libertas: move to uniform lbs_/LBS_ namespace
[firewire-audio.git] / net / ipv4 / arp.c
blobb2c19cb12063b022eaccc9e66f0df02370642e32
1 /* linux/net/ipv4/arp.c
3 * Version: $Id: arp.c,v 1.99 2001/08/30 22:55:42 davem Exp $
5 * Copyright (C) 1994 by Florian La Roche
7 * This module implements the Address Resolution Protocol ARP (RFC 826),
8 * which is used to convert IP addresses (or in the future maybe other
9 * high-level addresses) into a low-level hardware address (like an Ethernet
10 * address).
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
17 * Fixes:
18 * Alan Cox : Removed the Ethernet assumptions in
19 * Florian's code
20 * Alan Cox : Fixed some small errors in the ARP
21 * logic
22 * Alan Cox : Allow >4K in /proc
23 * Alan Cox : Make ARP add its own protocol entry
24 * Ross Martin : Rewrote arp_rcv() and arp_get_info()
25 * Stephen Henson : Add AX25 support to arp_get_info()
26 * Alan Cox : Drop data when a device is downed.
27 * Alan Cox : Use init_timer().
28 * Alan Cox : Double lock fixes.
29 * Martin Seine : Move the arphdr structure
30 * to if_arp.h for compatibility.
31 * with BSD based programs.
32 * Andrew Tridgell : Added ARP netmask code and
33 * re-arranged proxy handling.
34 * Alan Cox : Changed to use notifiers.
35 * Niibe Yutaka : Reply for this device or proxies only.
36 * Alan Cox : Don't proxy across hardware types!
37 * Jonathan Naylor : Added support for NET/ROM.
38 * Mike Shaver : RFC1122 checks.
39 * Jonathan Naylor : Only lookup the hardware address for
40 * the correct hardware type.
41 * Germano Caronni : Assorted subtle races.
42 * Craig Schlenter : Don't modify permanent entry
43 * during arp_rcv.
44 * Russ Nelson : Tidied up a few bits.
45 * Alexey Kuznetsov: Major changes to caching and behaviour,
46 * eg intelligent arp probing and
47 * generation
48 * of host down events.
49 * Alan Cox : Missing unlock in device events.
50 * Eckes : ARP ioctl control errors.
51 * Alexey Kuznetsov: Arp free fix.
52 * Manuel Rodriguez: Gratuitous ARP.
53 * Jonathan Layes : Added arpd support through kerneld
54 * message queue (960314)
55 * Mike Shaver : /proc/sys/net/ipv4/arp_* support
56 * Mike McLagan : Routing by source
57 * Stuart Cheshire : Metricom and grat arp fixes
58 * *** FOR 2.1 clean this up ***
59 * Lawrence V. Stefani: (08/12/96) Added FDDI support.
60 * Alan Cox : Took the AP1000 nasty FDDI hack and
61 * folded into the mainstream FDDI code.
62 * Ack spit, Linus how did you allow that
63 * one in...
64 * Jes Sorensen : Make FDDI work again in 2.1.x and
65 * clean up the APFDDI & gen. FDDI bits.
66 * Alexey Kuznetsov: new arp state machine;
67 * now it is in net/core/neighbour.c.
68 * Krzysztof Halasa: Added Frame Relay ARP support.
69 * Arnaldo C. Melo : convert /proc/net/arp to seq_file
70 * Shmulik Hen: Split arp_send to arp_create and
71 * arp_xmit so intermediate drivers like
72 * bonding can change the skb before
73 * sending (e.g. insert 8021q tag).
74 * Harald Welte : convert to make use of jenkins hash
77 #include <linux/module.h>
78 #include <linux/types.h>
79 #include <linux/string.h>
80 #include <linux/kernel.h>
81 #include <linux/capability.h>
82 #include <linux/socket.h>
83 #include <linux/sockios.h>
84 #include <linux/errno.h>
85 #include <linux/in.h>
86 #include <linux/mm.h>
87 #include <linux/inet.h>
88 #include <linux/inetdevice.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/fddidevice.h>
92 #include <linux/if_arp.h>
93 #include <linux/trdevice.h>
94 #include <linux/skbuff.h>
95 #include <linux/proc_fs.h>
96 #include <linux/seq_file.h>
97 #include <linux/stat.h>
98 #include <linux/init.h>
99 #include <linux/net.h>
100 #include <linux/rcupdate.h>
101 #include <linux/jhash.h>
102 #ifdef CONFIG_SYSCTL
103 #include <linux/sysctl.h>
104 #endif
106 #include <net/net_namespace.h>
107 #include <net/ip.h>
108 #include <net/icmp.h>
109 #include <net/route.h>
110 #include <net/protocol.h>
111 #include <net/tcp.h>
112 #include <net/sock.h>
113 #include <net/arp.h>
114 #include <net/ax25.h>
115 #include <net/netrom.h>
116 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
117 #include <net/atmclip.h>
118 struct neigh_table *clip_tbl_hook;
119 #endif
121 #include <asm/system.h>
122 #include <asm/uaccess.h>
124 #include <linux/netfilter_arp.h>
127 * Interface to generic neighbour cache.
