1 /* bnx2.c: Broadcom NX2 network driver.
3 * Copyright (c) 2004-2010 Broadcom Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
9 * Written by: Michael Chan (mchan@broadcom.com)
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
17 #include <linux/kernel.h>
18 #include <linux/timer.h>
19 #include <linux/errno.h>
20 #include <linux/ioport.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/interrupt.h>
24 #include <linux/pci.h>
25 #include <linux/init.h>
26 #include <linux/netdevice.h>
27 #include <linux/etherdevice.h>
28 #include <linux/skbuff.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/bitops.h>
33 #include <linux/delay.h>
34 #include <asm/byteorder.h>
36 #include <linux/time.h>
37 #include <linux/ethtool.h>
38 #include <linux/mii.h>
39 #include <linux/if_vlan.h>
40 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
45 #include <net/checksum.h>
46 #include <linux/workqueue.h>
47 #include <linux/crc32.h>
48 #include <linux/prefetch.h>
49 #include <linux/cache.h>
50 #include <linux/firmware.h>
51 #include <linux/log2.h>
53 #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
60 #define DRV_MODULE_NAME "bnx2"
61 #define DRV_MODULE_VERSION "2.0.15"
62 #define DRV_MODULE_RELDATE "May 4, 2010"
63 #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-5.0.0.j6.fw"
64 #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-5.0.0.j3.fw"
65 #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-5.0.0.j15.fw"
66 #define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-5.0.0.j10.fw"
67 #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-5.0.0.j10.fw"
69 #define RUN_AT(x) (jiffies + (x))
71 /* Time in jiffies before concluding the transmitter is hung. */
72 #define TX_TIMEOUT (5*HZ)
74 static char version
[] __devinitdata
=
75 "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME
" v" DRV_MODULE_VERSION
" (" DRV_MODULE_RELDATE
")\n";
77 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
78 MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
79 MODULE_LICENSE("GPL");
80 MODULE_VERSION(DRV_MODULE_VERSION
);
81 MODULE_FIRMWARE(FW_MIPS_FILE_06
);
82 MODULE_FIRMWARE(FW_RV2P_FILE_06
);
83 MODULE_FIRMWARE(FW_MIPS_FILE_09
);
84 MODULE_FIRMWARE(FW_RV2P_FILE_09
);
85 MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax
);
87 static int disable_msi
= 0;
89 module_param(disable_msi
, int, 0);
90 MODULE_PARM_DESC(disable_msi
, "Disable Message Signaled Interrupt (MSI)");
106 /* indexed by board_t, above */
109 } board_info
[] __devinitdata
= {
110 { "Broadcom NetXtreme II BCM5706 1000Base-T" },
111 { "HP NC370T Multifunction Gigabit Server Adapter" },
112 { "HP NC370i Multifunction Gigabit Server Adapter" },
113 { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
114 { "HP NC370F Multifunction Gigabit Server Adapter" },
115 { "Broadcom NetXtreme II BCM5708 1000Base-T" },
116 { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
117 { "Broadcom NetXtreme II BCM5709 1000Base-T" },
118 { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
119 { "Broadcom NetXtreme II BCM5716 1000Base-T" },
120 { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
123 static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl
) = {
124 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
125 PCI_VENDOR_ID_HP
, 0x3101, 0, 0, NC370T
},
126 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
127 PCI_VENDOR_ID_HP
, 0x3106, 0, 0, NC370I
},
128 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
129 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706
},
130 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5708
,
131 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5708
},
132 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
133 PCI_VENDOR_ID_HP
, 0x3102, 0, 0, NC370F
},
134 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
135 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706S
},
136 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5708S
,
137 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5708S
},
138 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5709
,
139 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5709
},
140 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5709S
,
141 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5709S
},
142 { PCI_VENDOR_ID_BROADCOM
, 0x163b,
143 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5716
},
144 { PCI_VENDOR_ID_BROADCOM
, 0x163c,
145 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5716S
},
149 static const struct flash_spec flash_table
[] =
151 #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
152 #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
154 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
155 BUFFERED_FLAGS
, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
156 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
158 /* Expansion entry 0001 */
159 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
160 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
161 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
163 /* Saifun SA25F010 (non-buffered flash) */
164 /* strap, cfg1, & write1 need updates */
165 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
166 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
167 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*2,
168 "Non-buffered flash (128kB)"},
169 /* Saifun SA25F020 (non-buffered flash) */
170 /* strap, cfg1, & write1 need updates */
171 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
172 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
173 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*4,
174 "Non-buffered flash (256kB)"},
175 /* Expansion entry 0100 */
176 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
177 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
178 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
180 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
181 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
182 NONBUFFERED_FLAGS
, ST_MICRO_FLASH_PAGE_BITS
, ST_MICRO_FLASH_PAGE_SIZE
,
183 ST_MICRO_FLASH_BYTE_ADDR_MASK
, ST_MICRO_FLASH_BASE_TOTAL_SIZE
*2,
184 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
185 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
186 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
187 NONBUFFERED_FLAGS
, ST_MICRO_FLASH_PAGE_BITS
, ST_MICRO_FLASH_PAGE_SIZE
,
188 ST_MICRO_FLASH_BYTE_ADDR_MASK
, ST_MICRO_FLASH_BASE_TOTAL_SIZE
*4,
189 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
190 /* Saifun SA25F005 (non-buffered flash) */
191 /* strap, cfg1, & write1 need updates */
192 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
193 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
194 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
,
195 "Non-buffered flash (64kB)"},
197 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
198 BUFFERED_FLAGS
, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
199 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
201 /* Expansion entry 1001 */
202 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
203 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
204 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
206 /* Expansion entry 1010 */
207 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
208 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
209 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
211 /* ATMEL AT45DB011B (buffered flash) */
212 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
213 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
214 BUFFERED_FLASH_BYTE_ADDR_MASK
, BUFFERED_FLASH_TOTAL_SIZE
,
215 "Buffered flash (128kB)"},
216 /* Expansion entry 1100 */
217 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
218 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
219 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
221 /* Expansion entry 1101 */
222 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
223 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
224 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
226 /* Ateml Expansion entry 1110 */
227 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
228 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
229 BUFFERED_FLASH_BYTE_ADDR_MASK
, 0,
230 "Entry 1110 (Atmel)"},
231 /* ATMEL AT45DB021B (buffered flash) */
232 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
233 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
234 BUFFERED_FLASH_BYTE_ADDR_MASK
, BUFFERED_FLASH_TOTAL_SIZE
*2,
235 "Buffered flash (256kB)"},
238 static const struct flash_spec flash_5709
= {
239 .flags
= BNX2_NV_BUFFERED
,
240 .page_bits
= BCM5709_FLASH_PAGE_BITS
,
241 .page_size
= BCM5709_FLASH_PAGE_SIZE
,
242 .addr_mask
= BCM5709_FLASH_BYTE_ADDR_MASK
,
243 .total_size
= BUFFERED_FLASH_TOTAL_SIZE
*2,
244 .name
= "5709 Buffered flash (256kB)",
247 MODULE_DEVICE_TABLE(pci
, bnx2_pci_tbl
);
249 static void bnx2_init_napi(struct bnx2
*bp
);
251 static inline u32
bnx2_tx_avail(struct bnx2
*bp
, struct bnx2_tx_ring_info
*txr
)
257 /* The ring uses 256 indices for 255 entries, one of them
258 * needs to be skipped.
260 diff
= txr
->tx_prod
- txr
->tx_cons
;
261 if (unlikely(diff
>= TX_DESC_CNT
)) {
263 if (diff
== TX_DESC_CNT
)
264 diff
= MAX_TX_DESC_CNT
;
266 return (bp
->tx_ring_size
- diff
);
270 bnx2_reg_rd_ind(struct bnx2
*bp
, u32 offset
)
274 spin_lock_bh(&bp
->indirect_lock
);
275 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
276 val
= REG_RD(bp
, BNX2_PCICFG_REG_WINDOW
);
277 spin_unlock_bh(&bp
->indirect_lock
);
282 bnx2_reg_wr_ind(struct bnx2
*bp
, u32 offset
, u32 val
)
284 spin_lock_bh(&bp
->indirect_lock
);
285 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
286 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW
, val
);
287 spin_unlock_bh(&bp
->indirect_lock
);
291 bnx2_shmem_wr(struct bnx2
*bp
, u32 offset
, u32 val
)
293 bnx2_reg_wr_ind(bp
, bp
->shmem_base
+ offset
, val
);
297 bnx2_shmem_rd(struct bnx2
*bp
, u32 offset
)
299 return (bnx2_reg_rd_ind(bp
, bp
->shmem_base
+ offset
));
303 bnx2_ctx_wr(struct bnx2
*bp
, u32 cid_addr
, u32 offset
, u32 val
)
306 spin_lock_bh(&bp
->indirect_lock
);
307 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
310 REG_WR(bp
, BNX2_CTX_CTX_DATA
, val
);
311 REG_WR(bp
, BNX2_CTX_CTX_CTRL
,
312 offset
| BNX2_CTX_CTX_CTRL_WRITE_REQ
);
313 for (i
= 0; i
< 5; i
++) {
314 val
= REG_RD(bp
, BNX2_CTX_CTX_CTRL
);
315 if ((val
& BNX2_CTX_CTX_CTRL_WRITE_REQ
) == 0)
320 REG_WR(bp
, BNX2_CTX_DATA_ADR
, offset
);
321 REG_WR(bp
, BNX2_CTX_DATA
, val
);
323 spin_unlock_bh(&bp
->indirect_lock
);
328 bnx2_drv_ctl(struct net_device
*dev
, struct drv_ctl_info
*info
)
330 struct bnx2
*bp
= netdev_priv(dev
);
331 struct drv_ctl_io
*io
= &info
->data
.io
;
334 case DRV_CTL_IO_WR_CMD
:
335 bnx2_reg_wr_ind(bp
, io
->offset
, io
->data
);
337 case DRV_CTL_IO_RD_CMD
:
338 io
->data
= bnx2_reg_rd_ind(bp
, io
->offset
);
340 case DRV_CTL_CTX_WR_CMD
:
341 bnx2_ctx_wr(bp
, io
->cid_addr
, io
->offset
, io
->data
);
349 static void bnx2_setup_cnic_irq_info(struct bnx2
*bp
)
351 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
352 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
355 if (bp
->flags
& BNX2_FLAG_USING_MSIX
) {
356 cp
->drv_state
|= CNIC_DRV_STATE_USING_MSIX
;
357 bnapi
->cnic_present
= 0;
358 sb_id
= bp
->irq_nvecs
;
359 cp
->irq_arr
[0].irq_flags
|= CNIC_IRQ_FL_MSIX
;
361 cp
->drv_state
&= ~CNIC_DRV_STATE_USING_MSIX
;
362 bnapi
->cnic_tag
= bnapi
->last_status_idx
;
363 bnapi
->cnic_present
= 1;
365 cp
->irq_arr
[0].irq_flags
&= ~CNIC_IRQ_FL_MSIX
;
368 cp
->irq_arr
[0].vector
= bp
->irq_tbl
[sb_id
].vector
;
369 cp
->irq_arr
[0].status_blk
= (void *)
370 ((unsigned long) bnapi
->status_blk
.msi
+
371 (BNX2_SBLK_MSIX_ALIGN_SIZE
* sb_id
));
372 cp
->irq_arr
[0].status_blk_num
= sb_id
;
376 static int bnx2_register_cnic(struct net_device
*dev
, struct cnic_ops
*ops
,
379 struct bnx2
*bp
= netdev_priv(dev
);
380 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
385 if (cp
->drv_state
& CNIC_DRV_STATE_REGD
)
388 bp
->cnic_data
= data
;
389 rcu_assign_pointer(bp
->cnic_ops
, ops
);
392 cp
->drv_state
= CNIC_DRV_STATE_REGD
;
394 bnx2_setup_cnic_irq_info(bp
);
399 static int bnx2_unregister_cnic(struct net_device
*dev
)
401 struct bnx2
*bp
= netdev_priv(dev
);
402 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
403 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
405 mutex_lock(&bp
->cnic_lock
);
407 bnapi
->cnic_present
= 0;
408 rcu_assign_pointer(bp
->cnic_ops
, NULL
);
409 mutex_unlock(&bp
->cnic_lock
);
414 struct cnic_eth_dev
*bnx2_cnic_probe(struct net_device
*dev
)
416 struct bnx2
*bp
= netdev_priv(dev
);
417 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
419 cp
->drv_owner
= THIS_MODULE
;
420 cp
->chip_id
= bp
->chip_id
;
422 cp
->io_base
= bp
->regview
;
423 cp
->drv_ctl
= bnx2_drv_ctl
;
424 cp
->drv_register_cnic
= bnx2_register_cnic
;
425 cp
->drv_unregister_cnic
= bnx2_unregister_cnic
;
429 EXPORT_SYMBOL(bnx2_cnic_probe
);
432 bnx2_cnic_stop(struct bnx2
*bp
)
434 struct cnic_ops
*c_ops
;
435 struct cnic_ctl_info info
;
437 mutex_lock(&bp
->cnic_lock
);
438 c_ops
= bp
->cnic_ops
;
440 info
.cmd
= CNIC_CTL_STOP_CMD
;
441 c_ops
->cnic_ctl(bp
->cnic_data
, &info
);
443 mutex_unlock(&bp
->cnic_lock
);
447 bnx2_cnic_start(struct bnx2
*bp
)
449 struct cnic_ops
*c_ops
;
450 struct cnic_ctl_info info
;
452 mutex_lock(&bp
->cnic_lock
);
453 c_ops
= bp
->cnic_ops
;
455 if (!(bp
->flags
& BNX2_FLAG_USING_MSIX
)) {
456 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
458 bnapi
->cnic_tag
= bnapi
->last_status_idx
;
460 info
.cmd
= CNIC_CTL_START_CMD
;
461 c_ops
->cnic_ctl(bp
->cnic_data
, &info
);
463 mutex_unlock(&bp
->cnic_lock
);
469 bnx2_cnic_stop(struct bnx2
*bp
)
474 bnx2_cnic_start(struct bnx2
*bp
)
481 bnx2_read_phy(struct bnx2
*bp
, u32 reg
, u32
*val
)
486 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
487 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
488 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
490 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
491 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
496 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) |
497 BNX2_EMAC_MDIO_COMM_COMMAND_READ
| BNX2_EMAC_MDIO_COMM_DISEXT
|
498 BNX2_EMAC_MDIO_COMM_START_BUSY
;
499 REG_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
501 for (i
= 0; i
< 50; i
++) {
504 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
505 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
508 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
509 val1
&= BNX2_EMAC_MDIO_COMM_DATA
;
515 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
) {
524 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
525 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
526 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
528 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
529 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
538 bnx2_write_phy(struct bnx2
*bp
, u32 reg
, u32 val
)
543 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
544 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
545 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
547 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
548 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
553 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) | val
|
554 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE
|
555 BNX2_EMAC_MDIO_COMM_START_BUSY
| BNX2_EMAC_MDIO_COMM_DISEXT
;
556 REG_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
558 for (i
= 0; i
< 50; i
++) {
561 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
562 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
568 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)
573 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
574 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
575 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
577 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
578 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
587 bnx2_disable_int(struct bnx2
*bp
)
590 struct bnx2_napi
*bnapi
;
592 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
593 bnapi
= &bp
->bnx2_napi
[i
];
594 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
595 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
597 REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
);
601 bnx2_enable_int(struct bnx2
*bp
)
604 struct bnx2_napi
*bnapi
;
606 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
607 bnapi
= &bp
->bnx2_napi
[i
];
609 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
610 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
611 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
|
612 bnapi
->last_status_idx
);
614 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
615 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
616 bnapi
->last_status_idx
);
618 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW
);
622 bnx2_disable_int_sync(struct bnx2
*bp
)
626 atomic_inc(&bp
->intr_sem
);
627 if (!netif_running(bp
->dev
))
630 bnx2_disable_int(bp
);
631 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
632 synchronize_irq(bp
->irq_tbl
[i
].vector
);
636 bnx2_napi_disable(struct bnx2
*bp
)
640 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
641 napi_disable(&bp
->bnx2_napi
[i
].napi
);
645 bnx2_napi_enable(struct bnx2
*bp
)
649 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
650 napi_enable(&bp
->bnx2_napi
[i
].napi
);
654 bnx2_netif_stop(struct bnx2
*bp
, bool stop_cnic
)
658 if (netif_running(bp
->dev
)) {
659 bnx2_napi_disable(bp
);
660 netif_tx_disable(bp
->dev
);
662 bnx2_disable_int_sync(bp
);
663 netif_carrier_off(bp
->dev
); /* prevent tx timeout */
667 bnx2_netif_start(struct bnx2
*bp
, bool start_cnic
)
669 if (atomic_dec_and_test(&bp
->intr_sem
)) {
670 if (netif_running(bp
->dev
)) {
671 netif_tx_wake_all_queues(bp
->dev
);
672 spin_lock_bh(&bp
->phy_lock
);
674 netif_carrier_on(bp
->dev
);
675 spin_unlock_bh(&bp
->phy_lock
);
676 bnx2_napi_enable(bp
);
685 bnx2_free_tx_mem(struct bnx2
*bp
)
689 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
690 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
691 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
693 if (txr
->tx_desc_ring
) {
694 pci_free_consistent(bp
->pdev
, TXBD_RING_SIZE
,
696 txr
->tx_desc_mapping
);
697 txr
->tx_desc_ring
= NULL
;
699 kfree(txr
->tx_buf_ring
);
700 txr
->tx_buf_ring
= NULL
;
705 bnx2_free_rx_mem(struct bnx2
*bp
)
709 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
710 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
711 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
714 for (j
= 0; j
< bp
->rx_max_ring
; j
++) {
715 if (rxr
->rx_desc_ring
[j
])
716 pci_free_consistent(bp
->pdev
, RXBD_RING_SIZE
,
717 rxr
->rx_desc_ring
[j
],
718 rxr
->rx_desc_mapping
[j
]);
719 rxr
->rx_desc_ring
[j
] = NULL
;
721 vfree(rxr
->rx_buf_ring
);
722 rxr
->rx_buf_ring
= NULL
;
724 for (j
= 0; j
< bp
->rx_max_pg_ring
; j
++) {
725 if (rxr
->rx_pg_desc_ring
[j
])
726 pci_free_consistent(bp
->pdev
, RXBD_RING_SIZE
,
727 rxr
->rx_pg_desc_ring
[j
],
728 rxr
->rx_pg_desc_mapping
[j
]);
729 rxr
->rx_pg_desc_ring
[j
] = NULL
;
731 vfree(rxr
->rx_pg_ring
);
732 rxr
->rx_pg_ring
= NULL
;
737 bnx2_alloc_tx_mem(struct bnx2
*bp
)
741 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
742 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
743 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
745 txr
->tx_buf_ring
= kzalloc(SW_TXBD_RING_SIZE
, GFP_KERNEL
);
746 if (txr
->tx_buf_ring
== NULL
)
750 pci_alloc_consistent(bp
->pdev
, TXBD_RING_SIZE
,
751 &txr
->tx_desc_mapping
);
752 if (txr
->tx_desc_ring
== NULL
)
759 bnx2_alloc_rx_mem(struct bnx2
*bp
)
763 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
764 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
765 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
769 vmalloc(SW_RXBD_RING_SIZE
* bp
->rx_max_ring
);
770 if (rxr
->rx_buf_ring
== NULL
)
773 memset(rxr
->rx_buf_ring
, 0,
774 SW_RXBD_RING_SIZE
* bp
->rx_max_ring
);
776 for (j
= 0; j
< bp
->rx_max_ring
; j
++) {
777 rxr
->rx_desc_ring
[j
] =
778 pci_alloc_consistent(bp
->pdev
, RXBD_RING_SIZE
,
779 &rxr
->rx_desc_mapping
[j
]);
780 if (rxr
->rx_desc_ring
[j
] == NULL
)
785 if (bp
->rx_pg_ring_size
) {
786 rxr
->rx_pg_ring
= vmalloc(SW_RXPG_RING_SIZE
*
788 if (rxr
->rx_pg_ring
== NULL
)
791 memset(rxr
->rx_pg_ring
, 0, SW_RXPG_RING_SIZE
*
795 for (j
= 0; j
< bp
->rx_max_pg_ring
; j
++) {
796 rxr
->rx_pg_desc_ring
[j
] =
797 pci_alloc_consistent(bp
->pdev
, RXBD_RING_SIZE
,
798 &rxr
->rx_pg_desc_mapping
[j
]);
799 if (rxr
->rx_pg_desc_ring
[j
] == NULL
)
808 bnx2_free_mem(struct bnx2
*bp
)
811 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
813 bnx2_free_tx_mem(bp
);
814 bnx2_free_rx_mem(bp
);
816 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
817 if (bp
->ctx_blk
[i
]) {
818 pci_free_consistent(bp
->pdev
, BCM_PAGE_SIZE
,
820 bp
->ctx_blk_mapping
[i
]);
821 bp
->ctx_blk
[i
] = NULL
;
824 if (bnapi
->status_blk
.msi
) {
825 pci_free_consistent(bp
->pdev
, bp
->status_stats_size
,
826 bnapi
->status_blk
.msi
,
827 bp
->status_blk_mapping
);
828 bnapi
->status_blk
.msi
= NULL
;
829 bp
->stats_blk
= NULL
;
834 bnx2_alloc_mem(struct bnx2
*bp
)
836 int i
, status_blk_size
, err
;
837 struct bnx2_napi
*bnapi
;
840 /* Combine status and statistics blocks into one allocation. */
841 status_blk_size
= L1_CACHE_ALIGN(sizeof(struct status_block
));
842 if (bp
->flags
& BNX2_FLAG_MSIX_CAP
)
843 status_blk_size
= L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC
*
844 BNX2_SBLK_MSIX_ALIGN_SIZE
);
845 bp
->status_stats_size
= status_blk_size
+
846 sizeof(struct statistics_block
);
848 status_blk
= pci_alloc_consistent(bp
->pdev
, bp
->status_stats_size
,
849 &bp
->status_blk_mapping
);
850 if (status_blk
== NULL
)
853 memset(status_blk
, 0, bp
->status_stats_size
);
855 bnapi
= &bp
->bnx2_napi
[0];
856 bnapi
->status_blk
.msi
= status_blk
;
857 bnapi
->hw_tx_cons_ptr
=
858 &bnapi
->status_blk
.msi
->status_tx_quick_consumer_index0
;
859 bnapi
->hw_rx_cons_ptr
=
860 &bnapi
->status_blk
.msi
->status_rx_quick_consumer_index0
;
861 if (bp
->flags
& BNX2_FLAG_MSIX_CAP
) {
862 for (i
= 1; i
< BNX2_MAX_MSIX_VEC
; i
++) {
863 struct status_block_msix
*sblk
;
865 bnapi
= &bp
->bnx2_napi
[i
];
867 sblk
= (void *) (status_blk
+
868 BNX2_SBLK_MSIX_ALIGN_SIZE
* i
);
869 bnapi
->status_blk
.msix
= sblk
;
870 bnapi
->hw_tx_cons_ptr
=
871 &sblk
->status_tx_quick_consumer_index
;
872 bnapi
->hw_rx_cons_ptr
=
873 &sblk
->status_rx_quick_consumer_index
;
874 bnapi
->int_num
= i
<< 24;
878 bp
->stats_blk
= status_blk
+ status_blk_size
;
880 bp
->stats_blk_mapping
= bp
->status_blk_mapping
+ status_blk_size
;
882 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
883 bp
->ctx_pages
= 0x2000 / BCM_PAGE_SIZE
;
884 if (bp
->ctx_pages
== 0)
886 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
887 bp
->ctx_blk
[i
] = pci_alloc_consistent(bp
->pdev
,
889 &bp
->ctx_blk_mapping
[i
]);
890 if (bp
->ctx_blk
[i
] == NULL
)
895 err
= bnx2_alloc_rx_mem(bp
);
899 err
= bnx2_alloc_tx_mem(bp
);
911 bnx2_report_fw_link(struct bnx2
*bp
)
913 u32 fw_link_status
= 0;
915 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
921 switch (bp
->line_speed
) {
923 if (bp
->duplex
== DUPLEX_HALF
)
924 fw_link_status
= BNX2_LINK_STATUS_10HALF
;
926 fw_link_status
= BNX2_LINK_STATUS_10FULL
;
929 if (bp
->duplex
== DUPLEX_HALF
)
930 fw_link_status
= BNX2_LINK_STATUS_100HALF
;
932 fw_link_status
= BNX2_LINK_STATUS_100FULL
;
935 if (bp
->duplex
== DUPLEX_HALF
)
936 fw_link_status
= BNX2_LINK_STATUS_1000HALF
;
938 fw_link_status
= BNX2_LINK_STATUS_1000FULL
;
941 if (bp
->duplex
== DUPLEX_HALF
)
942 fw_link_status
= BNX2_LINK_STATUS_2500HALF
;
944 fw_link_status
= BNX2_LINK_STATUS_2500FULL
;
948 fw_link_status
|= BNX2_LINK_STATUS_LINK_UP
;
951 fw_link_status
|= BNX2_LINK_STATUS_AN_ENABLED
;
953 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
954 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
956 if (!(bmsr
& BMSR_ANEGCOMPLETE
) ||
957 bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
)
958 fw_link_status
|= BNX2_LINK_STATUS_PARALLEL_DET
;
960 fw_link_status
|= BNX2_LINK_STATUS_AN_COMPLETE
;
964 fw_link_status
= BNX2_LINK_STATUS_LINK_DOWN
;
966 bnx2_shmem_wr(bp
, BNX2_LINK_STATUS
, fw_link_status
);
970 bnx2_xceiver_str(struct bnx2
*bp
)
972 return ((bp
->phy_port
== PORT_FIBRE
) ? "SerDes" :
973 ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) ? "Remote Copper" :
978 bnx2_report_link(struct bnx2
*bp
)
981 netif_carrier_on(bp
->dev
);
982 netdev_info(bp
->dev
, "NIC %s Link is Up, %d Mbps %s duplex",
983 bnx2_xceiver_str(bp
),
985 bp
->duplex
== DUPLEX_FULL
? "full" : "half");
988 if (bp
->flow_ctrl
& FLOW_CTRL_RX
) {
989 pr_cont(", receive ");
990 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
991 pr_cont("& transmit ");
994 pr_cont(", transmit ");
996 pr_cont("flow control ON");
1000 netif_carrier_off(bp
->dev
);
1001 netdev_err(bp
->dev
, "NIC %s Link is Down\n",
1002 bnx2_xceiver_str(bp
));
1005 bnx2_report_fw_link(bp
);
1009 bnx2_resolve_flow_ctrl(struct bnx2
*bp
)
1011 u32 local_adv
, remote_adv
;
1014 if ((bp
->autoneg
& (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) !=
1015 (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) {
1017 if (bp
->duplex
== DUPLEX_FULL
) {
1018 bp
->flow_ctrl
= bp
->req_flow_ctrl
;
1023 if (bp
->duplex
!= DUPLEX_FULL
) {
1027 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1028 (CHIP_NUM(bp
) == CHIP_NUM_5708
)) {
1031 bnx2_read_phy(bp
, BCM5708S_1000X_STAT1
, &val
);
1032 if (val
& BCM5708S_1000X_STAT1_TX_PAUSE
)
1033 bp
->flow_ctrl
|= FLOW_CTRL_TX
;
1034 if (val
& BCM5708S_1000X_STAT1_RX_PAUSE
)
1035 bp
->flow_ctrl
|= FLOW_CTRL_RX
;
1039 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1040 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1042 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1043 u32 new_local_adv
= 0;
1044 u32 new_remote_adv
= 0;
1046 if (local_adv
& ADVERTISE_1000XPAUSE
)
1047 new_local_adv
|= ADVERTISE_PAUSE_CAP
;
1048 if (local_adv
& ADVERTISE_1000XPSE_ASYM
)
1049 new_local_adv
|= ADVERTISE_PAUSE_ASYM
;
1050 if (remote_adv
& ADVERTISE_1000XPAUSE
)
1051 new_remote_adv
|= ADVERTISE_PAUSE_CAP
;
1052 if (remote_adv
& ADVERTISE_1000XPSE_ASYM
)
1053 new_remote_adv
|= ADVERTISE_PAUSE_ASYM
;
1055 local_adv
= new_local_adv
;
1056 remote_adv
= new_remote_adv
;
1059 /* See Table 28B-3 of 802.3ab-1999 spec. */
1060 if (local_adv
& ADVERTISE_PAUSE_CAP
) {
1061 if(local_adv
& ADVERTISE_PAUSE_ASYM
) {
1062 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
1063 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
1065 else if (remote_adv
& ADVERTISE_PAUSE_ASYM
) {
1066 bp
->flow_ctrl
= FLOW_CTRL_RX
;
1070 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
1071 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
1075 else if (local_adv
