
) { /* symmetric or asymmetric pause */
3727 val
|= MAC_CTRL_CFG_SEND_PAUSE_EN
;
3728 if (pause
& 0x01) { /* symmetric pause */
3729 val
|= MAC_CTRL_CFG_RECV_PAUSE_EN
;
3732 writel(val
, cp
->regs
+ REG_MAC_CTRL_CFG
);
3736 /* Must be invoked under cp->lock. */
3737 static void cas_init_hw(struct cas
*cp
, int restart_link
)
3742 cas_init_pause_thresholds(cp
);
3747 /* Default aneg parameters */
3748 cp
->timer_ticks
= 0;
3749 cas_begin_auto_negotiation(cp
, NULL
);
3750 } else if (cp
->lstate
== link_up
) {
3751 cas_set_link_modes(cp
);
3752 netif_carrier_on(cp
->dev
);
3756 /* Must be invoked under cp->lock. on earlier cassini boards,
3757 * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3758 * let it settle out, and then restore pci state.
3760 static void cas_hard_reset(struct cas
*cp
)
3762 writel(BIM_LOCAL_DEV_SOFT_0
, cp
->regs
+ REG_BIM_LOCAL_DEV_EN
);
3764 pci_restore_state(cp
->pdev
);
3768 static void cas_global_reset(struct cas
*cp
, int blkflag
)
3772 /* issue a global reset. don't use RSTOUT. */
3773 if (blkflag
&& !CAS_PHY_MII(cp
->phy_type
)) {
3774 /* For PCS, when the blkflag is set, we should set the
3775 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3776 * the last autonegotiation from being cleared. We'll
3777 * need some special handling if the chip is set into a
3780 writel((SW_RESET_TX
| SW_RESET_RX
| SW_RESET_BLOCK_PCS_SLINK
),
3781 cp
->regs
+ REG_SW_RESET
);
3783 writel(SW_RESET_TX
| SW_RESET_RX
, cp
->regs
+ REG_SW_RESET
);
3786 /* need to wait at least 3ms before polling register */
3790 while (limit
-- > 0) {
3791 u32 val
= readl(cp
->regs
+ REG_SW_RESET
);
3792 if ((val
& (SW_RESET_TX
| SW_RESET_RX
)) == 0)
3796 netdev_err(cp
->dev
, "sw reset failed\n");
3799 /* enable various BIM interrupts */
3800 writel(BIM_CFG_DPAR_INTR_ENABLE
| BIM_CFG_RMA_INTR_ENABLE
|
3801 BIM_CFG_RTA_INTR_ENABLE
, cp
->regs
+ REG_BIM_CFG
);
3803 /* clear out pci error status mask for handled errors.
3804 * we don't deal with DMA counter overflows as they happen
3807 writel(0xFFFFFFFFU
& ~(PCI_ERR_BADACK
| PCI_ERR_DTRTO
|
3808 PCI_ERR_OTHER
| PCI_ERR_BIM_DMA_WRITE
|
3809 PCI_ERR_BIM_DMA_READ
), cp
->regs
+
3810 REG_PCI_ERR_STATUS_MASK
);
3812 /* set up for MII by default to address mac rx reset timeout
3815 writel(PCS_DATAPATH_MODE_MII
, cp
->regs
+ REG_PCS_DATAPATH_MODE
);
3818 static void cas_reset(struct cas
*cp
, int blkflag
)
3823 cas_global_reset(cp
, blkflag
);
3825 cas_entropy_reset(cp
);
3827 /* disable dma engines. */
3828 val
= readl(cp
->regs
+ REG_TX_CFG
);
3829 val
&= ~TX_CFG_DMA_EN
;
3830 writel(val
, cp
->regs
+ REG_TX_CFG
);
3832 val
= readl(cp
->regs
+ REG_RX_CFG
);
3833 val
&= ~RX_CFG_DMA_EN
;
3834 writel(val
, cp
->regs
+ REG_RX_CFG
);
3836 /* program header parser */
3837 if ((cp
->cas_flags
& CAS_FLAG_TARGET_ABORT
) ||
3838 (CAS_HP_ALT_FIRMWARE
== cas_prog_null
)) {
3839 cas_load_firmware(cp
, CAS_HP_FIRMWARE
);
3841 cas_load_firmware(cp
, CAS_HP_ALT_FIRMWARE
);
3844 /* clear out error registers */
3845 spin_lock(&cp
->stat_lock
[N_TX_RINGS
]);
3846 cas_clear_mac_err(cp
);
3847 spin_unlock(&cp
->stat_lock
[N_TX_RINGS
]);
3850 /* Shut down the chip, must be called with pm_mutex held. */
3851 static void cas_shutdown(struct cas
*cp
)
3853 unsigned long flags
;
3855 /* Make us not-running to avoid timers respawning */
3858 del_timer_sync(&cp
->link_timer
);
3860 /* Stop the reset task */
3862 while (atomic_read(&cp
->reset_task_pending_mtu
) ||
3863 atomic_read(&cp
->reset_task_pending_spare
) ||
3864 atomic_read(&cp
->reset_task_pending_all
))
3868 while (atomic_read(&cp
->reset_task_pending
))
3871 /* Actually stop the chip */
3872 cas_lock_all_save(cp
, flags
);
3874 if (cp
->cas_flags
& CAS_FLAG_SATURN
)
3875 cas_phy_powerdown(cp
);
3876 cas_unlock_all_restore(cp
, flags
);
3879 static int cas_change_mtu(struct net_device
*dev
, int new_mtu
)
3881 struct cas
*cp
= netdev_priv(dev
);
3883 if (new_mtu
< CAS_MIN_MTU
|| new_mtu
> CAS_MAX_MTU
)
3887 if (!netif_running(dev
) || !netif_device_present(dev
))
3890 /* let the reset task handle it */
3892 atomic_inc(&cp
->reset_task_pending
);
3893 if ((cp
->phy_type
& CAS_PHY_SERDES
)) {
3894 atomic_inc(&cp
->reset_task_pending_all
);
3896 atomic_inc(&cp
->reset_task_pending_mtu
);
3898 schedule_work(&cp
->reset_task
);
3900 atomic_set(&cp
->reset_task_pending
, (cp
->phy_type
& CAS_PHY_SERDES
) ?
3901 CAS_RESET_ALL
: CAS_RESET_MTU
);
3902 pr_err("reset called in cas_change_mtu\n");
3903 schedule_work(&cp
->reset_task
);
3906 flush_scheduled_work();
3910 static void cas_clean_txd(struct cas
*cp
, int ring
)
3912 struct cas_tx_desc
*txd
= cp
->init_txds
[ring
];
3913 struct sk_buff
*skb
, **skbs
= cp
->tx_skbs
[ring
];
3917 size
= TX_DESC_RINGN_SIZE(ring
);
3918 for (i
= 0; i
< size
; i
++) {
3921 if (skbs
[i
] == NULL
)
3927 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
3928 int ent
= i
& (size
- 1);
3930 /* first buffer is never a tiny buffer and so
3931 * needs to be unmapped.