129 static u32 arp_hash(const void *pkey, const struct net_device *dev);
130 static int arp_constructor(struct neighbour *neigh);
131 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
132 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
133 static void parp_redo(struct sk_buff *skb);
135 static struct neigh_ops arp_generic_ops = {
136 .family = AF_INET,
137 .solicit = arp_solicit,
138 .error_report = arp_error_report,
139 .output = neigh_resolve_output,
140 .connected_output = neigh_connected_output,
141 .hh_output = dev_queue_xmit,
142 .queue_xmit = dev_queue_xmit,
145 static struct neigh_ops arp_hh_ops = {
146 .family = AF_INET,
147 .solicit = arp_solicit,
148 .error_report = arp_error_report,
149 .output = neigh_resolve_output,
150 .connected_output = neigh_resolve_output,
151 .hh_output = dev_queue_xmit,
152 .queue_xmit = dev_queue_xmit,
155 static struct neigh_ops arp_direct_ops = {
156 .family = AF_INET,
157 .output = dev_queue_xmit,
158 .connected_output = dev_queue_xmit,
159 .hh_output = dev_queue_xmit,
160 .queue_xmit = dev_queue_xmit,
163 struct neigh_ops arp_broken_ops = {
164 .family = AF_INET,
165 .solicit = arp_solicit,
166 .error_report = arp_error_report,
167 .output = neigh_compat_output,
168 .connected_output = neigh_compat_output,
169 .hh_output = dev_queue_xmit,
170 .queue_xmit = dev_queue_xmit,
173 struct neigh_table arp_tbl = {
174 .family = AF_INET,
175 .entry_size = sizeof(struct neighbour) + 4,
176 .key_len = 4,
177 .hash = arp_hash,
178 .constructor = arp_constructor,
179 .proxy_redo = parp_redo,
180 .id = "arp_cache",
181 .parms = {
182 .tbl = &arp_tbl,
183 .base_reachable_time = 30 * HZ,
184 .retrans_time = 1 * HZ,
185 .gc_staletime = 60 * HZ,
186 .reachable_time = 30 * HZ,
187 .delay_probe_time = 5 * HZ,
188 .queue_len = 3,
189 .ucast_probes = 3,
190 .mcast_probes = 3,
191 .anycast_delay = 1 * HZ,
192 .proxy_delay = (8 * HZ) / 10,
193 .proxy_qlen = 64,
194 .locktime = 1 * HZ,
196 .gc_interval = 30 * HZ,
197 .gc_thresh1 = 128,
198 .gc_thresh2 = 512,
199 .gc_thresh3 = 1024,
202 int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
204 switch (dev->type) {
205 case ARPHRD_ETHER:
206 case ARPHRD_FDDI:
207 case ARPHRD_IEEE802:
208 ip_eth_mc_map(addr, haddr);
209 return 0;
210 case ARPHRD_IEEE802_TR:
211 ip_tr_mc_map(addr, haddr);
212 return 0;
213 case ARPHRD_INFINIBAND:
214 ip_ib_mc_map(addr, dev->broadcast, haddr);
215 return 0;
216 default:
217 if (dir) {
218 memcpy(haddr, dev->broadcast, dev->addr_len);
219 return 0;
222 return -EINVAL;
226 static u32 arp_hash(const void *pkey, const struct net_device *dev)
228 return jhash_2words(*(u32 *)pkey, dev->ifindex, arp_tbl.hash_rnd);
231 static int arp_constructor(struct neighbour *neigh)
233 __be32 addr = *(__be32*)neigh->primary_key;
234 struct net_device *dev = neigh->dev;
235 struct in_device *in_dev;
236 struct neigh_parms *parms;
238 rcu_read_lock();
239 in_dev = __in_dev_get_rcu(dev);
240 if (in_dev == NULL) {
241 rcu_read_unlock();
242 return -EINVAL;
245 neigh->type = inet_addr_type(&init_net, addr);
247 parms = in_dev->arp_parms;
248 __neigh_parms_put(neigh->parms);
249 neigh->parms = neigh_parms_clone(parms);
250 rcu_read_unlock();
252 if (!dev->header_ops) {
253 neigh->nud_state = NUD_NOARP;
254 neigh->ops = &arp_direct_ops;
255 neigh->output = neigh->ops->queue_xmit;
256 } else {
257 /* Good devices (checked by reading texts, but only Ethernet is
258 tested)
260 ARPHRD_ETHER: (ethernet, apfddi)
261 ARPHRD_FDDI: (fddi)
262 ARPHRD_IEEE802: (tr)
263 ARPHRD_METRICOM: (strip)
264 ARPHRD_ARCNET:
265 etc. etc. etc.
267 ARPHRD_IPDDP will also work, if author repairs it.
268 I did not it, because this driver does not work even
269 in old paradigm.
272 #if 1
273 /* So... these "amateur" devices are hopeless.
274 The only thing, that I can say now:
275 It is very sad that we need to keep ugly obsolete
276 code to make them happy.
278 They should be moved to more reasonable state, now
279 they use rebuild_header INSTEAD OF hard_start_xmit!!!