& ADVERTISE_PAUSE_ASYM
) {
1076 if ((remote_adv
& ADVERTISE_PAUSE_CAP
) &&
1077 (remote_adv
& ADVERTISE_PAUSE_ASYM
)) {
1079 bp
->flow_ctrl
= FLOW_CTRL_TX
;
1085 bnx2_5709s_linkup(struct bnx2
*bp
)
1091 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_GP_STATUS
);
1092 bnx2_read_phy(bp
, MII_BNX2_GP_TOP_AN_STATUS1
, &val
);
1093 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1095 if ((bp
->autoneg
& AUTONEG_SPEED
) == 0) {
1096 bp
->line_speed
= bp
->req_line_speed
;
1097 bp
->duplex
= bp
->req_duplex
;
1100 speed
= val
& MII_BNX2_GP_TOP_AN_SPEED_MSK
;
1102 case MII_BNX2_GP_TOP_AN_SPEED_10
:
1103 bp
->line_speed
= SPEED_10
;
1105 case MII_BNX2_GP_TOP_AN_SPEED_100
:
1106 bp
->line_speed
= SPEED_100
;
1108 case MII_BNX2_GP_TOP_AN_SPEED_1G
:
1109 case MII_BNX2_GP_TOP_AN_SPEED_1GKV
:
1110 bp
->line_speed
= SPEED_1000
;
1112 case MII_BNX2_GP_TOP_AN_SPEED_2_5G
:
1113 bp
->line_speed
= SPEED_2500
;
1116 if (val
& MII_BNX2_GP_TOP_AN_FD
)
1117 bp
->duplex
= DUPLEX_FULL
;
1119 bp
->duplex
= DUPLEX_HALF
;
1124 bnx2_5708s_linkup(struct bnx2
*bp
)
1129 bnx2_read_phy(bp
, BCM5708S_1000X_STAT1
, &val
);
1130 switch (val
& BCM5708S_1000X_STAT1_SPEED_MASK
) {
1131 case BCM5708S_1000X_STAT1_SPEED_10
:
1132 bp
->line_speed
= SPEED_10
;
1134 case BCM5708S_1000X_STAT1_SPEED_100
:
1135 bp
->line_speed
= SPEED_100
;
1137 case BCM5708S_1000X_STAT1_SPEED_1G
:
1138 bp
->line_speed
= SPEED_1000
;
1140 case BCM5708S_1000X_STAT1_SPEED_2G5
:
1141 bp
->line_speed
= SPEED_2500
;
1144 if (val
& BCM5708S_1000X_STAT1_FD
)
1145 bp
->duplex
= DUPLEX_FULL
;
1147 bp
->duplex
= DUPLEX_HALF
;
1153 bnx2_5706s_linkup(struct bnx2
*bp
)
1155 u32 bmcr
, local_adv
, remote_adv
, common
;
1158 bp
->line_speed
= SPEED_1000
;
1160 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1161 if (bmcr
& BMCR_FULLDPLX
) {
1162 bp
->duplex
= DUPLEX_FULL
;
1165 bp
->duplex
= DUPLEX_HALF
;
1168 if (!(bmcr
& BMCR_ANENABLE
)) {
1172 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1173 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1175 common
= local_adv
& remote_adv
;
1176 if (common
& (ADVERTISE_1000XHALF
| ADVERTISE_1000XFULL
)) {
1178 if (common
& ADVERTISE_1000XFULL
) {
1179 bp
->duplex
= DUPLEX_FULL
;
1182 bp
->duplex
= DUPLEX_HALF
;
1190 bnx2_copper_linkup(struct bnx2
*bp
)
1194 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1195 if (bmcr
& BMCR_ANENABLE
) {
1196 u32 local_adv
, remote_adv
, common
;
1198 bnx2_read_phy(bp
, MII_CTRL1000
, &local_adv
);
1199 bnx2_read_phy(bp
, MII_STAT1000
, &remote_adv
);
1201 common
= local_adv
& (remote_adv
>> 2);
1202 if (common
& ADVERTISE_1000FULL
) {
1203 bp
->line_speed
= SPEED_1000
;
1204 bp
->duplex
= DUPLEX_FULL
;
1206 else if (common
& ADVERTISE_1000HALF
) {
1207 bp
->line_speed
= SPEED_1000
;
1208 bp
->duplex
= DUPLEX_HALF
;
1211 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1212 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1214 common
= local_adv
& remote_adv
;
1215 if (common
& ADVERTISE_100FULL
) {
1216 bp
->line_speed
= SPEED_100
;
1217 bp
->duplex
= DUPLEX_FULL
;
1219 else if (common
& ADVERTISE_100HALF
) {
1220 bp
->line_speed
= SPEED_100
;
1221 bp
->duplex
= DUPLEX_HALF
;
1223 else if (common
& ADVERTISE_10FULL
) {
1224 bp
->line_speed
= SPEED_10
;
1225 bp
->duplex
= DUPLEX_FULL
;
1227 else if (common
& ADVERTISE_10HALF
) {
1228 bp
->line_speed
= SPEED_10
;
1229 bp
->duplex
= DUPLEX_HALF
;
1238 if (bmcr
& BMCR_SPEED100
) {
1239 bp
->line_speed
= SPEED_100
;
1242 bp
->line_speed
= SPEED_10
;
1244 if (bmcr
& BMCR_FULLDPLX
) {
1245 bp
->duplex
= DUPLEX_FULL
;
1248 bp
->duplex
= DUPLEX_HALF
;
1256 bnx2_init_rx_context(struct bnx2
*bp
, u32 cid
)
1258 u32 val
, rx_cid_addr
= GET_CID_ADDR(cid
);
1260 val
= BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE
;
1261 val
|= BNX2_L2CTX_CTX_TYPE_SIZE_L2
;
1264 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1265 u32 lo_water
, hi_water
;
1267 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
1268 lo_water
= BNX2_L2CTX_LO_WATER_MARK_DEFAULT
;
1270 lo_water
= BNX2_L2CTX_LO_WATER_MARK_DIS
;
1271 if (lo_water
>= bp
->rx_ring_size
)
1274 hi_water
= min_t(int, bp
->rx_ring_size
/ 4, lo_water
+ 16);
1276 if (hi_water
<= lo_water
)
1279 hi_water
/= BNX2_L2CTX_HI_WATER_MARK_SCALE
;
1280 lo_water
/= BNX2_L2CTX_LO_WATER_MARK_SCALE
;
1284 else if (hi_water
== 0)
1286 val
|= lo_water
| (hi_water
<< BNX2_L2CTX_HI_WATER_MARK_SHIFT
);
1288 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_CTX_TYPE
, val
);
1292 bnx2_init_all_rx_contexts(struct bnx2
*bp
)
1297 for (i
= 0, cid
= RX_CID
; i
< bp
->num_rx_rings
; i
++, cid
++) {
1300 bnx2_init_rx_context(bp
, cid
);
1305 bnx2_set_mac_link(struct bnx2
*bp
)
1309 REG_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x2620);
1310 if (bp
->link_up
&& (bp
->line_speed
== SPEED_1000
) &&
1311 (bp
->duplex
== DUPLEX_HALF
)) {
1312 REG_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x26ff);
1315 /* Configure the EMAC mode register. */
1316 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
1318 val
&= ~(BNX2_EMAC_MODE_PORT
| BNX2_EMAC_MODE_HALF_DUPLEX
|
1319 BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
|
1320 BNX2_EMAC_MODE_25G_MODE
);
1323 switch (bp
->line_speed
) {
1325 if (CHIP_NUM(bp
) != CHIP_NUM_5706
) {
1326 val
|= BNX2_EMAC_MODE_PORT_MII_10M
;
1331 val
|= BNX2_EMAC_MODE_PORT_MII
;
1334 val
|= BNX2_EMAC_MODE_25G_MODE
;
1337 val
|= BNX2_EMAC_MODE_PORT_GMII
;
1342 val
|= BNX2_EMAC_MODE_PORT_GMII
;
1345 /* Set the MAC to operate in the appropriate duplex mode. */
1346 if (bp
->duplex
== DUPLEX_HALF
)
1347 val
|= BNX2_EMAC_MODE_HALF_DUPLEX
;
1348 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
1350 /* Enable/disable rx PAUSE. */
1351 bp
->rx_mode
&= ~BNX2_EMAC_RX_MODE_FLOW_EN
;
1353 if (bp
->flow_ctrl
& FLOW_CTRL_RX
)
1354 bp
->rx_mode
|= BNX2_EMAC_RX_MODE_FLOW_EN
;
1355 REG_WR(bp
, BNX2_EMAC_RX_MODE
, bp
->rx_mode
);
1357 /* Enable/disable tx PAUSE. */
1358 val
= REG_RD(bp
, BNX2_EMAC_TX_MODE
);
1359 val
&= ~BNX2_EMAC_TX_MODE_FLOW_EN
;
1361 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
1362 val
|= BNX2_EMAC_TX_MODE_FLOW_EN
;
1363 REG_WR(bp
, BNX2_EMAC_TX_MODE
, val
);
1365 /* Acknowledge the interrupt. */
1366 REG_WR(bp
, BNX2_EMAC_STATUS
, BNX2_EMAC_STATUS_LINK_CHANGE
);
1368 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1369 bnx2_init_all_rx_contexts(bp
);
1373 bnx2_enable_bmsr1(struct bnx2
*bp
)
1375 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1376 (CHIP_NUM(bp
) == CHIP_NUM_5709
))
1377 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1378 MII_BNX2_BLK_ADDR_GP_STATUS
);
1382 bnx2_disable_bmsr1(struct bnx2
*bp
)
1384 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1385 (CHIP_NUM(bp
) == CHIP_NUM_5709
))
1386 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1387 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1391 bnx2_test_and_enable_2g5(struct bnx2
*bp
)
1396 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1399 if (bp
->autoneg
& AUTONEG_SPEED
)
1400 bp
->advertising
|= ADVERTISED_2500baseX_Full
;
1402 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1403 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
1405 bnx2_read_phy(bp
, bp
->mii_up1
, &up1
);
1406 if (!(up1
& BCM5708S_UP1_2G5
)) {
1407 up1
|= BCM5708S_UP1_2G5
;
1408 bnx2_write_phy(bp
, bp
->mii_up1
, up1
);
1412 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1413 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1414 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1420 bnx2_test_and_disable_2g5(struct bnx2
*bp
)
1425 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1428 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1429 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
1431 bnx2_read_phy(bp
, bp
->mii_up1
, &up1
);
1432 if (up1
& BCM5708S_UP1_2G5
) {
1433 up1
&= ~BCM5708S_UP1_2G5
;
1434 bnx2_write_phy(bp
, bp
->mii_up1
, up1
);
1438 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1439 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1440 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1446 bnx2_enable_forced_2g5(struct bnx2
*bp
)
1450 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1453 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1456 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1457 MII_BNX2_BLK_ADDR_SERDES_DIG
);
1458 bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, &val
);
1459 val
&= ~MII_BNX2_SD_MISC1_FORCE_MSK
;
1460 val
|= MII_BNX2_SD_MISC1_FORCE
| MII_BNX2_SD_MISC1_FORCE_2_5G
;
1461 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, val
);
1463 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1464 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1465 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1467 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1468 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1469 bmcr
|= BCM5708S_BMCR_FORCE_2500
;
1474 if (bp
->autoneg
& AUTONEG_SPEED
) {
1475 bmcr
&= ~BMCR_ANENABLE
;
1476 if (bp
->req_duplex
== DUPLEX_FULL
)
1477 bmcr
|= BMCR_FULLDPLX
;
1479 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1483 bnx2_disable_forced_2g5(struct bnx2
*bp
)
1487 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1490 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1493 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1494 MII_BNX2_BLK_ADDR_SERDES_DIG
);
1495 bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, &val
);
1496 val
&= ~MII_BNX2_SD_MISC1_FORCE
;
1497 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, val
);
1499 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1500 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1501 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1503 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1504 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1505 bmcr
&= ~BCM5708S_BMCR_FORCE_2500
;
1510 if (bp
->autoneg
& AUTONEG_SPEED
)
1511 bmcr
|= BMCR_SPEED1000
| BMCR_ANENABLE
| BMCR_ANRESTART
;
1512 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1516 bnx2_5706s_force_link_dn(struct bnx2
*bp
, int start
)
1520 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
, MII_EXPAND_SERDES_CTL
);
1521 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &val
);
1523 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
& 0xff0f);
1525 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
| 0xc0);
1529 bnx2_set_link(struct bnx2
*bp
)
1534 if (bp
->loopback
== MAC_LOOPBACK
|| bp
->loopback
== PHY_LOOPBACK
) {
1539 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
1542 link_up
= bp
->link_up
;
1544 bnx2_enable_bmsr1(bp
);
1545 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
1546 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
1547 bnx2_disable_bmsr1(bp
);
1549 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1550 (CHIP_NUM(bp
) == CHIP_NUM_5706
)) {
1553 if (bp
->phy_flags
& BNX2_PHY_FLAG_FORCED_DOWN
) {
1554 bnx2_5706s_force_link_dn(bp
, 0);
1555 bp
->phy_flags
&= ~BNX2_PHY_FLAG_FORCED_DOWN
;
1557 val
= REG_RD(bp
, BNX2_EMAC_STATUS
);
1559 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
1560 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
1561 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
1563 if ((val
& BNX2_EMAC_STATUS_LINK
) &&
1564 !(an_dbg
& MISC_SHDW_AN_DBG_NOSYNC
))
1565 bmsr
|= BMSR_LSTATUS
;
1567 bmsr
&= ~BMSR_LSTATUS
;
1570 if (bmsr
& BMSR_LSTATUS
) {
1573 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1574 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
1575 bnx2_5706s_linkup(bp
);
1576 else if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
1577 bnx2_5708s_linkup(bp
);
1578 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1579 bnx2_5709s_linkup(bp
);
1582 bnx2_copper_linkup(bp
);
1584 bnx2_resolve_flow_ctrl(bp
);
1587 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1588 (bp
->autoneg
& AUTONEG_SPEED
))
1589 bnx2_disable_forced_2g5(bp
);
1591 if (bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
) {
1594 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1595 bmcr
|= BMCR_ANENABLE
;
1596 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1598 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
1603 if (bp
->link_up
!= link_up
) {
1604 bnx2_report_link(bp
);
1607 bnx2_set_mac_link(bp
);
1613 bnx2_reset_phy(struct bnx2
*bp
)
1618 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_RESET
);
1620 #define PHY_RESET_MAX_WAIT 100
1621 for (i
= 0; i
< PHY_RESET_MAX_WAIT
; i
++) {
1624 bnx2_read_phy(bp
, bp
->mii_bmcr
, ®
);
1625 if (!(reg
& BMCR_RESET
)) {
1630 if (i
== PHY_RESET_MAX_WAIT
) {
1637 bnx2_phy_get_pause_adv(struct bnx2
*bp
)
1641 if ((bp
->req_flow_ctrl
& (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) ==
1642 (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) {
1644 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1645 adv
= ADVERTISE_1000XPAUSE
;
1648 adv
= ADVERTISE_PAUSE_CAP
;
1651 else if (bp
->req_flow_ctrl
& FLOW_CTRL_TX
) {
1652 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1653 adv
= ADVERTISE_1000XPSE_ASYM
;
1656 adv
= ADVERTISE_PAUSE_ASYM
;
1659 else if (bp
->req_flow_ctrl
& FLOW_CTRL_RX
) {
1660 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1661 adv
= ADVERTISE_1000XPAUSE
| ADVERTISE_1000XPSE_ASYM
;
1664 adv
= ADVERTISE_PAUSE_CAP
| ADVERTISE_PAUSE_ASYM
;
1670 static int bnx2_fw_sync(struct bnx2
*, u32
, int, int);
1673 bnx2_setup_remote_phy(struct bnx2
*bp
, u8 port
)
1674 __releases(&bp
->phy_lock
)
1675 __acquires(&bp
->phy_lock
)
1677 u32 speed_arg
= 0, pause_adv
;
1679 pause_adv
= bnx2_phy_get_pause_adv(bp
);
1681 if (bp
->autoneg
& AUTONEG_SPEED
) {
1682 speed_arg
|= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG
;
1683 if (bp
->advertising
& ADVERTISED_10baseT_Half
)
1684 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_10HALF
;
1685 if (bp
->advertising
& ADVERTISED_10baseT_Full
)
1686 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_10FULL
;
1687 if (bp
->advertising
& ADVERTISED_100baseT_Half
)
1688 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_100HALF
;
1689 if (bp
->advertising
& ADVERTISED_100baseT_Full
)
1690 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_100FULL
;
1691 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1692 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_1GFULL
;
1693 if (bp
->advertising
& ADVERTISED_2500baseX_Full
)
1694 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
;
1696 if (bp
->req_line_speed
== SPEED_2500
)
1697 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
;
1698 else if (bp
->req_line_speed
== SPEED_1000
)
1699 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_1GFULL
;
1700 else if (bp
->req_line_speed
== SPEED_100
) {
1701 if (bp
->req_duplex
== DUPLEX_FULL
)
1702 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_100FULL
;
1704 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_100HALF
;
1705 } else if (bp
->req_line_speed
== SPEED_10
) {
1706 if (bp
->req_duplex
== DUPLEX_FULL
)
1707 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_10FULL
;
1709 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_10HALF
;
1713 if (pause_adv
& (ADVERTISE_1000XPAUSE
| ADVERTISE_PAUSE_CAP
))
1714 speed_arg
|= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE
;
1715 if (pause_adv
& (ADVERTISE_1000XPSE_ASYM
| ADVERTISE_PAUSE_ASYM
))
1716 speed_arg
|= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE
;
1718 if (port
== PORT_TP
)
1719 speed_arg
|= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE
|
1720 BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED
;
1722 bnx2_shmem_wr(bp
, BNX2_DRV_MB_ARG0
, speed_arg
);
1724 spin_unlock_bh(&bp
->phy_lock
);
1725 bnx2_fw_sync(bp
, BNX2_DRV_MSG_CODE_CMD_SET_LINK
, 1, 0);
1726 spin_lock_bh(&bp
->phy_lock
);
1732 bnx2_setup_serdes_phy(struct bnx2
*bp
, u8 port
)
1733 __releases(&bp
->phy_lock
)
1734 __acquires(&bp
->phy_lock
)
1739 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
1740 return (bnx2_setup_remote_phy(bp
, port
));
1742 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
1744 int force_link_down
= 0;
1746 if (bp
->req_line_speed
== SPEED_2500
) {
1747 if (!bnx2_test_and_enable_2g5(bp
))
1748 force_link_down
= 1;
1749 } else if (bp
->req_line_speed
== SPEED_1000
) {
1750 if (bnx2_test_and_disable_2g5(bp
))
1751 force_link_down
= 1;
1753 bnx2_read_phy(bp
, bp
->mii_adv
, &adv
);
1754 adv
&= ~(ADVERTISE_1000XFULL
| ADVERTISE_1000XHALF
);
1756 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1757 new_bmcr
= bmcr
& ~BMCR_ANENABLE
;
1758 new_bmcr
|= BMCR_SPEED1000
;
1760 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1761 if (bp
->req_line_speed
== SPEED_2500
)
1762 bnx2_enable_forced_2g5(bp
);
1763 else if (bp
->req_line_speed
== SPEED_1000
) {
1764 bnx2_disable_forced_2g5(bp
);
1765 new_bmcr
&= ~0x2000;
1768 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1769 if (bp
->req_line_speed
== SPEED_2500
)
1770 new_bmcr
|= BCM5708S_BMCR_FORCE_2500
;
1772 new_bmcr
= bmcr
& ~BCM5708S_BMCR_FORCE_2500
;
1775 if (bp
->req_duplex
== DUPLEX_FULL
) {
1776 adv
|= ADVERTISE_1000XFULL
;
1777 new_bmcr
|= BMCR_FULLDPLX
;
1780 adv
|= ADVERTISE_1000XHALF
;
1781 new_bmcr
&= ~BMCR_FULLDPLX
;
1783 if ((new_bmcr
!= bmcr
) || (force_link_down
)) {
1784 /* Force a link down visible on the other side */
1786 bnx2_write_phy(bp
, bp
->mii_adv
, adv
&
1787 ~(ADVERTISE_1000XFULL
|
1788 ADVERTISE_1000XHALF
));
1789 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
|
1790 BMCR_ANRESTART
| BMCR_ANENABLE
);
1793 netif_carrier_off(bp
->dev
);
1794 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1795 bnx2_report_link(bp
);
1797 bnx2_write_phy(bp
, bp
->mii_adv
, adv
);
1798 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1800 bnx2_resolve_flow_ctrl(bp
);
1801 bnx2_set_mac_link(bp
);
1806 bnx2_test_and_enable_2g5(bp
);
1808 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1809 new_adv
|= ADVERTISE_1000XFULL
;
1811 new_adv
|= bnx2_phy_get_pause_adv(bp
);
1813 bnx2_read_phy(bp
, bp
->mii_adv
, &adv
);
1814 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1816 bp
->serdes_an_pending
= 0;
1817 if ((adv
!= new_adv
) || ((bmcr
& BMCR_ANENABLE
) == 0)) {
1818 /* Force a link down visible on the other side */
1820 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
1821 spin_unlock_bh(&bp
->phy_lock
);
1823 spin_lock_bh(&bp
->phy_lock
);
1826 bnx2_write_phy(bp
, bp
->mii_adv
, new_adv
);
1827 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
| BMCR_ANRESTART
|
1829 /* Speed up link-up time when the link partner
1830 * does not autonegotiate which is very common
1831 * in blade servers. Some blade servers use
1832 * IPMI for kerboard input and it's important
1833 * to minimize link disruptions. Autoneg. involves
1834 * exchanging base pages plus 3 next pages and
1835 * normally completes in about 120 msec.
1837 bp
->current_interval
= BNX2_SERDES_AN_TIMEOUT
;
1838 bp
->serdes_an_pending
= 1;
1839 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
1841 bnx2_resolve_flow_ctrl(bp
);
1842 bnx2_set_mac_link(bp
);
1848 #define ETHTOOL_ALL_FIBRE_SPEED \
1849 (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
1850 (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
1851 (ADVERTISED_1000baseT_Full)
1853 #define ETHTOOL_ALL_COPPER_SPEED \
1854 (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1855 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1856 ADVERTISED_1000baseT_Full)
1858 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
1859 ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
1861 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
1864 bnx2_set_default_remote_link(struct bnx2
*bp
)
1868 if (bp
->phy_port
== PORT_TP
)
1869 link
= bnx2_shmem_rd(bp
, BNX2_RPHY_COPPER_LINK
);
1871 link
= bnx2_shmem_rd(bp
, BNX2_RPHY_SERDES_LINK
);
1873 if (link
& BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG
) {
1874 bp
->req_line_speed
= 0;
1875 bp
->autoneg
|= AUTONEG_SPEED
;
1876 bp
->advertising
= ADVERTISED_Autoneg
;
1877 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10HALF
)
1878 bp
->advertising
|= ADVERTISED_10baseT_Half
;
1879 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10FULL
)
1880 bp
->advertising
|= ADVERTISED_10baseT_Full
;
1881 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100HALF
)
1882 bp
->advertising
|= ADVERTISED_100baseT_Half
;
1883 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100FULL
)
1884 bp
->advertising
|= ADVERTISED_100baseT_Full
;
1885 if (link
& BNX2_NETLINK_SET_LINK_SPEED_1GFULL
)
1886 bp
->advertising
|= ADVERTISED_1000baseT_Full
;
1887 if (link
& BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
)
1888 bp
->advertising
|= ADVERTISED_2500baseX_Full
;
1891 bp
->advertising
= 0;
1892 bp
->req_duplex
= DUPLEX_FULL
;
1893 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10
) {
1894 bp
->req_line_speed
= SPEED_10
;
1895 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10HALF
)
1896 bp
->req_duplex
= DUPLEX_HALF
;
1898 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100
) {
1899 bp
->req_line_speed
= SPEED_100
;
1900 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100HALF
)
1901 bp
->req_duplex
= DUPLEX_HALF
;
1903 if (link
& BNX2_NETLINK_SET_LINK_SPEED_1GFULL
)
1904 bp
->req_line_speed
= SPEED_1000
;
1905 if (link
& BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
)
1906 bp
->req_line_speed
= SPEED_2500
;
1911 bnx2_set_default_link(struct bnx2
*bp
)
1913 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
1914 bnx2_set_default_remote_link(bp
);
1918 bp
->autoneg
= AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
;
1919 bp
->req_line_speed
= 0;
1920 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1923 bp
->advertising
= ETHTOOL_ALL_FIBRE_SPEED
| ADVERTISED_Autoneg
;
1925 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_CONFIG
);
1926 reg
&= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK
;
1927 if (reg
== BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G
) {
1929 bp
->req_line_speed
= bp
->line_speed
= SPEED_1000
;
1930 bp
->req_duplex
= DUPLEX_FULL
;
1933 bp
->advertising
= ETHTOOL_ALL_COPPER_SPEED
| ADVERTISED_Autoneg
;
1937 bnx2_send_heart_beat(struct bnx2
*bp
)
1942 spin_lock(&bp
->indirect_lock
);
1943 msg
= (u32
) (++bp
->fw_drv_pulse_wr_seq
& BNX2_DRV_PULSE_SEQ_MASK
);
1944 addr
= bp
->shmem_base
+ BNX2_DRV_PULSE_MB
;
1945 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, addr
);
1946 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW
, msg
);
1947 spin_unlock(&bp
->indirect_lock
);
1951 bnx2_remote_phy_event(struct bnx2
*bp
)
1954 u8 link_up
= bp
->link_up
;
1957 msg
= bnx2_shmem_rd(bp
, BNX2_LINK_STATUS
);
1959 if (msg
& BNX2_LINK_STATUS_HEART_BEAT_EXPIRED
)
1960 bnx2_send_heart_beat(bp
);
1962 msg
&= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED
;
1964 if ((msg
& BNX2_LINK_STATUS_LINK_UP
) == BNX2_LINK_STATUS_LINK_DOWN
)
1970 speed
= msg
& BNX2_LINK_STATUS_SPEED_MASK
;
1971 bp
->duplex
= DUPLEX_FULL
;
1973 case BNX2_LINK_STATUS_10HALF
:
1974 bp
->duplex
= DUPLEX_HALF
;
1975 case BNX2_LINK_STATUS_10FULL
:
1976 bp
->line_speed
= SPEED_10
;
1978 case BNX2_LINK_STATUS_100HALF
:
1979 bp
->duplex
= DUPLEX_HALF
;
1980 case BNX2_LINK_STATUS_100BASE_T4
:
1981 case BNX2_LINK_STATUS_100FULL
:
1982 bp
->line_speed
= SPEED_100
;
1984 case BNX2_LINK_STATUS_1000HALF
:
1985 bp
->duplex
= DUPLEX_HALF
;
1986 case BNX2_LINK_STATUS_1000FULL
:
1987 bp
->line_speed
= SPEED_1000
;
1989 case BNX2_LINK_STATUS_2500HALF
:
1990 bp
->duplex
= DUPLEX_HALF
;
1991 case BNX2_LINK_STATUS_2500FULL
:
1992 bp
->line_speed
= SPEED_2500
;
2000 if ((bp
->autoneg
& (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) !=
2001 (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) {
2002 if (bp
->duplex
== DUPLEX_FULL
)
2003 bp
->flow_ctrl
= bp
->req_flow_ctrl
;
2005 if (msg
& BNX2_LINK_STATUS_TX_FC_ENABLED
)
2006 bp
->flow_ctrl
|= FLOW_CTRL_TX
;
2007 if (msg
& BNX2_LINK_STATUS_RX_FC_ENABLED
)
2008 bp
->flow_ctrl
|= FLOW_CTRL_RX
;
2011 old_port
= bp
->phy_port
;
2012 if (msg
& BNX2_LINK_STATUS_SERDES_LINK
)
2013 bp
->phy_port
= PORT_FIBRE
;
2015 bp
->phy_port
= PORT_TP
;
2017 if (old_port
!= bp
->phy_port
)
2018 bnx2_set_default_link(bp
);
2021 if (bp
->link_up
!= link_up
)
2022 bnx2_report_link(bp
);
2024 bnx2_set_mac_link(bp
);
2028 bnx2_set_remote_link(struct bnx2
*bp
)
2032 evt_code
= bnx2_shmem_rd(bp
, BNX2_FW_EVT_CODE_MB
);
2034 case BNX2_FW_EVT_CODE_LINK_EVENT
:
2035 bnx2_remote_phy_event(bp
);
2037 case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT
:
2039 bnx2_send_heart_beat(bp
);
2046 bnx2_setup_copper_phy(struct bnx2
*bp
)
2047 __releases(&bp
->phy_lock
)
2048 __acquires(&bp
->phy_lock
)
2053 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
2055 if (bp
->autoneg
& AUTONEG_SPEED
) {
2056 u32 adv_reg
, adv1000_reg
;
2057 u32 new_adv_reg
= 0;
2058 u32 new_adv1000_reg
= 0;
2060 bnx2_read_phy(bp
, bp
->mii_adv
, &adv_reg
);
2061 adv_reg
&= (PHY_ALL_10_100_SPEED
| ADVERTISE_PAUSE_CAP
|
2062 ADVERTISE_PAUSE_ASYM
);
2064 bnx2_read_phy(bp
, MII_CTRL1000
, &adv1000_reg
);
2065 adv1000_reg
&= PHY_ALL_1000_SPEED
;
2067 if (bp
->advertising
& ADVERTISED_10baseT_Half
)
2068 new_adv_reg
|= ADVERTISE_10HALF
;
2069 if (bp
->advertising
& ADVERTISED_10baseT_Full
)
2070 new_adv_reg
|= ADVERTISE_10FULL
;
2071 if (bp
->advertising
& ADVERTISED_100baseT_Half
)
2072 new_adv_reg
|= ADVERTISE_100HALF
;
2073 if (bp
->advertising
& ADVERTISED_100baseT_Full
)
2074 new_adv_reg
|= ADVERTISE_100FULL
;
2075 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
2076 new_adv1000_reg
|= ADVERTISE_1000FULL
;
2078 new_adv_reg
|= ADVERTISE_CSMA
;
2080 new_adv_reg
|= bnx2_phy_get_pause_adv(bp
);
2082 if ((adv1000_reg
!= new_adv1000_reg
) ||
2083 (adv_reg
!= new_adv_reg
) ||
2084 ((bmcr
& BMCR_ANENABLE
) == 0)) {
2086 bnx2_write_phy(bp
, bp
->mii_adv
, new_adv_reg
);
2087 bnx2_write_phy(bp
, MII_CTRL1000
, new_adv1000_reg
);
2088 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_ANRESTART
|
2091 else if (bp
->link_up
) {
2092 /* Flow ctrl may have changed from auto to forced */
2093 /* or vice-versa. */
2095 bnx2_resolve_flow_ctrl(bp
);
2096 bnx2_set_mac_link(bp
);
2102 if (bp
->req_line_speed
== SPEED_100
) {
2103 new_bmcr
|= BMCR_SPEED100
;
2105 if (bp
->req_duplex
== DUPLEX_FULL
) {
2106 new_bmcr
|= BMCR_FULLDPLX
;
2108 if (new_bmcr
!= bmcr
) {
2111 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2112 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2114 if (bmsr
& BMSR_LSTATUS
) {
2115 /* Force link down */
2116 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
2117 spin_unlock_bh(&bp
->phy_lock
);
2119 spin_lock_bh(&bp
->phy_lock
);
2121 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2122 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2125 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
2127 /* Normally, the new speed is setup after the link has
2128 * gone down and up again. In some cases, link will not go
2129 * down so we need to set up the new speed here.