3933 daddr
= le64_to_cpu(txd
[ent
].buffer
);
3934 dlen
= CAS_VAL(TX_DESC_BUFLEN
,
3935 le64_to_cpu(txd
[ent
].control
));
3936 pci_unmap_page(cp
->pdev
, daddr
, dlen
,
3939 if (frag
!= skb_shinfo(skb
)->nr_frags
) {
3942 /* next buffer might by a tiny buffer.
3945 ent
= i
& (size
- 1);
3946 if (cp
->tx_tiny_use
[ring
][ent
].used
)
3950 dev_kfree_skb_any(skb
);
3953 /* zero out tiny buf usage */
3954 memset(cp
->tx_tiny_use
[ring
], 0, size
*sizeof(*cp
->tx_tiny_use
[ring
]));
3957 /* freed on close */
3958 static inline void cas_free_rx_desc(struct cas
*cp
, int ring
)
3960 cas_page_t
**page
= cp
->rx_pages
[ring
];
3963 size
= RX_DESC_RINGN_SIZE(ring
);
3964 for (i
= 0; i
< size
; i
++) {
3966 cas_page_free(cp
, page
[i
]);
3972 static void cas_free_rxds(struct cas
*cp
)
3976 for (i
= 0; i
< N_RX_DESC_RINGS
; i
++)
3977 cas_free_rx_desc(cp
, i
);
3980 /* Must be invoked under cp->lock. */
3981 static void cas_clean_rings(struct cas
*cp
)
3985 /* need to clean all tx rings */
3986 memset(cp
->tx_old
, 0, sizeof(*cp
->tx_old
)*N_TX_RINGS
);
3987 memset(cp
->tx_new
, 0, sizeof(*cp
->tx_new
)*N_TX_RINGS
);
3988 for (i
= 0; i
< N_TX_RINGS
; i
++)
3989 cas_clean_txd(cp
, i
);
3991 /* zero out init block */
3992 memset(cp
->init_block
, 0, sizeof(struct cas_init_block
));
3997 /* allocated on open */
3998 static inline int cas_alloc_rx_desc(struct cas
*cp
, int ring
)
4000 cas_page_t
**page
= cp
->rx_pages
[ring
];
4003 size
= RX_DESC_RINGN_SIZE(ring
);
4004 for (i
= 0; i
< size
; i
++) {
4005 if ((page
[i
] = cas_page_alloc(cp
, GFP_KERNEL
)) == NULL
)
4011 static int cas_alloc_rxds(struct cas
*cp
)
4015 for (i
= 0; i
< N_RX_DESC_RINGS
; i
++) {
4016 if (cas_alloc_rx_desc(cp
, i
) < 0) {
4024 static void cas_reset_task(struct work_struct
*work
)
4026 struct cas
*cp
= container_of(work
, struct cas
, reset_task
);
4028 int pending
= atomic_read(&cp
->reset_task_pending
);
4030 int pending_all
= atomic_read(&cp
->reset_task_pending_all
);
4031 int pending_spare
= atomic_read(&cp
->reset_task_pending_spare
);
4032 int pending_mtu
= atomic_read(&cp
->reset_task_pending_mtu
);
4034 if (pending_all
== 0 && pending_spare
== 0 && pending_mtu
== 0) {
4035 /* We can have more tasks scheduled than actually
4038 atomic_dec(&cp
->reset_task_pending
);
4042 /* The link went down, we reset the ring, but keep
4043 * DMA stopped. Use this function for reset
4046 if (cp
->hw_running
) {
4047 unsigned long flags
;
4049 /* Make sure we don't get interrupts or tx packets */
4050 netif_device_detach(cp
->dev
);
4051 cas_lock_all_save(cp
, flags
);
4054 /* We call cas_spare_recover when we call cas_open.
4055 * but we do not initialize the lists cas_spare_recover
4056 * uses until cas_open is called.
4058 cas_spare_recover(cp
, GFP_ATOMIC
);
4061 /* test => only pending_spare set */
4062 if (!pending_all
&& !pending_mtu
)
4065 if (pending
== CAS_RESET_SPARE
)
4068 /* when pending == CAS_RESET_ALL, the following
4069 * call to cas_init_hw will restart auto negotiation.
4070 * Setting the second argument of cas_reset to
4071 * !(pending == CAS_RESET_ALL) will set this argument
4072 * to 1 (avoiding reinitializing the PHY for the normal
4073 * PCS case) when auto negotiation is not restarted.
4076 cas_reset(cp
, !(pending_all
> 0));
4078 cas_clean_rings(cp
);
4079 cas_init_hw(cp
, (pending_all
> 0));
4081 cas_reset(cp
, !(pending
== CAS_RESET_ALL
));
4083 cas_clean_rings(cp
);
4084 cas_init_hw(cp
, pending
== CAS_RESET_ALL
);
4088 cas_unlock_all_restore(cp
, flags
);
4089 netif_device_attach(cp
->dev
);
4092 atomic_sub(pending_all
, &cp
->reset_task_pending_all
);
4093 atomic_sub(pending_spare
, &cp
->reset_task_pending_spare
);
4094 atomic_sub(pending_mtu
, &cp
->reset_task_pending_mtu
);
4095 atomic_dec(&cp
->reset_task_pending
);
4097 atomic_set(&cp
->reset_task_pending
, 0);
4101 static void cas_link_timer(unsigned long data
)
4103 struct cas
*cp
= (struct cas
*) data
;
4104 int mask
, pending
= 0, reset
= 0;
4105 unsigned long flags
;
4107 if (link_transition_timeout
!= 0 &&
4108 cp
->link_transition_jiffies_valid
&&
4109 ((jiffies
- cp
->link_transition_jiffies
) >
4110 (link_transition_timeout
))) {
4111 /* One-second counter so link-down workaround doesn't
4112 * cause resets to occur so fast as to fool the switch
4113 * into thinking the link is down.