280 Besides that, they are sort of out of date
281 (a lot of redundant clones/copies, useless in 2.1),
282 I wonder why people believe that they work.
284 switch (dev->type) {
285 default:
286 break;
287 case ARPHRD_ROSE:
288 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
289 case ARPHRD_AX25:
290 #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
291 case ARPHRD_NETROM:
292 #endif
293 neigh->ops = &arp_broken_ops;
294 neigh->output = neigh->ops->output;
295 return 0;
296 #endif
298 #endif
299 if (neigh->type == RTN_MULTICAST) {
300 neigh->nud_state = NUD_NOARP;
301 arp_mc_map(addr, neigh->ha, dev, 1);
302 } else if (dev->flags&(IFF_NOARP|IFF_LOOPBACK)) {
303 neigh->nud_state = NUD_NOARP;
304 memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
305 } else if (neigh->type == RTN_BROADCAST || dev->flags&IFF_POINTOPOINT) {
306 neigh->nud_state = NUD_NOARP;
307 memcpy(neigh->ha, dev->broadcast, dev->addr_len);
310 if (dev->header_ops->cache)
311 neigh->ops = &arp_hh_ops;
312 else
313 neigh->ops = &arp_generic_ops;
315 if (neigh->nud_state&NUD_VALID)
316 neigh->output = neigh->ops->connected_output;
317 else
318 neigh->output = neigh->ops->output;
320 return 0;
323 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
325 dst_link_failure(skb);
326 kfree_skb(skb);
329 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
331 __be32 saddr = 0;
332 u8 *dst_ha = NULL;
333 struct net_device *dev = neigh->dev;
334 __be32 target = *(__be32*)neigh->primary_key;
335 int probes = atomic_read(&neigh->probes);
336 struct in_device *in_dev = in_dev_get(dev);
338 if (!in_dev)
339 return;
341 switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
342 default:
343 case 0: /* By default announce any local IP */
344 if (skb && inet_addr_type(&init_net, ip_hdr(skb)->saddr) == RTN_LOCAL)
345 saddr = ip_hdr(skb)->saddr;
346 break;
347 case 1: /* Restrict announcements of saddr in same subnet */
348 if (!skb)
349 break;
350 saddr = ip_hdr(skb)->saddr;
351 if (inet_addr_type(&init_net, saddr) == RTN_LOCAL) {
352 /* saddr should be known to target */
353 if (inet_addr_onlink(in_dev, target, saddr))
354 break;
356 saddr = 0;
357 break;
358 case 2: /* Avoid secondary IPs, get a primary/preferred one */
359 break;
362 if (in_dev)
363 in_dev_put(in_dev);
364 if (!saddr)
365 saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
367 if ((probes -= neigh->parms->ucast_probes) < 0) {
368 if (!(neigh->nud_state&NUD_VALID))
369 printk(KERN_DEBUG "trying to ucast probe in NUD_INVALID\n");
370 dst_ha = neigh->ha;
371 read_lock_bh(&neigh->lock);
372 } else if ((probes -= neigh->parms->app_probes) < 0) {
373 #ifdef CONFIG_ARPD
374 neigh_app_ns(neigh);
375 #endif
376 return;
379 arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
380 dst_ha, dev->dev_addr, NULL);
381 if (dst_ha)
382 read_unlock_bh(&neigh->lock);
385 static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
387 int scope;
389 switch (IN_DEV_ARP_IGNORE(in_dev)) {
390 case 0: /* Reply, the tip is already validated */
391 return 0;
392 case 1: /* Reply only if tip is configured on the incoming interface */
393 sip = 0;
394 scope = RT_SCOPE_HOST;
395 break;
396 case 2: /*
397 * Reply only if tip is configured on the incoming interface
398 * and is in same subnet as sip
400 scope = RT_SCOPE_HOST;
401 break;
402 case 3: /* Do not reply for scope host addresses */
403 sip = 0;
404 scope = RT_SCOPE_LINK;
405 break;
406 case 4: /* Reserved */
407 case 5:
408 case 6:
409 case 7:
410 return 0;
411 case 8: /* Do not reply */
412 return 1;
413 default:
414 return 0;
416 return !inet_confirm_addr(in_dev, sip, tip, scope);
419 static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
421 struct flowi fl = { .nl_u = { .ip4_u = { .daddr = sip,
422 .saddr = tip } } };
423 struct rtable *rt;
424 int flag = 0;
425 /*unsigned long now; */
427 if (ip_route_output_key(&rt, &fl) < 0)
428 return 1;
429 if (rt->u.dst.dev != dev) {
430 NET_INC_STATS_BH(LINUX_MIB_ARPFILTER);
431 flag = 1;
433 ip_rt_put(rt);
434 return flag;
437 /* OBSOLETE FUNCTIONS */
440 * Find an arp mapping in the cache. If not found, post a request.