2131 if (bmsr
& BMSR_LSTATUS
) {
2132 bp
->line_speed
= bp
->req_line_speed
;
2133 bp
->duplex
= bp
->req_duplex
;
2134 bnx2_resolve_flow_ctrl(bp
);
2135 bnx2_set_mac_link(bp
);
2138 bnx2_resolve_flow_ctrl(bp
);
2139 bnx2_set_mac_link(bp
);
2145 bnx2_setup_phy(struct bnx2
*bp
, u8 port
)
2146 __releases(&bp
->phy_lock
)
2147 __acquires(&bp
->phy_lock
)
2149 if (bp
->loopback
== MAC_LOOPBACK
)
2152 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
2153 return (bnx2_setup_serdes_phy(bp
, port
));
2156 return (bnx2_setup_copper_phy(bp
));
2161 bnx2_init_5709s_phy(struct bnx2
*bp
, int reset_phy
)
2165 bp
->mii_bmcr
= MII_BMCR
+ 0x10;
2166 bp
->mii_bmsr
= MII_BMSR
+ 0x10;
2167 bp
->mii_bmsr1
= MII_BNX2_GP_TOP_AN_STATUS1
;
2168 bp
->mii_adv
= MII_ADVERTISE
+ 0x10;
2169 bp
->mii_lpa
= MII_LPA
+ 0x10;
2170 bp
->mii_up1
= MII_BNX2_OVER1G_UP1
;
2172 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_AER
);
2173 bnx2_write_phy(bp
, MII_BNX2_AER_AER
, MII_BNX2_AER_AER_AN_MMD
);
2175 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
2179 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_SERDES_DIG
);
2181 bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_1000XCTL1
, &val
);
2182 val
&= ~MII_BNX2_SD_1000XCTL1_AUTODET
;
2183 val
|= MII_BNX2_SD_1000XCTL1_FIBER
;
2184 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_1000XCTL1
, val
);
2186 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
2187 bnx2_read_phy(bp
, MII_BNX2_OVER1G_UP1
, &val
);
2188 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
)
2189 val
|= BCM5708S_UP1_2G5
;
2191 val
&= ~BCM5708S_UP1_2G5
;
2192 bnx2_write_phy(bp
, MII_BNX2_OVER1G_UP1
, val
);
2194 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_BAM_NXTPG
);
2195 bnx2_read_phy(bp
, MII_BNX2_BAM_NXTPG_CTL
, &val
);
2196 val
|= MII_BNX2_NXTPG_CTL_T2
| MII_BNX2_NXTPG_CTL_BAM
;
2197 bnx2_write_phy(bp
, MII_BNX2_BAM_NXTPG_CTL
, val
);
2199 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_CL73_USERB0
);
2201 val
= MII_BNX2_CL73_BAM_EN
| MII_BNX2_CL73_BAM_STA_MGR_EN
|
2202 MII_BNX2_CL73_BAM_NP_AFT_BP_EN
;
2203 bnx2_write_phy(bp
, MII_BNX2_CL73_BAM_CTL1
, val
);
2205 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
2211 bnx2_init_5708s_phy(struct bnx2
*bp
, int reset_phy
)
2218 bp
->mii_up1
= BCM5708S_UP1
;
2220 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG3
);
2221 bnx2_write_phy(bp
, BCM5708S_DIG_3_0
, BCM5708S_DIG_3_0_USE_IEEE
);
2222 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG
);
2224 bnx2_read_phy(bp
, BCM5708S_1000X_CTL1
, &val
);
2225 val
|= BCM5708S_1000X_CTL1_FIBER_MODE
| BCM5708S_1000X_CTL1_AUTODET_EN
;
2226 bnx2_write_phy(bp
, BCM5708S_1000X_CTL1
, val
);
2228 bnx2_read_phy(bp
, BCM5708S_1000X_CTL2
, &val
);
2229 val
|= BCM5708S_1000X_CTL2_PLLEL_DET_EN
;
2230 bnx2_write_phy(bp
, BCM5708S_1000X_CTL2
, val
);
2232 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) {
2233 bnx2_read_phy(bp
, BCM5708S_UP1
, &val
);
2234 val
|= BCM5708S_UP1_2G5
;
2235 bnx2_write_phy(bp
, BCM5708S_UP1
, val
);
2238 if ((CHIP_ID(bp
) == CHIP_ID_5708_A0
) ||
2239 (CHIP_ID(bp
) == CHIP_ID_5708_B0
) ||
2240 (CHIP_ID(bp
) == CHIP_ID_5708_B1
)) {
2241 /* increase tx signal amplitude */
2242 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2243 BCM5708S_BLK_ADDR_TX_MISC
);
2244 bnx2_read_phy(bp
, BCM5708S_TX_ACTL1
, &val
);
2245 val
&= ~BCM5708S_TX_ACTL1_DRIVER_VCM
;
2246 bnx2_write_phy(bp
, BCM5708S_TX_ACTL1
, val
);
2247 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG
);
2250 val
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_CONFIG
) &
2251 BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK
;
2256 is_backplane
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG
);
2257 if (is_backplane
& BNX2_SHARED_HW_CFG_PHY_BACKPLANE
) {
2258 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2259 BCM5708S_BLK_ADDR_TX_MISC
);
2260 bnx2_write_phy(bp
, BCM5708S_TX_ACTL3
, val
);
2261 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2262 BCM5708S_BLK_ADDR_DIG
);
2269 bnx2_init_5706s_phy(struct bnx2
*bp
, int reset_phy
)
2274 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
2276 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
2277 REG_WR(bp
, BNX2_MISC_GP_HW_CTL0
, 0x300);
2279 if (bp
->dev
->mtu
> 1500) {
2282 /* Set extended packet length bit */
2283 bnx2_write_phy(bp
, 0x18, 0x7);
2284 bnx2_read_phy(bp
, 0x18, &val
);
2285 bnx2_write_phy(bp
, 0x18, (val
& 0xfff8) | 0x4000);
2287 bnx2_write_phy(bp
, 0x1c, 0x6c00);
2288 bnx2_read_phy(bp
, 0x1c, &val
);
2289 bnx2_write_phy(bp
, 0x1c, (val
& 0x3ff) | 0xec02);
2294 bnx2_write_phy(bp
, 0x18, 0x7);
2295 bnx2_read_phy(bp
, 0x18, &val
);
2296 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
2298 bnx2_write_phy(bp
, 0x1c, 0x6c00);
2299 bnx2_read_phy(bp
, 0x1c, &val
);
2300 bnx2_write_phy(bp
, 0x1c, (val
& 0x3fd) | 0xec00);
2307 bnx2_init_copper_phy(struct bnx2
*bp
, int reset_phy
)
2314 if (bp
->phy_flags
& BNX2_PHY_FLAG_CRC_FIX
) {
2315 bnx2_write_phy(bp
, 0x18, 0x0c00);
2316 bnx2_write_phy(bp
, 0x17, 0x000a);
2317 bnx2_write_phy(bp
, 0x15, 0x310b);
2318 bnx2_write_phy(bp
, 0x17, 0x201f);
2319 bnx2_write_phy(bp
, 0x15, 0x9506);
2320 bnx2_write_phy(bp
, 0x17, 0x401f);
2321 bnx2_write_phy(bp
, 0x15, 0x14e2);
2322 bnx2_write_phy(bp
, 0x18, 0x0400);
2325 if (bp
->phy_flags
& BNX2_PHY_FLAG_DIS_EARLY_DAC
) {
2326 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
,
2327 MII_BNX2_DSP_EXPAND_REG
| 0x8);
2328 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &val
);
2330 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
);
2333 if (bp
->dev
->mtu
> 1500) {
2334 /* Set extended packet length bit */
2335 bnx2_write_phy(bp
, 0x18, 0x7);
2336 bnx2_read_phy(bp
, 0x18, &val
);
2337 bnx2_write_phy(bp
, 0x18, val
| 0x4000);
2339 bnx2_read_phy(bp
, 0x10, &val
);
2340 bnx2_write_phy(bp
, 0x10, val
| 0x1);
2343 bnx2_write_phy(bp
, 0x18, 0x7);
2344 bnx2_read_phy(bp
, 0x18, &val
);
2345 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
2347 bnx2_read_phy(bp
, 0x10, &val
);
2348 bnx2_write_phy(bp
, 0x10, val
& ~0x1);
2351 /* ethernet@wirespeed */
2352 bnx2_write_phy(bp
, 0x18, 0x7007);
2353 bnx2_read_phy(bp
, 0x18, &val
);
2354 bnx2_write_phy(bp
, 0x18, val
| (1 << 15) | (1 << 4));
2360 bnx2_init_phy(struct bnx2
*bp
, int reset_phy
)
2361 __releases(&bp
->phy_lock
)
2362 __acquires(&bp
->phy_lock
)
2367 bp
->phy_flags
&= ~BNX2_PHY_FLAG_INT_MODE_MASK
;
2368 bp
->phy_flags
|= BNX2_PHY_FLAG_INT_MODE_LINK_READY
;
2370 bp
->mii_bmcr
= MII_BMCR
;
2371 bp
->mii_bmsr
= MII_BMSR
;
2372 bp
->mii_bmsr1
= MII_BMSR
;
2373 bp
->mii_adv
= MII_ADVERTISE
;
2374 bp
->mii_lpa
= MII_LPA
;
2376 REG_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
2378 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
2381 bnx2_read_phy(bp
, MII_PHYSID1
, &val
);
2382 bp
->phy_id
= val
<< 16;
2383 bnx2_read_phy(bp
, MII_PHYSID2
, &val
);
2384 bp
->phy_id
|= val
& 0xffff;
2386 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
2387 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
2388 rc
= bnx2_init_5706s_phy(bp
, reset_phy
);
2389 else if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
2390 rc
= bnx2_init_5708s_phy(bp
, reset_phy
);
2391 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
2392 rc
= bnx2_init_5709s_phy(bp
, reset_phy
);
2395 rc
= bnx2_init_copper_phy(bp
, reset_phy
);
2400 rc
= bnx2_setup_phy(bp
, bp
->phy_port
);
2406 bnx2_set_mac_loopback(struct bnx2
*bp
)
2410 mac_mode
= REG_RD(bp
, BNX2_EMAC_MODE
);
2411 mac_mode
&= ~BNX2_EMAC_MODE_PORT
;
2412 mac_mode
|= BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
;
2413 REG_WR(bp
, BNX2_EMAC_MODE
, mac_mode
);
2418 static int bnx2_test_link(struct bnx2
*);
2421 bnx2_set_phy_loopback(struct bnx2
*bp
)
2426 spin_lock_bh(&bp
->phy_lock
);
2427 rc
= bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
| BMCR_FULLDPLX
|
2429 spin_unlock_bh(&bp
->phy_lock
);
2433 for (i
= 0; i
< 10; i
++) {
2434 if (bnx2_test_link(bp
) == 0)
2439 mac_mode
= REG_RD(bp
, BNX2_EMAC_MODE
);
2440 mac_mode
&= ~(BNX2_EMAC_MODE_PORT
| BNX2_EMAC_MODE_HALF_DUPLEX
|
2441 BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
|
2442 BNX2_EMAC_MODE_25G_MODE
);
2444 mac_mode
|= BNX2_EMAC_MODE_PORT_GMII
;
2445 REG_WR(bp
, BNX2_EMAC_MODE
, mac_mode
);
2451 bnx2_fw_sync(struct bnx2
*bp
, u32 msg_data
, int ack
, int silent
)
2457 msg_data
|= bp
->fw_wr_seq
;
2459 bnx2_shmem_wr(bp
, BNX2_DRV_MB
, msg_data
);
2464 /* wait for an acknowledgement. */
2465 for (i
= 0; i
< (BNX2_FW_ACK_TIME_OUT_MS
/ 10); i
++) {
2468 val
= bnx2_shmem_rd(bp
, BNX2_FW_MB
);
2470 if ((val
& BNX2_FW_MSG_ACK
) == (msg_data
& BNX2_DRV_MSG_SEQ
))
2473 if ((msg_data
& BNX2_DRV_MSG_DATA
) == BNX2_DRV_MSG_DATA_WAIT0
)
2476 /* If we timed out, inform the firmware that this is the case. */
2477 if ((val
& BNX2_FW_MSG_ACK
) != (msg_data
& BNX2_DRV_MSG_SEQ
)) {
2479 pr_err("fw sync timeout, reset code = %x\n", msg_data
);
2481 msg_data
&= ~BNX2_DRV_MSG_CODE
;
2482 msg_data
|= BNX2_DRV_MSG_CODE_FW_TIMEOUT
;
2484 bnx2_shmem_wr(bp
, BNX2_DRV_MB
, msg_data
);
2489 if ((val
& BNX2_FW_MSG_STATUS_MASK
) != BNX2_FW_MSG_STATUS_OK
)
2496 bnx2_init_5709_context(struct bnx2
*bp
)
2501 val
= BNX2_CTX_COMMAND_ENABLED
| BNX2_CTX_COMMAND_MEM_INIT
| (1 << 12);
2502 val
|= (BCM_PAGE_BITS
- 8) << 16;
2503 REG_WR(bp
, BNX2_CTX_COMMAND
, val
);
2504 for (i
= 0; i
< 10; i
++) {
2505 val
= REG_RD(bp
, BNX2_CTX_COMMAND
);
2506 if (!(val
& BNX2_CTX_COMMAND_MEM_INIT
))
2510 if (val
& BNX2_CTX_COMMAND_MEM_INIT
)
2513 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
2517 memset(bp
->ctx_blk
[i
], 0, BCM_PAGE_SIZE
);
2521 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_DATA0
,
2522 (bp
->ctx_blk_mapping
[i
] & 0xffffffff) |
2523 BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID
);
2524 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_DATA1
,
2525 (u64
) bp
->ctx_blk_mapping
[i
] >> 32);
2526 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_CTRL
, i
|
2527 BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
);
2528 for (j
= 0; j
< 10; j
++) {
2530 val
= REG_RD(bp
, BNX2_CTX_HOST_PAGE_TBL_CTRL
);
2531 if (!(val
& BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
))
2535 if (val
& BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
) {
2544 bnx2_init_context(struct bnx2
*bp
)
2550 u32 vcid_addr
, pcid_addr
, offset
;
2555 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
2558 vcid_addr
= GET_PCID_ADDR(vcid
);
2560 new_vcid
= 0x60 + (vcid
& 0xf0) + (vcid
& 0x7);
2565 pcid_addr
= GET_PCID_ADDR(new_vcid
);
2568 vcid_addr
= GET_CID_ADDR(vcid
);
2569 pcid_addr
= vcid_addr
;
2572 for (i
= 0; i
< (CTX_SIZE
/ PHY_CTX_SIZE
); i
++) {
2573 vcid_addr
+= (i
<< PHY_CTX_SHIFT
);
2574 pcid_addr
+= (i
<< PHY_CTX_SHIFT
);
2576 REG_WR(bp
, BNX2_CTX_VIRT_ADDR
, vcid_addr
);
2577 REG_WR(bp
, BNX2_CTX_PAGE_TBL
, pcid_addr
);
2579 /* Zero out the context. */
2580 for (offset
= 0; offset
< PHY_CTX_SIZE
; offset
+= 4)
2581 bnx2_ctx_wr(bp
, vcid_addr
, offset
, 0);
2587 bnx2_alloc_bad_rbuf(struct bnx2
*bp
)
2593 good_mbuf
= kmalloc(512 * sizeof(u16
), GFP_KERNEL
);
2594 if (good_mbuf
== NULL
) {
2595 pr_err("Failed to allocate memory in %s\n", __func__
);
2599 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
2600 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE
);
2604 /* Allocate a bunch of mbufs and save the good ones in an array. */
2605 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_STATUS1
);
2606 while (val
& BNX2_RBUF_STATUS1_FREE_COUNT
) {
2607 bnx2_reg_wr_ind(bp
, BNX2_RBUF_COMMAND
,
2608 BNX2_RBUF_COMMAND_ALLOC_REQ
);
2610 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_FW_BUF_ALLOC
);
2612 val
&= BNX2_RBUF_FW_BUF_ALLOC_VALUE
;
2614 /* The addresses with Bit 9 set are bad memory blocks. */
2615 if (!(val
& (1 << 9))) {
2616 good_mbuf
[good_mbuf_cnt
] = (u16
) val
;
2620 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_STATUS1
);
2623 /* Free the good ones back to the mbuf pool thus discarding
2624 * all the bad ones. */
2625 while (good_mbuf_cnt
) {
2628 val
= good_mbuf
[good_mbuf_cnt
];
2629 val
= (val
<< 9) | val
| 1;
2631 bnx2_reg_wr_ind(bp
, BNX2_RBUF_FW_BUF_FREE
, val
);
2638 bnx2_set_mac_addr(struct bnx2
*bp
, u8
*mac_addr
, u32 pos
)
2642 val
= (mac_addr
[0] << 8) | mac_addr
[1];
2644 REG_WR(bp
, BNX2_EMAC_MAC_MATCH0
+ (pos
* 8), val
);
2646 val
= (mac_addr
[2] << 24) | (mac_addr
[3] << 16) |
2647 (mac_addr
[4] << 8) | mac_addr
[5];
2649 REG_WR(bp
, BNX2_EMAC_MAC_MATCH1
+ (pos
* 8), val
);
2653 bnx2_alloc_rx_page(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
)
2656 struct sw_pg
*rx_pg
= &rxr
->rx_pg_ring
[index
];
2657 struct rx_bd
*rxbd
=
2658 &rxr
->rx_pg_desc_ring
[RX_RING(index
)][RX_IDX(index
)];
2659 struct page
*page
= alloc_page(GFP_ATOMIC
);
2663 mapping
= pci_map_page(bp
->pdev
, page
, 0, PAGE_SIZE
,
2664 PCI_DMA_FROMDEVICE
);
2665 if (pci_dma_mapping_error(bp
->pdev
, mapping
)) {
2671 dma_unmap_addr_set(rx_pg
, mapping
, mapping
);
2672 rxbd
->rx_bd_haddr_hi
= (u64
) mapping
>> 32;
2673 rxbd
->rx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
2678 bnx2_free_rx_page(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
)
2680 struct sw_pg
*rx_pg
= &rxr
->rx_pg_ring
[index
];
2681 struct page
*page
= rx_pg
->page
;
2686 pci_unmap_page(bp
->pdev
, dma_unmap_addr(rx_pg
, mapping
), PAGE_SIZE
,
2687 PCI_DMA_FROMDEVICE
);
2694 bnx2_alloc_rx_skb(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
)
2696 struct sk_buff
*skb
;
2697 struct sw_bd
*rx_buf
= &rxr
->rx_buf_ring
[index
];
2699 struct rx_bd
*rxbd
= &rxr
->rx_desc_ring
[RX_RING(index
)][RX_IDX(index
)];
2700 unsigned long align
;
2702 skb
= netdev_alloc_skb(bp
->dev
, bp
->rx_buf_size
);
2707 if (unlikely((align
= (unsigned long) skb
->data
& (BNX2_RX_ALIGN
- 1))))
2708 skb_reserve(skb
, BNX2_RX_ALIGN
- align
);
2710 mapping
= pci_map_single(bp
->pdev
, skb
->data
, bp
->rx_buf_use_size
,
2711 PCI_DMA_FROMDEVICE
);
2712 if (pci_dma_mapping_error(bp
->pdev
, mapping
)) {
2718 rx_buf
->desc
= (struct l2_fhdr
*) skb
->data
;
2719 dma_unmap_addr_set(rx_buf
, mapping
, mapping
);
2721 rxbd
->rx_bd_haddr_hi
= (u64
) mapping
>> 32;
2722 rxbd
->rx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
2724 rxr
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
2730 bnx2_phy_event_is_set(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, u32 event
)
2732 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
2733 u32 new_link_state
, old_link_state
;
2736 new_link_state
= sblk
->status_attn_bits
& event
;
2737 old_link_state
= sblk
->status_attn_bits_ack
& event
;
2738 if (new_link_state
!= old_link_state
) {
2740 REG_WR(bp
, BNX2_PCICFG_STATUS_BIT_SET_CMD
, event
);
2742 REG_WR(bp
, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD
, event
);
2750 bnx2_phy_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
2752 spin_lock(&bp
->phy_lock
);
2754 if (bnx2_phy_event_is_set(bp
, bnapi
, STATUS_ATTN_BITS_LINK_STATE
))
2756 if (bnx2_phy_event_is_set(bp
, bnapi
, STATUS_ATTN_BITS_TIMER_ABORT
))
2757 bnx2_set_remote_link(bp
);
2759 spin_unlock(&bp
->phy_lock
);
2764 bnx2_get_hw_tx_cons(struct bnx2_napi
*bnapi
)
2768 /* Tell compiler that status block fields can change. */
2770 cons
= *bnapi
->hw_tx_cons_ptr
;
2772 if (unlikely((cons
& MAX_TX_DESC_CNT
) == MAX_TX_DESC_CNT
))
2778 bnx2_tx_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, int budget
)
2780 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
2781 u16 hw_cons
, sw_cons
, sw_ring_cons
;
2782 int tx_pkt
= 0, index
;
2783 struct netdev_queue
*txq
;
2785 index
= (bnapi
- bp
->bnx2_napi
);
2786 txq
= netdev_get_tx_queue(bp
->dev
, index
);
2788 hw_cons
= bnx2_get_hw_tx_cons(bnapi
);
2789 sw_cons
= txr
->tx_cons
;
2791 while (sw_cons
!= hw_cons
) {
2792 struct sw_tx_bd
*tx_buf
;
2793 struct sk_buff
*skb
;
2796 sw_ring_cons
= TX_RING_IDX(sw_cons
);
2798 tx_buf
= &txr
->tx_buf_ring
[sw_ring_cons
];
2801 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
2802 prefetch(&skb
->end
);
2804 /* partial BD completions possible with TSO packets */
2805 if (tx_buf
->is_gso
) {
2806 u16 last_idx
, last_ring_idx
;
2808 last_idx
= sw_cons
+ tx_buf
->nr_frags
+ 1;
2809 last_ring_idx
= sw_ring_cons
+ tx_buf
->nr_frags
+ 1;
2810 if (unlikely(last_ring_idx
>= MAX_TX_DESC_CNT
)) {
2813 if (((s16
) ((s16
) last_idx
- (s16
) hw_cons
)) > 0) {
2818 pci_unmap_single(bp
->pdev
, dma_unmap_addr(tx_buf
, mapping
),
2819 skb_headlen(skb
), PCI_DMA_TODEVICE
);
2822 last
= tx_buf
->nr_frags
;
2824 for (i
= 0; i
< last
; i
++) {
2825 sw_cons
= NEXT_TX_BD(sw_cons
);
2827 pci_unmap_page(bp
->pdev
,
2829 &txr
->tx_buf_ring
[TX_RING_IDX(sw_cons
)],
2831 skb_shinfo(skb
)->frags
[i
].size
,
2835 sw_cons
= NEXT_TX_BD(sw_cons
);
2839 if (tx_pkt
== budget
)
2842 if (hw_cons
== sw_cons
)
2843 hw_cons
= bnx2_get_hw_tx_cons(bnapi
);
2846 txr
->hw_tx_cons
= hw_cons
;
2847 txr
->tx_cons
= sw_cons
;
2849 /* Need to make the tx_cons update visible to bnx2_start_xmit()
2850 * before checking for netif_tx_queue_stopped(). Without the
2851 * memory barrier, there is a small possibility that bnx2_start_xmit()
2852 * will miss it and cause the queue to be stopped forever.
2856 if (unlikely(netif_tx_queue_stopped(txq
)) &&
2857 (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
)) {
2858 __netif_tx_lock(txq
, smp_processor_id());
2859 if ((netif_tx_queue_stopped(txq
)) &&
2860 (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
))
2861 netif_tx_wake_queue(txq
);
2862 __netif_tx_unlock(txq
);
2869 bnx2_reuse_rx_skb_pages(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
,
2870 struct sk_buff
*skb
, int count
)
2872 struct sw_pg
*cons_rx_pg
, *prod_rx_pg
;
2873 struct rx_bd
*cons_bd
, *prod_bd
;
2876 u16 cons
= rxr
->rx_pg_cons
;
2878 cons_rx_pg
= &rxr
->rx_pg_ring
[cons
];
2880 /* The caller was unable to allocate a new page to replace the
2881 * last one in the frags array, so we need to recycle that page
2882 * and then free the skb.
2886 struct skb_shared_info
*shinfo
;
2888 shinfo
= skb_shinfo(skb
);
2890 page
= shinfo
->frags
[shinfo
->nr_frags
].page
;
2891 shinfo
->frags
[shinfo
->nr_frags
].page
= NULL
;
2893 cons_rx_pg
->page
= page
;
2897 hw_prod
= rxr
->rx_pg_prod
;
2899 for (i
= 0; i
< count
; i
++) {
2900 prod
= RX_PG_RING_IDX(hw_prod
);
2902 prod_rx_pg
= &rxr
->rx_pg_ring
[prod
];
2903 cons_rx_pg
= &rxr
->rx_pg_ring
[cons
];
2904 cons_bd
= &rxr
->rx_pg_desc_ring
[RX_RING(cons
)][RX_IDX(cons
)];
2905 prod_bd
= &rxr
->rx_pg_desc_ring
[RX_RING(prod
)][RX_IDX(prod
)];
2908 prod_rx_pg
->page
= cons_rx_pg
->page
;
2909 cons_rx_pg
->page
= NULL
;
2910 dma_unmap_addr_set(prod_rx_pg
, mapping
,
2911 dma_unmap_addr(cons_rx_pg
, mapping
));
2913 prod_bd
->rx_bd_haddr_hi
= cons_bd
->rx_bd_haddr_hi
;
2914 prod_bd
->rx_bd_haddr_lo
= cons_bd
->rx_bd_haddr_lo
;
2917 cons
= RX_PG_RING_IDX(NEXT_RX_BD(cons
));
2918 hw_prod
= NEXT_RX_BD(hw_prod
);
2920 rxr
->rx_pg_prod
= hw_prod
;
2921 rxr
->rx_pg_cons
= cons
;
2925 bnx2_reuse_rx_skb(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
,
2926 struct sk_buff
*skb
, u16 cons
, u16 prod
)
2928 struct sw_bd
*cons_rx_buf
, *prod_rx_buf
;
2929 struct rx_bd
*cons_bd
, *prod_bd
;
2931 cons_rx_buf
= &rxr
->rx_buf_ring
[cons
];
2932 prod_rx_buf
= &rxr
->rx_buf_ring
[prod
];
2934 pci_dma_sync_single_for_device(bp
->pdev
,
2935 dma_unmap_addr(cons_rx_buf
, mapping
),
2936 BNX2_RX_OFFSET
+ BNX2_RX_COPY_THRESH
, PCI_DMA_FROMDEVICE
);
2938 rxr
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
2940 prod_rx_buf
->skb
= skb
;
2941 prod_rx_buf
->desc
= (struct l2_fhdr
*) skb
->data
;
2946 dma_unmap_addr_set(prod_rx_buf
, mapping
,
2947 dma_unmap_addr(cons_rx_buf
, mapping
));
2949 cons_bd
= &rxr
->rx_desc_ring
[RX_RING(cons
)][RX_IDX(cons
)];
2950 prod_bd
= &rxr
->rx_desc_ring
[RX_RING(prod
)][RX_IDX(prod
)];
2951 prod_bd
->rx_bd_haddr_hi
= cons_bd
->rx_bd_haddr_hi
;
2952 prod_bd
->rx_bd_haddr_lo
= cons_bd
->rx_bd_haddr_lo
;
2956 bnx2_rx_skb(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, struct sk_buff
*skb
,
2957 unsigned int len
, unsigned int hdr_len
, dma_addr_t dma_addr
,
2961 u16 prod
= ring_idx
& 0xffff;
2963 err
= bnx2_alloc_rx_skb(bp
, rxr
, prod
);
2964 if (unlikely(err
)) {
2965 bnx2_reuse_rx_skb(bp
, rxr
, skb
, (u16
) (ring_idx
>> 16), prod
);
2967 unsigned int raw_len
= len
+ 4;
2968 int pages
= PAGE_ALIGN(raw_len
- hdr_len
) >> PAGE_SHIFT
;
2970 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
, pages
);
2975 skb_reserve(skb
, BNX2_RX_OFFSET
);
2976 pci_unmap_single(bp
->pdev
, dma_addr
, bp
->rx_buf_use_size
,
2977 PCI_DMA_FROMDEVICE
);
2983 unsigned int i
, frag_len
, frag_size
, pages
;
2984 struct sw_pg
*rx_pg
;
2985 u16 pg_cons
= rxr
->rx_pg_cons
;
2986 u16 pg_prod
= rxr
->rx_pg_prod
;
2988 frag_size
= len
+ 4 - hdr_len
;
2989 pages
= PAGE_ALIGN(frag_size
) >> PAGE_SHIFT
;
2990 skb_put(skb
, hdr_len
);
2992 for (i
= 0; i
< pages
; i
++) {
2993 dma_addr_t mapping_old
;
2995 frag_len
= min(frag_size
, (unsigned int) PAGE_SIZE
);
2996 if (unlikely(frag_len
<= 4)) {
2997 unsigned int tail
= 4 - frag_len
;
2999 rxr
->rx_pg_cons
= pg_cons
;
3000 rxr
->rx_pg_prod
= pg_prod
;
3001 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
,
3008 &skb_shinfo(skb
)->frags
[i
- 1];
3010 skb
->data_len
-= tail
;
3011 skb
->truesize
-= tail
;
3015 rx_pg
= &rxr
->rx_pg_ring
[pg_cons
];
3017 /* Don't unmap yet. If we're unable to allocate a new
3018 * page, we need to recycle the page and the DMA addr.
3020 mapping_old
= dma_unmap_addr(rx_pg
, mapping
);
3024 skb_fill_page_desc(skb
, i
, rx_pg
->page
, 0, frag_len
);
3027 err
= bnx2_alloc_rx_page(bp
, rxr
,
3028 RX_PG_RING_IDX(pg_prod
));
3029 if (unlikely(err
)) {
3030 rxr
->rx_pg_cons
= pg_cons
;
3031 rxr
->rx_pg_prod
= pg_prod
;
3032 bnx2_reuse_rx_skb_pages(bp
, rxr
, skb
,
3037 pci_unmap_page(bp
->pdev
, mapping_old
,
3038 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
3040 frag_size
-= frag_len
;
3041 skb
->data_len
+= frag_len
;
3042 skb
->truesize
+= frag_len
;
3043 skb
->len
+= frag_len
;
3045 pg_prod
= NEXT_RX_BD(pg_prod
);
3046 pg_cons
= RX_PG_RING_IDX(NEXT_RX_BD(pg_cons
));
3048 rxr
->rx_pg_prod
= pg_prod
;
3049 rxr
->rx_pg_cons
= pg_cons
;
3055 bnx2_get_hw_rx_cons(struct bnx2_napi
*bnapi
)
3059 /* Tell compiler that status block fields can change. */
3061 cons
= *bnapi
->hw_rx_cons_ptr
;
3063 if (unlikely((cons
& MAX_RX_DESC_CNT
) == MAX_RX_DESC_CNT
))
3069 bnx2_rx_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, int budget
)
3071 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3072 u16 hw_cons
, sw_cons
, sw_ring_cons
, sw_prod
, sw_ring_prod
;
3073 struct l2_fhdr
*rx_hdr
;
3074 int rx_pkt
= 0, pg_ring_used
= 0;
3075 struct pci_dev
*pdev
= bp
->pdev
;
3077 hw_cons
= bnx2_get_hw_rx_cons(bnapi
);
3078 sw_cons
= rxr
->rx_cons
;
3079 sw_prod
= rxr
->rx_prod
;
3081 /* Memory barrier necessary as speculative reads of the rx
3082 * buffer can be ahead of the index in the status block
3085 while (sw_cons
!= hw_cons
) {
3086 unsigned int len
, hdr_len
;
3088 struct sw_bd
*rx_buf
, *next_rx_buf
;
3089 struct sk_buff
*skb
;
3090 dma_addr_t dma_addr
;
3092 int hw_vlan __maybe_unused
= 0;
3094 sw_ring_cons
= RX_RING_IDX(sw_cons
);
3095 sw_ring_prod
= RX_RING_IDX(sw_prod
);
3097 rx_buf
= &rxr
->rx_buf_ring
[sw_ring_cons
];
3101 if (!get_dma_ops(&pdev
->dev
)->sync_single_for_cpu
) {
3104 RX_RING_IDX(NEXT_RX_BD(sw_cons
))];
3105 prefetch(next_rx_buf
->desc
);
3109 dma_addr
= dma_unmap_addr(rx_buf
, mapping
);
3111 pci_dma_sync_single_for_cpu(bp
->pdev
, dma_addr
,
3112 BNX2_RX_OFFSET
+ BNX2_RX_COPY_THRESH
,
3113 PCI_DMA_FROMDEVICE
);
3115 rx_hdr
= rx_buf
->desc
;
3116 len
= rx_hdr
->l2_fhdr_pkt_len
;
3117 status
= rx_hdr
->l2_fhdr_status
;
3120 if (status
& L2_FHDR_STATUS_SPLIT
) {
3121 hdr_len
= rx_hdr
->l2_fhdr_ip_xsum
;
3123 } else if (len
> bp
->rx_jumbo_thresh
) {
3124 hdr_len
= bp
->rx_jumbo_thresh
;
3128 if (unlikely(status
& (L2_FHDR_ERRORS_BAD_CRC
|
3129 L2_FHDR_ERRORS_PHY_DECODE
|
3130 L2_FHDR_ERRORS_ALIGNMENT
|
3131 L2_FHDR_ERRORS_TOO_SHORT
|
3132 L2_FHDR_ERRORS_GIANT_FRAME
))) {
3134 bnx2_reuse_rx_skb(bp
, rxr
, skb
, sw_ring_cons
,
3139 pages
= PAGE_ALIGN(len
- hdr_len
) >> PAGE_SHIFT
;
3141 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
, pages
);
3148 if (len
<= bp
->rx_copy_thresh
) {
3149 struct sk_buff
*new_skb
;
3151 new_skb
= netdev_alloc_skb(bp
->dev
, len
+ 6);
3152 if (new_skb
== NULL
) {
3153 bnx2_reuse_rx_skb(bp
, rxr
, skb
, sw_ring_cons
,
3159 skb_copy_from_linear_data_offset(skb
,
3161 new_skb
->data
, len
+ 6);
3162 skb_reserve(new_skb
, 6);
3163 skb_put(new_skb
, len
);
3165 bnx2_reuse_rx_skb(bp
, rxr
, skb
,
3166 sw_ring_cons
, sw_ring_prod
);
3169 } else if (unlikely(bnx2_rx_skb(bp
, rxr
, skb
, len
, hdr_len
,
3170 dma_addr
, (sw_ring_cons
<< 16) | sw_ring_prod
)))
3173 if ((status
& L2_FHDR_STATUS_L2_VLAN_TAG
) &&
3174 !(bp
->rx_mode
& BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
)) {
3175 vtag
= rx_hdr
->l2_fhdr_vlan_tag
;
3182 struct vlan_ethhdr
*ve
= (struct vlan_ethhdr
*)
3185 memmove(ve
, skb
->data
+ 4, ETH_ALEN
* 2);
3186 ve
->h_vlan_proto
= htons(ETH_P_8021Q
);
3187 ve
->h_vlan_TCI
= htons(vtag
);
3192 skb
->protocol
= eth_type_trans(skb
, bp
->dev
);
3194 if ((len
> (bp
->dev
->mtu
+ ETH_HLEN
)) &&
3195 (ntohs(skb
->protocol
) != 0x8100)) {
3202 skb
->ip_summed
= CHECKSUM_NONE
;
3204 (status
& (L2_FHDR_STATUS_TCP_SEGMENT
|
3205 L2_FHDR_STATUS_UDP_DATAGRAM
))) {
3207 if (likely((status
& (L2_FHDR_ERRORS_TCP_XSUM
|
3208 L2_FHDR_ERRORS_UDP_XSUM
)) == 0))
3209 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3212 skb_record_rx_queue(skb
, bnapi
- &bp
->bnx2_napi
[0]);
3216 vlan_gro_receive(&bnapi
->napi
, bp
->vlgrp
, vtag
, skb
);
3219 napi_gro_receive(&bnapi
->napi
, skb
);
3224 sw_cons
= NEXT_RX_BD(sw_cons
);
3225 sw_prod
= NEXT_RX_BD(sw_prod
);
3227 if ((rx_pkt
== budget
))
3230 /* Refresh hw_cons to see if there is new work */
3231 if (sw_cons
== hw_cons
) {
3232 hw_cons
= bnx2_get_hw_rx_cons(bnapi
);
3236 rxr
->rx_cons
= sw_cons
;
3237 rxr
->rx_prod
= sw_prod
;
3240 REG_WR16(bp
, rxr
->rx_pg_bidx_addr
, rxr
->rx_pg_prod
);
3242 REG_WR16(bp
, rxr
->rx_bidx_addr
, sw_prod
);
3244 REG_WR(bp
, rxr
->rx_bseq_addr
, rxr
->rx_prod_bseq
);
3252 /* MSI ISR - The only difference between this and the INTx ISR
3253 * is that the MSI interrupt is always serviced.
3256 bnx2_msi(int irq
, void *dev_instance
)
3258 struct bnx2_napi
*bnapi
= dev_instance
;
3259 struct bnx2
*bp
= bnapi
->bp
;
3261 prefetch(bnapi
->status_blk
.msi
);
3262 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3263 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
3264 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
3266 /* Return here if interrupt is disabled. */
3267 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3270 napi_schedule(&bnapi
->napi
);
3276 bnx2_msi_1shot(int irq
, void *dev_instance
)
3278 struct bnx2_napi
*bnapi
= dev_instance
;
3279 struct bnx2
*bp
= bnapi
->bp
;
3281 prefetch(bnapi
->status_blk
.msi
);
3283 /* Return here if interrupt is disabled. */
3284 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3287 napi_schedule(&bnapi
->napi
);
3293 bnx2_interrupt(int irq
, void *dev_instance
)
3295 struct bnx2_napi
*bnapi
= dev_instance
;
3296 struct bnx2
*bp
= bnapi
->bp
;
3297 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3299 /* When using INTx, it is possible for the interrupt to arrive
3300 * at the CPU before the status block posted prior to the
3301 * interrupt. Reading a register will flush the status block.
3302 * When using MSI, the MSI message will always complete after
3303 * the status block write.
3305 if ((sblk
->status_idx
== bnapi
->last_status_idx
) &&
3306 (REG_RD(bp
, BNX2_PCICFG_MISC_STATUS
) &
3307 BNX2_PCICFG_MISC_STATUS_INTA_VALUE
))
3310 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3311 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
3312 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
3314 /* Read back to deassert IRQ immediately to avoid too many
3315 * spurious interrupts.
3317 REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
);
3319 /* Return here if interrupt is shared and is disabled. */
3320 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3323 if (napi_schedule_prep(&bnapi
->napi
)) {
3324 bnapi
->last_status_idx
= sblk
->status_idx
;
3325 __napi_schedule(&bnapi
->napi
);
3332 bnx2_has_fast_work(struct bnx2_napi
*bnapi
)
3334 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
3335 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3337 if ((bnx2_get_hw_rx_cons(bnapi
) != rxr
->rx_cons
) ||
3338 (bnx2_get_hw_tx_cons(bnapi
) != txr
->hw_tx_cons
))
3343 #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
3344 STATUS_ATTN_BITS_TIMER_ABORT)
3347 bnx2_has_work(struct bnx2_napi
*bnapi
)
3349 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3351 if (bnx2_has_fast_work(bnapi
))
3355 if (bnapi
->cnic_present
&& (bnapi
->cnic_tag
!= sblk
->status_idx
))
3359 if ((sblk
->status_attn_bits
& STATUS_ATTN_EVENTS
) !=
3360 (sblk
->status_attn_bits_ack
& STATUS_ATTN_EVENTS
))
3367 bnx2_chk_missed_msi(struct bnx2
*bp
)
3369 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
3372 if (bnx2_has_work(bnapi
)) {
3373 msi_ctrl
= REG_RD(bp
, BNX2_PCICFG_MSI_CONTROL
);
3374 if (!(msi_ctrl
& BNX2_PCICFG_MSI_CONTROL_ENABLE
))
3377 if (bnapi
->last_status_idx
== bp
->idle_chk_status_idx
) {
3378 REG_WR(bp
, BNX2_PCICFG_MSI_CONTROL
, msi_ctrl
&
3379 ~BNX2_PCICFG_MSI_CONTROL_ENABLE
);
3380 REG_WR(bp
, BNX2_PCICFG_MSI_CONTROL
, msi_ctrl
);
3381 bnx2_msi(bp
->irq_tbl
[0].vector
, bnapi
);
3385 bp
->idle_chk_status_idx
= bnapi
->last_status_idx
;
3389 static void bnx2_poll_cnic(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
3391 struct cnic_ops
*c_ops
;
3393 if (!bnapi
->cnic_present
)
3397 c_ops
= rcu_dereference(bp
->cnic_ops
);
3399 bnapi
->cnic_tag
= c_ops
->cnic_handler(bp
->cnic_data
,
3400 bnapi
->status_blk
.msi
);
3405 static void bnx2_poll_link(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
3407 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3408 u32 status_attn_bits
= sblk
->status_attn_bits
;
3409 u32 status_attn_bits_ack
= sblk
->status_attn_bits_ack
;
3411 if ((status_attn_bits
& STATUS_ATTN_EVENTS
) !=
3412 (status_attn_bits_ack
& STATUS_ATTN_EVENTS
)) {
3414 bnx2_phy_int(bp
, bnapi
);
3416 /* This is needed to take care of transient status
3417 * during link changes.