4115 cp
->link_transition_jiffies_valid
= 0;
4118 if (!cp
->hw_running
)
4121 spin_lock_irqsave(&cp
->lock
, flags
);
4123 cas_entropy_gather(cp
);
4125 /* If the link task is still pending, we just
4126 * reschedule the link timer
4129 if (atomic_read(&cp
->reset_task_pending_all
) ||
4130 atomic_read(&cp
->reset_task_pending_spare
) ||
4131 atomic_read(&cp
->reset_task_pending_mtu
))
4134 if (atomic_read(&cp
->reset_task_pending
))
4138 /* check for rx cleaning */
4139 if ((mask
= (cp
->cas_flags
& CAS_FLAG_RXD_POST_MASK
))) {
4142 for (i
= 0; i
< MAX_RX_DESC_RINGS
; i
++) {
4143 rmask
= CAS_FLAG_RXD_POST(i
);
4144 if ((mask
& rmask
) == 0)
4147 /* post_rxds will do a mod_timer */
4148 if (cas_post_rxds_ringN(cp
, i
, cp
->rx_last
[i
]) < 0) {
4152 cp
->cas_flags
&= ~rmask
;
4156 if (CAS_PHY_MII(cp
->phy_type
)) {
4158 cas_mif_poll(cp
, 0);
4159 bmsr
= cas_phy_read(cp
, MII_BMSR
);
4160 /* WTZ: Solaris driver reads this twice, but that
4161 * may be due to the PCS case and the use of a
4162 * common implementation. Read it twice here to be
4165 bmsr
= cas_phy_read(cp
, MII_BMSR
);
4166 cas_mif_poll(cp
, 1);
4167 readl(cp
->regs
+ REG_MIF_STATUS
); /* avoid dups */
4168 reset
= cas_mii_link_check(cp
, bmsr
);
4170 reset
= cas_pcs_link_check(cp
);
4176 /* check for tx state machine confusion */
4177 if ((readl(cp
->regs
+ REG_MAC_TX_STATUS
) & MAC_TX_FRAME_XMIT
) == 0) {
4178 u32 val
= readl(cp
->regs
+ REG_MAC_STATE_MACHINE
);
4180 int tlm
= CAS_VAL(MAC_SM_TLM
, val
);
4182 if (((tlm
== 0x5) || (tlm
== 0x3)) &&
4183 (CAS_VAL(MAC_SM_ENCAP_SM
, val
) == 0)) {
4184 netif_printk(cp
, tx_err
, KERN_DEBUG
, cp
->dev
,
4185 "tx err: MAC_STATE[%08x]\n", val
);
4190 val
= readl(cp
->regs
+ REG_TX_FIFO_PKT_CNT
);
4191 wptr
= readl(cp
->regs
+ REG_TX_FIFO_WRITE_PTR
);
4192 rptr
= readl(cp
->regs
+ REG_TX_FIFO_READ_PTR
);
4193 if ((val
== 0) && (wptr
!= rptr
)) {
4194 netif_printk(cp
, tx_err
, KERN_DEBUG
, cp
->dev
,
4195 "tx err: TX_FIFO[%08x:%08x:%08x]\n",
4207 atomic_inc(&cp
->reset_task_pending
);
4208 atomic_inc(&cp
->reset_task_pending_all
);
4209 schedule_work(&cp
->reset_task
);
4211 atomic_set(&cp
->reset_task_pending
, CAS_RESET_ALL
);
4212 pr_err("reset called in cas_link_timer\n");
4213 schedule_work(&cp
->reset_task
);
4218 mod_timer(&cp
->link_timer
, jiffies
+ CAS_LINK_TIMEOUT
);
4220 spin_unlock_irqrestore(&cp
->lock
, flags
);
4223 /* tiny buffers are used to avoid target abort issues with
4226 static void cas_tx_tiny_free(struct cas
*cp
)
4228 struct pci_dev
*pdev
= cp
->pdev
;
4231 for (i
= 0; i
< N_TX_RINGS
; i
++) {
4232 if (!cp
->tx_tiny_bufs
[i
])
4235 pci_free_consistent(pdev
, TX_TINY_BUF_BLOCK
,
4236 cp
->tx_tiny_bufs
[i
],
4237 cp
->tx_tiny_dvma
[i
]);
4238 cp
->tx_tiny_bufs
[i
] = NULL
;
4242 static int cas_tx_tiny_alloc(struct cas
*cp
)
4244 struct pci_dev
*pdev
= cp
->pdev
;
4247 for (i
= 0; i
< N_TX_RINGS
; i
++) {
4248 cp
->tx_tiny_bufs
[i
] =
4249 pci_alloc_consistent(pdev
, TX_TINY_BUF_BLOCK
,
4250 &cp
->tx_tiny_dvma
[i
]);
4251 if (!cp
->tx_tiny_bufs
[i
]) {
4252 cas_tx_tiny_free(cp
);
4260 static int cas_open(struct net_device
*dev
)
4262 struct cas
*cp
= netdev_priv(dev
);
4264 unsigned long flags
;
4266 mutex_lock(&cp
->pm_mutex
);
4268 hw_was_up
= cp
->hw_running
;
4270 /* The power-management mutex protects the hw_running
4271 * etc. state so it is safe to do this bit without cp->lock
4273 if (!cp
->hw_running
) {
4274 /* Reset the chip */
4275 cas_lock_all_save(cp
, flags
);
4276 /* We set the second arg to cas_reset to zero
4277 * because cas_init_hw below will have its second
4278 * argument set to non-zero, which will force
4279 * autonegotiation to start.
4283 cas_unlock_all_restore(cp
, flags
);
4287 if (cas_tx_tiny_alloc(cp
) < 0)
4290 /* alloc rx descriptors */
4291 if (cas_alloc_rxds(cp
) < 0)
4294 /* allocate spares */
4296 cas_spare_recover(cp
, GFP_KERNEL
);
4298 /* We can now request the interrupt as we know it's masked
4299 * on the controller. cassini+ has up to 4 interrupts
4300 * that can be used, but you need to do explicit pci interrupt
4301 * mapping to expose them
4303 if (request_irq(cp
->pdev
->irq
, cas_interrupt
,
4304 IRQF_SHARED
, dev
->name
, (void *) dev
)) {
4305 netdev_err(cp
->dev
, "failed to request irq !\n");
4311 napi_enable(&cp
->napi
);
4314 cas_lock_all_save(cp
, flags
);
4315 cas_clean_rings(cp
);
4316 cas_init_hw(cp
, !hw_was_up
);
4318 cas_unlock_all_restore(cp
, flags
);
4320 netif_start_queue(dev
);
4321 mutex_unlock(&cp
->pm_mutex
);
4328 cas_tx_tiny_free(cp
);
4330 mutex_unlock(&cp
->pm_mutex
);
4334 static int cas_close(struct net_device
*dev
)
4336 unsigned long flags
;
4337 struct cas
*cp
= netdev_priv(dev
);
4340 napi_disable(&cp
->napi
);
4342 /* Make sure we don't get distracted by suspend/resume */
4343 mutex_lock(&cp
->pm_mutex
);
4345 netif_stop_queue(dev
);
4347 /* Stop traffic, mark us closed */
4348 cas_lock_all_save(cp
, flags
);
4352 cas_begin_auto_negotiation(cp
, NULL
);
4353 cas_clean_rings(cp
);
4354 cas_unlock_all_restore(cp
, flags
);
4356 free_irq(cp
->pdev
->irq
, (void *) dev
);
4359 cas_tx_tiny_free(cp
);
4360 mutex_unlock(&cp
->pm_mutex
);
4365 const char name
[ETH_GSTRING_LEN
];
4366 } ethtool_cassini_statnames
[] = {
4373 {"rx_frame_errors"},
4374 {"rx_length_errors"},
4377 {"tx_aborted_errors"},
4384 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4387 const int offsets
; /* neg. values for 2nd arg to cas_read_phy */
4388 } ethtool_register_table
[] = {
4403 {REG_PCS_MII_STATUS
},
4404 {REG_PCS_STATE_MACHINE
},
4405 {REG_MAC_COLL_EXCESS
},
4408 #define CAS_REG_LEN ARRAY_SIZE(ethtool_register_table)
4409 #define CAS_MAX_REGS (sizeof (u32)*CAS_REG_LEN)
4411 static void cas_read_regs(struct cas
*cp
, u8
*ptr
, int len
)
4415 unsigned long flags
;
4417 spin_lock_irqsave(&cp
->lock
, flags
);
4418 for (i
= 0, p
= ptr
; i
< len
; i
++, p
+= sizeof(u32
)) {
4421 if (ethtool_register_table
[i
].offsets
< 0) {
4422 hval
= cas_phy_read(cp
,
4423 -ethtool_register_table
[i
].offsets
);
4426 val
= readl(cp
->regs
+ethtool_register_table
[i
].offsets
);
4428 memcpy(p
, (u8
*)&val
, sizeof(u32
));
4430 spin_unlock_irqrestore(&cp
->lock
, flags
);
4433 static struct net_device_stats
*cas_get_stats(struct net_device
*dev
)
4435 struct cas
*cp
= netdev_priv(dev
);
4436 struct net_device_stats
*stats
= cp
->net_stats
;
4437 unsigned long flags
;
4441 /* we collate all of the stats into net_stats[N_TX_RING] */
4442 if (!cp
->hw_running
)
4443 return stats
+ N_TX_RINGS
;
4445 /* collect outstanding stats */
4446 /* WTZ: the Cassini spec gives these as 16 bit counters but
4447 * stored in 32-bit words. Added a mask of 0xffff to be safe,
4448 * in case the chip somehow puts any garbage in the other bits.