442 * It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
443 * even if it exists. It is supposed that skb->dev was mangled
444 * by a virtual device (eql, shaper). Nobody but broken devices
445 * is allowed to use this function, it is scheduled to be removed. --ANK
448 static int arp_set_predefined(int addr_hint, unsigned char * haddr, __be32 paddr, struct net_device * dev)
450 switch (addr_hint) {
451 case RTN_LOCAL:
452 printk(KERN_DEBUG "ARP: arp called for own IP address\n");
453 memcpy(haddr, dev->dev_addr, dev->addr_len);
454 return 1;
455 case RTN_MULTICAST:
456 arp_mc_map(paddr, haddr, dev, 1);
457 return 1;
458 case RTN_BROADCAST:
459 memcpy(haddr, dev->broadcast, dev->addr_len);
460 return 1;
462 return 0;
466 int arp_find(unsigned char *haddr, struct sk_buff *skb)
468 struct net_device *dev = skb->dev;
469 __be32 paddr;
470 struct neighbour *n;
472 if (!skb->dst) {
473 printk(KERN_DEBUG "arp_find is called with dst==NULL\n");
474 kfree_skb(skb);
475 return 1;
478 paddr = ((struct rtable*)skb->dst)->rt_gateway;
480 if (arp_set_predefined(inet_addr_type(&init_net, paddr), haddr, paddr, dev))
481 return 0;
483 n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
485 if (n) {
486 n->used = jiffies;
487 if (n->nud_state&NUD_VALID || neigh_event_send(n, skb) == 0) {
488 read_lock_bh(&n->lock);
489 memcpy(haddr, n->ha, dev->addr_len);
490 read_unlock_bh(&n->lock);
491 neigh_release(n);
492 return 0;
494 neigh_release(n);
495 } else
496 kfree_skb(skb);
497 return 1;
500 /* END OF OBSOLETE FUNCTIONS */
502 int arp_bind_neighbour(struct dst_entry *dst)
504 struct net_device *dev = dst->dev;
505 struct neighbour *n = dst->neighbour;
507 if (dev == NULL)
508 return -EINVAL;
509 if (n == NULL) {
510 __be32 nexthop = ((struct rtable*)dst)->rt_gateway;
511 if (dev->flags&(IFF_LOOPBACK|IFF_POINTOPOINT))
512 nexthop = 0;
513 n = __neigh_lookup_errno(
514 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
515 dev->type == ARPHRD_ATM ? clip_tbl_hook :
516 #endif
517 &arp_tbl, &nexthop, dev);
518 if (IS_ERR(n))
519 return PTR_ERR(n);
520 dst->neighbour = n;
522 return 0;
526 * Check if we can use proxy ARP for this path
529 static inline int arp_fwd_proxy(struct in_device *in_dev, struct rtable *rt)
531 struct in_device *out_dev;
532 int imi, omi = -1;
534 if (!IN_DEV_PROXY_ARP(in_dev))
535 return 0;
537 if ((imi = IN_DEV_MEDIUM_ID(in_dev)) == 0)
538 return 1;
539 if (imi == -1)
540 return 0;
542 /* place to check for proxy_arp for routes */
544 if ((out_dev = in_dev_get(rt->u.dst.dev)) != NULL) {
545 omi = IN_DEV_MEDIUM_ID(out_dev);
546 in_dev_put(out_dev);
548 return (omi != imi && omi != -1);
552 * Interface to link layer: send routine and receive handler.
556 * Create an arp packet. If (dest_hw == NULL), we create a broadcast
557 * message.
559 struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
560 struct net_device *dev, __be32 src_ip,
561 unsigned char *dest_hw, unsigned char *src_hw,
562 unsigned char *target_hw)
564 struct sk_buff *skb;
565 struct arphdr *arp;
566 unsigned char *arp_ptr;
569 * Allocate a buffer
572 skb = alloc_skb(sizeof(struct arphdr)+ 2*(dev->addr_len+4)
573 + LL_RESERVED_SPACE(dev), GFP_ATOMIC);
574 if (skb == NULL)
575 return NULL;
577 skb_reserve(skb, LL_RESERVED_SPACE(dev));
578 skb_reset_network_header(skb);
579 arp = (struct arphdr *) skb_put(skb,sizeof(struct arphdr) + 2*(dev->addr_len+4));
580 skb->dev = dev;
581 skb->protocol = htons(ETH_P_ARP);
582 if (src_hw == NULL)
583 src_hw = dev->dev_addr;
584 if (dest_hw == NULL)
585 dest_hw = dev->broadcast;
588 * Fill the device header for the ARP frame
590 if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
591 goto out;
594 * Fill out the arp protocol part.
596 * The arp hardware type should match the device type, except for FDDI,
597 * which (according to RFC 1390) should always equal 1 (Ethernet).
600 * Exceptions everywhere. AX.25 uses the AX.25 PID value not the
601 * DIX code for the protocol. Make these device structure fields.
603 switch (dev->type) {
604 default:
605 arp->ar_hrd = htons(dev->type);
606 arp->ar_pro = htons(ETH_P_IP);
607 break;
609 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
610 case ARPHRD_AX25:
611 arp->ar_hrd = htons(ARPHRD_AX25);
612 arp->ar_pro = htons(AX25_P_IP);
613 break;
615 #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
616 case ARPHRD_NETROM:
617 arp->ar_hrd = htons(ARPHRD_NETROM);
618 arp->ar_pro = htons(AX25_P_IP);
619 break;
620 #endif
621 #endif
623 #ifdef CONFIG_FDDI
624 case ARPHRD_FDDI:
625 arp->ar_hrd = htons(ARPHRD_ETHER);
626 arp->ar_pro = htons(ETH_P_IP);
627 break;
628 #endif
629 #ifdef CONFIG_TR
630 case ARPHRD_IEEE802_TR:
631 arp->ar_hrd = htons(ARPHRD_IEEE802);
632 arp->ar_pro = htons(ETH_P_IP);
633 break;
634 #endif
637 arp->ar_hln = dev->addr_len;
638 arp->ar_pln = 4;
639 arp->ar_op = htons(type);
641 arp_ptr=(unsigned char *)(arp+1);
643 memcpy(arp_ptr, src_hw, dev->addr_len);
644 arp_ptr+=dev->addr_len;
645 memcpy(arp_ptr, &src_ip,4);
646 arp_ptr+=4;
647 if (target_hw != NULL)
648 memcpy(arp_ptr, target_hw, dev->addr_len);
649 else
650 memset(arp_ptr, 0, dev->addr_len);
651 arp_ptr+=dev->addr_len;
652 memcpy(arp_ptr, &dest_ip, 4);
654 return skb;
656 out:
657 kfree_skb(skb);
658 return NULL;
662 * Send an arp packet.