3419 REG_WR(bp
, BNX2_HC_COMMAND
,
3420 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
3421 REG_RD(bp
, BNX2_HC_COMMAND
);
3425 static int bnx2_poll_work(struct bnx2
*bp
, struct bnx2_napi
*bnapi
,
3426 int work_done
, int budget
)
3428 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
3429 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3431 if (bnx2_get_hw_tx_cons(bnapi
) != txr
->hw_tx_cons
)
3432 bnx2_tx_int(bp
, bnapi
, 0);
3434 if (bnx2_get_hw_rx_cons(bnapi
) != rxr
->rx_cons
)
3435 work_done
+= bnx2_rx_int(bp
, bnapi
, budget
- work_done
);
3440 static int bnx2_poll_msix(struct napi_struct
*napi
, int budget
)
3442 struct bnx2_napi
*bnapi
= container_of(napi
, struct bnx2_napi
, napi
);
3443 struct bnx2
*bp
= bnapi
->bp
;
3445 struct status_block_msix
*sblk
= bnapi
->status_blk
.msix
;
3448 work_done
= bnx2_poll_work(bp
, bnapi
, work_done
, budget
);
3449 if (unlikely(work_done
>= budget
))
3452 bnapi
->last_status_idx
= sblk
->status_idx
;
3453 /* status idx must be read before checking for more work. */
3455 if (likely(!bnx2_has_fast_work(bnapi
))) {
3457 napi_complete(napi
);
3458 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
3459 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3460 bnapi
->last_status_idx
);
3467 static int bnx2_poll(struct napi_struct
*napi
, int budget
)
3469 struct bnx2_napi
*bnapi
= container_of(napi
, struct bnx2_napi
, napi
);
3470 struct bnx2
*bp
= bnapi
->bp
;
3472 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3475 bnx2_poll_link(bp
, bnapi
);
3477 work_done
= bnx2_poll_work(bp
, bnapi
, work_done
, budget
);
3480 bnx2_poll_cnic(bp
, bnapi
);
3483 /* bnapi->last_status_idx is used below to tell the hw how
3484 * much work has been processed, so we must read it before
3485 * checking for more work.
3487 bnapi
->last_status_idx
= sblk
->status_idx
;
3489 if (unlikely(work_done
>= budget
))
3493 if (likely(!bnx2_has_work(bnapi
))) {
3494 napi_complete(napi
);
3495 if (likely(bp
->flags
& BNX2_FLAG_USING_MSI_OR_MSIX
)) {
3496 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3497 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3498 bnapi
->last_status_idx
);
3501 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3502 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3503 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
|
3504 bnapi
->last_status_idx
);
3506 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3507 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3508 bnapi
->last_status_idx
);
3516 /* Called with rtnl_lock from vlan functions and also netif_tx_lock
3517 * from set_multicast.
3520 bnx2_set_rx_mode(struct net_device
*dev
)
3522 struct bnx2
*bp
= netdev_priv(dev
);
3523 u32 rx_mode
, sort_mode
;
3524 struct netdev_hw_addr
*ha
;
3527 if (!netif_running(dev
))
3530 spin_lock_bh(&bp
->phy_lock
);
3532 rx_mode
= bp
->rx_mode
& ~(BNX2_EMAC_RX_MODE_PROMISCUOUS
|
3533 BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
);
3534 sort_mode
= 1 | BNX2_RPM_SORT_USER0_BC_EN
;
3536 if (!bp
->vlgrp
&& (bp
->flags
& BNX2_FLAG_CAN_KEEP_VLAN
))
3537 rx_mode
|= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
;
3539 if (bp
->flags
& BNX2_FLAG_CAN_KEEP_VLAN
)
3540 rx_mode
|= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
;
3542 if (dev
->flags
& IFF_PROMISC
) {
3543 /* Promiscuous mode. */
3544 rx_mode
|= BNX2_EMAC_RX_MODE_PROMISCUOUS
;
3545 sort_mode
|= BNX2_RPM_SORT_USER0_PROM_EN
|
3546 BNX2_RPM_SORT_USER0_PROM_VLAN
;
3548 else if (dev
->flags
& IFF_ALLMULTI
) {
3549 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3550 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3553 sort_mode
|= BNX2_RPM_SORT_USER0_MC_EN
;
3556 /* Accept one or more multicast(s). */
3557 u32 mc_filter
[NUM_MC_HASH_REGISTERS
];
3562 memset(mc_filter
, 0, 4 * NUM_MC_HASH_REGISTERS
);
3564 netdev_for_each_mc_addr(ha
, dev
) {
3565 crc
= ether_crc_le(ETH_ALEN
, ha
->addr
);
3567 regidx
= (bit
& 0xe0) >> 5;
3569 mc_filter
[regidx
] |= (1 << bit
);
3572 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3573 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3577 sort_mode
|= BNX2_RPM_SORT_USER0_MC_HSH_EN
;
3580 if (netdev_uc_count(dev
) > BNX2_MAX_UNICAST_ADDRESSES
) {
3581 rx_mode
|= BNX2_EMAC_RX_MODE_PROMISCUOUS
;
3582 sort_mode
|= BNX2_RPM_SORT_USER0_PROM_EN
|
3583 BNX2_RPM_SORT_USER0_PROM_VLAN
;
3584 } else if (!(dev
->flags
& IFF_PROMISC
)) {
3585 /* Add all entries into to the match filter list */
3587 netdev_for_each_uc_addr(ha
, dev
) {
3588 bnx2_set_mac_addr(bp
, ha
->addr
,
3589 i
+ BNX2_START_UNICAST_ADDRESS_INDEX
);
3591 (i
+ BNX2_START_UNICAST_ADDRESS_INDEX
));
3597 if (rx_mode
!= bp
->rx_mode
) {
3598 bp
->rx_mode
= rx_mode
;
3599 REG_WR(bp
, BNX2_EMAC_RX_MODE
, rx_mode
);
3602 REG_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
3603 REG_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
);
3604 REG_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
| BNX2_RPM_SORT_USER0_ENA
);
3606 spin_unlock_bh(&bp
->phy_lock
);
3609 static int __devinit
3610 check_fw_section(const struct firmware
*fw
,
3611 const struct bnx2_fw_file_section
*section
,
3612 u32 alignment
, bool non_empty
)
3614 u32 offset
= be32_to_cpu(section
->offset
);
3615 u32 len
= be32_to_cpu(section
->len
);
3617 if ((offset
== 0 && len
!= 0) || offset
>= fw
->size
|| offset
& 3)
3619 if ((non_empty
&& len
== 0) || len
> fw
->size
- offset
||
3620 len
& (alignment
- 1))
3625 static int __devinit
3626 check_mips_fw_entry(const struct firmware
*fw
,
3627 const struct bnx2_mips_fw_file_entry
*entry
)
3629 if (check_fw_section(fw
, &entry
->text
, 4, true) ||
3630 check_fw_section(fw
, &entry
->data
, 4, false) ||
3631 check_fw_section(fw
, &entry
->rodata
, 4, false))
3636 static int __devinit
3637 bnx2_request_firmware(struct bnx2
*bp
)
3639 const char *mips_fw_file
, *rv2p_fw_file
;
3640 const struct bnx2_mips_fw_file
*mips_fw
;
3641 const struct bnx2_rv2p_fw_file
*rv2p_fw
;
3644 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
3645 mips_fw_file
= FW_MIPS_FILE_09
;
3646 if ((CHIP_ID(bp
) == CHIP_ID_5709_A0
) ||
3647 (CHIP_ID(bp
) == CHIP_ID_5709_A1
))
3648 rv2p_fw_file
= FW_RV2P_FILE_09_Ax
;
3650 rv2p_fw_file
= FW_RV2P_FILE_09
;
3652 mips_fw_file
= FW_MIPS_FILE_06
;
3653 rv2p_fw_file
= FW_RV2P_FILE_06
;
3656 rc
= request_firmware(&bp
->mips_firmware
, mips_fw_file
, &bp
->pdev
->dev
);
3658 pr_err("Can't load firmware file \"%s\"\n", mips_fw_file
);
3662 rc
= request_firmware(&bp
->rv2p_firmware
, rv2p_fw_file
, &bp
->pdev
->dev
);
3664 pr_err("Can't load firmware file \"%s\"\n", rv2p_fw_file
);
3667 mips_fw
= (const struct bnx2_mips_fw_file
*) bp
->mips_firmware
->data
;
3668 rv2p_fw
= (const struct bnx2_rv2p_fw_file
*) bp
->rv2p_firmware
->data
;
3669 if (bp
->mips_firmware
->size
< sizeof(*mips_fw
) ||
3670 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->com
) ||
3671 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->cp
) ||
3672 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->rxp
) ||
3673 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->tpat
) ||
3674 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->txp
)) {
3675 pr_err("Firmware file \"%s\" is invalid\n", mips_fw_file
);
3678 if (bp
->rv2p_firmware
->size
< sizeof(*rv2p_fw
) ||
3679 check_fw_section(bp
->rv2p_firmware
, &rv2p_fw
->proc1
.rv2p
, 8, true) ||
3680 check_fw_section(bp
->rv2p_firmware
, &rv2p_fw
->proc2
.rv2p
, 8, true)) {
3681 pr_err("Firmware file \"%s\" is invalid\n", rv2p_fw_file
);
3689 rv2p_fw_fixup(u32 rv2p_proc
, int idx
, u32 loc
, u32 rv2p_code
)
3692 case RV2P_P1_FIXUP_PAGE_SIZE_IDX
:
3693 rv2p_code
&= ~RV2P_BD_PAGE_SIZE_MSK
;
3694 rv2p_code
|= RV2P_BD_PAGE_SIZE
;
3701 load_rv2p_fw(struct bnx2
*bp
, u32 rv2p_proc
,
3702 const struct bnx2_rv2p_fw_file_entry
*fw_entry
)
3704 u32 rv2p_code_len
, file_offset
;
3709 rv2p_code_len
= be32_to_cpu(fw_entry
->rv2p
.len
);
3710 file_offset
= be32_to_cpu(fw_entry
->rv2p
.offset
);
3712 rv2p_code
= (__be32
*)(bp
->rv2p_firmware
->data
+ file_offset
);
3714 if (rv2p_proc
== RV2P_PROC1
) {
3715 cmd
= BNX2_RV2P_PROC1_ADDR_CMD_RDWR
;
3716 addr
= BNX2_RV2P_PROC1_ADDR_CMD
;
3718 cmd
= BNX2_RV2P_PROC2_ADDR_CMD_RDWR
;
3719 addr
= BNX2_RV2P_PROC2_ADDR_CMD
;
3722 for (i
= 0; i
< rv2p_code_len
; i
+= 8) {
3723 REG_WR(bp
, BNX2_RV2P_INSTR_HIGH
, be32_to_cpu(*rv2p_code
));
3725 REG_WR(bp
, BNX2_RV2P_INSTR_LOW
, be32_to_cpu(*rv2p_code
));
3728 val
= (i
/ 8) | cmd
;
3729 REG_WR(bp
, addr
, val
);
3732 rv2p_code
= (__be32
*)(bp
->rv2p_firmware
->data
+ file_offset
);
3733 for (i
= 0; i
< 8; i
++) {
3736 loc
= be32_to_cpu(fw_entry
->fixup
[i
]);
3737 if (loc
&& ((loc
* 4) < rv2p_code_len
)) {
3738 code
= be32_to_cpu(*(rv2p_code
+ loc
- 1));
3739 REG_WR(bp
, BNX2_RV2P_INSTR_HIGH
, code
);
3740 code
= be32_to_cpu(*(rv2p_code
+ loc
));
3741 code
= rv2p_fw_fixup(rv2p_proc
, i
, loc
, code
);
3742 REG_WR(bp
, BNX2_RV2P_INSTR_LOW
, code
);
3744 val
= (loc
/ 2) | cmd
;
3745 REG_WR(bp
, addr
, val
);
3749 /* Reset the processor, un-stall is done later. */
3750 if (rv2p_proc
== RV2P_PROC1
) {
3751 REG_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC1_RESET
);
3754 REG_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC2_RESET
);
3761 load_cpu_fw(struct bnx2
*bp
, const struct cpu_reg
*cpu_reg
,
3762 const struct bnx2_mips_fw_file_entry
*fw_entry
)
3764 u32 addr
, len
, file_offset
;
3770 val
= bnx2_reg_rd_ind(bp
, cpu_reg
->mode
);
3771 val
|= cpu_reg
->mode_value_halt
;
3772 bnx2_reg_wr_ind(bp
, cpu_reg
->mode
, val
);
3773 bnx2_reg_wr_ind(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
3775 /* Load the Text area. */
3776 addr
= be32_to_cpu(fw_entry
->text
.addr
);
3777 len
= be32_to_cpu(fw_entry
->text
.len
);
3778 file_offset
= be32_to_cpu(fw_entry
->text
.offset
);
3779 data
= (__be32
*)(bp
->mips_firmware
->data
+ file_offset
);
3781 offset
= cpu_reg
->spad_base
+ (addr
- cpu_reg
->mips_view_base
);
3785 for (j
= 0; j
< (len
/ 4); j
++, offset
+= 4)
3786 bnx2_reg_wr_ind(bp
, offset
, be32_to_cpu(data
[j
]));
3789 /* Load the Data area. */
3790 addr
= be32_to_cpu(fw_entry
->data
.addr
);
3791 len
= be32_to_cpu(fw_entry
->data
.len
);
3792 file_offset
= be32_to_cpu(fw_entry
->data
.offset
);
3793 data
= (__be32
*)(bp
->mips_firmware
->data
+ file_offset
);
3795 offset
= cpu_reg
->spad_base
+ (addr
- cpu_reg
->mips_view_base
);
3799 for (j
= 0; j
< (len
/ 4); j
++, offset
+= 4)
3800 bnx2_reg_wr_ind(bp
, offset
, be32_to_cpu(data
[j
]));
3803 /* Load the Read-Only area. */
3804 addr
= be32_to_cpu(fw_entry
->rodata
.addr
);
3805 len
= be32_to_cpu(fw_entry
->rodata
.len
);
3806 file_offset
= be32_to_cpu(fw_entry
->rodata
.offset
);
3807 data
= (__be32
*)(bp
->mips_firmware
->data
+ file_offset
);
3809 offset
= cpu_reg
->spad_base
+ (addr
- cpu_reg
->mips_view_base
);
3813 for (j
= 0; j
< (len
/ 4); j
++, offset
+= 4)
3814 bnx2_reg_wr_ind(bp
, offset
, be32_to_cpu(data
[j
]));
3817 /* Clear the pre-fetch instruction. */
3818 bnx2_reg_wr_ind(bp
, cpu_reg
->inst
, 0);
3820 val
= be32_to_cpu(fw_entry
->start_addr
);
3821 bnx2_reg_wr_ind(bp
, cpu_reg
->pc
, val
);
3823 /* Start the CPU. */
3824 val
= bnx2_reg_rd_ind(bp
, cpu_reg
->mode
);
3825 val
&= ~cpu_reg
->mode_value_halt
;
3826 bnx2_reg_wr_ind(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
3827 bnx2_reg_wr_ind(bp
, cpu_reg
->mode
, val
);
3833 bnx2_init_cpus(struct bnx2
*bp
)
3835 const struct bnx2_mips_fw_file
*mips_fw
=
3836 (const struct bnx2_mips_fw_file
*) bp
->mips_firmware
->data
;
3837 const struct bnx2_rv2p_fw_file
*rv2p_fw
=
3838 (const struct bnx2_rv2p_fw_file
*) bp
->rv2p_firmware
->data
;
3841 /* Initialize the RV2P processor. */
3842 load_rv2p_fw(bp
, RV2P_PROC1
, &rv2p_fw
->proc1
);
3843 load_rv2p_fw(bp
, RV2P_PROC2
, &rv2p_fw
->proc2
);
3845 /* Initialize the RX Processor. */
3846 rc
= load_cpu_fw(bp
, &cpu_reg_rxp
, &mips_fw
->rxp
);
3850 /* Initialize the TX Processor. */
3851 rc
= load_cpu_fw(bp
, &cpu_reg_txp
, &mips_fw
->txp
);
3855 /* Initialize the TX Patch-up Processor. */
3856 rc
= load_cpu_fw(bp
, &cpu_reg_tpat
, &mips_fw
->tpat
);
3860 /* Initialize the Completion Processor. */
3861 rc
= load_cpu_fw(bp
, &cpu_reg_com
, &mips_fw
->com
);
3865 /* Initialize the Command Processor. */
3866 rc
= load_cpu_fw(bp
, &cpu_reg_cp
, &mips_fw
->cp
);
3873 bnx2_set_power_state(struct bnx2
*bp
, pci_power_t state
)
3877 pci_read_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
3883 pci_write_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
,
3884 (pmcsr
& ~PCI_PM_CTRL_STATE_MASK
) |
3885 PCI_PM_CTRL_PME_STATUS
);
3887 if (pmcsr
& PCI_PM_CTRL_STATE_MASK
)
3888 /* delay required during transition out of D3hot */
3891 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
3892 val
|= BNX2_EMAC_MODE_MPKT_RCVD
| BNX2_EMAC_MODE_ACPI_RCVD
;
3893 val
&= ~BNX2_EMAC_MODE_MPKT
;
3894 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
3896 val
= REG_RD(bp
, BNX2_RPM_CONFIG
);
3897 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
3898 REG_WR(bp
, BNX2_RPM_CONFIG
, val
);
3909 autoneg
= bp
->autoneg
;
3910 advertising
= bp
->advertising
;
3912 if (bp
->phy_port
== PORT_TP
) {
3913 bp
->autoneg
= AUTONEG_SPEED
;
3914 bp
->advertising
= ADVERTISED_10baseT_Half
|
3915 ADVERTISED_10baseT_Full
|
3916 ADVERTISED_100baseT_Half
|
3917 ADVERTISED_100baseT_Full
|
3921 spin_lock_bh(&bp
->phy_lock
);
3922 bnx2_setup_phy(bp
, bp
->phy_port
);
3923 spin_unlock_bh(&bp
->phy_lock
);
3925 bp
->autoneg
= autoneg
;
3926 bp
->advertising
= advertising
;
3928 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
3930 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
3932 /* Enable port mode. */
3933 val
&= ~BNX2_EMAC_MODE_PORT
;
3934 val
|= BNX2_EMAC_MODE_MPKT_RCVD
|
3935 BNX2_EMAC_MODE_ACPI_RCVD
|
3936 BNX2_EMAC_MODE_MPKT
;
3937 if (bp
->phy_port
== PORT_TP
)
3938 val
|= BNX2_EMAC_MODE_PORT_MII
;
3940 val
|= BNX2_EMAC_MODE_PORT_GMII
;
3941 if (bp
->line_speed
== SPEED_2500
)
3942 val
|= BNX2_EMAC_MODE_25G_MODE
;
3945 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
3947 /* receive all multicast */
3948 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3949 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3952 REG_WR(bp
, BNX2_EMAC_RX_MODE
,
3953 BNX2_EMAC_RX_MODE_SORT_MODE
);
3955 val
= 1 | BNX2_RPM_SORT_USER0_BC_EN
|
3956 BNX2_RPM_SORT_USER0_MC_EN
;
3957 REG_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
3958 REG_WR(bp
, BNX2_RPM_SORT_USER0
, val
);
3959 REG_WR(bp
, BNX2_RPM_SORT_USER0
, val
|
3960 BNX2_RPM_SORT_USER0_ENA
);
3962 /* Need to enable EMAC and RPM for WOL. */
3963 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
3964 BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE
|
3965 BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE
|
3966 BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE
);
3968 val
= REG_RD(bp
, BNX2_RPM_CONFIG
);
3969 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
3970 REG_WR(bp
, BNX2_RPM_CONFIG
, val
);
3972 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
3975 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
3978 if (!(bp
->flags
& BNX2_FLAG_NO_WOL
))
3979 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT3
| wol_msg
,
3982 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
3983 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
3984 (CHIP_ID(bp
) == CHIP_ID_5706_A1
)) {
3993 pmcsr
|= PCI_PM_CTRL_PME_ENABLE
;
3995 pci_write_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
,
3998 /* No more memory access after this point until
3999 * device is brought back to D0.
4011 bnx2_acquire_nvram_lock(struct bnx2
*bp
)
4016 /* Request access to the flash interface. */
4017 REG_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_SET2
);
4018 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4019 val
= REG_RD(bp
, BNX2_NVM_SW_ARB
);
4020 if (val
& BNX2_NVM_SW_ARB_ARB_ARB2
)
4026 if (j
>= NVRAM_TIMEOUT_COUNT
)
4033 bnx2_release_nvram_lock(struct bnx2
*bp
)
4038 /* Relinquish nvram interface. */
4039 REG_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_CLR2
);
4041 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4042 val
= REG_RD(bp
, BNX2_NVM_SW_ARB
);
4043 if (!(val
& BNX2_NVM_SW_ARB_ARB_ARB2
))
4049 if (j
>= NVRAM_TIMEOUT_COUNT
)
4057 bnx2_enable_nvram_write(struct bnx2
*bp
)
4061 val
= REG_RD(bp
, BNX2_MISC_CFG
);
4062 REG_WR(bp
, BNX2_MISC_CFG
, val
| BNX2_MISC_CFG_NVM_WR_EN_PCI
);
4064 if (bp
->flash_info
->flags
& BNX2_NV_WREN
) {
4067 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4068 REG_WR(bp
, BNX2_NVM_COMMAND
,
4069 BNX2_NVM_COMMAND_WREN
| BNX2_NVM_COMMAND_DOIT
);
4071 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4074 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
4075 if (val
& BNX2_NVM_COMMAND_DONE
)
4079 if (j
>= NVRAM_TIMEOUT_COUNT
)
4086 bnx2_disable_nvram_write(struct bnx2
*bp
)
4090 val
= REG_RD(bp
, BNX2_MISC_CFG
);
4091 REG_WR(bp
, BNX2_MISC_CFG
, val
& ~BNX2_MISC_CFG_NVM_WR_EN
);
4096 bnx2_enable_nvram_access(struct bnx2
*bp
)
4100 val
= REG_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
4101 /* Enable both bits, even on read. */
4102 REG_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
4103 val
| BNX2_NVM_ACCESS_ENABLE_EN
| BNX2_NVM_ACCESS_ENABLE_WR_EN
);
4107 bnx2_disable_nvram_access(struct bnx2
*bp
)
4111 val
= REG_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
4112 /* Disable both bits, even after read. */
4113 REG_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
4114 val
& ~(BNX2_NVM_ACCESS_ENABLE_EN
|
4115 BNX2_NVM_ACCESS_ENABLE_WR_EN
));
4119 bnx2_nvram_erase_page(struct bnx2
*bp
, u32 offset
)
4124 if (bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)
4125 /* Buffered flash, no erase needed */
4128 /* Build an erase command */
4129 cmd
= BNX2_NVM_COMMAND_ERASE
| BNX2_NVM_COMMAND_WR
|
4130 BNX2_NVM_COMMAND_DOIT
;
4132 /* Need to clear DONE bit separately. */
4133 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4135 /* Address of the NVRAM to read from. */
4136 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
4138 /* Issue an erase command. */
4139 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
4141 /* Wait for completion. */
4142 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4147 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
4148 if (val
& BNX2_NVM_COMMAND_DONE
)
4152 if (j
>= NVRAM_TIMEOUT_COUNT
)
4159 bnx2_nvram_read_dword(struct bnx2
*bp
, u32 offset
, u8
*ret_val
, u32 cmd_flags
)
4164 /* Build the command word. */
4165 cmd
= BNX2_NVM_COMMAND_DOIT
| cmd_flags
;
4167 /* Calculate an offset of a buffered flash, not needed for 5709. */
4168 if (bp
->flash_info
->flags
& BNX2_NV_TRANSLATE
) {
4169 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
4170 bp
->flash_info
->page_bits
) +
4171 (offset
% bp
->flash_info
->page_size
);
4174 /* Need to clear DONE bit separately. */
4175 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4177 /* Address of the NVRAM to read from. */
4178 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
4180 /* Issue a read command. */
4181 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
4183 /* Wait for completion. */
4184 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4189 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
4190 if (val
& BNX2_NVM_COMMAND_DONE
) {
4191 __be32 v
= cpu_to_be32(REG_RD(bp
, BNX2_NVM_READ
));
4192 memcpy(ret_val
, &v
, 4);
4196 if (j
>= NVRAM_TIMEOUT_COUNT
)
4204 bnx2_nvram_write_dword(struct bnx2
*bp
, u32 offset
, u8
*val
, u32 cmd_flags
)
4210 /* Build the command word. */
4211 cmd
= BNX2_NVM_COMMAND_DOIT
| BNX2_NVM_COMMAND_WR
| cmd_flags
;
4213 /* Calculate an offset of a buffered flash, not needed for 5709. */
4214 if (bp
->flash_info
->flags
& BNX2_NV_TRANSLATE
) {
4215 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
4216 bp
->flash_info
->page_bits
) +
4217 (offset
% bp
->flash_info
->page_size
);
4220 /* Need to clear DONE bit separately. */
4221 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4223 memcpy(&val32
, val
, 4);
4225 /* Write the data. */
4226 REG_WR(bp
, BNX2_NVM_WRITE
, be32_to_cpu(val32
));
4228 /* Address of the NVRAM to write to. */
4229 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
4231 /* Issue the write command. */
4232 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
4234 /* Wait for completion. */
4235 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4238 if (REG_RD(bp
, BNX2_NVM_COMMAND
) & BNX2_NVM_COMMAND_DONE
)
4241 if (j
>= NVRAM_TIMEOUT_COUNT
)
4248 bnx2_init_nvram(struct bnx2
*bp
)
4251 int j
, entry_count
, rc
= 0;
4252 const struct flash_spec
*flash
;
4254 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4255 bp
->flash_info
= &flash_5709
;
4256 goto get_flash_size
;
4259 /* Determine the selected interface. */
4260 val
= REG_RD(bp
, BNX2_NVM_CFG1
);
4262 entry_count
= ARRAY_SIZE(flash_table
);
4264 if (val
& 0x40000000) {
4266 /* Flash interface has been reconfigured */
4267 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
4269 if ((val
& FLASH_BACKUP_STRAP_MASK
) ==
4270 (flash
->config1
& FLASH_BACKUP_STRAP_MASK
)) {
4271 bp
->flash_info
= flash
;
4278 /* Not yet been reconfigured */
4280 if (val
& (1 << 23))
4281 mask
= FLASH_BACKUP_STRAP_MASK
;
4283 mask
= FLASH_STRAP_MASK
;
4285 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
4288 if ((val
& mask
) == (flash
->strapping
& mask
)) {
4289 bp
->flash_info
= flash
;
4291 /* Request access to the flash interface. */
4292 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4295 /* Enable access to flash interface */
4296 bnx2_enable_nvram_access(bp
);
4298 /* Reconfigure the flash interface */
4299 REG_WR(bp
, BNX2_NVM_CFG1
, flash
->config1
);
4300 REG_WR(bp
, BNX2_NVM_CFG2
, flash
->config2
);
4301 REG_WR(bp
, BNX2_NVM_CFG3
, flash
->config3
);
4302 REG_WR(bp
, BNX2_NVM_WRITE1
, flash
->write1
);
4304 /* Disable access to flash interface */
4305 bnx2_disable_nvram_access(bp
);
4306 bnx2_release_nvram_lock(bp
);
4311 } /* if (val & 0x40000000) */
4313 if (j
== entry_count
) {
4314 bp
->flash_info
= NULL
;
4315 pr_alert("Unknown flash/EEPROM type\n");
4320 val
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG2
);
4321 val
&= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK
;
4323 bp
->flash_size
= val
;
4325 bp
->flash_size
= bp
->flash_info
->total_size
;
4331 bnx2_nvram_read(struct bnx2
*bp
, u32 offset
, u8
*ret_buf
,
4335 u32 cmd_flags
, offset32
, len32
, extra
;
4340 /* Request access to the flash interface. */
4341 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4344 /* Enable access to flash interface */
4345 bnx2_enable_nvram_access(bp
);
4358 pre_len
= 4 - (offset
& 3);
4360 if (pre_len
>= len32
) {
4362 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
4363 BNX2_NVM_COMMAND_LAST
;
4366 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4369 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4374 memcpy(ret_buf
, buf
+ (offset
& 3), pre_len
);
4381 extra
= 4 - (len32
& 3);
4382 len32
= (len32
+ 4) & ~3;
4389 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4391 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
4392 BNX2_NVM_COMMAND_LAST
;
4394 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4396 memcpy(ret_buf
, buf
, 4 - extra
);
4398 else if (len32
> 0) {
4401 /* Read the first word. */
4405 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4407 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, cmd_flags
);
4409 /* Advance to the next dword. */
4414 while (len32
> 4 && rc
== 0) {
4415 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, 0);
4417 /* Advance to the next dword. */
4426 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4427 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4429 memcpy(ret_buf
, buf
, 4 - extra
);
4432 /* Disable access to flash interface */
4433 bnx2_disable_nvram_access(bp
);
4435 bnx2_release_nvram_lock(bp
);
4441 bnx2_nvram_write(struct bnx2
*bp
, u32 offset
, u8
*data_buf
,
4444 u32 written
, offset32
, len32
;
4445 u8
*buf
, start
[4], end
[4], *align_buf
= NULL
, *flash_buffer
= NULL
;
4447 int align_start
, align_end
;
4452 align_start
= align_end
= 0;
4454 if ((align_start
= (offset32
& 3))) {
4456 len32
+= align_start
;
4459 if ((rc
= bnx2_nvram_read(bp
, offset32
, start
, 4)))
4464 align_end
= 4 - (len32
& 3);
4466 if ((rc
= bnx2_nvram_read(bp
, offset32
+ len32
- 4, end
, 4)))
4470 if (align_start
|| align_end
) {
4471 align_buf
= kmalloc(len32
, GFP_KERNEL
);
4472 if (align_buf
== NULL
)
4475 memcpy(align_buf
, start
, 4);
4478 memcpy(align_buf
+ len32
- 4, end
, 4);
4480 memcpy(align_buf
+ align_start
, data_buf
, buf_size
);
4484 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4485 flash_buffer
= kmalloc(264, GFP_KERNEL
);
4486 if (flash_buffer
== NULL
) {
4488 goto nvram_write_end
;
4493 while ((written
< len32
) && (rc
== 0)) {
4494 u32 page_start
, page_end
, data_start
, data_end
;
4495 u32 addr
, cmd_flags
;
4498 /* Find the page_start addr */
4499 page_start
= offset32
+ written
;
4500 page_start
-= (page_start
% bp
->flash_info
->page_size
);
4501 /* Find the page_end addr */
4502 page_end
= page_start
+ bp
->flash_info
->page_size
;
4503 /* Find the data_start addr */
4504 data_start
= (written
== 0) ? offset32
: page_start
;
4505 /* Find the data_end addr */
4506 data_end
= (page_end
> offset32
+ len32
) ?