4449 * Also, counter usage didn't seem to mach what Adrian did
4450 * in the parts of the code that set these quantities. Made
4453 spin_lock_irqsave(&cp
->stat_lock
[N_TX_RINGS
], flags
);
4454 stats
[N_TX_RINGS
].rx_crc_errors
+=
4455 readl(cp
->regs
+ REG_MAC_FCS_ERR
) & 0xffff;
4456 stats
[N_TX_RINGS
].rx_frame_errors
+=
4457 readl(cp
->regs
+ REG_MAC_ALIGN_ERR
) &0xffff;
4458 stats
[N_TX_RINGS
].rx_length_errors
+=
4459 readl(cp
->regs
+ REG_MAC_LEN_ERR
) & 0xffff;
4461 tmp
= (readl(cp
->regs
+ REG_MAC_COLL_EXCESS
) & 0xffff) +
4462 (readl(cp
->regs
+ REG_MAC_COLL_LATE
) & 0xffff);
4463 stats
[N_TX_RINGS
].tx_aborted_errors
+= tmp
;
4464 stats
[N_TX_RINGS
].collisions
+=
4465 tmp
+ (readl(cp
->regs
+ REG_MAC_COLL_NORMAL
) & 0xffff);
4467 stats
[N_TX_RINGS
].tx_aborted_errors
+=
4468 readl(cp
->regs
+ REG_MAC_COLL_EXCESS
);
4469 stats
[N_TX_RINGS
].collisions
+= readl(cp
->regs
+ REG_MAC_COLL_EXCESS
) +
4470 readl(cp
->regs
+ REG_MAC_COLL_LATE
);
4472 cas_clear_mac_err(cp
);
4474 /* saved bits that are unique to ring 0 */
4475 spin_lock(&cp
->stat_lock
[0]);
4476 stats
[N_TX_RINGS
].collisions
+= stats
[0].collisions
;
4477 stats
[N_TX_RINGS
].rx_over_errors
+= stats
[0].rx_over_errors
;
4478 stats
[N_TX_RINGS
].rx_frame_errors
+= stats
[0].rx_frame_errors
;
4479 stats
[N_TX_RINGS
].rx_fifo_errors
+= stats
[0].rx_fifo_errors
;
4480 stats
[N_TX_RINGS
].tx_aborted_errors
+= stats
[0].tx_aborted_errors
;
4481 stats
[N_TX_RINGS
].tx_fifo_errors
+= stats
[0].tx_fifo_errors
;
4482 spin_unlock(&cp
->stat_lock
[0]);
4484 for (i
= 0; i
< N_TX_RINGS
; i
++) {
4485 spin_lock(&cp
->stat_lock
[i
]);
4486 stats
[N_TX_RINGS
].rx_length_errors
+=
4487 stats
[i
].rx_length_errors
;
4488 stats
[N_TX_RINGS
].rx_crc_errors
+= stats
[i
].rx_crc_errors
;
4489 stats
[N_TX_RINGS
].rx_packets
+= stats
[i
].rx_packets
;
4490 stats
[N_TX_RINGS
].tx_packets
+= stats
[i
].tx_packets
;
4491 stats
[N_TX_RINGS
].rx_bytes
+= stats
[i
].rx_bytes
;
4492 stats
[N_TX_RINGS
].tx_bytes
+= stats
[i
].tx_bytes
;
4493 stats
[N_TX_RINGS
].rx_errors
+= stats
[i
].rx_errors
;
4494 stats
[N_TX_RINGS
].tx_errors
+= stats
[i
].tx_errors
;
4495 stats
[N_TX_RINGS
].rx_dropped
+= stats
[i
].rx_dropped
;
4496 stats
[N_TX_RINGS
].tx_dropped
+= stats
[i
].tx_dropped
;
4497 memset(stats
+ i
, 0, sizeof(struct net_device_stats
));
4498 spin_unlock(&cp
->stat_lock
[i
]);
4500 spin_unlock_irqrestore(&cp
->stat_lock
[N_TX_RINGS
], flags
);
4501 return stats
+ N_TX_RINGS
;
4505 static void cas_set_multicast(struct net_device
*dev
)
4507 struct cas
*cp
= netdev_priv(dev
);
4508 u32 rxcfg
, rxcfg_new
;
4509 unsigned long flags
;
4510 int limit
= STOP_TRIES
;
4512 if (!cp
->hw_running
)
4515 spin_lock_irqsave(&cp
->lock
, flags
);
4516 rxcfg
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
4518 /* disable RX MAC and wait for completion */
4519 writel(rxcfg
& ~MAC_RX_CFG_EN
, cp
->regs
+ REG_MAC_RX_CFG
);
4520 while (readl(cp
->regs
+ REG_MAC_RX_CFG
) & MAC_RX_CFG_EN
) {
4526 /* disable hash filter and wait for completion */
4528 rxcfg
&= ~(MAC_RX_CFG_PROMISC_EN
| MAC_RX_CFG_HASH_FILTER_EN
);
4529 writel(rxcfg
& ~MAC_RX_CFG_EN
, cp
->regs
+ REG_MAC_RX_CFG
);
4530 while (readl(cp
->regs
+ REG_MAC_RX_CFG
) & MAC_RX_CFG_HASH_FILTER_EN
) {
4536 /* program hash filters */
4537 cp
->mac_rx_cfg
= rxcfg_new
= cas_setup_multicast(cp
);
4539 writel(rxcfg
, cp
->regs
+ REG_MAC_RX_CFG
);
4540 spin_unlock_irqrestore(&cp
->lock
, flags
);
4543 static void cas_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
4545 struct cas
*cp
= netdev_priv(dev
);
4546 strncpy(info
->driver
, DRV_MODULE_NAME
, ETHTOOL_BUSINFO_LEN
);
4547 strncpy(info
->version
, DRV_MODULE_VERSION
, ETHTOOL_BUSINFO_LEN
);
4548 info
->fw_version
[0] = '\0';
4549 strncpy(info
->bus_info
, pci_name(cp
->pdev
), ETHTOOL_BUSINFO_LEN
);
4550 info
->regdump_len
= cp
->casreg_len
< CAS_MAX_REGS
?