664 void arp_xmit(struct sk_buff *skb)
666 /* Send it off, maybe filter it using firewalling first. */
667 NF_HOOK(NF_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
671 * Create and send an arp packet.
673 void arp_send(int type, int ptype, __be32 dest_ip,
674 struct net_device *dev, __be32 src_ip,
675 unsigned char *dest_hw, unsigned char *src_hw,
676 unsigned char *target_hw)
678 struct sk_buff *skb;
681 * No arp on this interface.
684 if (dev->flags&IFF_NOARP)
685 return;
687 skb = arp_create(type, ptype, dest_ip, dev, src_ip,
688 dest_hw, src_hw, target_hw);
689 if (skb == NULL) {
690 return;
693 arp_xmit(skb);
697 * Process an arp request.
700 static int arp_process(struct sk_buff *skb)
702 struct net_device *dev = skb->dev;
703 struct in_device *in_dev = in_dev_get(dev);
704 struct arphdr *arp;
705 unsigned char *arp_ptr;
706 struct rtable *rt;
707 unsigned char *sha;
708 __be32 sip, tip;
709 u16 dev_type = dev->type;
710 int addr_type;
711 struct neighbour *n;
713 /* arp_rcv below verifies the ARP header and verifies the device
714 * is ARP'able.
717 if (in_dev == NULL)
718 goto out;
720 arp = arp_hdr(skb);
722 switch (dev_type) {
723 default:
724 if (arp->ar_pro != htons(ETH_P_IP) ||
725 htons(dev_type) != arp->ar_hrd)
726 goto out;
727 break;
728 case ARPHRD_ETHER:
729 case ARPHRD_IEEE802_TR:
730 case ARPHRD_FDDI:
731 case ARPHRD_IEEE802:
733 * ETHERNET, Token Ring and Fibre Channel (which are IEEE 802
734 * devices, according to RFC 2625) devices will accept ARP
735 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
736 * This is the case also of FDDI, where the RFC 1390 says that
737 * FDDI devices should accept ARP hardware of (1) Ethernet,
738 * however, to be more robust, we'll accept both 1 (Ethernet)
739 * or 6 (IEEE 802.2)
741 if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
742 arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
743 arp->ar_pro != htons(ETH_P_IP))
744 goto out;
745 break;
746 case ARPHRD_AX25:
747 if (arp->ar_pro != htons(AX25_P_IP) ||
748 arp->ar_hrd != htons(ARPHRD_AX25))
749 goto out;
750 break;
751 case ARPHRD_NETROM:
752 if (arp->ar_pro != htons(AX25_P_IP) ||
753 arp->ar_hrd != htons(ARPHRD_NETROM))
754 goto out;
755 break;
758 /* Understand only these message types */
760 if (arp->ar_op != htons(ARPOP_REPLY) &&
761 arp->ar_op != htons(ARPOP_REQUEST))
762 goto out;
765 * Extract fields
767 arp_ptr= (unsigned char *)(arp+1);
768 sha = arp_ptr;
769 arp_ptr += dev->addr_len;
770 memcpy(&sip, arp_ptr, 4);
771 arp_ptr += 4;
772 arp_ptr += dev->addr_len;
773 memcpy(&tip, arp_ptr, 4);
775 * Check for bad requests for 127.x.x.x and requests for multicast
776 * addresses. If this is one such, delete it.
778 if (ipv4_is_loopback(tip) || ipv4_is_multicast(tip))
779 goto out;
782 * Special case: We must set Frame Relay source Q.922 address
784 if (dev_type == ARPHRD_DLCI)
785 sha = dev->broadcast;
788 * Process entry. The idea here is we want to send a reply if it is a
789 * request for us or if it is a request for someone else that we hold
790 * a proxy for. We want to add an entry to our cache if it is a reply
791 * to us or if it is a request for our address.
792 * (The assumption for this last is that if someone is requesting our
793 * address, they are probably intending to talk to us, so it saves time
794 * if we cache their address. Their address is also probably not in
795 * our cache, since ours is not in their cache.)
797 * Putting this another way, we only care about replies if they are to
798 * us, in which case we add them to the cache. For requests, we care
799 * about those for us and those for our proxies. We reply to both,
800 * and in the case of requests for us we add the requester to the arp
801 * cache.
804 /* Special case: IPv4 duplicate address detection packet (RFC2131) */
805 if (sip == 0) {
806 if (arp->ar_op == htons(ARPOP_REQUEST) &&
807 inet_addr_type(&init_net, tip) == RTN_LOCAL &&
808 !arp_ignore(in_dev, sip, tip))
809 arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
810 dev->dev_addr, sha);
811 goto out;
814 if (arp->ar_op == htons(ARPOP_REQUEST) &&
815 ip_route_input(skb, tip, sip, 0, dev) == 0) {
817 rt = (struct rtable*)skb->dst;
818 addr_type = rt->rt_type;
820 if (addr_type == RTN_LOCAL) {
821 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
822 if (n) {
823 int dont_send = 0;
825 if (!dont_send)
826 dont_send |= arp_ignore(in_dev,sip,tip);
827 if (!dont_send && IN_DEV_ARPFILTER(in_dev))
828 dont_send |= arp_filter(sip,tip,dev);
829 if (!dont_send)
830 arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
832 neigh_release(n);
834 goto out;
835 } else if (IN_DEV_FORWARD(in_dev)) {
836 if (addr_type == RTN_UNICAST && rt->u.dst.dev != dev &&
837 (arp_fwd_proxy(in_dev, rt) || pneigh_lookup(&arp_tbl, &init_net, &tip, dev, 0))) {
838 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
839 if (n)
840 neigh_release(n);
842 if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
843 skb->pkt_type == PACKET_HOST ||
844 in_dev->arp_parms->proxy_delay == 0) {
845 arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
846 } else {
847 pneigh_enqueue(&arp_tbl, in_dev->arp_parms, skb);
848 in_dev_put(in_dev);
849 return 0;
851 goto out;
856 /* Update our ARP tables */
858 n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
860 if (IPV4_DEVCONF_ALL(dev->nd_net, ARP_ACCEPT)) {
861 /* Unsolicited ARP is not accepted by default.