4507 (offset32
+ len32
) : page_end
;
4509 /* Request access to the flash interface. */
4510 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4511 goto nvram_write_end
;
4513 /* Enable access to flash interface */
4514 bnx2_enable_nvram_access(bp
);
4516 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4517 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4520 /* Read the whole page into the buffer
4521 * (non-buffer flash only) */
4522 for (j
= 0; j
< bp
->flash_info
->page_size
; j
+= 4) {
4523 if (j
== (bp
->flash_info
->page_size
- 4)) {
4524 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
4526 rc
= bnx2_nvram_read_dword(bp
,
4532 goto nvram_write_end
;
4538 /* Enable writes to flash interface (unlock write-protect) */
4539 if ((rc
= bnx2_enable_nvram_write(bp
)) != 0)
4540 goto nvram_write_end
;
4542 /* Loop to write back the buffer data from page_start to
4545 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4546 /* Erase the page */
4547 if ((rc
= bnx2_nvram_erase_page(bp
, page_start
)) != 0)
4548 goto nvram_write_end
;
4550 /* Re-enable the write again for the actual write */
4551 bnx2_enable_nvram_write(bp
);
4553 for (addr
= page_start
; addr
< data_start
;
4554 addr
+= 4, i
+= 4) {
4556 rc
= bnx2_nvram_write_dword(bp
, addr
,
4557 &flash_buffer
[i
], cmd_flags
);
4560 goto nvram_write_end
;
4566 /* Loop to write the new data from data_start to data_end */
4567 for (addr
= data_start
; addr
< data_end
; addr
+= 4, i
+= 4) {
4568 if ((addr
== page_end
- 4) ||
4569 ((bp
->flash_info
->flags
& BNX2_NV_BUFFERED
) &&
4570 (addr
== data_end
- 4))) {
4572 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
4574 rc
= bnx2_nvram_write_dword(bp
, addr
, buf
,
4578 goto nvram_write_end
;
4584 /* Loop to write back the buffer data from data_end
4586 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4587 for (addr
= data_end
; addr
< page_end
;
4588 addr
+= 4, i
+= 4) {
4590 if (addr
== page_end
-4) {
4591 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4593 rc
= bnx2_nvram_write_dword(bp
, addr
,
4594 &flash_buffer
[i
], cmd_flags
);
4597 goto nvram_write_end
;
4603 /* Disable writes to flash interface (lock write-protect) */
4604 bnx2_disable_nvram_write(bp
);
4606 /* Disable access to flash interface */
4607 bnx2_disable_nvram_access(bp
);
4608 bnx2_release_nvram_lock(bp
);
4610 /* Increment written */
4611 written
+= data_end
- data_start
;
4615 kfree(flash_buffer
);
4621 bnx2_init_fw_cap(struct bnx2
*bp
)
4625 bp
->phy_flags
&= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP
;
4626 bp
->flags
&= ~BNX2_FLAG_CAN_KEEP_VLAN
;
4628 if (!(bp
->flags
& BNX2_FLAG_ASF_ENABLE
))
4629 bp
->flags
|= BNX2_FLAG_CAN_KEEP_VLAN
;
4631 val
= bnx2_shmem_rd(bp
, BNX2_FW_CAP_MB
);
4632 if ((val
& BNX2_FW_CAP_SIGNATURE_MASK
) != BNX2_FW_CAP_SIGNATURE
)
4635 if ((val
& BNX2_FW_CAP_CAN_KEEP_VLAN
) == BNX2_FW_CAP_CAN_KEEP_VLAN
) {
4636 bp
->flags
|= BNX2_FLAG_CAN_KEEP_VLAN
;
4637 sig
|= BNX2_DRV_ACK_CAP_SIGNATURE
| BNX2_FW_CAP_CAN_KEEP_VLAN
;
4640 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
4641 (val
& BNX2_FW_CAP_REMOTE_PHY_CAPABLE
)) {
4644 bp
->phy_flags
|= BNX2_PHY_FLAG_REMOTE_PHY_CAP
;
4646 link
= bnx2_shmem_rd(bp
, BNX2_LINK_STATUS
);
4647 if (link
& BNX2_LINK_STATUS_SERDES_LINK
)
4648 bp
->phy_port
= PORT_FIBRE
;
4650 bp
->phy_port
= PORT_TP
;
4652 sig
|= BNX2_DRV_ACK_CAP_SIGNATURE
|
4653 BNX2_FW_CAP_REMOTE_PHY_CAPABLE
;
4656 if (netif_running(bp
->dev
) && sig
)
4657 bnx2_shmem_wr(bp
, BNX2_DRV_ACK_CAP_MB
, sig
);
4661 bnx2_setup_msix_tbl(struct bnx2
*bp
)
4663 REG_WR(bp
, BNX2_PCI_GRC_WINDOW_ADDR
, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN
);
4665 REG_WR(bp
, BNX2_PCI_GRC_WINDOW2_ADDR
, BNX2_MSIX_TABLE_ADDR
);
4666 REG_WR(bp
, BNX2_PCI_GRC_WINDOW3_ADDR
, BNX2_MSIX_PBA_ADDR
);
4670 bnx2_reset_chip(struct bnx2
*bp
, u32 reset_code
)
4676 /* Wait for the current PCI transaction to complete before
4677 * issuing a reset. */
4678 REG_WR(bp
, BNX2_MISC_ENABLE_CLR_BITS
,
4679 BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE
|
4680 BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE
|
4681 BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE
|
4682 BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE
);
4683 val
= REG_RD(bp
, BNX2_MISC_ENABLE_CLR_BITS
);
4686 /* Wait for the firmware to tell us it is ok to issue a reset. */
4687 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT0
| reset_code
, 1, 1);
4689 /* Deposit a driver reset signature so the firmware knows that
4690 * this is a soft reset. */
4691 bnx2_shmem_wr(bp
, BNX2_DRV_RESET_SIGNATURE
,
4692 BNX2_DRV_RESET_SIGNATURE_MAGIC
);
4694 /* Do a dummy read to force the chip to complete all current transaction
4695 * before we issue a reset. */
4696 val
= REG_RD(bp
, BNX2_MISC_ID
);
4698 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4699 REG_WR(bp
, BNX2_MISC_COMMAND
, BNX2_MISC_COMMAND_SW_RESET
);
4700 REG_RD(bp
, BNX2_MISC_COMMAND
);
4703 val
= BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
4704 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
;
4706 pci_write_config_dword(bp
->pdev
, BNX2_PCICFG_MISC_CONFIG
, val
);
4709 val
= BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4710 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
4711 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
;
4714 REG_WR(bp
, BNX2_PCICFG_MISC_CONFIG
, val
);
4716 /* Reading back any register after chip reset will hang the
4717 * bus on 5706 A0 and A1. The msleep below provides plenty
4718 * of margin for write posting.
4720 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
4721 (CHIP_ID(bp
) == CHIP_ID_5706_A1
))
4724 /* Reset takes approximate 30 usec */
4725 for (i
= 0; i
< 10; i
++) {
4726 val
= REG_RD(bp
, BNX2_PCICFG_MISC_CONFIG
);
4727 if ((val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4728 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) == 0)
4733 if (val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4734 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) {
4735 pr_err("Chip reset did not complete\n");
4740 /* Make sure byte swapping is properly configured. */
4741 val
= REG_RD(bp
, BNX2_PCI_SWAP_DIAG0
);
4742 if (val
!= 0x01020304) {
4743 pr_err("Chip not in correct endian mode\n");
4747 /* Wait for the firmware to finish its initialization. */
4748 rc
= bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT1
| reset_code
, 1, 0);
4752 spin_lock_bh(&bp
->phy_lock
);
4753 old_port
= bp
->phy_port
;
4754 bnx2_init_fw_cap(bp
);
4755 if ((bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) &&
4756 old_port
!= bp
->phy_port
)
4757 bnx2_set_default_remote_link(bp
);
4758 spin_unlock_bh(&bp
->phy_lock
);
4760 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
4761 /* Adjust the voltage regular to two steps lower. The default
4762 * of this register is 0x0000000e. */
4763 REG_WR(bp
, BNX2_MISC_VREG_CONTROL
, 0x000000fa);
4765 /* Remove bad rbuf memory from the free pool. */
4766 rc
= bnx2_alloc_bad_rbuf(bp
);
4769 if (bp
->flags
& BNX2_FLAG_USING_MSIX
) {
4770 bnx2_setup_msix_tbl(bp
);
4771 /* Prevent MSIX table reads and write from timing out */
4772 REG_WR(bp
, BNX2_MISC_ECO_HW_CTL
,
4773 BNX2_MISC_ECO_HW_CTL_LARGE_GRC_TMOUT_EN
);
4780 bnx2_init_chip(struct bnx2
*bp
)
4785 /* Make sure the interrupt is not active. */
4786 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
4788 val
= BNX2_DMA_CONFIG_DATA_BYTE_SWAP
|
4789 BNX2_DMA_CONFIG_DATA_WORD_SWAP
|
4791 BNX2_DMA_CONFIG_CNTL_BYTE_SWAP
|
4793 BNX2_DMA_CONFIG_CNTL_WORD_SWAP
|
4794 DMA_READ_CHANS
<< 12 |
4795 DMA_WRITE_CHANS
<< 16;
4797 val
|= (0x2 << 20) | (1 << 11);
4799 if ((bp
->flags
& BNX2_FLAG_PCIX
) && (bp
->bus_speed_mhz
== 133))
4802 if ((CHIP_NUM(bp
) == CHIP_NUM_5706
) &&
4803 (CHIP_ID(bp
) != CHIP_ID_5706_A0
) && !(bp
->flags
& BNX2_FLAG_PCIX
))
4804 val
|= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA
;
4806 REG_WR(bp
, BNX2_DMA_CONFIG
, val
);
4808 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
4809 val
= REG_RD(bp
, BNX2_TDMA_CONFIG
);
4810 val
|= BNX2_TDMA_CONFIG_ONE_DMA
;
4811 REG_WR(bp
, BNX2_TDMA_CONFIG
, val
);
4814 if (bp
->flags
& BNX2_FLAG_PCIX
) {
4817 pci_read_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
4819 pci_write_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
4820 val16
& ~PCI_X_CMD_ERO
);
4823 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
4824 BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE
|
4825 BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE
|
4826 BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE
);
4828 /* Initialize context mapping and zero out the quick contexts. The
4829 * context block must have already been enabled. */
4830 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4831 rc
= bnx2_init_5709_context(bp
);
4835 bnx2_init_context(bp
);
4837 if ((rc
= bnx2_init_cpus(bp
)) != 0)
4840 bnx2_init_nvram(bp
);
4842 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
4844 val
= REG_RD(bp
, BNX2_MQ_CONFIG
);
4845 val
&= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE
;
4846 val
|= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256
;
4847 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4848 val
|= BNX2_MQ_CONFIG_BIN_MQ_MODE
;
4849 if (CHIP_REV(bp
) == CHIP_REV_Ax
)
4850 val
|= BNX2_MQ_CONFIG_HALT_DIS
;
4853 REG_WR(bp
, BNX2_MQ_CONFIG
, val
);
4855 val
= 0x10000 + (MAX_CID_CNT
* MB_KERNEL_CTX_SIZE
);
4856 REG_WR(bp
, BNX2_MQ_KNL_BYP_WIND_START
, val
);
4857 REG_WR(bp
, BNX2_MQ_KNL_WIND_END
, val
);
4859 val
= (BCM_PAGE_BITS
- 8) << 24;
4860 REG_WR(bp
, BNX2_RV2P_CONFIG
, val
);
4862 /* Configure page size. */
4863 val
= REG_RD(bp
, BNX2_TBDR_CONFIG
);
4864 val
&= ~BNX2_TBDR_CONFIG_PAGE_SIZE
;
4865 val
|= (BCM_PAGE_BITS
- 8) << 24 | 0x40;
4866 REG_WR(bp
, BNX2_TBDR_CONFIG
, val
);
4868 val
= bp
->mac_addr
[0] +
4869 (bp
->mac_addr
[1] << 8) +
4870 (bp
->mac_addr
[2] << 16) +
4872 (bp
->mac_addr
[4] << 8) +
4873 (bp
->mac_addr
[5] << 16);
4874 REG_WR(bp
, BNX2_EMAC_BACKOFF_SEED
, val
);
4876 /* Program the MTU. Also include 4 bytes for CRC32. */
4878 val
= mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
4879 if (val
> (MAX_ETHERNET_PACKET_SIZE
+ 4))
4880 val
|= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA
;
4881 REG_WR(bp
, BNX2_EMAC_RX_MTU_SIZE
, val
);
4886 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG
, BNX2_RBUF_CONFIG_VAL(mtu
));
4887 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG2
, BNX2_RBUF_CONFIG2_VAL(mtu
));
4888 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG3
, BNX2_RBUF_CONFIG3_VAL(mtu
));
4890 memset(bp
->bnx2_napi
[0].status_blk
.msi
, 0, bp
->status_stats_size
);
4891 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++)
4892 bp
->bnx2_napi
[i
].last_status_idx
= 0;
4894 bp
->idle_chk_status_idx
= 0xffff;
4896 bp
->rx_mode
= BNX2_EMAC_RX_MODE_SORT_MODE
;
4898 /* Set up how to generate a link change interrupt. */
4899 REG_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
4901 REG_WR(bp
, BNX2_HC_STATUS_ADDR_L
,
4902 (u64
) bp
->status_blk_mapping
& 0xffffffff);
4903 REG_WR(bp
, BNX2_HC_STATUS_ADDR_H
, (u64
) bp
->status_blk_mapping
>> 32);
4905 REG_WR(bp
, BNX2_HC_STATISTICS_ADDR_L
,
4906 (u64
) bp
->stats_blk_mapping
& 0xffffffff);
4907 REG_WR(bp
, BNX2_HC_STATISTICS_ADDR_H
,
4908 (u64
) bp
->stats_blk_mapping
>> 32);
4910 REG_WR(bp
, BNX2_HC_TX_QUICK_CONS_TRIP
,
4911 (bp
->tx_quick_cons_trip_int
<< 16) | bp
->tx_quick_cons_trip
);
4913 REG_WR(bp
, BNX2_HC_RX_QUICK_CONS_TRIP
,
4914 (bp
->rx_quick_cons_trip_int
<< 16) | bp
->rx_quick_cons_trip
);
4916 REG_WR(bp
, BNX2_HC_COMP_PROD_TRIP
,
4917 (bp
->comp_prod_trip_int
<< 16) | bp
->comp_prod_trip
);
4919 REG_WR(bp
, BNX2_HC_TX_TICKS
, (bp
->tx_ticks_int
<< 16) | bp
->tx_ticks
);
4921 REG_WR(bp
, BNX2_HC_RX_TICKS
, (bp
->rx_ticks_int
<< 16) | bp
->rx_ticks
);
4923 REG_WR(bp
, BNX2_HC_COM_TICKS
,
4924 (bp
->com_ticks_int
<< 16) | bp
->com_ticks
);
4926 REG_WR(bp
, BNX2_HC_CMD_TICKS
,
4927 (bp
->cmd_ticks_int
<< 16) | bp
->cmd_ticks
);
4929 if (bp
->flags
& BNX2_FLAG_BROKEN_STATS
)
4930 REG_WR(bp
, BNX2_HC_STATS_TICKS
, 0);
4932 REG_WR(bp
, BNX2_HC_STATS_TICKS
, bp
->stats_ticks
);
4933 REG_WR(bp
, BNX2_HC_STAT_COLLECT_TICKS
, 0xbb8); /* 3ms */
4935 if (CHIP_ID(bp
) == CHIP_ID_5706_A1
)
4936 val
= BNX2_HC_CONFIG_COLLECT_STATS
;
4938 val
= BNX2_HC_CONFIG_RX_TMR_MODE
| BNX2_HC_CONFIG_TX_TMR_MODE
|
4939 BNX2_HC_CONFIG_COLLECT_STATS
;
4942 if (bp
->flags
& BNX2_FLAG_USING_MSIX
) {
4943 REG_WR(bp
, BNX2_HC_MSIX_BIT_VECTOR
,
4944 BNX2_HC_MSIX_BIT_VECTOR_VAL
);
4946 val
|= BNX2_HC_CONFIG_SB_ADDR_INC_128B
;
4949 if (bp
->flags
& BNX2_FLAG_ONE_SHOT_MSI
)
4950 val
|= BNX2_HC_CONFIG_ONE_SHOT
| BNX2_HC_CONFIG_USE_INT_PARAM
;
4952 REG_WR(bp
, BNX2_HC_CONFIG
, val
);
4954 for (i
= 1; i
< bp
->irq_nvecs
; i
++) {
4955 u32 base
= ((i
- 1) * BNX2_HC_SB_CONFIG_SIZE
) +
4956 BNX2_HC_SB_CONFIG_1
;
4959 BNX2_HC_SB_CONFIG_1_TX_TMR_MODE
|
4960 BNX2_HC_SB_CONFIG_1_RX_TMR_MODE
|
4961 BNX2_HC_SB_CONFIG_1_ONE_SHOT
);
4963 REG_WR(bp
, base
+ BNX2_HC_TX_QUICK_CONS_TRIP_OFF
,
4964 (bp
->tx_quick_cons_trip_int
<< 16) |
4965 bp
->tx_quick_cons_trip
);
4967 REG_WR(bp
, base
+ BNX2_HC_TX_TICKS_OFF
,
4968 (bp
->tx_ticks_int
<< 16) | bp
->tx_ticks
);
4970 REG_WR(bp
, base
+ BNX2_HC_RX_QUICK_CONS_TRIP_OFF
,
4971 (bp
->rx_quick_cons_trip_int
<< 16) |
4972 bp
->rx_quick_cons_trip
);
4974 REG_WR(bp
, base
+ BNX2_HC_RX_TICKS_OFF
,
4975 (bp
->rx_ticks_int
<< 16) | bp
->rx_ticks
);
4978 /* Clear internal stats counters. */
4979 REG_WR(bp
, BNX2_HC_COMMAND
, BNX2_HC_COMMAND_CLR_STAT_NOW
);
4981 REG_WR(bp
, BNX2_HC_ATTN_BITS_ENABLE
, STATUS_ATTN_EVENTS
);
4983 /* Initialize the receive filter. */
4984 bnx2_set_rx_mode(bp
->dev
);
4986 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4987 val
= REG_RD(bp
, BNX2_MISC_NEW_CORE_CTL
);
4988 val
|= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE
;
4989 REG_WR(bp
, BNX2_MISC_NEW_CORE_CTL
, val
);
4991 rc
= bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT2
| BNX2_DRV_MSG_CODE_RESET
,
4994 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
, BNX2_MISC_ENABLE_DEFAULT
);
4995 REG_RD(bp
, BNX2_MISC_ENABLE_SET_BITS
);
4999 bp
->hc_cmd
= REG_RD(bp
, BNX2_HC_COMMAND
);
5005 bnx2_clear_ring_states(struct bnx2
*bp
)
5007 struct bnx2_napi
*bnapi
;
5008 struct bnx2_tx_ring_info
*txr
;
5009 struct bnx2_rx_ring_info
*rxr
;
5012 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
5013 bnapi
= &bp
->bnx2_napi
[i
];
5014 txr
= &bnapi
->tx_ring
;
5015 rxr
= &bnapi
->rx_ring
;
5018 txr
->hw_tx_cons
= 0;
5019 rxr
->rx_prod_bseq
= 0;
5022 rxr
->rx_pg_prod
= 0;
5023 rxr
->rx_pg_cons
= 0;
5028 bnx2_init_tx_context(struct bnx2
*bp
, u32 cid
, struct bnx2_tx_ring_info
*txr
)
5030 u32 val
, offset0
, offset1
, offset2
, offset3
;
5031 u32 cid_addr
= GET_CID_ADDR(cid
);
5033 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
5034 offset0
= BNX2_L2CTX_TYPE_XI
;
5035 offset1
= BNX2_L2CTX_CMD_TYPE_XI
;
5036 offset2
= BNX2_L2CTX_TBDR_BHADDR_HI_XI
;
5037 offset3
= BNX2_L2CTX_TBDR_BHADDR_LO_XI
;
5039 offset0
= BNX2_L2CTX_TYPE
;
5040 offset1
= BNX2_L2CTX_CMD_TYPE
;
5041 offset2
= BNX2_L2CTX_TBDR_BHADDR_HI
;
5042 offset3
= BNX2_L2CTX_TBDR_BHADDR_LO
;
5044 val
= BNX2_L2CTX_TYPE_TYPE_L2
| BNX2_L2CTX_TYPE_SIZE_L2
;
5045 bnx2_ctx_wr(bp
, cid_addr
, offset0
, val
);
5047 val
= BNX2_L2CTX_CMD_TYPE_TYPE_L2
| (8 << 16);
5048 bnx2_ctx_wr(bp
, cid_addr
, offset1
, val
);
5050 val
= (u64
) txr
->tx_desc_mapping
>> 32;
5051 bnx2_ctx_wr(bp
, cid_addr
, offset2
, val
);
5053 val
= (u64
) txr
->tx_desc_mapping
& 0xffffffff;
5054 bnx2_ctx_wr(bp
, cid_addr
, offset3
, val
);
5058 bnx2_init_tx_ring(struct bnx2
*bp
, int ring_num
)
5062 struct bnx2_napi
*bnapi
;
5063 struct bnx2_tx_ring_info
*txr
;
5065 bnapi
= &bp
->bnx2_napi
[ring_num
];
5066 txr
= &bnapi
->tx_ring
;
5071 cid
= TX_TSS_CID
+ ring_num
- 1;
5073 bp
->tx_wake_thresh
= bp
->tx_ring_size
/ 2;
5075 txbd
= &txr
->tx_desc_ring
[MAX_TX_DESC_CNT
];
5077 txbd
->tx_bd_haddr_hi
= (u64
) txr
->tx_desc_mapping
>> 32;
5078 txbd
->tx_bd_haddr_lo
= (u64
) txr
->tx_desc_mapping
& 0xffffffff;
5081 txr
->tx_prod_bseq
= 0;
5083 txr
->tx_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_TX_HOST_BIDX
;
5084 txr
->tx_bseq_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_TX_HOST_BSEQ
;
5086 bnx2_init_tx_context(bp
, cid
, txr
);
5090 bnx2_init_rxbd_rings(struct rx_bd
*rx_ring
[], dma_addr_t dma
[], u32 buf_size
,
5096 for (i
= 0; i
< num_rings
; i
++) {
5099 rxbd
= &rx_ring
[i
][0];
5100 for (j
= 0; j
< MAX_RX_DESC_CNT
; j
++, rxbd
++) {
5101 rxbd
->rx_bd_len
= buf_size
;
5102 rxbd
->rx_bd_flags
= RX_BD_FLAGS_START
| RX_BD_FLAGS_END
;
5104 if (i
== (num_rings
- 1))
5108 rxbd
->rx_bd_haddr_hi
= (u64
) dma
[j
] >> 32;
5109 rxbd
->rx_bd_haddr_lo
= (u64
) dma
[j
] & 0xffffffff;
5114 bnx2_init_rx_ring(struct bnx2
*bp
, int ring_num
)
5117 u16 prod
, ring_prod
;
5118 u32 cid
, rx_cid_addr
, val
;
5119 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[ring_num
];
5120 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5125 cid
= RX_RSS_CID
+ ring_num
- 1;
5127 rx_cid_addr
= GET_CID_ADDR(cid
);
5129 bnx2_init_rxbd_rings(rxr
->rx_desc_ring
, rxr
->rx_desc_mapping
,
5130 bp
->rx_buf_use_size
, bp
->rx_max_ring
);
5132 bnx2_init_rx_context(bp
, cid
);
5134 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
5135 val
= REG_RD(bp
, BNX2_MQ_MAP_L2_5
);
5136 REG_WR(bp
, BNX2_MQ_MAP_L2_5
, val
| BNX2_MQ_MAP_L2_5_ARM
);
5139 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_PG_BUF_SIZE
, 0);
5140 if (bp
->rx_pg_ring_size
) {
5141 bnx2_init_rxbd_rings(rxr
->rx_pg_desc_ring
,
5142 rxr
->rx_pg_desc_mapping
,
5143 PAGE_SIZE
, bp
->rx_max_pg_ring
);
5144 val
= (bp
->rx_buf_use_size
<< 16) | PAGE_SIZE
;
5145 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_PG_BUF_SIZE
, val
);
5146 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_RBDC_KEY
,
5147 BNX2_L2CTX_RBDC_JUMBO_KEY
- ring_num
);
5149 val
= (u64
) rxr
->rx_pg_desc_mapping
[0] >> 32;
5150 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_PG_BDHADDR_HI
, val
);
5152 val
= (u64
) rxr
->rx_pg_desc_mapping
[0] & 0xffffffff;
5153 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_PG_BDHADDR_LO
, val
);
5155 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
5156 REG_WR(bp
, BNX2_MQ_MAP_L2_3
, BNX2_MQ_MAP_L2_3_DEFAULT
);
5159 val
= (u64
) rxr
->rx_desc_mapping
[0] >> 32;
5160 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_BDHADDR_HI
, val
);
5162 val
= (u64
) rxr
->rx_desc_mapping
[0] & 0xffffffff;
5163 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_BDHADDR_LO
, val
);
5165 ring_prod
= prod
= rxr
->rx_pg_prod
;
5166 for (i
= 0; i
< bp
->rx_pg_ring_size
; i
++) {
5167 if (bnx2_alloc_rx_page(bp
, rxr
, ring_prod
) < 0) {
5168 netdev_warn(bp
->dev
, "init'ed rx page ring %d with %d/%d pages only\n",
5169 ring_num
, i
, bp
->rx_pg_ring_size
);
5172 prod
= NEXT_RX_BD(prod
);
5173 ring_prod
= RX_PG_RING_IDX(prod
);
5175 rxr
->rx_pg_prod
= prod
;
5177 ring_prod
= prod
= rxr
->rx_prod
;
5178 for (i
= 0; i
< bp
->rx_ring_size
; i
++) {
5179 if (bnx2_alloc_rx_skb(bp
, rxr
, ring_prod
) < 0) {
5180 netdev_warn(bp
->dev
, "init'ed rx ring %d with %d/%d skbs only\n",
5181 ring_num
, i
, bp
->rx_ring_size
);
5184 prod
= NEXT_RX_BD(prod
);
5185 ring_prod
= RX_RING_IDX(prod
);
5187 rxr
->rx_prod
= prod
;
5189 rxr
->rx_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_BDIDX
;
5190 rxr
->rx_bseq_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_BSEQ
;
5191 rxr
->rx_pg_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_PG_BDIDX
;
5193 REG_WR16(bp
, rxr
->rx_pg_bidx_addr
, rxr
->rx_pg_prod
);
5194 REG_WR16(bp
, rxr
->rx_bidx_addr
, prod
);
5196 REG_WR(bp
, rxr
->rx_bseq_addr
, rxr
->rx_prod_bseq
);
5200 bnx2_init_all_rings(struct bnx2
*bp
)
5205 bnx2_clear_ring_states(bp
);
5207 REG_WR(bp
, BNX2_TSCH_TSS_CFG
, 0);
5208 for (i
= 0; i
< bp
->num_tx_rings
; i
++)
5209 bnx2_init_tx_ring(bp
, i
);
5211 if (bp
->num_tx_rings
> 1)
5212 REG_WR(bp
, BNX2_TSCH_TSS_CFG
, ((bp
->num_tx_rings
- 1) << 24) |
5215 REG_WR(bp
, BNX2_RLUP_RSS_CONFIG
, 0);
5216 bnx2_reg_wr_ind(bp
, BNX2_RXP_SCRATCH_RSS_TBL_SZ
, 0);
5218 for (i
= 0; i
< bp
->num_rx_rings
; i
++)
5219 bnx2_init_rx_ring(bp
, i
);
5221 if (bp
->num_rx_rings
> 1) {
5223 u8
*tbl
= (u8
*) &tbl_32
;
5225 bnx2_reg_wr_ind(bp
, BNX2_RXP_SCRATCH_RSS_TBL_SZ
,
5226 BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES
);
5228 for (i
= 0; i
< BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES
; i
++) {
5229 tbl
[i
% 4] = i
% (bp
->num_rx_rings
- 1);
5232 BNX2_RXP_SCRATCH_RSS_TBL
+ i
,
5233 cpu_to_be32(tbl_32
));
5236 val
= BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI
|
5237 BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI
;
5239 REG_WR(bp
, BNX2_RLUP_RSS_CONFIG
, val
);
5244 static u32
bnx2_find_max_ring(u32 ring_size
, u32 max_size
)
5246 u32 max
, num_rings
= 1;
5248 while (ring_size
> MAX_RX_DESC_CNT
) {
5249 ring_size
-= MAX_RX_DESC_CNT
;
5252 /* round to next power of 2 */
5254 while ((max
& num_rings
) == 0)
5257 if (num_rings
!= max
)
5264 bnx2_set_rx_ring_size(struct bnx2
*bp
, u32 size
)
5266 u32 rx_size
, rx_space
, jumbo_size
;
5268 /* 8 for CRC and VLAN */
5269 rx_size
= bp
->dev
->mtu
+ ETH_HLEN
+ BNX2_RX_OFFSET
+ 8;
5271 rx_space
= SKB_DATA_ALIGN(rx_size
+ BNX2_RX_ALIGN
) + NET_SKB_PAD
+
5272 sizeof(struct skb_shared_info
);
5274 bp
->rx_copy_thresh
= BNX2_RX_COPY_THRESH
;
5275 bp
->rx_pg_ring_size
= 0;
5276 bp
->rx_max_pg_ring
= 0;
5277 bp
->rx_max_pg_ring_idx
= 0;
5278 if ((rx_space
> PAGE_SIZE
) && !(bp
->flags
& BNX2_FLAG_JUMBO_BROKEN
)) {
5279 int pages
= PAGE_ALIGN(bp
->dev
->mtu
- 40) >> PAGE_SHIFT
;
5281 jumbo_size
= size
* pages
;
5282 if (jumbo_size
> MAX_TOTAL_RX_PG_DESC_CNT
)
5283 jumbo_size
= MAX_TOTAL_RX_PG_DESC_CNT
;
5285 bp
->rx_pg_ring_size
= jumbo_size
;
5286 bp
->rx_max_pg_ring
= bnx2_find_max_ring(jumbo_size
,
5288 bp
->rx_max_pg_ring_idx
= (bp
->rx_max_pg_ring
* RX_DESC_CNT
) - 1;
5289 rx_size
= BNX2_RX_COPY_THRESH
+ BNX2_RX_OFFSET
;
5290 bp
->rx_copy_thresh
= 0;
5293 bp
->rx_buf_use_size
= rx_size
;
5295 bp
->rx_buf_size
= bp
->rx_buf_use_size
+ BNX2_RX_ALIGN
;
5296 bp
->rx_jumbo_thresh
= rx_size
- BNX2_RX_OFFSET
;
5297 bp
->rx_ring_size
= size
;
5298 bp
->rx_max_ring
= bnx2_find_max_ring(size
, MAX_RX_RINGS
);
5299 bp
->rx_max_ring_idx
= (bp
->rx_max_ring
* RX_DESC_CNT
) - 1;
5303 bnx2_free_tx_skbs(struct bnx2
*bp
)
5307 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
5308 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
5309 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
5312 if (txr
->tx_buf_ring
== NULL
)
5315 for (j
= 0; j
< TX_DESC_CNT
; ) {
5316 struct sw_tx_bd
*tx_buf
= &txr
->tx_buf_ring
[j
];
5317 struct sk_buff
*skb
= tx_buf
->skb
;
5325 pci_unmap_single(bp
->pdev
,
5326 dma_unmap_addr(tx_buf
, mapping
),
5332 last
= tx_buf
->nr_frags
;
5334 for (k
= 0; k
< last
; k
++, j
++) {
5335 tx_buf
= &txr
->tx_buf_ring
[TX_RING_IDX(j
)];
5336 pci_unmap_page(bp
->pdev
,
5337 dma_unmap_addr(tx_buf
, mapping
),
5338 skb_shinfo(skb
)->frags
[k
].size
,
5347 bnx2_free_rx_skbs(struct bnx2
*bp
)
5351 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
5352 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
5353 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5356 if (rxr
->rx_buf_ring
== NULL
)
5359 for (j
= 0; j
< bp
->rx_max_ring_idx
; j
++) {
5360 struct sw_bd
*rx_buf
= &rxr
->rx_buf_ring
[j
];
5361 struct sk_buff
*skb
= rx_buf
->skb
;
5366 pci_unmap_single(bp
->pdev
,
5367 dma_unmap_addr(rx_buf
, mapping
),
5368 bp
->rx_buf_use_size
,
5369 PCI_DMA_FROMDEVICE
);
5375 for (j
= 0; j
< bp
->rx_max_pg_ring_idx