4551 cp
->casreg_len
: CAS_MAX_REGS
;
4552 info
->n_stats
= CAS_NUM_STAT_KEYS
;
4555 static int cas_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
4557 struct cas
*cp
= netdev_priv(dev
);
4559 int full_duplex
, speed
, pause
;
4560 unsigned long flags
;
4561 enum link_state linkstate
= link_up
;
4563 cmd
->advertising
= 0;
4564 cmd
->supported
= SUPPORTED_Autoneg
;
4565 if (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) {
4566 cmd
->supported
|= SUPPORTED_1000baseT_Full
;
4567 cmd
->advertising
|= ADVERTISED_1000baseT_Full
;
4570 /* Record PHY settings if HW is on. */
4571 spin_lock_irqsave(&cp
->lock
, flags
);
4573 linkstate
= cp
->lstate
;
4574 if (CAS_PHY_MII(cp
->phy_type
)) {
4575 cmd
->port
= PORT_MII
;
4576 cmd
->transceiver
= (cp
->cas_flags
& CAS_FLAG_SATURN
) ?
4577 XCVR_INTERNAL
: XCVR_EXTERNAL
;
4578 cmd
->phy_address
= cp
->phy_addr
;
4579 cmd
->advertising
|= ADVERTISED_TP
| ADVERTISED_MII
|
4580 ADVERTISED_10baseT_Half
|
4581 ADVERTISED_10baseT_Full
|
4582 ADVERTISED_100baseT_Half
|
4583 ADVERTISED_100baseT_Full
;
4586 (SUPPORTED_10baseT_Half
|
4587 SUPPORTED_10baseT_Full
|
4588 SUPPORTED_100baseT_Half
|
4589 SUPPORTED_100baseT_Full
|
4590 SUPPORTED_TP
| SUPPORTED_MII
);
4592 if (cp
->hw_running
) {
4593 cas_mif_poll(cp
, 0);
4594 bmcr
= cas_phy_read(cp
, MII_BMCR
);
4595 cas_read_mii_link_mode(cp
, &full_duplex
,
4597 cas_mif_poll(cp
, 1);
4601 cmd
->port
= PORT_FIBRE
;
4602 cmd
->transceiver
= XCVR_INTERNAL
;
4603 cmd
->phy_address
= 0;
4604 cmd
->supported
|= SUPPORTED_FIBRE
;
4605 cmd
->advertising
|= ADVERTISED_FIBRE
;
4607 if (cp
->hw_running
) {
4608 /* pcs uses the same bits as mii */
4609 bmcr
= readl(cp
->regs
+ REG_PCS_MII_CTRL
);
4610 cas_read_pcs_link_mode(cp
, &full_duplex
,
4614 spin_unlock_irqrestore(&cp
->lock
, flags
);
4616 if (bmcr
& BMCR_ANENABLE
) {
4617 cmd
->advertising
|= ADVERTISED_Autoneg
;
4618 cmd
->autoneg
= AUTONEG_ENABLE
;
4619 cmd
->speed
= ((speed
== 10) ?
4622 SPEED_1000
: SPEED_100
));
4623 cmd
->duplex
= full_duplex
? DUPLEX_FULL
: DUPLEX_HALF
;
4625 cmd
->autoneg
= AUTONEG_DISABLE
;
4627 (bmcr
& CAS_BMCR_SPEED1000
) ?
4629 ((bmcr
& BMCR_SPEED100
) ? SPEED_100
:
4632 (bmcr
& BMCR_FULLDPLX
) ?
4633 DUPLEX_FULL
: DUPLEX_HALF
;
4635 if (linkstate
!= link_up
) {
4636 /* Force these to "unknown" if the link is not up and
4637 * autonogotiation in enabled. We can set the link
4638 * speed to 0, but not cmd->duplex,
4639 * because its legal values are 0 and 1. Ethtool will
4640 * print the value reported in parentheses after the
4641 * word "Unknown" for unrecognized values.
4643 * If in forced mode, we report the speed and duplex
4644 * settings that we configured.
4646 if (cp
->link_cntl
& BMCR_ANENABLE
) {
4650 cmd
->speed
= SPEED_10
;
4651 if (cp
->link_cntl
& BMCR_SPEED100
) {
4652 cmd
->speed
= SPEED_100
;
4653 } else if (cp
->link_cntl
& CAS_BMCR_SPEED1000
) {
4654 cmd
->speed
= SPEED_1000
;
4656 cmd
->duplex
= (cp
->link_cntl
& BMCR_FULLDPLX
)?