862 It is possible, that this option should be enabled for some
863 devices (strip is candidate)
865 if (n == NULL &&
866 arp->ar_op == htons(ARPOP_REPLY) &&
867 inet_addr_type(&init_net, sip) == RTN_UNICAST)
868 n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
871 if (n) {
872 int state = NUD_REACHABLE;
873 int override;
875 /* If several different ARP replies follows back-to-back,
876 use the FIRST one. It is possible, if several proxy
877 agents are active. Taking the first reply prevents
878 arp trashing and chooses the fastest router.
880 override = time_after(jiffies, n->updated + n->parms->locktime);
882 /* Broadcast replies and request packets
883 do not assert neighbour reachability.
885 if (arp->ar_op != htons(ARPOP_REPLY) ||
886 skb->pkt_type != PACKET_HOST)
887 state = NUD_STALE;
888 neigh_update(n, sha, state, override ? NEIGH_UPDATE_F_OVERRIDE : 0);
889 neigh_release(n);
892 out:
893 if (in_dev)
894 in_dev_put(in_dev);
895 kfree_skb(skb);
896 return 0;
899 static void parp_redo(struct sk_buff *skb)
901 arp_process(skb);
906 * Receive an arp request from the device layer.
909 static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
910 struct packet_type *pt, struct net_device *orig_dev)
912 struct arphdr *arp;
914 if (dev->nd_net != &init_net)
915 goto freeskb;
917 /* ARP header, plus 2 device addresses, plus 2 IP addresses. */
918 if (!pskb_may_pull(skb, (sizeof(struct arphdr) +
919 (2 * dev->addr_len) +
920 (2 * sizeof(u32)))))
921 goto freeskb;
923 arp = arp_hdr(skb);
924 if (arp->ar_hln != dev->addr_len ||
925 dev->flags & IFF_NOARP ||
926 skb->pkt_type == PACKET_OTHERHOST ||
927 skb->pkt_type == PACKET_LOOPBACK ||
928 arp->ar_pln != 4)
929 goto freeskb;
931 if ((skb = skb_share_check(skb, GFP_ATOMIC)) == NULL)
932 goto out_of_mem;
934 memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
936 return NF_HOOK(NF_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
938 freeskb:
939 kfree_skb(skb);
940 out_of_mem:
941 return 0;
945 * User level interface (ioctl)
949 * Set (create) an ARP cache entry.
952 static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
954 if (dev == NULL) {
955 IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
956 return 0;
958 if (__in_dev_get_rtnl(dev)) {
959 IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
960 return 0;
962 return -ENXIO;
965 static int arp_req_set_public(struct net *net, struct arpreq *r,
966 struct net_device *dev)
968 __be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
969 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
971 if (mask && mask != htonl(0xFFFFFFFF))
972 return -EINVAL;
973 if (!dev && (r->arp_flags & ATF_COM)) {
974 dev = dev_getbyhwaddr(net, r->arp_ha.sa_family,
975 r->arp_ha.sa_data);
976 if (!dev)
977 return -ENODEV;
979 if (mask) {
980 if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL)
981 return -ENOBUFS;
982 return 0;
985 return arp_req_set_proxy(net, dev, 1);
988 static int arp_req_set(struct net *net, struct arpreq *r,
989 struct net_device * dev)
991 __be32 ip;
992 struct neighbour *neigh;
993 int err;
995 if (r->arp_flags & ATF_PUBL)
996 return arp_req_set_public(net, r, dev);
998 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
999 if (r->arp_flags & ATF_PERM)
1000 r->arp_flags |= ATF_COM;
1001 if (dev == NULL) {
1002 struct flowi fl = { .nl_u = { .ip4_u = { .daddr = ip,
1003 .tos = RTO_ONLINK } } };
1004 struct rtable * rt;
1005 if ((err = ip_route_output_key(&rt, &fl)) != 0)
1006 return err;
1007 dev = rt->u.dst.dev;
1008 ip_rt_put(rt);
1009 if (!dev)
1010 return -EINVAL;
1012 switch (dev->type) {
1013 #ifdef CONFIG_FDDI
1014 case ARPHRD_FDDI:
1016 * According to RFC 1390, FDDI devices should accept ARP
1017 * hardware types of 1 (Ethernet). However, to be more
1018 * robust, we'll accept hardware types of either 1 (Ethernet)
1019 * or 6 (IEEE 802.2).
1021 if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1022 r->arp_ha.sa_family != ARPHRD_ETHER &&
1023 r->arp_ha.sa_family != ARPHRD_IEEE802)
1024 return -EINVAL;
1025 break;
1026 #endif
1027 default:
1028 if (r->arp_ha.sa_family != dev->type)
1029 return -EINVAL;
1030 break;
1033 neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1034 err = PTR_ERR(neigh);
1035 if (!IS_ERR(neigh)) {
1036 unsigned state = NUD_STALE;
1037 if (r->arp_flags & ATF_PERM)
1038 state = NUD_PERMANENT;
1039 err = neigh_update(neigh, (r->arp_flags&ATF_COM) ?