; j
++)
5376 bnx2_free_rx_page(bp
, rxr
, j
);
5381 bnx2_free_skbs(struct bnx2
*bp
)
5383 bnx2_free_tx_skbs(bp
);
5384 bnx2_free_rx_skbs(bp
);
5388 bnx2_reset_nic(struct bnx2
*bp
, u32 reset_code
)
5392 rc
= bnx2_reset_chip(bp
, reset_code
);
5397 if ((rc
= bnx2_init_chip(bp
)) != 0)
5400 bnx2_init_all_rings(bp
);
5405 bnx2_init_nic(struct bnx2
*bp
, int reset_phy
)
5409 if ((rc
= bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
)) != 0)
5412 spin_lock_bh(&bp
->phy_lock
);
5413 bnx2_init_phy(bp
, reset_phy
);
5415 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
5416 bnx2_remote_phy_event(bp
);
5417 spin_unlock_bh(&bp
->phy_lock
);
5422 bnx2_shutdown_chip(struct bnx2
*bp
)
5426 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
5427 reset_code
= BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN
;
5429 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
5431 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
5433 return bnx2_reset_chip(bp
, reset_code
);
5437 bnx2_test_registers(struct bnx2
*bp
)
5441 static const struct {
5444 #define BNX2_FL_NOT_5709 1
5448 { 0x006c, 0, 0x00000000, 0x0000003f },
5449 { 0x0090, 0, 0xffffffff, 0x00000000 },
5450 { 0x0094, 0, 0x00000000, 0x00000000 },
5452 { 0x0404, BNX2_FL_NOT_5709
, 0x00003f00, 0x00000000 },
5453 { 0x0418, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5454 { 0x041c, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5455 { 0x0420, BNX2_FL_NOT_5709
, 0x00000000, 0x80ffffff },
5456 { 0x0424, BNX2_FL_NOT_5709
, 0x00000000, 0x00000000 },
5457 { 0x0428, BNX2_FL_NOT_5709
, 0x00000000, 0x00000001 },
5458 { 0x0450, BNX2_FL_NOT_5709
, 0x00000000, 0x0000ffff },
5459 { 0x0454, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5460 { 0x0458, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5462 { 0x0808, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5463 { 0x0854, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5464 { 0x0868, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5465 { 0x086c, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5466 { 0x0870, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5467 { 0x0874, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5469 { 0x0c00, BNX2_FL_NOT_5709
, 0x00000000, 0x00000001 },
5470 { 0x0c04, BNX2_FL_NOT_5709
, 0x00000000, 0x03ff0001 },
5471 { 0x0c08, BNX2_FL_NOT_5709
, 0x0f0ff073, 0x00000000 },
5473 { 0x1000, 0, 0x00000000, 0x00000001 },
5474 { 0x1004, BNX2_FL_NOT_5709
, 0x00000000, 0x000f0001 },
5476 { 0x1408, 0, 0x01c00800, 0x00000000 },
5477 { 0x149c, 0, 0x8000ffff, 0x00000000 },
5478 { 0x14a8, 0, 0x00000000, 0x000001ff },
5479 { 0x14ac, 0, 0x0fffffff, 0x10000000 },
5480 { 0x14b0, 0, 0x00000002, 0x00000001 },
5481 { 0x14b8, 0, 0x00000000, 0x00000000 },
5482 { 0x14c0, 0, 0x00000000, 0x00000009 },
5483 { 0x14c4, 0, 0x00003fff, 0x00000000 },
5484 { 0x14cc, 0, 0x00000000, 0x00000001 },
5485 { 0x14d0, 0, 0xffffffff, 0x00000000 },
5487 { 0x1800, 0, 0x00000000, 0x00000001 },
5488 { 0x1804, 0, 0x00000000, 0x00000003 },
5490 { 0x2800, 0, 0x00000000, 0x00000001 },
5491 { 0x2804, 0, 0x00000000, 0x00003f01 },
5492 { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
5493 { 0x2810, 0, 0xffff0000, 0x00000000 },
5494 { 0x2814, 0, 0xffff0000, 0x00000000 },
5495 { 0x2818, 0, 0xffff0000, 0x00000000 },
5496 { 0x281c, 0, 0xffff0000, 0x00000000 },
5497 { 0x2834, 0, 0xffffffff, 0x00000000 },
5498 { 0x2840, 0, 0x00000000, 0xffffffff },
5499 { 0x2844, 0, 0x00000000, 0xffffffff },
5500 { 0x2848, 0, 0xffffffff, 0x00000000 },
5501 { 0x284c, 0, 0xf800f800, 0x07ff07ff },
5503 { 0x2c00, 0, 0x00000000, 0x00000011 },
5504 { 0x2c04, 0, 0x00000000, 0x00030007 },
5506 { 0x3c00, 0, 0x00000000, 0x00000001 },
5507 { 0x3c04, 0, 0x00000000, 0x00070000 },
5508 { 0x3c08, 0, 0x00007f71, 0x07f00000 },
5509 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
5510 { 0x3c10, 0, 0xffffffff, 0x00000000 },
5511 { 0x3c14, 0, 0x00000000, 0xffffffff },
5512 { 0x3c18, 0, 0x00000000, 0xffffffff },
5513 { 0x3c1c, 0, 0xfffff000, 0x00000000 },
5514 { 0x3c20, 0, 0xffffff00, 0x00000000 },
5516 { 0x5004, 0, 0x00000000, 0x0000007f },
5517 { 0x5008, 0, 0x0f0007ff, 0x00000000 },
5519 { 0x5c00, 0, 0x00000000, 0x00000001 },
5520 { 0x5c04, 0, 0x00000000, 0x0003000f },
5521 { 0x5c08, 0, 0x00000003, 0x00000000 },
5522 { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
5523 { 0x5c10, 0, 0x00000000, 0xffffffff },
5524 { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
5525 { 0x5c84, 0, 0x00000000, 0x0000f333 },
5526 { 0x5c88, 0, 0x00000000, 0x00077373 },
5527 { 0x5c8c, 0, 0x00000000, 0x0007f737 },
5529 { 0x6808, 0, 0x0000ff7f, 0x00000000 },
5530 { 0x680c, 0, 0xffffffff, 0x00000000 },
5531 { 0x6810, 0, 0xffffffff, 0x00000000 },
5532 { 0x6814, 0, 0xffffffff, 0x00000000 },
5533 { 0x6818, 0, 0xffffffff, 0x00000000 },
5534 { 0x681c, 0, 0xffffffff, 0x00000000 },
5535 { 0x6820, 0, 0x00ff00ff, 0x00000000 },
5536 { 0x6824, 0, 0x00ff00ff, 0x00000000 },
5537 { 0x6828, 0, 0x00ff00ff, 0x00000000 },
5538 { 0x682c, 0, 0x03ff03ff, 0x00000000 },
5539 { 0x6830, 0, 0x03ff03ff, 0x00000000 },
5540 { 0x6834, 0, 0x03ff03ff, 0x00000000 },
5541 { 0x6838, 0, 0x03ff03ff, 0x00000000 },
5542 { 0x683c, 0, 0x0000ffff, 0x00000000 },
5543 { 0x6840, 0, 0x00000ff0, 0x00000000 },
5544 { 0x6844, 0, 0x00ffff00, 0x00000000 },
5545 { 0x684c, 0, 0xffffffff, 0x00000000 },
5546 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
5547 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
5548 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
5549 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
5550 { 0x6908, 0, 0x00000000, 0x0001ff0f },
5551 { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
5553 { 0xffff, 0, 0x00000000, 0x00000000 },
5558 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
5561 for (i
= 0; reg_tbl
[i
].offset
!= 0xffff; i
++) {
5562 u32 offset
, rw_mask
, ro_mask
, save_val
, val
;
5563 u16 flags
= reg_tbl
[i
].flags
;
5565 if (is_5709
&& (flags
& BNX2_FL_NOT_5709
))
5568 offset
= (u32
) reg_tbl
[i
].offset
;
5569 rw_mask
= reg_tbl
[i
].rw_mask
;
5570 ro_mask
= reg_tbl
[i
].ro_mask
;
5572 save_val
= readl(bp
->regview
+ offset
);
5574 writel(0, bp
->regview
+ offset
);
5576 val
= readl(bp
->regview
+ offset
);
5577 if ((val
& rw_mask
) != 0) {
5581 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
5585 writel(0xffffffff, bp
->regview
+ offset
);
5587 val
= readl(bp
->regview
+ offset
);
5588 if ((val
& rw_mask
) != rw_mask
) {
5592 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
5596 writel(save_val
, bp
->regview
+ offset
);
5600 writel(save_val
, bp
->regview
+ offset
);
5608 bnx2_do_mem_test(struct bnx2
*bp
, u32 start
, u32 size
)
5610 static const u32 test_pattern
[] = { 0x00000000, 0xffffffff, 0x55555555,
5611 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
5614 for (i
= 0; i
< sizeof(test_pattern
) / 4; i
++) {
5617 for (offset
= 0; offset
< size
; offset
+= 4) {
5619 bnx2_reg_wr_ind(bp
, start
+ offset
, test_pattern
[i
]);
5621 if (bnx2_reg_rd_ind(bp
, start
+ offset
) !=
5631 bnx2_test_memory(struct bnx2
*bp
)
5635 static struct mem_entry
{
5638 } mem_tbl_5706
[] = {
5639 { 0x60000, 0x4000 },
5640 { 0xa0000, 0x3000 },
5641 { 0xe0000, 0x4000 },
5642 { 0x120000, 0x4000 },
5643 { 0x1a0000, 0x4000 },
5644 { 0x160000, 0x4000 },
5648 { 0x60000, 0x4000 },
5649 { 0xa0000, 0x3000 },
5650 { 0xe0000, 0x4000 },
5651 { 0x120000, 0x4000 },
5652 { 0x1a0000, 0x4000 },
5655 struct mem_entry
*mem_tbl
;
5657 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
5658 mem_tbl
= mem_tbl_5709
;
5660 mem_tbl
= mem_tbl_5706
;
5662 for (i
= 0; mem_tbl
[i
].offset
!= 0xffffffff; i
++) {
5663 if ((ret
= bnx2_do_mem_test(bp
, mem_tbl
[i
].offset
,
5664 mem_tbl
[i
].len
)) != 0) {
5672 #define BNX2_MAC_LOOPBACK 0
5673 #define BNX2_PHY_LOOPBACK 1
5676 bnx2_run_loopback(struct bnx2
*bp
, int loopback_mode
)
5678 unsigned int pkt_size
, num_pkts
, i
;
5679 struct sk_buff
*skb
, *rx_skb
;
5680 unsigned char *packet
;
5681 u16 rx_start_idx
, rx_idx
;
5684 struct sw_bd
*rx_buf
;
5685 struct l2_fhdr
*rx_hdr
;
5687 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0], *tx_napi
;
5688 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
5689 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5693 txr
= &tx_napi
->tx_ring
;
5694 rxr
= &bnapi
->rx_ring
;
5695 if (loopback_mode
== BNX2_MAC_LOOPBACK
) {
5696 bp
->loopback
= MAC_LOOPBACK
;
5697 bnx2_set_mac_loopback(bp
);
5699 else if (loopback_mode
== BNX2_PHY_LOOPBACK
) {
5700 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
5703 bp
->loopback
= PHY_LOOPBACK
;
5704 bnx2_set_phy_loopback(bp
);
5709 pkt_size
= min(bp
->dev
->mtu
+ ETH_HLEN
, bp
->rx_jumbo_thresh
- 4);
5710 skb
= netdev_alloc_skb(bp
->dev
, pkt_size
);
5713 packet
= skb_put(skb
, pkt_size
);
5714 memcpy(packet
, bp
->dev
->dev_addr
, 6);
5715 memset(packet
+ 6, 0x0, 8);
5716 for (i
= 14; i
< pkt_size
; i
++)
5717 packet
[i
] = (unsigned char) (i
& 0xff);
5719 map
= pci_map_single(bp
->pdev
, skb
->data
, pkt_size
,
5721 if (pci_dma_mapping_error(bp
->pdev
, map
)) {
5726 REG_WR(bp
, BNX2_HC_COMMAND
,
5727 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
5729 REG_RD(bp
, BNX2_HC_COMMAND
);
5732 rx_start_idx
= bnx2_get_hw_rx_cons(bnapi
);
5736 txbd
= &txr
->tx_desc_ring
[TX_RING_IDX(txr
->tx_prod
)];
5738 txbd
->tx_bd_haddr_hi
= (u64
) map
>> 32;
5739 txbd
->tx_bd_haddr_lo
= (u64
) map
& 0xffffffff;
5740 txbd
->tx_bd_mss_nbytes
= pkt_size
;
5741 txbd
->tx_bd_vlan_tag_flags
= TX_BD_FLAGS_START
| TX_BD_FLAGS_END
;
5744 txr
->tx_prod
= NEXT_TX_BD(txr
->tx_prod
);
5745 txr
->tx_prod_bseq
+= pkt_size
;
5747 REG_WR16(bp
, txr
->tx_bidx_addr
, txr
->tx_prod
);
5748 REG_WR(bp
, txr
->tx_bseq_addr
, txr
->tx_prod_bseq
);
5752 REG_WR(bp
, BNX2_HC_COMMAND
,
5753 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
5755 REG_RD(bp
, BNX2_HC_COMMAND
);
5759 pci_unmap_single(bp
->pdev
, map
, pkt_size
, PCI_DMA_TODEVICE
);
5762 if (bnx2_get_hw_tx_cons(tx_napi
) != txr
->tx_prod
)
5763 goto loopback_test_done
;
5765 rx_idx
= bnx2_get_hw_rx_cons(bnapi
);
5766 if (rx_idx
!= rx_start_idx
+ num_pkts
) {
5767 goto loopback_test_done
;
5770 rx_buf
= &rxr
->rx_buf_ring
[rx_start_idx
];
5771 rx_skb
= rx_buf
->skb
;
5773 rx_hdr
= rx_buf
->desc
;
5774 skb_reserve(rx_skb
, BNX2_RX_OFFSET
);
5776 pci_dma_sync_single_for_cpu(bp
->pdev
,
5777 dma_unmap_addr(rx_buf
, mapping
),
5778 bp
->rx_buf_size
, PCI_DMA_FROMDEVICE
);
5780 if (rx_hdr
->l2_fhdr_status
&
5781 (L2_FHDR_ERRORS_BAD_CRC
|
5782 L2_FHDR_ERRORS_PHY_DECODE
|
5783 L2_FHDR_ERRORS_ALIGNMENT
|
5784 L2_FHDR_ERRORS_TOO_SHORT
|
5785 L2_FHDR_ERRORS_GIANT_FRAME
)) {
5787 goto loopback_test_done
;
5790 if ((rx_hdr
->l2_fhdr_pkt_len
- 4) != pkt_size
) {
5791 goto loopback_test_done
;
5794 for (i
= 14; i
< pkt_size
; i
++) {
5795 if (*(rx_skb
->data
+ i
) != (unsigned char) (i
& 0xff)) {
5796 goto loopback_test_done
;
5807 #define BNX2_MAC_LOOPBACK_FAILED 1
5808 #define BNX2_PHY_LOOPBACK_FAILED 2
5809 #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
5810 BNX2_PHY_LOOPBACK_FAILED)
5813 bnx2_test_loopback(struct bnx2
*bp
)
5817 if (!netif_running(bp
->dev
))
5818 return BNX2_LOOPBACK_FAILED
;
5820 bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
);
5821 spin_lock_bh(&bp
->phy_lock
);
5822 bnx2_init_phy(bp
, 1);
5823 spin_unlock_bh(&bp
->phy_lock
);
5824 if (bnx2_run_loopback(bp
, BNX2_MAC_LOOPBACK
))
5825 rc
|= BNX2_MAC_LOOPBACK_FAILED
;
5826 if (bnx2_run_loopback(bp
, BNX2_PHY_LOOPBACK
))
5827 rc
|= BNX2_PHY_LOOPBACK_FAILED
;
5831 #define NVRAM_SIZE 0x200
5832 #define CRC32_RESIDUAL 0xdebb20e3
5835 bnx2_test_nvram(struct bnx2
*bp
)
5837 __be32 buf
[NVRAM_SIZE
/ 4];
5838 u8
*data
= (u8
*) buf
;
5842 if ((rc
= bnx2_nvram_read(bp
, 0, data
, 4)) != 0)
5843 goto test_nvram_done
;
5845 magic
= be32_to_cpu(buf
[0]);
5846 if (magic
!= 0x669955aa) {
5848 goto test_nvram_done
;
5851 if ((rc
= bnx2_nvram_read(bp
, 0x100, data
, NVRAM_SIZE
)) != 0)
5852 goto test_nvram_done
;
5854 csum
= ether_crc_le(0x100, data
);
5855 if (csum
!= CRC32_RESIDUAL
) {
5857 goto test_nvram_done
;
5860 csum
= ether_crc_le(0x100, data
+ 0x100);
5861 if (csum
!= CRC32_RESIDUAL
) {
5870 bnx2_test_link(struct bnx2
*bp
)
5874 if (!netif_running(bp
->dev
))
5877 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
5882 spin_lock_bh(&bp
->phy_lock
);
5883 bnx2_enable_bmsr1(bp
);
5884 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
5885 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
5886 bnx2_disable_bmsr1(bp
);
5887 spin_unlock_bh(&bp
->phy_lock
);
5889 if (bmsr
& BMSR_LSTATUS
) {
5896 bnx2_test_intr(struct bnx2
*bp
)
5901 if (!netif_running(bp
->dev
))
5904 status_idx
= REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff;
5906 /* This register is not touched during run-time. */
5907 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW
);
5908 REG_RD(bp
, BNX2_HC_COMMAND
);
5910 for (i
= 0; i
< 10; i
++) {
5911 if ((REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff) !=
5917 msleep_interruptible(10);
5925 /* Determining link for parallel detection. */
5927 bnx2_5706_serdes_has_link(struct bnx2
*bp
)
5929 u32 mode_ctl
, an_dbg
, exp
;
5931 if (bp
->phy_flags
& BNX2_PHY_FLAG_NO_PARALLEL
)
5934 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_MODE_CTL
);
5935 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &mode_ctl
);
5937 if (!(mode_ctl
& MISC_SHDW_MODE_CTL_SIG_DET
))
5940 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
5941 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
5942 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
5944 if (an_dbg
& (MISC_SHDW_AN_DBG_NOSYNC
| MISC_SHDW_AN_DBG_RUDI_INVALID
))
5947 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
, MII_EXPAND_REG1
);
5948 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &exp
);
5949 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &exp
);
5951 if (exp
& MII_EXPAND_REG1_RUDI_C
) /* receiving CONFIG */
5958 bnx2_5706_serdes_timer(struct bnx2
*bp
)
5962 spin_lock(&bp
->phy_lock
);
5963 if (bp
->serdes_an_pending
) {
5964 bp
->serdes_an_pending
--;
5966 } else if ((bp
->link_up
== 0) && (bp
->autoneg
& AUTONEG_SPEED
)) {
5969 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
5971 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
5973 if (bmcr
& BMCR_ANENABLE
) {
5974 if (bnx2_5706_serdes_has_link(bp
)) {
5975 bmcr
&= ~BMCR_ANENABLE
;
5976 bmcr
|= BMCR_SPEED1000
| BMCR_FULLDPLX
;
5977 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
5978 bp
->phy_flags
|= BNX2_PHY_FLAG_PARALLEL_DETECT
;
5982 else if ((bp
->link_up
) && (bp
->autoneg
& AUTONEG_SPEED
) &&
5983 (bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
)) {
5986 bnx2_write_phy(bp
, 0x17, 0x0f01);
5987 bnx2_read_phy(bp
, 0x15, &phy2
);
5991 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
5992 bmcr
|= BMCR_ANENABLE
;
5993 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
5995 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
5998 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
6003 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
6004 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &val
);
6005 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &val
);
6007 if (bp
->link_up
&& (val
& MISC_SHDW_AN_DBG_NOSYNC
)) {
6008 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_FORCED_DOWN
)) {
6009 bnx2_5706s_force_link_dn(bp
, 1);
6010 bp
->phy_flags
|= BNX2_PHY_FLAG_FORCED_DOWN
;
6013 } else if (!bp
->link_up
&& !(val
& MISC_SHDW_AN_DBG_NOSYNC
))
6016 spin_unlock(&bp
->phy_lock
);
6020 bnx2_5708_serdes_timer(struct bnx2
*bp
)
6022 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
6025 if ((bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) == 0) {
6026 bp
->serdes_an_pending
= 0;
6030 spin_lock(&bp
->phy_lock
);
6031 if (bp
->serdes_an_pending
)
6032 bp
->serdes_an_pending
--;
6033 else if ((bp
->link_up
== 0) && (bp
->autoneg
& AUTONEG_SPEED
)) {
6036 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
6037 if (bmcr
& BMCR_ANENABLE
) {
6038 bnx2_enable_forced_2g5(bp
);
6039 bp
->current_interval
= BNX2_SERDES_FORCED_TIMEOUT
;
6041 bnx2_disable_forced_2g5(bp
);
6042 bp
->serdes_an_pending
= 2;
6043 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
6047 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
6049 spin_unlock(&bp
->phy_lock
);
6053 bnx2_timer(unsigned long data
)
6055 struct bnx2
*bp
= (struct bnx2
*) data
;
6057 if (!netif_running(bp
->dev
))
6060 if (atomic_read(&bp
->intr_sem
) != 0)
6061 goto bnx2_restart_timer
;
6063 if ((bp
->flags
& (BNX2_FLAG_USING_MSI
| BNX2_FLAG_ONE_SHOT_MSI
)) ==
6064 BNX2_FLAG_USING_MSI
)
6065 bnx2_chk_missed_msi(bp
);
6067 bnx2_send_heart_beat(bp
);
6069 bp
->stats_blk
->stat_FwRxDrop
=
6070 bnx2_reg_rd_ind(bp
, BNX2_FW_RX_DROP_COUNT
);
6072 /* workaround occasional corrupted counters */
6073 if ((bp
->flags
& BNX2_FLAG_BROKEN_STATS
) && bp
->stats_ticks
)
6074 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
|
6075 BNX2_HC_COMMAND_STATS_NOW
);
6077 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
6078 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
6079 bnx2_5706_serdes_timer(bp
);
6081 bnx2_5708_serdes_timer(bp
);
6085 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
6089 bnx2_request_irq(struct bnx2
*bp
)
6091 unsigned long flags
;
6092 struct bnx2_irq
*irq
;
6095 if (bp
->flags
& BNX2_FLAG_USING_MSI_OR_MSIX
)
6098 flags
= IRQF_SHARED
;
6100 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
6101 irq
= &bp
->irq_tbl
[i
];
6102 rc
= request_irq(irq
->vector
, irq
->handler
, flags
, irq
->name
,
6112 bnx2_free_irq(struct bnx2
*bp
)
6114 struct bnx2_irq
*irq
;
6117 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
6118 irq
= &bp
->irq_tbl
[i
];
6120 free_irq(irq
->vector
, &bp
->bnx2_napi
[i
]);
6123 if (bp
->flags
& BNX2_FLAG_USING_MSI
)
6124 pci_disable_msi(bp
->pdev
);
6125 else if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
6126 pci_disable_msix(bp
->pdev
);
6128 bp
->flags
&= ~(BNX2_FLAG_USING_MSI_OR_MSIX
| BNX2_FLAG_ONE_SHOT_MSI
);
6132 bnx2_enable_msix(struct bnx2
*bp
, int msix_vecs
)
6135 struct msix_entry msix_ent
[BNX2_MAX_MSIX_VEC
];
6136 struct net_device
*dev
= bp
->dev
;
6137 const int len
= sizeof(bp
->irq_tbl
[0].name
);
6139 bnx2_setup_msix_tbl(bp
);
6140 REG_WR(bp
, BNX2_PCI_MSIX_CONTROL
, BNX2_MAX_MSIX_HW_VEC
- 1);
6141 REG_WR(bp
, BNX2_PCI_MSIX_TBL_OFF_BIR
, BNX2_PCI_GRC_WINDOW2_BASE
);
6142 REG_WR(bp
, BNX2_PCI_MSIX_PBA_OFF_BIT
, BNX2_PCI_GRC_WINDOW3_BASE
);
6144 /* Need to flush the previous three writes to ensure MSI-X
6145 * is setup properly */
6146 REG_RD(bp
, BNX2_PCI_MSIX_CONTROL
);
6148 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
6149 msix_ent
[i
].entry
= i
;
6150 msix_ent
[i
].vector
= 0;
6153 rc
= pci_enable_msix(bp
->pdev
, msix_ent
, BNX2_MAX_MSIX_VEC
);
6157 bp
->irq_nvecs
= msix_vecs
;
6158 bp
->flags
|= BNX2_FLAG_USING_MSIX
| BNX2_FLAG_ONE_SHOT_MSI
;
6159 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
6160 bp
->irq_tbl
[i
].vector
= msix_ent
[i
].vector
;
6161 snprintf(bp
->irq_tbl
[i
].name
, len
, "%s-%d", dev
->name
, i
);
6162 bp
->irq_tbl
[i
].handler
= bnx2_msi_1shot
;
6167 bnx2_setup_int_mode(struct bnx2
*bp
, int dis_msi
)
6169 int cpus
= num_online_cpus();
6170 int msix_vecs
= min(cpus
+ 1, RX_MAX_RINGS
);
6172 bp
->irq_tbl
[0].handler
= bnx2_interrupt
;
6173 strcpy(bp
->irq_tbl
[0].name
, bp
->dev
->name
);
6175 bp
->irq_tbl
[0].vector
= bp
->pdev
->irq
;
6177 if ((bp
->flags
& BNX2_FLAG_MSIX_CAP
) && !dis_msi
&& cpus
> 1)
6178 bnx2_enable_msix(bp
, msix_vecs
);
6180 if ((bp
->flags
& BNX2_FLAG_MSI_CAP
) && !dis_msi
&&
6181 !(bp
->flags
& BNX2_FLAG_USING_MSIX
)) {
6182 if (pci_enable_msi(bp
->pdev
) == 0) {
6183 bp
->flags
|= BNX2_FLAG_USING_MSI
;
6184 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
6185 bp
->flags
|= BNX2_FLAG_ONE_SHOT_MSI
;
6186 bp
->irq_tbl
[0].handler
= bnx2_msi_1shot
;
6188 bp
->irq_tbl
[0].handler
= bnx2_msi
;
6190 bp
->irq_tbl
[0].vector
= bp
->pdev
->irq
;
6194 bp
->num_tx_rings
= rounddown_pow_of_two(bp
->irq_nvecs
);
6195 bp
->dev
->real_num_tx_queues
= bp
->num_tx_rings
;
6197 bp
->num_rx_rings
= bp
->irq_nvecs
;
6200 /* Called with rtnl_lock */
6202 bnx2_open(struct net_device
*dev
)
6204 struct bnx2
*bp
= netdev_priv(dev
);
6207 netif_carrier_off(dev
);
6209 bnx2_set_power_state(bp
, PCI_D0
);
6210 bnx2_disable_int(bp
);
6212 bnx2_setup_int_mode(bp
, disable_msi
);
6214 bnx2_napi_enable(bp
);
6215 rc
= bnx2_alloc_mem(bp
);
6219 rc
= bnx2_request_irq(bp
);
6223 rc
= bnx2_init_nic(bp
, 1);
6227 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
6229 atomic_set(&bp
->intr_sem
, 0);
6231 memset(bp
->temp_stats_blk
, 0, sizeof(struct statistics_block
));
6233 bnx2_enable_int(bp
);
6235 if (bp
->flags
& BNX2_FLAG_USING_MSI
) {
6236 /* Test MSI to make sure it is working
6237 * If MSI test fails, go back to INTx mode
6239 if (bnx2_test_intr(bp
) != 0) {
6240 netdev_warn(bp
->dev
, "No interrupt was generated using MSI, switching to INTx mode. Please report this failure to the PCI maintainer and include system chipset information.\n");
6242 bnx2_disable_int(bp
);
6245 bnx2_setup_int_mode(bp
, 1);
6247 rc
= bnx2_init_nic(bp
, 0);
6250 rc
= bnx2_request_irq(bp
);
6253 del_timer_sync(&bp
->timer
);
6256 bnx2_enable_int(bp
);
6259 if (bp
->flags
& BNX2_FLAG_USING_MSI
)
6260 netdev_info(dev
, "using MSI\n");
6261 else if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
6262 netdev_info(dev
, "using MSIX\n");
6264 netif_tx_start_all_queues(dev
);
6269 bnx2_napi_disable(bp
);
6277 bnx2_reset_task(struct work_struct
*work
)
6279 struct bnx2
*bp
= container_of(work
, struct bnx2
, reset_task
);
6282 if (!netif_running(bp
->dev
)) {
6287 bnx2_netif_stop(bp
, true);
6289 bnx2_init_nic(bp
, 1);
6291 atomic_set(&bp
->intr_sem
, 1);
6292 bnx2_netif_start(bp
, true);
6297 bnx2_dump_state(struct bnx2
*bp
)
6299 struct net_device
*dev
= bp
->dev
;
6302 netdev_err(dev
, "DEBUG: intr_sem[%x]\n", atomic_read(&bp
->intr_sem
));
6303 netdev_err(dev
, "DEBUG: EMAC_TX_STATUS[%08x] EMAC_RX_STATUS[%08x]\n",
6304 REG_RD(bp
, BNX2_EMAC_TX_STATUS
),
6305 REG_RD(bp
, BNX2_EMAC_RX_STATUS
));
6306 netdev_err(dev
, "DEBUG: RPM_MGMT_PKT_CTRL[%08x]\n",
6307 REG_RD(bp
, BNX2_RPM_MGMT_PKT_CTRL
));
6308 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
6309 mcp_p0
= BNX2_MCP_STATE_P0
;
6310 mcp_p1
= BNX2_MCP_STATE_P1
;
6312 mcp_p0
= BNX2_MCP_STATE_P0_5708
;
6313 mcp_p1
= BNX2_MCP_STATE_P1_5708
;
6315 netdev_err(dev
, "DEBUG: MCP_STATE_P0[%08x] MCP_STATE_P1[%08x]\n",
6316 bnx2_reg_rd_ind(bp
, mcp_p0
), bnx2_reg_rd_ind(bp
, mcp_p1
));
6317 netdev_err(dev
, "DEBUG: HC_STATS_INTERRUPT_STATUS[%08x]\n",
6318 REG_RD(bp
, BNX2_HC_STATS_INTERRUPT_STATUS
));
6319 if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
6320 netdev_err(dev
, "DEBUG: PBA[%08x]\n",
6321 REG_RD(bp
, BNX2_PCI_GRC_WINDOW3_BASE
));
6325 bnx2_tx_timeout(struct net_device
*dev
)
6327 struct bnx2
*bp
= netdev_priv(dev
);
6329 bnx2_dump_state(bp
);
6331 /* This allows the netif to be shutdown gracefully before resetting */
6332 schedule_work(&bp
->reset_task
);
6336 /* Called with rtnl_lock */
6338 bnx2_vlan_rx_register(struct net_device
*dev
, struct vlan_group
*vlgrp
)
6340 struct bnx2
*bp
= netdev_priv(dev
);
6342 if (netif_running(dev
))
6343 bnx2_netif_stop(bp
, false);
6347 if (!netif_running(dev
))
6350 bnx2_set_rx_mode(dev
);
6351 if (bp
->flags
& BNX2_FLAG_CAN_KEEP_VLAN
)
6352 bnx2_fw_sync(bp
, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE
, 0, 1);
6354 bnx2_netif_start(bp
, false);
6358 /* Called with netif_tx_lock.
6359 * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
6360 * netif_wake_queue().