4657 DUPLEX_FULL
: DUPLEX_HALF
;
4663 static int cas_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
4665 struct cas
*cp
= netdev_priv(dev
);
4666 unsigned long flags
;
4668 /* Verify the settings we care about. */
4669 if (cmd
->autoneg
!= AUTONEG_ENABLE
&&
4670 cmd
->autoneg
!= AUTONEG_DISABLE
)
4673 if (cmd
->autoneg
== AUTONEG_DISABLE
&&
4674 ((cmd
->speed
!= SPEED_1000
&&
4675 cmd
->speed
!= SPEED_100
&&
4676 cmd
->speed
!= SPEED_10
) ||
4677 (cmd
->duplex
!= DUPLEX_HALF
&&
4678 cmd
->duplex
!= DUPLEX_FULL
)))
4681 /* Apply settings and restart link process. */
4682 spin_lock_irqsave(&cp
->lock
, flags
);
4683 cas_begin_auto_negotiation(cp
, cmd
);
4684 spin_unlock_irqrestore(&cp
->lock
, flags
);
4688 static int cas_nway_reset(struct net_device
*dev
)
4690 struct cas
*cp
= netdev_priv(dev
);
4691 unsigned long flags
;
4693 if ((cp
->link_cntl
& BMCR_ANENABLE
) == 0)
4696 /* Restart link process. */
4697 spin_lock_irqsave(&cp
->lock
, flags
);
4698 cas_begin_auto_negotiation(cp
, NULL
);
4699 spin_unlock_irqrestore(&cp
->lock
, flags
);
4704 static u32
cas_get_link(struct net_device
*dev
)
4706 struct cas
*cp
= netdev_priv(dev
);
4707 return cp
->lstate
== link_up
;
4710 static u32
cas_get_msglevel(struct net_device
*dev
)
4712 struct cas
*cp
= netdev_priv(dev
);
4713 return cp
->msg_enable
;
4716 static void cas_set_msglevel(struct net_device
*dev
, u32 value
)
4718 struct cas
*cp
= netdev_priv(dev
);
4719 cp
->msg_enable
= value
;
4722 static int cas_get_regs_len(struct net_device
*dev
)
4724 struct cas
*cp
= netdev_priv(dev
);
4725 return cp
->casreg_len
< CAS_MAX_REGS
? cp
->casreg_len
: CAS_MAX_REGS
;
4728 static void cas_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
,
4731 struct cas
*cp
= netdev_priv(dev
);
4733 /* cas_read_regs handles locks (cp->lock). */
4734 cas_read_regs(cp
, p
, regs
->len
/ sizeof(u32
));
4737 static int cas_get_sset_count(struct net_device
*dev
, int sset
)
4741 return CAS_NUM_STAT_KEYS
;
4747 static void cas_get_strings(struct net_device
*dev
, u32 stringset
, u8
*data
)
4749 memcpy(data
, ðtool_cassini_statnames
,
4750 CAS_NUM_STAT_KEYS
* ETH_GSTRING_LEN
);
4753 static void cas_get_ethtool_stats(struct net_device
*dev
,
4754 struct ethtool_stats
*estats
, u64
*data
)
4756 struct cas
*cp
= netdev_priv(dev
);
4757 struct net_device_stats
*stats
= cas_get_stats(cp
->dev
);
4759 data
[i
++] = stats
->collisions
;
4760 data
[i
++] = stats
->rx_bytes
;
4761 data
[i
++] = stats
->rx_crc_errors
;
4762 data
[i
++] = stats
->rx_dropped
;
4763 data
[i
++] = stats
->rx_errors
;
4764 data
[i
++] = stats
->rx_fifo_errors
;
4765 data
[i
++] = stats
->rx_frame_errors
;
4766 data
[i
++] = stats
->rx_length_errors
;
4767 data
[i
++] = stats
->rx_over_errors
;
4768 data
[i
++] = stats
->rx_packets
;
4769 data
[i
++] = stats
->tx_aborted_errors
;
4770 data
[i
++] = stats
->tx_bytes
;
4771 data
[i
++] = stats
->tx_dropped
;
4772 data
[i
++] = stats
->tx_errors
;
4773 data
[i
++] = stats
->tx_fifo_errors
;
4774 data
[i
++] = stats
->tx_packets
;
4775 BUG_ON(i
!= CAS_NUM_STAT_KEYS
);
4778 static const struct ethtool_ops cas_ethtool_ops
= {
4779 .get_drvinfo
= cas_get_drvinfo
,
4780 .get_settings
= cas_get_settings
,
4781 .set_settings
= cas_set_settings
,
4782 .nway_reset
= cas_nway_reset
,
4783 .get_link
= cas_get_link
,
4784 .get_msglevel
= cas_get_msglevel
,
4785 .set_msglevel
= cas_set_msglevel
,
4786 .get_regs_len
= cas_get_regs_len
,
4787 .get_regs
= cas_get_regs
,
4788 .get_sset_count
= cas_get_sset_count
,
4789 .get_strings
= cas_get_strings
,
4790 .get_ethtool_stats
= cas_get_ethtool_stats
,
4793 static int cas_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
4795 struct cas
*cp
= netdev_priv(dev
);
4796 struct mii_ioctl_data
*data
= if_mii(ifr
);
4797 unsigned long flags
;
4798 int rc
= -EOPNOTSUPP
;
4800 /* Hold the PM mutex while doing ioctl's or we may collide
4801 * with open/close and power management and oops.
4803 mutex_lock(&cp
->pm_mutex
);
4805 case SIOCGMIIPHY
: /* Get address of MII PHY in use. */
4806 data
->phy_id
= cp
->phy_addr
;
4807 /* Fallthrough... */
4809 case SIOCGMIIREG
: /* Read MII PHY register. */
4810 spin_lock_irqsave(&cp
->lock
, flags
);
4811 cas_mif_poll(cp
, 0);
4812 data
->val_out
= cas_phy_read(cp
, data
->reg_num
& 0x1f);
4813 cas_mif_poll(cp
, 1);
4814 spin_unlock_irqrestore(&cp
->lock
, flags
);
4818 case SIOCSMIIREG
: /* Write MII PHY register. */
4819 spin_lock_irqsave(&cp
->lock
, flags
);
4820 cas_mif_poll(cp
, 0);
4821 rc
= cas_phy_write(cp
, data
->reg_num
& 0x1f, data
->val_in
);
4822 cas_mif_poll(cp
, 1);
4823 spin_unlock_irqrestore(&cp
->lock
, flags
);
4829 mutex_unlock(&cp
->pm_mutex
);
4833 /* When this chip sits underneath an Intel 31154 bridge, it is the
4834 * only subordinate device and we can tweak the bridge settings to
4835 * reflect that fact.
4837 static void __devinit
cas_program_bridge(struct pci_dev
*cas_pdev
)
4839 struct pci_dev
*pdev
= cas_pdev
->bus
->self
;
4845 if (pdev
->vendor
!= 0x8086 || pdev
->device
!= 0x537c)
4848 /* Clear bit 10 (Bus Parking Control) in the Secondary
4849 * Arbiter Control/Status Register which lives at offset
4850 * 0x41. Using a 32-bit word read/modify/write at 0x40
4851 * is much simpler so that's how we do this.
4853 pci_read_config_dword(pdev
, 0x40, &val
);
4855 pci_write_config_dword(pdev
, 0x40, val
);
4857 /* Max out the Multi-Transaction Timer settings since
4858 * Cassini is the only device present.
4860 * The register is 16-bit and lives at 0x50. When the
4861 * settings are enabled, it extends the GRANT# signal
4862 * for a requestor after a transaction is complete. This
4863 * allows the next request to run without first needing
4864 * to negotiate the GRANT# signal back.
4866 * Bits 12:10 define the grant duration:
4874 * All other values are illegal.
4876 * Bits 09:00 define which REQ/GNT signal pairs get the
4877 * GRANT# signal treatment. We set them all.
4879 pci_write_config_word(pdev
, 0x50, (5 << 10) | 0x3ff);
4881 /* The Read Prefecth Policy register is 16-bit and sits at
4882 * offset 0x52. It enables a "smart" pre-fetch policy. We
4883 * enable it and max out all of the settings since only one
4884 * device is sitting underneath and thus bandwidth sharing is
4887 * The register has several 3 bit fields, which indicates a
4888 * multiplier applied to the base amount of prefetching the
4889 * chip would do. These fields are at:
4891 * 15:13 --- ReRead Primary Bus
4892 * 12:10 --- FirstRead Primary Bus
4893 * 09:07 --- ReRead Secondary Bus
4894 * 06:04 --- FirstRead Secondary Bus
4896 * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4897 * get enabled on. Bit 3 is a grouped enabler which controls
4898 * all of the REQ/GNT pairs from [8:3]. Bits 2 to 0 control
4899 * the individual REQ/GNT pairs [2:0].