1040 r->arp_ha.sa_data : NULL, state,
1041 NEIGH_UPDATE_F_OVERRIDE|
1042 NEIGH_UPDATE_F_ADMIN);
1043 neigh_release(neigh);
1045 return err;
1048 static unsigned arp_state_to_flags(struct neighbour *neigh)
1050 unsigned flags = 0;
1051 if (neigh->nud_state&NUD_PERMANENT)
1052 flags = ATF_PERM|ATF_COM;
1053 else if (neigh->nud_state&NUD_VALID)
1054 flags = ATF_COM;
1055 return flags;
1059 * Get an ARP cache entry.
1062 static int arp_req_get(struct arpreq *r, struct net_device *dev)
1064 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1065 struct neighbour *neigh;
1066 int err = -ENXIO;
1068 neigh = neigh_lookup(&arp_tbl, &ip, dev);
1069 if (neigh) {
1070 read_lock_bh(&neigh->lock);
1071 memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1072 r->arp_flags = arp_state_to_flags(neigh);
1073 read_unlock_bh(&neigh->lock);
1074 r->arp_ha.sa_family = dev->type;
1075 strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1076 neigh_release(neigh);
1077 err = 0;
1079 return err;
1082 static int arp_req_delete_public(struct net *net, struct arpreq *r,
1083 struct net_device *dev)
1085 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1086 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1088 if (mask == htonl(0xFFFFFFFF))
1089 return pneigh_delete(&arp_tbl, net, &ip, dev);
1091 if (mask)
1092 return -EINVAL;
1094 return arp_req_set_proxy(net, dev, 0);
1097 static int arp_req_delete(struct net *net, struct arpreq *r,
1098 struct net_device * dev)
1100 int err;
1101 __be32 ip;
1102 struct neighbour *neigh;
1104 if (r->arp_flags & ATF_PUBL)
1105 return arp_req_delete_public(net, r, dev);
1107 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1108 if (dev == NULL) {
1109 struct flowi fl = { .nl_u = { .ip4_u = { .daddr = ip,
1110 .tos = RTO_ONLINK } } };
1111 struct rtable * rt;
1112 if ((err = ip_route_output_key(&rt, &fl)) != 0)
1113 return err;
1114 dev = rt->u.dst.dev;
1115 ip_rt_put(rt);
1116 if (!dev)
1117 return -EINVAL;
1119 err = -ENXIO;
1120 neigh = neigh_lookup(&arp_tbl, &ip, dev);
1121 if (neigh) {
1122 if (neigh->nud_state&~NUD_NOARP)
1123 err = neigh_update(neigh, NULL, NUD_FAILED,
1124 NEIGH_UPDATE_F_OVERRIDE|
1125 NEIGH_UPDATE_F_ADMIN);
1126 neigh_release(neigh);
1128 return err;
1132 * Handle an ARP layer I/O control request.
1135 int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1137 int err;
1138 struct arpreq r;
1139 struct net_device *dev = NULL;
1141 switch (cmd) {
1142 case SIOCDARP:
1143 case SIOCSARP:
1144 if (!capable(CAP_NET_ADMIN))
1145 return -EPERM;
1146 case SIOCGARP:
1147 err = copy_from_user(&r, arg, sizeof(struct arpreq));
1148 if (err)
1149 return -EFAULT;
1150 break;
1151 default:
1152 return -EINVAL;
1155 if (r.arp_pa.sa_family != AF_INET)
1156 return -EPFNOSUPPORT;
1158 if (!(r.arp_flags & ATF_PUBL) &&
1159 (r.arp_flags & (ATF_NETMASK|ATF_DONTPUB)))
1160 return -EINVAL;
1161 if (!(r.arp_flags & ATF_NETMASK))
1162 ((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1163 htonl(0xFFFFFFFFUL);
1164 rtnl_lock();
1165 if (r.arp_dev[0]) {
1166 err = -ENODEV;
1167 if ((dev = __dev_get_by_name(net, r.arp_dev)) == NULL)
1168 goto out;
1170 /* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1171 if (!r.arp_ha.sa_family)
1172 r.arp_ha.sa_family = dev->type;
1173 err = -EINVAL;
1174 if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1175 goto out;
1176 } else if (cmd == SIOCGARP) {
1177 err = -ENODEV;
1178 goto out;
1181 switch (cmd) {
1182 case SIOCDARP:
1183 err = arp_req_delete(net, &r, dev);
1184 break;
1185 case SIOCSARP:
1186 err = arp_req_set(net, &r, dev);
1187 break;
1188 case SIOCGARP:
1189 err = arp_req_get(&r, dev);
1190 if (!err && copy_to_user(arg, &r, sizeof(r)))
1191 err = -EFAULT;
1192 break;
1194 out:
1195 rtnl_unlock();
1196 return err;
1199 static int arp_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
1201 struct net_device *dev = ptr;
1203 if (dev->nd_net != &init_net)
1204 return NOTIFY_DONE;
1206 switch (event) {
1207 case NETDEV_CHANGEADDR:
1208 neigh_changeaddr(&arp_tbl, dev);
1209 rt_cache_flush(0);
1210 break;
1211 default:
1212 break;
1215 return NOTIFY_DONE;
1218 static struct notifier_block arp_netdev_notifier = {
1219 .notifier_call = arp_netdev_event,
1222 /* Note, that it is not on notifier chain.