6363 bnx2_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
6365 struct bnx2
*bp
= netdev_priv(dev
);
6368 struct sw_tx_bd
*tx_buf
;
6369 u32 len
, vlan_tag_flags
, last_frag
, mss
;
6370 u16 prod
, ring_prod
;
6372 struct bnx2_napi
*bnapi
;
6373 struct bnx2_tx_ring_info
*txr
;
6374 struct netdev_queue
*txq
;
6376 /* Determine which tx ring we will be placed on */
6377 i
= skb_get_queue_mapping(skb
);
6378 bnapi
= &bp
->bnx2_napi
[i
];
6379 txr
= &bnapi
->tx_ring
;
6380 txq
= netdev_get_tx_queue(dev
, i
);
6382 if (unlikely(bnx2_tx_avail(bp
, txr
) <
6383 (skb_shinfo(skb
)->nr_frags
+ 1))) {
6384 netif_tx_stop_queue(txq
);
6385 netdev_err(dev
, "BUG! Tx ring full when queue awake!\n");
6387 return NETDEV_TX_BUSY
;
6389 len
= skb_headlen(skb
);
6390 prod
= txr
->tx_prod
;
6391 ring_prod
= TX_RING_IDX(prod
);
6394 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
6395 vlan_tag_flags
|= TX_BD_FLAGS_TCP_UDP_CKSUM
;
6399 if (bp
->vlgrp
&& vlan_tx_tag_present(skb
)) {
6401 (TX_BD_FLAGS_VLAN_TAG
| (vlan_tx_tag_get(skb
) << 16));
6404 if ((mss
= skb_shinfo(skb
)->gso_size
)) {
6408 vlan_tag_flags
|= TX_BD_FLAGS_SW_LSO
;
6410 tcp_opt_len
= tcp_optlen(skb
);
6412 if (skb_shinfo(skb
)->gso_type
& SKB_GSO_TCPV6
) {
6413 u32 tcp_off
= skb_transport_offset(skb
) -
6414 sizeof(struct ipv6hdr
) - ETH_HLEN
;
6416 vlan_tag_flags
|= ((tcp_opt_len
>> 2) << 8) |
6417 TX_BD_FLAGS_SW_FLAGS
;
6418 if (likely(tcp_off
== 0))
6419 vlan_tag_flags
&= ~TX_BD_FLAGS_TCP6_OFF0_MSK
;
6422 vlan_tag_flags
|= ((tcp_off
& 0x3) <<
6423 TX_BD_FLAGS_TCP6_OFF0_SHL
) |
6424 ((tcp_off
& 0x10) <<
6425 TX_BD_FLAGS_TCP6_OFF4_SHL
);
6426 mss
|= (tcp_off
& 0xc) << TX_BD_TCP6_OFF2_SHL
;
6430 if (tcp_opt_len
|| (iph
->ihl
> 5)) {
6431 vlan_tag_flags
|= ((iph
->ihl
- 5) +
6432 (tcp_opt_len
>> 2)) << 8;
6438 mapping
= pci_map_single(bp
->pdev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
6439 if (pci_dma_mapping_error(bp
->pdev
, mapping
)) {
6441 return NETDEV_TX_OK
;
6444 tx_buf
= &txr
->tx_buf_ring
[ring_prod
];
6446 dma_unmap_addr_set(tx_buf
, mapping
, mapping
);
6448 txbd
= &txr
->tx_desc_ring
[ring_prod
];
6450 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
6451 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
6452 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
6453 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
| TX_BD_FLAGS_START
;
6455 last_frag
= skb_shinfo(skb
)->nr_frags
;
6456 tx_buf
->nr_frags
= last_frag
;
6457 tx_buf
->is_gso
= skb_is_gso(skb
);
6459 for (i
= 0; i
< last_frag
; i
++) {
6460 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
6462 prod
= NEXT_TX_BD(prod
);
6463 ring_prod
= TX_RING_IDX(prod
);
6464 txbd
= &txr
->tx_desc_ring
[ring_prod
];
6467 mapping
= pci_map_page(bp
->pdev
, frag
->page
, frag
->page_offset
,
6468 len
, PCI_DMA_TODEVICE
);
6469 if (pci_dma_mapping_error(bp
->pdev
, mapping
))
6471 dma_unmap_addr_set(&txr
->tx_buf_ring
[ring_prod
], mapping
,
6474 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
6475 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
6476 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
6477 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
;
6480 txbd
->tx_bd_vlan_tag_flags
|= TX_BD_FLAGS_END
;
6482 prod
= NEXT_TX_BD(prod
);
6483 txr
->tx_prod_bseq
+= skb
->len
;
6485 REG_WR16(bp
, txr
->tx_bidx_addr
, prod
);
6486 REG_WR(bp
, txr
->tx_bseq_addr
, txr
->tx_prod_bseq
);
6490 txr
->tx_prod
= prod
;
6492 if (unlikely(bnx2_tx_avail(bp
, txr
) <= MAX_SKB_FRAGS
)) {
6493 netif_tx_stop_queue(txq
);
6494 if (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
)
6495 netif_tx_wake_queue(txq
);
6498 return NETDEV_TX_OK
;
6500 /* save value of frag that failed */
6503 /* start back at beginning and unmap skb */
6504 prod
= txr
->tx_prod
;
6505 ring_prod
= TX_RING_IDX(prod
);
6506 tx_buf
= &txr
->tx_buf_ring
[ring_prod
];
6508 pci_unmap_single(bp
->pdev
, dma_unmap_addr(tx_buf
, mapping
),
6509 skb_headlen(skb
), PCI_DMA_TODEVICE
);
6511 /* unmap remaining mapped pages */
6512 for (i
= 0; i
< last_frag
; i
++) {
6513 prod
= NEXT_TX_BD(prod
);
6514 ring_prod
= TX_RING_IDX(prod
);
6515 tx_buf
= &txr
->tx_buf_ring
[ring_prod
];
6516 pci_unmap_page(bp
->pdev
, dma_unmap_addr(tx_buf
, mapping
),
6517 skb_shinfo(skb
)->frags
[i
].size
,
6522 return NETDEV_TX_OK
;
6525 /* Called with rtnl_lock */
6527 bnx2_close(struct net_device
*dev
)
6529 struct bnx2
*bp
= netdev_priv(dev
);
6531 cancel_work_sync(&bp
->reset_task
);
6533 bnx2_disable_int_sync(bp
);
6534 bnx2_napi_disable(bp
);
6535 del_timer_sync(&bp
->timer
);
6536 bnx2_shutdown_chip(bp
);
6541 netif_carrier_off(bp
->dev
);
6542 bnx2_set_power_state(bp
, PCI_D3hot
);
6547 bnx2_save_stats(struct bnx2
*bp
)
6549 u32
*hw_stats
= (u32
*) bp
->stats_blk
;
6550 u32
*temp_stats
= (u32
*) bp
->temp_stats_blk
;
6553 /* The 1st 10 counters are 64-bit counters */
6554 for (i
= 0; i
< 20; i
+= 2) {
6558 hi
= temp_stats
[i
] + hw_stats
[i
];
6559 lo
= (u64
) temp_stats
[i
+ 1] + (u64
) hw_stats
[i
+ 1];
6560 if (lo
> 0xffffffff)
6563 temp_stats
[i
+ 1] = lo
& 0xffffffff;
6566 for ( ; i
< sizeof(struct statistics_block
) / 4; i
++)
6567 temp_stats
[i
] += hw_stats
[i
];
6570 #define GET_64BIT_NET_STATS64(ctr) \
6571 (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
6572 (unsigned long) (ctr##_lo)
6574 #define GET_64BIT_NET_STATS32(ctr) \
6577 #if (BITS_PER_LONG == 64)
6578 #define GET_64BIT_NET_STATS(ctr) \
6579 GET_64BIT_NET_STATS64(bp->stats_blk->ctr) + \
6580 GET_64BIT_NET_STATS64(bp->temp_stats_blk->ctr)
6582 #define GET_64BIT_NET_STATS(ctr) \
6583 GET_64BIT_NET_STATS32(bp->stats_blk->ctr) + \
6584 GET_64BIT_NET_STATS32(bp->temp_stats_blk->ctr)
6587 #define GET_32BIT_NET_STATS(ctr) \
6588 (unsigned long) (bp->stats_blk->ctr + \
6589 bp->temp_stats_blk->ctr)
6591 static struct net_device_stats
*
6592 bnx2_get_stats(struct net_device
*dev
)
6594 struct bnx2
*bp
= netdev_priv(dev
);
6595 struct net_device_stats
*net_stats
= &dev
->stats
;
6597 if (bp
->stats_blk
== NULL
) {
6600 net_stats
->rx_packets
=
6601 GET_64BIT_NET_STATS(stat_IfHCInUcastPkts
) +
6602 GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts
) +
6603 GET_64BIT_NET_STATS(stat_IfHCInBroadcastPkts
);
6605 net_stats
->tx_packets
=
6606 GET_64BIT_NET_STATS(stat_IfHCOutUcastPkts
) +
6607 GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts
) +
6608 GET_64BIT_NET_STATS(stat_IfHCOutBroadcastPkts
);
6610 net_stats
->rx_bytes
=
6611 GET_64BIT_NET_STATS(stat_IfHCInOctets
);
6613 net_stats
->tx_bytes
=
6614 GET_64BIT_NET_STATS(stat_IfHCOutOctets
);
6616 net_stats
->multicast
=
6617 GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts
);
6619 net_stats
->collisions
=
6620 GET_32BIT_NET_STATS(stat_EtherStatsCollisions
);
6622 net_stats
->rx_length_errors
=
6623 GET_32BIT_NET_STATS(stat_EtherStatsUndersizePkts
) +
6624 GET_32BIT_NET_STATS(stat_EtherStatsOverrsizePkts
);
6626 net_stats
->rx_over_errors
=
6627 GET_32BIT_NET_STATS(stat_IfInFTQDiscards
) +
6628 GET_32BIT_NET_STATS(stat_IfInMBUFDiscards
);
6630 net_stats
->rx_frame_errors
=
6631 GET_32BIT_NET_STATS(stat_Dot3StatsAlignmentErrors
);
6633 net_stats
->rx_crc_errors
=
6634 GET_32BIT_NET_STATS(stat_Dot3StatsFCSErrors
);
6636 net_stats
->rx_errors
= net_stats
->rx_length_errors
+
6637 net_stats
->rx_over_errors
+ net_stats
->rx_frame_errors
+
6638 net_stats
->rx_crc_errors
;
6640 net_stats
->tx_aborted_errors
=
6641 GET_32BIT_NET_STATS(stat_Dot3StatsExcessiveCollisions
) +
6642 GET_32BIT_NET_STATS(stat_Dot3StatsLateCollisions
);
6644 if ((CHIP_NUM(bp
) == CHIP_NUM_5706
) ||
6645 (CHIP_ID(bp
) == CHIP_ID_5708_A0
))
6646 net_stats
->tx_carrier_errors
= 0;
6648 net_stats
->tx_carrier_errors
=
6649 GET_32BIT_NET_STATS(stat_Dot3StatsCarrierSenseErrors
);
6652 net_stats
->tx_errors
=
6653 GET_32BIT_NET_STATS(stat_emac_tx_stat_dot3statsinternalmactransmiterrors
) +
6654 net_stats
->tx_aborted_errors
+
6655 net_stats
->tx_carrier_errors
;
6657 net_stats
->rx_missed_errors
=
6658 GET_32BIT_NET_STATS(stat_IfInFTQDiscards
) +
6659 GET_32BIT_NET_STATS(stat_IfInMBUFDiscards
) +
6660 GET_32BIT_NET_STATS(stat_FwRxDrop
);
6665 /* All ethtool functions called with rtnl_lock */
6668 bnx2_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
6670 struct bnx2
*bp
= netdev_priv(dev
);
6671 int support_serdes
= 0, support_copper
= 0;
6673 cmd
->supported
= SUPPORTED_Autoneg
;
6674 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
6677 } else if (bp
->phy_port
== PORT_FIBRE
)
6682 if (support_serdes
) {
6683 cmd
->supported
|= SUPPORTED_1000baseT_Full
|
6685 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
)
6686 cmd
->supported
|= SUPPORTED_2500baseX_Full
;
6689 if (support_copper
) {
6690 cmd
->supported
|= SUPPORTED_10baseT_Half
|
6691 SUPPORTED_10baseT_Full
|
6692 SUPPORTED_100baseT_Half
|
6693 SUPPORTED_100baseT_Full
|
6694 SUPPORTED_1000baseT_Full
|
6699 spin_lock_bh(&bp
->phy_lock
);
6700 cmd
->port
= bp
->phy_port
;
6701 cmd
->advertising
= bp
->advertising
;
6703 if (bp
->autoneg
& AUTONEG_SPEED
) {
6704 cmd
->autoneg
= AUTONEG_ENABLE
;
6707 cmd
->autoneg
= AUTONEG_DISABLE
;
6710 if (netif_carrier_ok(dev
)) {
6711 cmd
->speed
= bp
->line_speed
;
6712 cmd
->duplex
= bp
->duplex
;
6718 spin_unlock_bh(&bp
->phy_lock
);
6720 cmd
->transceiver
= XCVR_INTERNAL
;
6721 cmd
->phy_address
= bp
->phy_addr
;
6727 bnx2_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
6729 struct bnx2
*bp
= netdev_priv(dev
);
6730 u8 autoneg
= bp
->autoneg
;
6731 u8 req_duplex
= bp
->req_duplex
;
6732 u16 req_line_speed
= bp
->req_line_speed
;
6733 u32 advertising
= bp
->advertising
;
6736 spin_lock_bh(&bp
->phy_lock
);
6738 if (cmd
->port
!= PORT_TP
&& cmd
->port
!= PORT_FIBRE
)
6739 goto err_out_unlock
;
6741 if (cmd
->port
!= bp
->phy_port
&&
6742 !(bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
))
6743 goto err_out_unlock
;
6745 /* If device is down, we can store the settings only if the user
6746 * is setting the currently active port.
6748 if (!netif_running(dev
) && cmd
->port
!= bp
->phy_port
)
6749 goto err_out_unlock
;
6751 if (cmd
->autoneg
== AUTONEG_ENABLE
) {
6752 autoneg
|= AUTONEG_SPEED
;
6754 advertising
= cmd
->advertising
;
6755 if (cmd
->port
== PORT_TP
) {
6756 advertising
&= ETHTOOL_ALL_COPPER_SPEED
;
6758 advertising
= ETHTOOL_ALL_COPPER_SPEED
;
6760 advertising
&= ETHTOOL_ALL_FIBRE_SPEED
;
6762 advertising
= ETHTOOL_ALL_FIBRE_SPEED
;
6764 advertising
|= ADVERTISED_Autoneg
;
6767 if (cmd
->port
== PORT_FIBRE
) {
6768 if ((cmd
->speed
!= SPEED_1000
&&
6769 cmd
->speed
!= SPEED_2500
) ||
6770 (cmd
->duplex
!= DUPLEX_FULL
))
6771 goto err_out_unlock
;
6773 if (cmd
->speed
== SPEED_2500
&&
6774 !(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
6775 goto err_out_unlock
;
6777 else if (cmd
->speed
== SPEED_1000
|| cmd
->speed
== SPEED_2500
)
6778 goto err_out_unlock
;
6780 autoneg
&= ~AUTONEG_SPEED
;
6781 req_line_speed
= cmd
->speed
;
6782 req_duplex
= cmd
->duplex
;
6786 bp
->autoneg
= autoneg
;
6787 bp
->advertising
= advertising
;
6788 bp
->req_line_speed
= req_line_speed
;
6789 bp
->req_duplex
= req_duplex
;
6792 /* If device is down, the new settings will be picked up when it is
6795 if (netif_running(dev
))
6796 err
= bnx2_setup_phy(bp
, cmd
->port
);
6799 spin_unlock_bh(&bp
->phy_lock
);
6805 bnx2_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
6807 struct bnx2
*bp
= netdev_priv(dev
);
6809 strcpy(info
->driver
, DRV_MODULE_NAME
);
6810 strcpy(info
->version
, DRV_MODULE_VERSION
);
6811 strcpy(info
->bus_info
, pci_name(bp
->pdev
));
6812 strcpy(info
->fw_version
, bp
->fw_version
);
6815 #define BNX2_REGDUMP_LEN (32 * 1024)
6818 bnx2_get_regs_len(struct net_device
*dev
)
6820 return BNX2_REGDUMP_LEN
;
6824 bnx2_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
, void *_p
)
6826 u32
*p
= _p
, i
, offset
;
6828 struct bnx2
*bp
= netdev_priv(dev
);
6829 u32 reg_boundaries
[] = { 0x0000, 0x0098, 0x0400, 0x045c,
6830 0x0800, 0x0880, 0x0c00, 0x0c10,
6831 0x0c30, 0x0d08, 0x1000, 0x101c,
6832 0x1040, 0x1048, 0x1080, 0x10a4,
6833 0x1400, 0x1490, 0x1498, 0x14f0,
6834 0x1500, 0x155c, 0x1580, 0x15dc,
6835 0x1600, 0x1658, 0x1680, 0x16d8,
6836 0x1800, 0x1820, 0x1840, 0x1854,
6837 0x1880, 0x1894, 0x1900, 0x1984,
6838 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
6839 0x1c80, 0x1c94, 0x1d00, 0x1d84,
6840 0x2000, 0x2030, 0x23c0, 0x2400,
6841 0x2800, 0x2820, 0x2830, 0x2850,
6842 0x2b40, 0x2c10, 0x2fc0, 0x3058,
6843 0x3c00, 0x3c94, 0x4000, 0x4010,
6844 0x4080, 0x4090, 0x43c0, 0x4458,
6845 0x4c00, 0x4c18, 0x4c40, 0x4c54,
6846 0x4fc0, 0x5010, 0x53c0, 0x5444,
6847 0x5c00, 0x5c18, 0x5c80, 0x5c90,
6848 0x5fc0, 0x6000, 0x6400, 0x6428,
6849 0x6800, 0x6848, 0x684c, 0x6860,
6850 0x6888, 0x6910, 0x8000 };
6854 memset(p
, 0, BNX2_REGDUMP_LEN
);
6856 if (!netif_running(bp
->dev
))
6860 offset
= reg_boundaries
[0];
6862 while (offset
< BNX2_REGDUMP_LEN
) {
6863 *p
++ = REG_RD(bp
, offset
);
6865 if (offset
== reg_boundaries
[i
+ 1]) {
6866 offset
= reg_boundaries
[i
+ 2];
6867 p
= (u32
*) (orig_p
+ offset
);
6874 bnx2_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
6876 struct bnx2
*bp
= netdev_priv(dev
);
6878 if (bp
->flags
& BNX2_FLAG_NO_WOL
) {
6883 wol
->supported
= WAKE_MAGIC
;
6885 wol
->wolopts
= WAKE_MAGIC
;
6889 memset(&wol
->sopass
, 0, sizeof(wol
->sopass
));
6893 bnx2_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
6895 struct bnx2
*bp
= netdev_priv(dev
);
6897 if (wol
->wolopts
& ~WAKE_MAGIC
)
6900 if (wol
->wolopts
& WAKE_MAGIC
) {
6901 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
6913 bnx2_nway_reset(struct net_device
*dev
)
6915 struct bnx2
*bp
= netdev_priv(dev
);
6918 if (!netif_running(dev
))
6921 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
6925 spin_lock_bh(&bp
->phy_lock
);
6927 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
6930 rc
= bnx2_setup_remote_phy(bp
, bp
->phy_port
);
6931 spin_unlock_bh(&bp
->phy_lock
);
6935 /* Force a link down visible on the other side */
6936 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
6937 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
6938 spin_unlock_bh(&bp
->phy_lock
);
6942 spin_lock_bh(&bp
->phy_lock
);
6944 bp
->current_interval
= BNX2_SERDES_AN_TIMEOUT
;
6945 bp
->serdes_an_pending
= 1;
6946 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
6949 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
6950 bmcr
&= ~BMCR_LOOPBACK
;
6951 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
| BMCR_ANRESTART
| BMCR_ANENABLE
);
6953 spin_unlock_bh(&bp
->phy_lock
);
6959 bnx2_get_link(struct net_device
*dev
)
6961 struct bnx2
*bp
= netdev_priv(dev
);
6967 bnx2_get_eeprom_len(struct net_device
*dev
)
6969 struct bnx2
*bp
= netdev_priv(dev
);
6971 if (bp
->flash_info
== NULL
)
6974 return (int) bp
->flash_size
;
6978 bnx2_get_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
6981 struct bnx2
*bp
= netdev_priv(dev
);
6984 if (!netif_running(dev
))
6987 /* parameters already validated in ethtool_get_eeprom */
6989 rc
= bnx2_nvram_read(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
6995 bnx2_set_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
6998 struct bnx2
*bp
= netdev_priv(dev
);
7001 if (!netif_running(dev
))
7004 /* parameters already validated in ethtool_set_eeprom */
7006 rc
= bnx2_nvram_write(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
7012 bnx2_get_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
7014 struct bnx2
*bp
= netdev_priv(dev
);
7016 memset(coal
, 0, sizeof(struct ethtool_coalesce
));
7018 coal
->rx_coalesce_usecs
= bp
->rx_ticks
;
7019 coal
->rx_max_coalesced_frames
= bp
->rx_quick_cons_trip
;
7020 coal
->rx_coalesce_usecs_irq
= bp
->rx_ticks_int
;
7021 coal
->rx_max_coalesced_frames_irq
= bp
->rx_quick_cons_trip_int
;
7023 coal
->tx_coalesce_usecs
= bp
->tx_ticks
;
7024 coal
->tx_max_coalesced_frames
= bp
->tx_quick_cons_trip
;
7025 coal
->tx_coalesce_usecs_irq
= bp
->tx_ticks_int
;
7026 coal
->tx_max_coalesced_frames_irq
= bp
->tx_quick_cons_trip_int
;
7028 coal
->stats_block_coalesce_usecs
= bp
->stats_ticks
;
7034 bnx2_set_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
7036 struct bnx2
*bp
= netdev_priv(dev
);
7038 bp
->rx_ticks
= (u16
) coal
->rx_coalesce_usecs
;
7039 if (bp
->rx_ticks
> 0x3ff) bp
->rx_ticks
= 0x3ff;
7041 bp
->rx_quick_cons_trip
= (u16
) coal
->rx_max_coalesced_frames
;
7042 if (bp
->rx_quick_cons_trip
> 0xff) bp
->rx_quick_cons_trip
= 0xff;
7044 bp
->rx_ticks_int
= (u16
) coal
->rx_coalesce_usecs_irq
;
7045 if (bp
->rx_ticks_int
> 0x3ff) bp
->rx_ticks_int
= 0x3ff;
7047 bp
->rx_quick_cons_trip_int
= (u16
) coal
->rx_max_coalesced_frames_irq
;
7048 if (bp
->rx_quick_cons_trip_int
> 0xff)
7049 bp
->rx_quick_cons_trip_int
= 0xff;
7051 bp
->tx_ticks
= (u16
) coal
->tx_coalesce_usecs
;
7052 if (bp
->tx_ticks
> 0x3ff) bp
->tx_ticks
= 0x3ff;
7054 bp
->tx_quick_cons_trip
= (u16
) coal
->tx_max_coalesced_frames
;
7055 if (bp
->tx_quick_cons_trip
> 0xff) bp
->tx_quick_cons_trip
= 0xff;
7057 bp
->tx_ticks_int
= (u16
) coal
->tx_coalesce_usecs_irq
;
7058 if (bp
->tx_ticks_int
> 0x3ff) bp
->tx_ticks_int
= 0x3ff;
7060 bp
->tx_quick_cons_trip_int
= (u16
) coal
->tx_max_coalesced_frames_irq
;
7061 if (bp
->tx_quick_cons_trip_int
> 0xff) bp
->tx_quick_cons_trip_int
=
7064 bp
->stats_ticks
= coal
->stats_block_coalesce_usecs
;
7065 if (bp
->flags
& BNX2_FLAG_BROKEN_STATS
) {
7066 if (bp
->stats_ticks
!= 0 && bp
->stats_ticks
!= USEC_PER_SEC
)
7067 bp
->stats_ticks
= USEC_PER_SEC
;
7069 if (bp
->stats_ticks
> BNX2_HC_STATS_TICKS_HC_STAT_TICKS
)
7070 bp
->stats_ticks
= BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
7071 bp
->stats_ticks
&= BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
7073 if (netif_running(bp
->dev
)) {
7074 bnx2_netif_stop(bp
, true);
7075 bnx2_init_nic(bp
, 0);
7076 bnx2_netif_start(bp
, true);
7083 bnx2_get_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
7085 struct bnx2
*bp
= netdev_priv(dev
);
7087 ering
->rx_max_pending
= MAX_TOTAL_RX_DESC_CNT
;
7088 ering
->rx_mini_max_pending
= 0;
7089 ering
->rx_jumbo_max_pending
= MAX_TOTAL_RX_PG_DESC_CNT
;
7091 ering
->rx_pending
= bp
->rx_ring_size
;
7092 ering
->rx_mini_pending
= 0;
7093 ering
->rx_jumbo_pending
= bp
->rx_pg_ring_size
;
7095 ering
->tx_max_pending
= MAX_TX_DESC_CNT
;
7096 ering
->tx_pending
= bp
->tx_ring_size
;
7100 bnx2_change_ring_size(struct bnx2
*bp
, u32 rx
, u32 tx
)
7102 if (netif_running(bp
->dev
)) {
7103 /* Reset will erase chipset stats; save them */
7104 bnx2_save_stats(bp
);
7106 bnx2_netif_stop(bp
, true);
7107 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_RESET
);
7112 bnx2_set_rx_ring_size(bp
, rx
);
7113 bp
->tx_ring_size
= tx
;
7115 if (netif_running(bp
->dev
)) {
7118 rc
= bnx2_alloc_mem(bp
);
7120 rc
= bnx2_init_nic(bp
, 0);
7123 bnx2_napi_enable(bp
);
7128 mutex_lock(&bp
->cnic_lock
);
7129 /* Let cnic know about the new status block. */
7130 if (bp
->cnic_eth_dev
.drv_state
& CNIC_DRV_STATE_REGD
)
7131 bnx2_setup_cnic_irq_info(bp
);
7132 mutex_unlock(&bp
->cnic_lock
);
7134 bnx2_netif_start(bp
, true);
7140 bnx2_set_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
7142 struct bnx2
*bp
= netdev_priv(dev
);
7145 if ((ering
->rx_pending
> MAX_TOTAL_RX_DESC_CNT
) ||
7146 (ering
->tx_pending
> MAX_TX_DESC_CNT
) ||
7147 (ering
->tx_pending
<= MAX_SKB_FRAGS
)) {
7151 rc
= bnx2_change_ring_size(bp
, ering
->rx_pending
, ering
->tx_pending
);
7156 bnx2_get_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
7158 struct bnx2
*bp
= netdev_priv(dev
);
7160 epause
->autoneg
= ((bp
->autoneg
& AUTONEG_FLOW_CTRL
) != 0);
7161 epause
->rx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_RX
) != 0);
7162 epause
->tx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_TX
) != 0);
7166 bnx2_set_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
7168 struct bnx2
*bp
= netdev_priv(dev
);
7170 bp
->req_flow_ctrl
= 0;
7171 if (epause
->rx_pause
)
7172 bp
->req_flow_ctrl
|= FLOW_CTRL_RX
;
7173 if (epause
->tx_pause
)
7174 bp
->req_flow_ctrl
|= FLOW_CTRL_TX
;
7176 if (epause
->autoneg
) {
7177 bp
->autoneg
|= AUTONEG_FLOW_CTRL
;
7180 bp
->autoneg
&= ~AUTONEG_FLOW_CTRL
;
7183 if (netif_running(dev
)) {
7184 spin_lock_bh(&bp
->phy_lock
);
7185 bnx2_setup_phy(bp
, bp
->phy_port
);
7186 spin_unlock_bh(&bp
->phy_lock
);
7193 bnx2_get_rx_csum(struct net_device
*dev
)
7195 struct bnx2
*bp
= netdev_priv(dev
);
7201 bnx2_set_rx_csum(struct net_device
*dev
, u32 data
)
7203 struct bnx2
*bp
= netdev_priv(dev
);
7210 bnx2_set_tso(struct net_device
*dev
, u32 data
)
7212 struct bnx2
*bp
= netdev_priv(dev
);
7215 dev
->features
|= NETIF_F_TSO
| NETIF_F_TSO_ECN
;
7216 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
7217 dev
->features
|= NETIF_F_TSO6
;
7219 dev
->features
&= ~(NETIF_F_TSO
| NETIF_F_TSO6
|
7225 char string
[ETH_GSTRING_LEN
];
7226 } bnx2_stats_str_arr
[] = {
7228 { "rx_error_bytes" },
7230 { "tx_error_bytes" },
7231 { "rx_ucast_packets" },
7232 { "rx_mcast_packets" },
7233 { "rx_bcast_packets" },
7234 { "tx_ucast_packets" },
7235 { "tx_mcast_packets" },
7236 { "tx_bcast_packets" },
7237 { "tx_mac_errors" },
7238 { "tx_carrier_errors" },
7239 { "rx_crc_errors" },
7240 { "rx_align_errors" },
7241 { "tx_single_collisions" },
7242 { "tx_multi_collisions" },
7244 { "tx_excess_collisions" },
7245 { "tx_late_collisions" },
7246 { "tx_total_collisions" },
7249 { "rx_undersize_packets" },
7250 { "rx_oversize_packets" },
7251 { "rx_64_byte_packets" },
7252 { "rx_65_to_127_byte_packets" },
7253 { "rx_128_to_255_byte_packets" },
7254 { "rx_256_to_511_byte_packets" },
7255 { "rx_512_to_1023_byte_packets" },
7256 { "rx_1024_to_1522_byte_packets" },
7257 { "rx_1523_to_9022_byte_packets" },
7258 { "tx_64_byte_packets" },
7259 { "tx_65_to_127_byte_packets" },
7260 { "tx_128_to_255_byte_packets" },
7261 { "tx_256_to_511_byte_packets" },
7262 { "tx_512_to_1023_byte_packets" },
7263 { "tx_1024_to_1522_byte_packets" },
7264 { "tx_1523_to_9022_byte_packets" },
7265 { "rx_xon_frames" },
7266 { "rx_xoff_frames" },
7267 { "tx_xon_frames" },
7268 { "tx_xoff_frames" },
7269 { "rx_mac_ctrl_frames" },
7270 { "rx_filtered_packets" },
7271 { "rx_ftq_discards" },
7273 { "rx_fw_discards" },
7276 #define BNX2_NUM_STATS (sizeof(bnx2_stats_str_arr)/\
7277 sizeof(bnx2_stats_str_arr[0]))
7279 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
7281 static const unsigned long bnx2_stats_offset_arr
[BNX2_NUM_STATS
] = {
7282 STATS_OFFSET32(stat_IfHCInOctets_hi
),
7283 STATS_OFFSET32(stat_IfHCInBadOctets_hi
),
7284 STATS_OFFSET32(stat_IfHCOutOctets_hi
),
7285 STATS_OFFSET32(stat_IfHCOutBadOctets_hi
),
7286 STATS_OFFSET32(stat_IfHCInUcastPkts_hi
),
7287 STATS_OFFSET32(stat_IfHCInMulticastPkts_hi
),
7288 STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi
),
7289 STATS_OFFSET32(stat_IfHCOutUcastPkts_hi
),
7290 STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi
),
7291 STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi
),
7292 STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors
),
7293 STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors
),
7294 STATS_OFFSET32(stat_Dot3StatsFCSErrors
),
7295 STATS_OFFSET32(stat_Dot3StatsAlignmentErrors
),
7296 STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames
),
7297 STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames
),
7298 STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions
),
7299 STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions
),
7300 STATS_OFFSET32(stat_Dot3StatsLateCollisions
),
7301 STATS_OFFSET32(stat_EtherStatsCollisions
),
7302 STATS_OFFSET32(stat_EtherStatsFragments
),
7303 STATS_OFFSET32(stat_EtherStatsJabbers
),
7304 STATS_OFFSET32(stat_EtherStatsUndersizePkts
),
7305 STATS_OFFSET32(stat_EtherStatsOverrsizePkts
),
7306 STATS_OFFSET32(stat_EtherStatsPktsRx64Octets
),
7307 STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets
),
7308 STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets
),
7309 STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets
),
7310 STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets
),
7311 STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets
),
7312 STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets
),
7313 STATS_OFFSET32(stat_EtherStatsPktsTx64Octets
),
7314 STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets
),
7315 STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets
),
7316 STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets
),
7317 STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets
),
7318 STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets
),
7319 STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets
),
7320 STATS_OFFSET32(stat_XonPauseFramesReceived
),
7321 STATS_OFFSET32(stat_XoffPauseFramesReceived
),
7322 STATS_OFFSET32(stat_OutXonSent
),
7323 STATS_OFFSET32(stat_OutXoffSent
),
7324 STATS_OFFSET32(stat_MacControlFramesReceived
),
7325 STATS_OFFSET32(stat_IfInFramesL2FilterDiscards
),
7326 STATS_OFFSET32(stat_IfInFTQDiscards
),
7327 STATS_OFFSET32(stat_IfInMBUFDiscards
),
7328 STATS_OFFSET32(stat_FwRxDrop
),
7331 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
7332 * skipped because of errata.