4901 pci_write_config_word(pdev
, 0x52,
4908 /* Force cacheline size to 0x8 */
4909 pci_write_config_byte(pdev
, PCI_CACHE_LINE_SIZE
, 0x08);
4911 /* Force latency timer to maximum setting so Cassini can
4912 * sit on the bus as long as it likes.
4914 pci_write_config_byte(pdev
, PCI_LATENCY_TIMER
, 0xff);
4917 static const struct net_device_ops cas_netdev_ops
= {
4918 .ndo_open
= cas_open
,
4919 .ndo_stop
= cas_close
,
4920 .ndo_start_xmit
= cas_start_xmit
,
4921 .ndo_get_stats
= cas_get_stats
,
4922 .ndo_set_multicast_list
= cas_set_multicast
,
4923 .ndo_do_ioctl
= cas_ioctl
,
4924 .ndo_tx_timeout
= cas_tx_timeout
,
4925 .ndo_change_mtu
= cas_change_mtu
,
4926 .ndo_set_mac_address
= eth_mac_addr
,
4927 .ndo_validate_addr
= eth_validate_addr
,
4928 #ifdef CONFIG_NET_POLL_CONTROLLER
4929 .ndo_poll_controller
= cas_netpoll
,
4933 static int __devinit
cas_init_one(struct pci_dev
*pdev
,
4934 const struct pci_device_id
*ent
)
4936 static int cas_version_printed
= 0;
4937 unsigned long casreg_len
;
4938 struct net_device
*dev
;
4940 int i
, err
, pci_using_dac
;
4942 u8 orig_cacheline_size
= 0, cas_cacheline_size
= 0;
4944 if (cas_version_printed
++ == 0)
4945 pr_info("%s", version
);
4947 err
= pci_enable_device(pdev
);
4949 dev_err(&pdev
->dev
, "Cannot enable PCI device, aborting\n");
4953 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
4954 dev_err(&pdev
->dev
, "Cannot find proper PCI device "
4955 "base address, aborting\n");
4957 goto err_out_disable_pdev
;
4960 dev
= alloc_etherdev(sizeof(*cp
));
4962 dev_err(&pdev
->dev
, "Etherdev alloc failed, aborting\n");
4964 goto err_out_disable_pdev
;
4966 SET_NETDEV_DEV(dev
, &pdev
->dev
);
4968 err
= pci_request_regions(pdev
, dev
->name
);
4970 dev_err(&pdev
->dev
, "Cannot obtain PCI resources, aborting\n");
4971 goto err_out_free_netdev
;
4973 pci_set_master(pdev
);
4975 /* we must always turn on parity response or else parity
4976 * doesn't get generated properly. disable SERR/PERR as well.
4977 * in addition, we want to turn MWI on.
4979 pci_read_config_word(pdev
, PCI_COMMAND
, &pci_cmd
);
4980 pci_cmd
&= ~PCI_COMMAND_SERR
;
4981 pci_cmd
|= PCI_COMMAND_PARITY
;
4982 pci_write_config_word(pdev
, PCI_COMMAND
, pci_cmd
);
4983 if (pci_try_set_mwi(pdev
))
4984 pr_warning("Could not enable MWI for %s\n", pci_name(pdev
));
4986 cas_program_bridge(pdev
);
4989 * On some architectures, the default cache line size set
4990 * by pci_try_set_mwi reduces perforamnce. We have to increase
4991 * it for this case. To start, we'll print some configuration
4995 pci_read_config_byte(pdev
, PCI_CACHE_LINE_SIZE
,
4996 &orig_cacheline_size
);
4997 if (orig_cacheline_size
< CAS_PREF_CACHELINE_SIZE
) {
4998 cas_cacheline_size
=
4999 (CAS_PREF_CACHELINE_SIZE
< SMP_CACHE_BYTES
) ?
5000 CAS_PREF_CACHELINE_SIZE
: SMP_CACHE_BYTES
;
5001 if (pci_write_config_byte(pdev
,
5002 PCI_CACHE_LINE_SIZE
,
5003 cas_cacheline_size
)) {
5004 dev_err(&pdev
->dev
, "Could not set PCI cache "
5006 goto err_write_cacheline
;
5012 /* Configure DMA attributes. */
5013 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
5015 err
= pci_set_consistent_dma_mask(pdev
,
5018 dev_err(&pdev
->dev
, "Unable to obtain 64-bit DMA "
5019 "for consistent allocations\n");
5020 goto err_out_free_res
;
5024 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
5026 dev_err(&pdev
->dev
, "No usable DMA configuration, "
5028 goto err_out_free_res
;
5033 casreg_len
= pci_resource_len(pdev
, 0);
5035 cp
= netdev_priv(dev
);
5038 /* A value of 0 indicates we never explicitly set it */
5039 cp
->orig_cacheline_size
= cas_cacheline_size
? orig_cacheline_size
: 0;
5042 cp
->msg_enable
= (cassini_debug
< 0) ? CAS_DEF_MSG_ENABLE
:
5045 cp
->link_transition
= LINK_TRANSITION_UNKNOWN
;
5046 cp
->link_transition_jiffies_valid
= 0;
5048 spin_lock_init(&cp
->lock
);
5049 spin_lock_init(&cp
->rx_inuse_lock
);
5050 spin_lock_init(&cp
->rx_spare_lock
);
5051 for (i
= 0; i
< N_TX_RINGS
; i
++) {
5052 spin_lock_init(&cp
->stat_lock
[i
]);
5053 spin_lock_init(&cp
->tx_lock
[i
]);
5055 spin_lock_init(&cp
->stat_lock
[N_TX_RINGS
]);
5056 mutex_init(&cp
->pm_mutex
);
5058 init_timer(&cp
->link_timer
);
5059 cp
->link_timer
.function
= cas_link_timer
;
5060 cp
->link_timer
.data
= (unsigned long) cp
;
5063 /* Just in case the implementation of atomic operations
5064 * change so that an explicit initialization is necessary.