1223 It is necessary, that this routine was called after route cache will be
1224 flushed.
1226 void arp_ifdown(struct net_device *dev)
1228 neigh_ifdown(&arp_tbl, dev);
1233 * Called once on startup.
1236 static struct packet_type arp_packet_type = {
1237 .type = __constant_htons(ETH_P_ARP),
1238 .func = arp_rcv,
1241 static int arp_proc_init(void);
1243 void __init arp_init(void)
1245 neigh_table_init(&arp_tbl);
1247 dev_add_pack(&arp_packet_type);
1248 arp_proc_init();
1249 #ifdef CONFIG_SYSCTL
1250 neigh_sysctl_register(NULL, &arp_tbl.parms, NET_IPV4,
1251 NET_IPV4_NEIGH, "ipv4", NULL, NULL);
1252 #endif
1253 register_netdevice_notifier(&arp_netdev_notifier);
1256 #ifdef CONFIG_PROC_FS
1257 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1259 /* ------------------------------------------------------------------------ */
1261 * ax25 -> ASCII conversion
1263 static char *ax2asc2(ax25_address *a, char *buf)
1265 char c, *s;
1266 int n;
1268 for (n = 0, s = buf; n < 6; n++) {
1269 c = (a->ax25_call[n] >> 1) & 0x7F;
1271 if (c != ' ') *s++ = c;
1274 *s++ = '-';
1276 if ((n = ((a->ax25_call[6] >> 1) & 0x0F)) > 9) {
1277 *s++ = '1';
1278 n -= 10;
1281 *s++ = n + '0';
1282 *s++ = '\0';
1284 if (*buf == '\0' || *buf == '-')
1285 return "*";
1287 return buf;
1290 #endif /* CONFIG_AX25 */
1292 #define HBUFFERLEN 30
1294 static void arp_format_neigh_entry(struct seq_file *seq,
1295 struct neighbour *n)
1297 char hbuffer[HBUFFERLEN];
1298 const char hexbuf[] = "0123456789ABCDEF";
1299 int k, j;
1300 char tbuf[16];
1301 struct net_device *dev = n->dev;
1302 int hatype = dev->type;
1304 read_lock(&n->lock);
1305 /* Convert hardware address to XX:XX:XX:XX ... form. */
1306 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1307 if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1308 ax2asc2((ax25_address *)n->ha, hbuffer);
1309 else {
1310 #endif
1311 for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1312 hbuffer[k++] = hexbuf[(n->ha[j] >> 4) & 15];
1313 hbuffer[k++] = hexbuf[n->ha[j] & 15];
1314 hbuffer[k++] = ':';
1316 hbuffer[--k] = 0;
1317 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1319 #endif
1320 sprintf(tbuf, "%u.%u.%u.%u", NIPQUAD(*(u32*)n->primary_key));
1321 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1322 tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1323 read_unlock(&n->lock);
1326 static void arp_format_pneigh_entry(struct seq_file *seq,
1327 struct pneigh_entry *n)
1329 struct net_device *dev = n->dev;
1330 int hatype = dev ? dev->type : 0;
1331 char tbuf[16];
1333 sprintf(tbuf, "%u.%u.%u.%u", NIPQUAD(*(u32*)n->key));
1334 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1335 tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1336 dev ? dev->name : "*");
1339 static int arp_seq_show(struct seq_file *seq, void *v)
1341 if (v == SEQ_START_TOKEN) {
1342 seq_puts(seq, "IP address HW type Flags "
1343 "HW address Mask Device\n");
1344 } else {
1345 struct neigh_seq_state *state = seq->private;
1347 if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1348 arp_format_pneigh_entry(seq, v);
1349 else
1350 arp_format_neigh_entry(seq, v);
1353 return 0;
1356 static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1358 /* Don't want to confuse "arp -a" w/ magic entries,
1359 * so we tell the generic iterator to skip NUD_NOARP.
1361 return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1364 /* ------------------------------------------------------------------------ */
1366 static const struct seq_operations arp_seq_ops = {
1367 .start = arp_seq_start,
1368 .next = neigh_seq_next,
1369 .stop = neigh_seq_stop,
1370 .show = arp_seq_show,
1373 static int arp_seq_open(struct inode *inode, struct file *file)
1375 return seq_open_net(inode, file, &arp_seq_ops,
1376 sizeof(struct neigh_seq_state));
1379 static const struct file_operations arp_seq_fops = {
1380 .owner = THIS_MODULE,
1381 .open = arp_seq_open,
1382 .read = seq_read,
1383 .llseek = seq_lseek,
1384 .release = seq_release_net,
1387 static int __init arp_proc_init(void)
1389 if (!proc_net_fops_create(&init_net, "arp", S_IRUGO, &arp_seq_fops))
1390 return -ENOMEM;
1391 return 0;
1394 #else /* CONFIG_PROC_FS */
1396 static int __init arp_proc_init(void)
1398 return 0;
1401 #endif /* CONFIG_PROC_FS */
1403 EXPORT_SYMBOL(arp_broken_ops);
1404 EXPORT_SYMBOL(arp_find);
1405 EXPORT_SYMBOL(arp_create);
1406 EXPORT_SYMBOL(arp_xmit);
1407 EXPORT_SYMBOL(arp_send);
1408 EXPORT_SYMBOL(arp_tbl);
1410 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
1411 EXPORT_SYMBOL(clip_tbl_hook);
1412 #endif