7334 static u8 bnx2_5706_stats_len_arr
[BNX2_NUM_STATS
] = {
7335 8,0,8,8,8,8,8,8,8,8,
7336 4,0,4,4,4,4,4,4,4,4,
7337 4,4,4,4,4,4,4,4,4,4,
7338 4,4,4,4,4,4,4,4,4,4,
7342 static u8 bnx2_5708_stats_len_arr
[BNX2_NUM_STATS
] = {
7343 8,0,8,8,8,8,8,8,8,8,
7344 4,4,4,4,4,4,4,4,4,4,
7345 4,4,4,4,4,4,4,4,4,4,
7346 4,4,4,4,4,4,4,4,4,4,
7350 #define BNX2_NUM_TESTS 6
7353 char string
[ETH_GSTRING_LEN
];
7354 } bnx2_tests_str_arr
[BNX2_NUM_TESTS
] = {
7355 { "register_test (offline)" },
7356 { "memory_test (offline)" },
7357 { "loopback_test (offline)" },
7358 { "nvram_test (online)" },
7359 { "interrupt_test (online)" },
7360 { "link_test (online)" },
7364 bnx2_get_sset_count(struct net_device
*dev
, int sset
)
7368 return BNX2_NUM_TESTS
;
7370 return BNX2_NUM_STATS
;
7377 bnx2_self_test(struct net_device
*dev
, struct ethtool_test
*etest
, u64
*buf
)
7379 struct bnx2
*bp
= netdev_priv(dev
);
7381 bnx2_set_power_state(bp
, PCI_D0
);
7383 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_TESTS
);
7384 if (etest
->flags
& ETH_TEST_FL_OFFLINE
) {
7387 bnx2_netif_stop(bp
, true);
7388 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_DIAG
);
7391 if (bnx2_test_registers(bp
) != 0) {
7393 etest
->flags
|= ETH_TEST_FL_FAILED
;
7395 if (bnx2_test_memory(bp
) != 0) {
7397 etest
->flags
|= ETH_TEST_FL_FAILED
;
7399 if ((buf
[2] = bnx2_test_loopback(bp
)) != 0)
7400 etest
->flags
|= ETH_TEST_FL_FAILED
;
7402 if (!netif_running(bp
->dev
))
7403 bnx2_shutdown_chip(bp
);
7405 bnx2_init_nic(bp
, 1);
7406 bnx2_netif_start(bp
, true);
7409 /* wait for link up */
7410 for (i
= 0; i
< 7; i
++) {
7413 msleep_interruptible(1000);
7417 if (bnx2_test_nvram(bp
) != 0) {
7419 etest
->flags
|= ETH_TEST_FL_FAILED
;
7421 if (bnx2_test_intr(bp
) != 0) {
7423 etest
->flags
|= ETH_TEST_FL_FAILED
;
7426 if (bnx2_test_link(bp
) != 0) {
7428 etest
->flags
|= ETH_TEST_FL_FAILED
;
7431 if (!netif_running(bp
->dev
))
7432 bnx2_set_power_state(bp
, PCI_D3hot
);
7436 bnx2_get_strings(struct net_device
*dev
, u32 stringset
, u8
*buf
)
7438 switch (stringset
) {
7440 memcpy(buf
, bnx2_stats_str_arr
,
7441 sizeof(bnx2_stats_str_arr
));
7444 memcpy(buf
, bnx2_tests_str_arr
,
7445 sizeof(bnx2_tests_str_arr
));
7451 bnx2_get_ethtool_stats(struct net_device
*dev
,
7452 struct ethtool_stats
*stats
, u64
*buf
)
7454 struct bnx2
*bp
= netdev_priv(dev
);
7456 u32
*hw_stats
= (u32
*) bp
->stats_blk
;
7457 u32
*temp_stats
= (u32
*) bp
->temp_stats_blk
;
7458 u8
*stats_len_arr
= NULL
;
7460 if (hw_stats
== NULL
) {
7461 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_STATS
);
7465 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
7466 (CHIP_ID(bp
) == CHIP_ID_5706_A1
) ||
7467 (CHIP_ID(bp
) == CHIP_ID_5706_A2
) ||
7468 (CHIP_ID(bp
) == CHIP_ID_5708_A0
))
7469 stats_len_arr
= bnx2_5706_stats_len_arr
;
7471 stats_len_arr
= bnx2_5708_stats_len_arr
;
7473 for (i
= 0; i
< BNX2_NUM_STATS
; i
++) {
7474 unsigned long offset
;
7476 if (stats_len_arr
[i
] == 0) {
7477 /* skip this counter */
7482 offset
= bnx2_stats_offset_arr
[i
];
7483 if (stats_len_arr
[i
] == 4) {
7484 /* 4-byte counter */
7485 buf
[i
] = (u64
) *(hw_stats
+ offset
) +
7486 *(temp_stats
+ offset
);
7489 /* 8-byte counter */
7490 buf
[i
] = (((u64
) *(hw_stats
+ offset
)) << 32) +
7491 *(hw_stats
+ offset
+ 1) +
7492 (((u64
) *(temp_stats
+ offset
)) << 32) +
7493 *(temp_stats
+ offset
+ 1);
7498 bnx2_phys_id(struct net_device
*dev
, u32 data
)
7500 struct bnx2
*bp
= netdev_priv(dev
);
7504 bnx2_set_power_state(bp
, PCI_D0
);
7509 save
= REG_RD(bp
, BNX2_MISC_CFG
);
7510 REG_WR(bp
, BNX2_MISC_CFG
, BNX2_MISC_CFG_LEDMODE_MAC
);
7512 for (i
= 0; i
< (data
* 2); i
++) {
7514 REG_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
);
7517 REG_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
|
7518 BNX2_EMAC_LED_1000MB_OVERRIDE
|
7519 BNX2_EMAC_LED_100MB_OVERRIDE
|
7520 BNX2_EMAC_LED_10MB_OVERRIDE
|
7521 BNX2_EMAC_LED_TRAFFIC_OVERRIDE
|
7522 BNX2_EMAC_LED_TRAFFIC
);
7524 msleep_interruptible(500);
7525 if (signal_pending(current
))
7528 REG_WR(bp
, BNX2_EMAC_LED
, 0);
7529 REG_WR(bp
, BNX2_MISC_CFG
, save
);
7531 if (!netif_running(dev
))
7532 bnx2_set_power_state(bp
, PCI_D3hot
);
7538 bnx2_set_tx_csum(struct net_device
*dev
, u32 data
)
7540 struct bnx2
*bp
= netdev_priv(dev
);
7542 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
7543 return (ethtool_op_set_tx_ipv6_csum(dev
, data
));
7545 return (ethtool_op_set_tx_csum(dev
, data
));
7548 static const struct ethtool_ops bnx2_ethtool_ops
= {
7549 .get_settings
= bnx2_get_settings
,
7550 .set_settings
= bnx2_set_settings
,
7551 .get_drvinfo
= bnx2_get_drvinfo
,
7552 .get_regs_len
= bnx2_get_regs_len
,
7553 .get_regs
= bnx2_get_regs
,
7554 .get_wol
= bnx2_get_wol
,
7555 .set_wol
= bnx2_set_wol
,
7556 .nway_reset
= bnx2_nway_reset
,
7557 .get_link
= bnx2_get_link
,
7558 .get_eeprom_len
= bnx2_get_eeprom_len
,
7559 .get_eeprom
= bnx2_get_eeprom
,
7560 .set_eeprom
= bnx2_set_eeprom
,
7561 .get_coalesce
= bnx2_get_coalesce
,
7562 .set_coalesce
= bnx2_set_coalesce
,
7563 .get_ringparam
= bnx2_get_ringparam
,
7564 .set_ringparam
= bnx2_set_ringparam
,
7565 .get_pauseparam
= bnx2_get_pauseparam
,
7566 .set_pauseparam
= bnx2_set_pauseparam
,
7567 .get_rx_csum
= bnx2_get_rx_csum
,
7568 .set_rx_csum
= bnx2_set_rx_csum
,
7569 .set_tx_csum
= bnx2_set_tx_csum
,
7570 .set_sg
= ethtool_op_set_sg
,
7571 .set_tso
= bnx2_set_tso
,
7572 .self_test
= bnx2_self_test
,
7573 .get_strings
= bnx2_get_strings
,
7574 .phys_id
= bnx2_phys_id
,
7575 .get_ethtool_stats
= bnx2_get_ethtool_stats
,
7576 .get_sset_count
= bnx2_get_sset_count
,
7579 /* Called with rtnl_lock */
7581 bnx2_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
7583 struct mii_ioctl_data
*data
= if_mii(ifr
);
7584 struct bnx2
*bp
= netdev_priv(dev
);
7589 data
->phy_id
= bp
->phy_addr
;
7595 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
7598 if (!netif_running(dev
))
7601 spin_lock_bh(&bp
->phy_lock
);
7602 err
= bnx2_read_phy(bp
, data
->reg_num
& 0x1f, &mii_regval
);
7603 spin_unlock_bh(&bp
->phy_lock
);
7605 data
->val_out
= mii_regval
;
7611 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
7614 if (!netif_running(dev
))
7617 spin_lock_bh(&bp
->phy_lock
);
7618 err
= bnx2_write_phy(bp
, data
->reg_num
& 0x1f, data
->val_in
);
7619 spin_unlock_bh(&bp
->phy_lock
);
7630 /* Called with rtnl_lock */
7632 bnx2_change_mac_addr(struct net_device
*dev
, void *p
)
7634 struct sockaddr
*addr
= p
;
7635 struct bnx2
*bp
= netdev_priv(dev
);
7637 if (!is_valid_ether_addr(addr
->sa_data
))
7640 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
7641 if (netif_running(dev
))
7642 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
7647 /* Called with rtnl_lock */
7649 bnx2_change_mtu(struct net_device
*dev
, int new_mtu
)
7651 struct bnx2
*bp
= netdev_priv(dev
);
7653 if (((new_mtu
+ ETH_HLEN
) > MAX_ETHERNET_JUMBO_PACKET_SIZE
) ||
7654 ((new_mtu
+ ETH_HLEN
) < MIN_ETHERNET_PACKET_SIZE
))
7658 return (bnx2_change_ring_size(bp
, bp
->rx_ring_size
, bp
->tx_ring_size
));
7661 #ifdef CONFIG_NET_POLL_CONTROLLER
7663 poll_bnx2(struct net_device
*dev
)
7665 struct bnx2
*bp
= netdev_priv(dev
);
7668 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
7669 struct bnx2_irq
*irq
= &bp
->irq_tbl
[i
];
7671 disable_irq(irq
->vector
);
7672 irq
->handler(irq
->vector
, &bp
->bnx2_napi
[i
]);
7673 enable_irq(irq
->vector
);
7678 static void __devinit
7679 bnx2_get_5709_media(struct bnx2
*bp
)
7681 u32 val
= REG_RD(bp
, BNX2_MISC_DUAL_MEDIA_CTRL
);
7682 u32 bond_id
= val
& BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID
;
7685 if (bond_id
== BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C
)
7687 else if (bond_id
== BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S
) {
7688 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7692 if (val
& BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE
)
7693 strap
= (val
& BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL
) >> 21;
7695 strap
= (val
& BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP
) >> 8;
7697 if (PCI_FUNC(bp
->pdev
->devfn
) == 0) {
7702 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7710 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7716 static void __devinit
7717 bnx2_get_pci_speed(struct bnx2
*bp
)
7721 reg
= REG_RD(bp
, BNX2_PCICFG_MISC_STATUS
);
7722 if (reg
& BNX2_PCICFG_MISC_STATUS_PCIX_DET
) {
7725 bp
->flags
|= BNX2_FLAG_PCIX
;
7727 clkreg
= REG_RD(bp
, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS
);
7729 clkreg
&= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET
;
7731 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ
:
7732 bp
->bus_speed_mhz
= 133;
7735 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ
:
7736 bp
->bus_speed_mhz
= 100;
7739 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ
:
7740 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ
:
7741 bp
->bus_speed_mhz
= 66;
7744 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ
:
7745 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ
:
7746 bp
->bus_speed_mhz
= 50;
7749 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW
:
7750 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ
:
7751 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ
:
7752 bp
->bus_speed_mhz
= 33;
7757 if (reg
& BNX2_PCICFG_MISC_STATUS_M66EN
)
7758 bp
->bus_speed_mhz
= 66;
7760 bp
->bus_speed_mhz
= 33;
7763 if (reg
& BNX2_PCICFG_MISC_STATUS_32BIT_DET
)
7764 bp
->flags
|= BNX2_FLAG_PCI_32BIT
;
7768 static void __devinit
7769 bnx2_read_vpd_fw_ver(struct bnx2
*bp
)
7773 unsigned int block_end
, rosize
, len
;
7775 #define BNX2_VPD_NVRAM_OFFSET 0x300
7776 #define BNX2_VPD_LEN 128
7777 #define BNX2_MAX_VER_SLEN 30
7779 data
= kmalloc(256, GFP_KERNEL
);
7783 rc
= bnx2_nvram_read(bp
, BNX2_VPD_NVRAM_OFFSET
, data
+ BNX2_VPD_LEN
,
7788 for (i
= 0; i
< BNX2_VPD_LEN
; i
+= 4) {
7789 data
[i
] = data
[i
+ BNX2_VPD_LEN
+ 3];
7790 data
[i
+ 1] = data
[i
+ BNX2_VPD_LEN
+ 2];
7791 data
[i
+ 2] = data
[i
+ BNX2_VPD_LEN
+ 1];
7792 data
[i
+ 3] = data
[i
+ BNX2_VPD_LEN
];
7795 i
= pci_vpd_find_tag(data
, 0, BNX2_VPD_LEN
, PCI_VPD_LRDT_RO_DATA
);
7799 rosize
= pci_vpd_lrdt_size(&data
[i
]);
7800 i
+= PCI_VPD_LRDT_TAG_SIZE
;
7801 block_end
= i
+ rosize
;
7803 if (block_end
> BNX2_VPD_LEN
)
7806 j
= pci_vpd_find_info_keyword(data
, i
, rosize
,
7807 PCI_VPD_RO_KEYWORD_MFR_ID
);
7811 len
= pci_vpd_info_field_size(&data
[j
]);
7813 j
+= PCI_VPD_INFO_FLD_HDR_SIZE
;
7814 if (j
+ len
> block_end
|| len
!= 4 ||
7815 memcmp(&data
[j
], "1028", 4))
7818 j
= pci_vpd_find_info_keyword(data
, i
, rosize
,
7819 PCI_VPD_RO_KEYWORD_VENDOR0
);
7823 len
= pci_vpd_info_field_size(&data
[j
]);
7825 j
+= PCI_VPD_INFO_FLD_HDR_SIZE
;
7826 if (j
+ len
> block_end
|| len
> BNX2_MAX_VER_SLEN
)
7829 memcpy(bp
->fw_version
, &data
[j
], len
);
7830 bp
->fw_version
[len
] = ' ';
7836 static int __devinit
7837 bnx2_init_board(struct pci_dev
*pdev
, struct net_device
*dev
)
7840 unsigned long mem_len
;
7843 u64 dma_mask
, persist_dma_mask
;
7845 SET_NETDEV_DEV(dev
, &pdev
->dev
);
7846 bp
= netdev_priv(dev
);
7851 bp
->temp_stats_blk
=
7852 kzalloc(sizeof(struct statistics_block
), GFP_KERNEL
);
7854 if (bp
->temp_stats_blk
== NULL
) {
7859 /* enable device (incl. PCI PM wakeup), and bus-mastering */
7860 rc
= pci_enable_device(pdev
);
7862 dev_err(&pdev
->dev
, "Cannot enable PCI device, aborting\n");
7866 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
7868 "Cannot find PCI device base address, aborting\n");
7870 goto err_out_disable
;
7873 rc
= pci_request_regions(pdev
, DRV_MODULE_NAME
);
7875 dev_err(&pdev
->dev
, "Cannot obtain PCI resources, aborting\n");
7876 goto err_out_disable
;
7879 pci_set_master(pdev
);
7880 pci_save_state(pdev
);
7882 bp
->pm_cap
= pci_find_capability(pdev
, PCI_CAP_ID_PM
);
7883 if (bp
->pm_cap
== 0) {
7885 "Cannot find power management capability, aborting\n");
7887 goto err_out_release
;
7893 spin_lock_init(&bp
->phy_lock
);
7894 spin_lock_init(&bp
->indirect_lock
);
7896 mutex_init(&bp
->cnic_lock
);
7898 INIT_WORK(&bp
->reset_task
, bnx2_reset_task
);
7900 dev
->base_addr
= dev
->mem_start
= pci_resource_start(pdev
, 0);
7901 mem_len
= MB_GET_CID_ADDR(TX_TSS_CID
+ TX_MAX_TSS_RINGS
+ 1);
7902 dev
->mem_end
= dev
->mem_start
+ mem_len
;
7903 dev
->irq
= pdev
->irq
;
7905 bp
->regview
= ioremap_nocache(dev
->base_addr
, mem_len
);
7908 dev_err(&pdev
->dev
, "Cannot map register space, aborting\n");
7910 goto err_out_release
;
7913 /* Configure byte swap and enable write to the reg_window registers.
7914 * Rely on CPU to do target byte swapping on big endian systems
7915 * The chip's target access swapping will not swap all accesses
7917 pci_write_config_dword(bp
->pdev
, BNX2_PCICFG_MISC_CONFIG
,
7918 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
7919 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
);
7921 bnx2_set_power_state(bp
, PCI_D0
);
7923 bp
->chip_id
= REG_RD(bp
, BNX2_MISC_ID
);
7925 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
7926 if (pci_find_capability(pdev
, PCI_CAP_ID_EXP
) == 0) {
7928 "Cannot find PCIE capability, aborting\n");
7932 bp
->flags
|= BNX2_FLAG_PCIE
;
7933 if (CHIP_REV(bp
) == CHIP_REV_Ax
)
7934 bp
->flags
|= BNX2_FLAG_JUMBO_BROKEN
;
7936 bp
->pcix_cap
= pci_find_capability(pdev
, PCI_CAP_ID_PCIX
);
7937 if (bp
->pcix_cap
== 0) {
7939 "Cannot find PCIX capability, aborting\n");
7943 bp
->flags
|= BNX2_FLAG_BROKEN_STATS
;
7946 if (CHIP_NUM(bp
) == CHIP_NUM_5709
&& CHIP_REV(bp
) != CHIP_REV_Ax
) {
7947 if (pci_find_capability(pdev
, PCI_CAP_ID_MSIX
))
7948 bp
->flags
|= BNX2_FLAG_MSIX_CAP
;
7951 if (CHIP_ID(bp
) != CHIP_ID_5706_A0
&& CHIP_ID(bp
) != CHIP_ID_5706_A1
) {
7952 if (pci_find_capability(pdev
, PCI_CAP_ID_MSI
))
7953 bp
->flags
|= BNX2_FLAG_MSI_CAP
;
7956 /* 5708 cannot support DMA addresses > 40-bit. */
7957 if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
7958 persist_dma_mask
= dma_mask
= DMA_BIT_MASK(40);
7960 persist_dma_mask
= dma_mask
= DMA_BIT_MASK(64);
7962 /* Configure DMA attributes. */
7963 if (pci_set_dma_mask(pdev
, dma_mask
) == 0) {
7964 dev
->features
|= NETIF_F_HIGHDMA
;
7965 rc
= pci_set_consistent_dma_mask(pdev
, persist_dma_mask
);
7968 "pci_set_consistent_dma_mask failed, aborting\n");
7971 } else if ((rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32))) != 0) {
7972 dev_err(&pdev
->dev
, "System does not support DMA, aborting\n");
7976 if (!(bp
->flags
& BNX2_FLAG_PCIE
))
7977 bnx2_get_pci_speed(bp
);
7979 /* 5706A0 may falsely detect SERR and PERR. */
7980 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
7981 reg
= REG_RD(bp
, PCI_COMMAND
);
7982 reg
&= ~(PCI_COMMAND_SERR
| PCI_COMMAND_PARITY
);
7983 REG_WR(bp
, PCI_COMMAND
, reg
);
7985 else if ((CHIP_ID(bp
) == CHIP_ID_5706_A1
) &&
7986 !(bp
->flags
& BNX2_FLAG_PCIX
)) {
7989 "5706 A1 can only be used in a PCIX bus, aborting\n");
7993 bnx2_init_nvram(bp
);
7995 reg
= bnx2_reg_rd_ind(bp
, BNX2_SHM_HDR_SIGNATURE
);
7997 if ((reg
& BNX2_SHM_HDR_SIGNATURE_SIG_MASK
) ==
7998 BNX2_SHM_HDR_SIGNATURE_SIG
) {
7999 u32 off
= PCI_FUNC(pdev
->devfn
) << 2;
8001 bp
->shmem_base
= bnx2_reg_rd_ind(bp
, BNX2_SHM_HDR_ADDR_0
+ off
);
8003 bp
->shmem_base
= HOST_VIEW_SHMEM_BASE
;
8005 /* Get the permanent MAC address. First we need to make sure the
8006 * firmware is actually running.
8008 reg
= bnx2_shmem_rd(bp
, BNX2_DEV_INFO_SIGNATURE
);
8010 if ((reg
& BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK
) !=
8011 BNX2_DEV_INFO_SIGNATURE_MAGIC
) {
8012 dev_err(&pdev
->dev
, "Firmware not running, aborting\n");
8017 bnx2_read_vpd_fw_ver(bp
);
8019 j
= strlen(bp
->fw_version
);
8020 reg
= bnx2_shmem_rd(bp
, BNX2_DEV_INFO_BC_REV
);
8021 for (i
= 0; i
< 3 && j
< 24; i
++) {
8025 bp
->fw_version
[j
++] = 'b';
8026 bp
->fw_version
[j
++] = 'c';
8027 bp
->fw_version
[j
++] = ' ';
8029 num
= (u8
) (reg
>> (24 - (i
* 8)));
8030 for (k
= 100, skip0
= 1; k
>= 1; num
%= k
, k
/= 10) {
8031 if (num
>= k
|| !skip0
|| k
== 1) {
8032 bp
->fw_version
[j
++] = (num
/ k
) + '0';
8037 bp
->fw_version
[j
++] = '.';
8039 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_FEATURE
);
8040 if (reg
& BNX2_PORT_FEATURE_WOL_ENABLED
)
8043 if (reg
& BNX2_PORT_FEATURE_ASF_ENABLED
) {
8044 bp
->flags
|= BNX2_FLAG_ASF_ENABLE
;
8046 for (i
= 0; i
< 30; i
++) {
8047 reg
= bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
);
8048 if (reg
& BNX2_CONDITION_MFW_RUN_MASK
)
8053 reg
= bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
);
8054 reg
&= BNX2_CONDITION_MFW_RUN_MASK
;
8055 if (reg
!= BNX2_CONDITION_MFW_RUN_UNKNOWN
&&
8056 reg
!= BNX2_CONDITION_MFW_RUN_NONE
) {
8057 u32 addr
= bnx2_shmem_rd(bp
, BNX2_MFW_VER_PTR
);
8060 bp
->fw_version
[j
++] = ' ';
8061 for (i
= 0; i
< 3 && j
< 28; i
++) {
8062 reg
= bnx2_reg_rd_ind(bp
, addr
+ i
* 4);
8064 memcpy(&bp
->fw_version
[j
], ®
, 4);
8069 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_MAC_UPPER
);
8070 bp
->mac_addr
[0] = (u8
) (reg
>> 8);
8071 bp
->mac_addr
[1] = (u8
) reg
;
8073 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_MAC_LOWER
);
8074 bp
->mac_addr
[2] = (u8
) (reg
>> 24);
8075 bp
->mac_addr
[3] = (u8
) (reg
>> 16);
8076 bp
->mac_addr
[4] = (u8
) (reg
>> 8);
8077 bp
->mac_addr
[5] = (u8
) reg
;
8079 bp
->tx_ring_size
= MAX_TX_DESC_CNT
;
8080 bnx2_set_rx_ring_size(bp
, 255);
8084 bp
->tx_quick_cons_trip_int
= 2;
8085 bp
->tx_quick_cons_trip
= 20;
8086 bp
->tx_ticks_int
= 18;
8089 bp
->rx_quick_cons_trip_int
= 2;
8090 bp
->rx_quick_cons_trip
= 12;
8091 bp
->rx_ticks_int
= 18;
8094 bp
->stats_ticks
= USEC_PER_SEC
& BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
8096 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
8100 /* Disable WOL support if we are running on a SERDES chip. */
8101 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
8102 bnx2_get_5709_media(bp
);
8103 else if (CHIP_BOND_ID(bp
) & CHIP_BOND_ID_SERDES_BIT
)
8104 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
8106 bp
->phy_port
= PORT_TP
;
8107 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
8108 bp
->phy_port
= PORT_FIBRE
;
8109 reg
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG
);
8110 if (!(reg
& BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX
)) {
8111 bp
->flags
|= BNX2_FLAG_NO_WOL
;
8114 if (CHIP_NUM(bp
) == CHIP_NUM_5706
) {
8115 /* Don't do parallel detect on this board because of
8116 * some board problems. The link will not go down
8117 * if we do parallel detect.
8119 if (pdev
->subsystem_vendor
== PCI_VENDOR_ID_HP
&&
8120 pdev
->subsystem_device
== 0x310c)
8121 bp
->phy_flags
|= BNX2_PHY_FLAG_NO_PARALLEL
;
8124 if (reg
& BNX2_SHARED_HW_CFG_PHY_2_5G
)
8125 bp
->phy_flags
|= BNX2_PHY_FLAG_2_5G_CAPABLE
;
8127 } else if (CHIP_NUM(bp
) == CHIP_NUM_5706
||
8128 CHIP_NUM(bp
) == CHIP_NUM_5708
)
8129 bp
->phy_flags
|= BNX2_PHY_FLAG_CRC_FIX
;
8130 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
&&
8131 (CHIP_REV(bp
) == CHIP_REV_Ax
||
8132 CHIP_REV(bp
) == CHIP_REV_Bx
))
8133 bp
->phy_flags
|= BNX2_PHY_FLAG_DIS_EARLY_DAC
;
8135 bnx2_init_fw_cap(bp
);
8137 if ((CHIP_ID(bp
) == CHIP_ID_5708_A0
) ||
8138 (CHIP_ID(bp
) == CHIP_ID_5708_B0
) ||
8139 (CHIP_ID(bp
) == CHIP_ID_5708_B1
) ||
8140 !(REG_RD(bp
, BNX2_PCI_CONFIG_3
) & BNX2_PCI_CONFIG_3_VAUX_PRESET
)) {
8141 bp
->flags
|= BNX2_FLAG_NO_WOL
;
8145 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
8146 bp
->tx_quick_cons_trip_int
=
8147 bp
->tx_quick_cons_trip
;
8148 bp
->tx_ticks_int
= bp
->tx_ticks
;
8149 bp
->rx_quick_cons_trip_int
=
8150 bp
->rx_quick_cons_trip
;
8151 bp
->rx_ticks_int
= bp
->rx_ticks
;
8152 bp
->comp_prod_trip_int
= bp
->comp_prod_trip
;
8153 bp
->com_ticks_int
= bp
->com_ticks
;
8154 bp
->cmd_ticks_int
= bp
->cmd_ticks
;
8157 /* Disable MSI on 5706 if AMD 8132 bridge is found.
8159 * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
8160 * with byte enables disabled on the unused 32-bit word. This is legal
8161 * but causes problems on the AMD 8132 which will eventually stop
8162 * responding after a while.
8164 * AMD believes this incompatibility is unique to the 5706, and
8165 * prefers to locally disable MSI rather than globally disabling it.
8167 if (CHIP_NUM(bp
) == CHIP_NUM_5706
&& disable_msi
== 0) {
8168 struct pci_dev
*amd_8132
= NULL
;
8170 while ((amd_8132
= pci_get_device(PCI_VENDOR_ID_AMD
,
8171 PCI_DEVICE_ID_AMD_8132_BRIDGE
,
8174 if (amd_8132
->revision
>= 0x10 &&
8175 amd_8132
->revision
<= 0x13) {
8177 pci_dev_put(amd_8132
);
8183 bnx2_set_default_link(bp
);
8184 bp
->req_flow_ctrl
= FLOW_CTRL_RX
| FLOW_CTRL_TX
;
8186 init_timer(&bp
->timer
);
8187 bp
->timer
.expires
= RUN_AT(BNX2_TIMER_INTERVAL
);
8188 bp
->timer
.data
= (unsigned long) bp
;
8189 bp
->timer
.function
= bnx2_timer
;
8195 iounmap(bp
->regview
);
8200 pci_release_regions(pdev
);
8203 pci_disable_device(pdev
);
8204 pci_set_drvdata(pdev
, NULL
);
8210 static char * __devinit
8211 bnx2_bus_string(struct bnx2
*bp
, char *str
)
8215 if (bp
->flags
& BNX2_FLAG_PCIE
) {
8216 s
+= sprintf(s
, "PCI Express");
8218 s
+= sprintf(s
, "PCI");
8219 if (bp
->flags
& BNX2_FLAG_PCIX
)
8220 s
+= sprintf(s
, "-X");
8221 if (bp
->flags
& BNX2_FLAG_PCI_32BIT
)
8222 s
+= sprintf(s
, " 32-bit");
8224 s
+= sprintf(s
, " 64-bit");
8225 s
+= sprintf(s
, " %dMHz", bp
->bus_speed_mhz
);
8230 static void __devinit
8231 bnx2_init_napi(struct bnx2
*bp
)
8235 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
8236 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
8237 int (*poll
)(struct napi_struct
*, int);
8242 poll
= bnx2_poll_msix
;
8244 netif_napi_add(bp
->dev
, &bp
->bnx2_napi
[i
].napi
, poll
, 64);
8249 static const struct net_device_ops bnx2_netdev_ops
= {
8250 .ndo_open
= bnx2_open
,
8251 .ndo_start_xmit
= bnx2_start_xmit
,
8252 .ndo_stop
= bnx2_close
,
8253 .ndo_get_stats
= bnx2_get_stats
,
8254 .ndo_set_rx_mode
= bnx2_set_rx_mode
,
8255 .ndo_do_ioctl
= bnx2_ioctl
,
8256 .ndo_validate_addr
= eth_validate_addr
,
8257 .ndo_set_mac_address
= bnx2_change_mac_addr
,
8258 .ndo_change_mtu
= bnx2_change_mtu
,
8259 .ndo_tx_timeout
= bnx2_tx_timeout
,
8261 .ndo_vlan_rx_register
= bnx2_vlan_rx_register
,
8263 #ifdef CONFIG_NET_POLL_CONTROLLER
8264 .ndo_poll_controller
= poll_bnx2
,
8268 static void inline vlan_features_add(struct net_device
*dev
, unsigned long flags
)
8271 dev
->vlan_features
|= flags
;
8275 static int __devinit
8276 bnx2_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
8278 static int version_printed
= 0;
8279 struct net_device
*dev
= NULL
;
8284 if (version_printed
++ == 0)
8285 pr_info("%s", version
);
8287 /* dev zeroed in init_etherdev */
8288 dev
= alloc_etherdev_mq(sizeof(*bp
), TX_MAX_RINGS
);
8293 rc
= bnx2_init_board(pdev
, dev
);
8299 dev
->netdev_ops
= &bnx2_netdev_ops
;
8300 dev
->watchdog_timeo
= TX_TIMEOUT
;
8301 dev
->ethtool_ops
= &bnx2_ethtool_ops
;
8303 bp
= netdev_priv(dev
);
8305 pci_set_drvdata(pdev
, dev
);
8307 rc
= bnx2_request_firmware(bp
);
8311 memcpy(dev
->dev_addr
, bp
->mac_addr
, 6);
8312 memcpy(dev
->perm_addr
, bp
->mac_addr
, 6);
8314 dev
->features
|= NETIF_F_IP_CSUM
| NETIF_F_SG
| NETIF_F_GRO
;
8315 vlan_features_add(dev
, NETIF_F_IP_CSUM
| NETIF_F_SG
);
8316 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
8317 dev
->features
|= NETIF_F_IPV6_CSUM
;
8318 vlan_features_add(dev
, NETIF_F_IPV6_CSUM
);
8321 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
8323 dev
->features
|= NETIF_F_TSO
| NETIF_F_TSO_ECN
;
8324 vlan_features_add(dev
, NETIF_F_TSO
| NETIF_F_TSO_ECN
);
8325 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
8326 dev
->features
|= NETIF_F_TSO6
;
8327 vlan_features_add(dev
, NETIF_F_TSO6
);
8329 if ((rc
= register_netdev(dev
))) {
8330 dev_err(&pdev
->dev
, "Cannot register net device\n");
8334 netdev_info(dev
, "%s (%c%d) %s found at mem %lx, IRQ %d, node addr %pM\n",
8335 board_info
[ent
->driver_data
].name
,
8336 ((CHIP_ID(bp
) & 0xf000) >> 12) + 'A',
8337 ((CHIP_ID(bp
) & 0x0ff0) >> 4),
8338 bnx2_bus_string(bp
, str
),
8340 bp
->pdev
->irq
, dev
->dev_addr
);
8345 if (bp
->mips_firmware
)
8346 release_firmware(bp
->mips_firmware
);
8347 if (bp
->rv2p_firmware
)
8348 release_firmware(bp
->rv2p_firmware
);
8351 iounmap(bp
->regview
);
8352 pci_release_regions(pdev
);
8353 pci_disable_device(pdev
);
8354 pci_set_drvdata(pdev
, NULL
);
8359 static void __devexit
8360 bnx2_remove_one(struct pci_dev
*pdev
)
8362 struct net_device
*dev
= pci_get_drvdata(pdev
);
8363 struct bnx2
*bp
= netdev_priv(dev
);
8365 flush_scheduled_work();
8367 unregister_netdev(dev
);
8369 if (bp
->mips_firmware
)
8370 release_firmware(bp
->mips_firmware
);
8371 if (bp
->rv2p_firmware
)
8372 release_firmware(bp
->rv2p_firmware
);
8375 iounmap(bp
->regview
);
8377 kfree(bp
->temp_stats_blk
);
8380 pci_release_regions(pdev
);
8381 pci_disable_device(pdev
);
8382 pci_set_drvdata(pdev
, NULL
);
8386 bnx2_suspend(struct pci_dev
*pdev
, pm_message_t state
)
8388 struct net_device
*dev
= pci_get_drvdata(pdev
);
8389 struct bnx2
*bp
= netdev_priv(dev
);
8391 /* PCI register 4 needs to be saved whether netif_running() or not.
8392 * MSI address and data need to be saved if using MSI and
8395 pci_save_state(pdev
);
8396 if (!netif_running(dev
))
8399 flush_scheduled_work();
8400 bnx2_netif_stop(bp
, true);
8401 netif_device_detach(dev
);
8402 del_timer_sync(&bp
->timer
);
8403 bnx2_shutdown_chip(bp
);
8405 bnx2_set_power_state(bp
, pci_choose_state(pdev
, state
));
8410 bnx2_resume(struct pci_dev
*pdev
)
8412 struct net_device
*dev
= pci_get_drvdata(pdev
);
8413 struct bnx2
*bp
= netdev_priv(dev
);
8415 pci_restore_state(pdev
);
8416 if (!netif_running(dev
))
8419 bnx2_set_power_state(bp
, PCI_D0
);
8420 netif_device_attach(dev
);
8421 bnx2_init_nic(bp
, 1);
8422 bnx2_netif_start(bp
, true);
8427 * bnx2_io_error_detected - called when PCI error is detected
8428 * @pdev: Pointer to PCI device
8429 * @state: The current pci connection state
8431 * This function is called after a PCI bus error affecting
8432 * this device has been detected.
8434 static pci_ers_result_t
bnx2_io_error_detected(struct pci_dev
*pdev
,
8435 pci_channel_state_t state
)
8437 struct net_device
*dev
= pci_get_drvdata(pdev
);
8438 struct bnx2
*bp
= netdev_priv(dev
);
8441 netif_device_detach(dev
);
8443 if (state
== pci_channel_io_perm_failure
) {
8445 return PCI_ERS_RESULT_DISCONNECT
;
8448 if (netif_running(dev
)) {
8449 bnx2_netif_stop(bp
, true);
8450 del_timer_sync(&bp
->timer
);
8451 bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
);
8454 pci_disable_device(pdev
);
8457 /* Request a slot slot reset. */
8458 return PCI_ERS_RESULT_NEED_RESET
;
8462 * bnx2_io_slot_reset - called after the pci bus has been reset.
8463 * @pdev: Pointer to PCI device
8465 * Restart the card from scratch, as if from a cold-boot.
8467 static pci_ers_result_t
bnx2_io_slot_reset(struct pci_dev
*pdev
)
8469 struct net_device
*dev
= pci_get_drvdata(pdev
);
8470 struct bnx2
*bp
= netdev_priv(dev
);
8473 if (pci_enable_device(pdev
)) {
8475 "Cannot re-enable PCI device after reset\n");
8477 return PCI_ERS_RESULT_DISCONNECT
;
8479 pci_set_master(pdev
);
8480 pci_restore_state(pdev
);
8481 pci_save_state(pdev
);
8483 if (netif_running(dev
)) {
8484 bnx2_set_power_state(bp
, PCI_D0
);
8485 bnx2_init_nic(bp
, 1);
8489 return PCI_ERS_RESULT_RECOVERED
;
8493 * bnx2_io_resume - called when traffic can start flowing again.
8494 * @pdev: Pointer to PCI device
8496 * This callback is called when the error recovery driver tells us that
8497 * its OK to resume normal operation.
8499 static void bnx2_io_resume(struct pci_dev
*pdev
)
8501 struct net_device
*dev
= pci_get_drvdata(pdev
);
8502 struct bnx2
*bp
= netdev_priv(dev
);
8505 if (netif_running(dev
))
8506 bnx2_netif_start(bp
, true);
8508 netif_device_attach(dev
);
8512 static struct pci_error_handlers bnx2_err_handler
= {
8513 .error_detected
= bnx2_io_error_detected
,
8514 .slot_reset
= bnx2_io_slot_reset
,
8515 .resume
= bnx2_io_resume
,
8518 static struct pci_driver bnx2_pci_driver
= {
8519 .name
= DRV_MODULE_NAME
,
8520 .id_table
= bnx2_pci_tbl
,
8521 .probe
= bnx2_init_one
,
8522 .remove
= __devexit_p(bnx2_remove_one
),
8523 .suspend
= bnx2_suspend
,
8524 .resume
= bnx2_resume
,
8525 .err_handler
= &bnx2_err_handler
,
8528 static int __init
bnx2_init(void)
8530 return pci_register_driver(&bnx2_pci_driver
);
8533 static void __exit
bnx2_cleanup(void)
8535 pci_unregister_driver(&bnx2_pci_driver
);
8538 module_init(bnx2_init
);
8539 module_exit(bnx2_cleanup
);