5066 atomic_set(&cp
->reset_task_pending
, 0);
5067 atomic_set(&cp
->reset_task_pending_all
, 0);
5068 atomic_set(&cp
->reset_task_pending_spare
, 0);
5069 atomic_set(&cp
->reset_task_pending_mtu
, 0);
5071 INIT_WORK(&cp
->reset_task
, cas_reset_task
);
5073 /* Default link parameters */
5074 if (link_mode
>= 0 && link_mode
< 6)
5075 cp
->link_cntl
= link_modes
[link_mode
];
5077 cp
->link_cntl
= BMCR_ANENABLE
;
5078 cp
->lstate
= link_down
;
5079 cp
->link_transition
= LINK_TRANSITION_LINK_DOWN
;
5080 netif_carrier_off(cp
->dev
);
5081 cp
->timer_ticks
= 0;
5083 /* give us access to cassini registers */
5084 cp
->regs
= pci_iomap(pdev
, 0, casreg_len
);
5086 dev_err(&pdev
->dev
, "Cannot map device registers, aborting\n");
5087 goto err_out_free_res
;
5089 cp
->casreg_len
= casreg_len
;
5091 pci_save_state(pdev
);
5092 cas_check_pci_invariants(cp
);
5095 if (cas_check_invariants(cp
))
5096 goto err_out_iounmap
;
5097 if (cp
->cas_flags
& CAS_FLAG_SATURN
)
5098 if (cas_saturn_firmware_init(cp
))
5099 goto err_out_iounmap
;
5101 cp
->init_block
= (struct cas_init_block
*)
5102 pci_alloc_consistent(pdev
, sizeof(struct cas_init_block
),
5104 if (!cp
->init_block
) {
5105 dev_err(&pdev
->dev
, "Cannot allocate init block, aborting\n");
5106 goto err_out_iounmap
;
5109 for (i
= 0; i
< N_TX_RINGS
; i
++)
5110 cp
->init_txds
[i
] = cp
->init_block
->txds
[i
];
5112 for (i
= 0; i
< N_RX_DESC_RINGS
; i
++)
5113 cp
->init_rxds
[i
] = cp
->init_block
->rxds
[i
];
5115 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++)
5116 cp
->init_rxcs
[i
] = cp
->init_block
->rxcs
[i
];
5118 for (i
= 0; i
< N_RX_FLOWS
; i
++)
5119 skb_queue_head_init(&cp
->rx_flows
[i
]);
5121 dev
->netdev_ops
= &cas_netdev_ops
;
5122 dev
->ethtool_ops
= &cas_ethtool_ops
;
5123 dev
->watchdog_timeo
= CAS_TX_TIMEOUT
;
5126 netif_napi_add(dev
, &cp
->napi
, cas_poll
, 64);
5128 dev
->irq
= pdev
->irq
;
5131 /* Cassini features. */
5132 if ((cp
->cas_flags
& CAS_FLAG_NO_HW_CSUM
) == 0)
5133 dev
->features
|= NETIF_F_HW_CSUM
| NETIF_F_SG
;
5136 dev
->features
|= NETIF_F_HIGHDMA
;
5138 if (register_netdev(dev
)) {
5139 dev_err(&pdev
->dev
, "Cannot register net device, aborting\n");
5140 goto err_out_free_consistent
;
5143 i
= readl(cp
->regs
+ REG_BIM_CFG
);
5144 netdev_info(dev
, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n",
5145 (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) ? "+" : "",
5146 (i
& BIM_CFG_32BIT
) ? "32" : "64",
5147 (i
& BIM_CFG_66MHZ
) ? "66" : "33",
5148 (cp
->phy_type
== CAS_PHY_SERDES
) ? "Fi" : "Cu", pdev
->irq
,
5151 pci_set_drvdata(pdev
, dev
);
5153 cas_entropy_reset(cp
);
5155 cas_begin_auto_negotiation(cp
, NULL
);
5158 err_out_free_consistent
:
5159 pci_free_consistent(pdev
, sizeof(struct cas_init_block
),
5160 cp
->init_block
, cp
->block_dvma
);
5163 mutex_lock(&cp
->pm_mutex
);
5166 mutex_unlock(&cp
->pm_mutex
);
5168 pci_iounmap(pdev
, cp
->regs
);
5172 pci_release_regions(pdev
);
5174 err_write_cacheline
:
5175 /* Try to restore it in case the error occured after we
5178 pci_write_config_byte(pdev
, PCI_CACHE_LINE_SIZE
, orig_cacheline_size
);
5180 err_out_free_netdev
:
5183 err_out_disable_pdev
:
5184 pci_disable_device(pdev
);
5185 pci_set_drvdata(pdev
, NULL
);
5189 static void __devexit
cas_remove_one(struct pci_dev
*pdev
)
5191 struct net_device
*dev
= pci_get_drvdata(pdev
);
5196 cp
= netdev_priv(dev
);
5197 unregister_netdev(dev
);
5202 mutex_lock(&cp
->pm_mutex
);
5203 flush_scheduled_work();
5206 mutex_unlock(&cp
->pm_mutex
);
5209 if (cp
->orig_cacheline_size
) {
5210 /* Restore the cache line size if we had modified
5213 pci_write_config_byte(pdev
, PCI_CACHE_LINE_SIZE
,
5214 cp
->orig_cacheline_size
);
5217 pci_free_consistent(pdev
, sizeof(struct cas_init_block
),
5218 cp
->init_block
, cp
->block_dvma
);
5219 pci_iounmap(pdev
, cp
->regs
);
5221 pci_release_regions(pdev
);
5222 pci_disable_device(pdev
);
5223 pci_set_drvdata(pdev
, NULL
);
5227 static int cas_suspend(struct pci_dev
*pdev
, pm_message_t state
)
5229 struct net_device
*dev
= pci_get_drvdata(pdev
);
5230 struct cas
*cp
= netdev_priv(dev
);
5231 unsigned long flags
;
5233 mutex_lock(&cp
->pm_mutex
);
5235 /* If the driver is opened, we stop the DMA */
5237 netif_device_detach(dev
);
5239 cas_lock_all_save(cp
, flags
);
5241 /* We can set the second arg of cas_reset to 0
5242 * because on resume, we'll call cas_init_hw with
5243 * its second arg set so that autonegotiation is
5247 cas_clean_rings(cp
);
5248 cas_unlock_all_restore(cp
, flags
);
5253 mutex_unlock(&cp
->pm_mutex
);
5258 static int cas_resume(struct pci_dev
*pdev
)
5260 struct net_device
*dev
= pci_get_drvdata(pdev
);
5261 struct cas
*cp
= netdev_priv(dev
);
5263 netdev_info(dev
, "resuming\n");
5265 mutex_lock(&cp
->pm_mutex
);
5268 unsigned long flags
;
5269 cas_lock_all_save(cp
, flags
);
5272 cas_clean_rings(cp
);
5274 cas_unlock_all_restore(cp
, flags
);
5276 netif_device_attach(dev
);
5278 mutex_unlock(&cp
->pm_mutex
);
5281 #endif /* CONFIG_PM */
5283 static struct pci_driver cas_driver
= {
5284 .name
= DRV_MODULE_NAME
,
5285 .id_table
= cas_pci_tbl
,
5286 .probe
= cas_init_one
,
5287 .remove
= __devexit_p(cas_remove_one
),
5289 .suspend
= cas_suspend
,
5290 .resume
= cas_resume
5294 static int __init
cas_init(void)
5296 if (linkdown_timeout
> 0)
5297 link_transition_timeout
= linkdown_timeout
* HZ
;
5299 link_transition_timeout
= 0;
5301 return pci_register_driver(&cas_driver
);
5304 static void __exit
cas_cleanup(void)
5306 pci_unregister_driver(&cas_driver
);
5309 module_init(cas_init
);
5310 module_exit(cas_cleanup
);