cfg80211: remove superfluous !last_request check in reg_device_remove()
[firewire-audio.git] / net / wireless / reg.c
blob9fea910204db19371b700ecba069061e7250e8ab
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 /**
13 * DOC: Wireless regulatory infrastructure
15 * The usual implementation is for a driver to read a device EEPROM to
16 * determine which regulatory domain it should be operating under, then
17 * looking up the allowable channels in a driver-local table and finally
18 * registering those channels in the wiphy structure.
20 * Another set of compliance enforcement is for drivers to use their
21 * own compliance limits which can be stored on the EEPROM. The host
22 * driver or firmware may ensure these are used.
24 * In addition to all this we provide an extra layer of regulatory
25 * conformance. For drivers which do not have any regulatory
26 * information CRDA provides the complete regulatory solution.
27 * For others it provides a community effort on further restrictions
28 * to enhance compliance.
30 * Note: When number of rules --> infinity we will not be able to
31 * index on alpha2 any more, instead we'll probably have to
32 * rely on some SHA1 checksum of the regdomain for example.
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/random.h>
38 #include <linux/nl80211.h>
39 #include <linux/platform_device.h>
40 #include <net/cfg80211.h>
41 #include "core.h"
42 #include "reg.h"
43 #include "nl80211.h"
45 /* Receipt of information from last regulatory request */
46 static struct regulatory_request *last_request;
48 /* To trigger userspace events */
49 static struct platform_device *reg_pdev;
51 /* Keep the ordering from large to small */
52 static u32 supported_bandwidths[] = {
53 MHZ_TO_KHZ(40),
54 MHZ_TO_KHZ(20),
58 * Central wireless core regulatory domains, we only need two,
59 * the current one and a world regulatory domain in case we have no
60 * information to give us an alpha2
62 const struct ieee80211_regdomain *cfg80211_regdomain;
65 * We use this as a place for the rd structure built from the
66 * last parsed country IE to rest until CRDA gets back to us with
67 * what it thinks should apply for the same country
69 static const struct ieee80211_regdomain *country_ie_regdomain;
71 /* Used to queue up regulatory hints */
72 static LIST_HEAD(reg_requests_list);
73 static spinlock_t reg_requests_lock;
75 /* Used to queue up beacon hints for review */
76 static LIST_HEAD(reg_pending_beacons);
77 static spinlock_t reg_pending_beacons_lock;
79 /* Used to keep track of processed beacon hints */
80 static LIST_HEAD(reg_beacon_list);
82 struct reg_beacon {
83 struct list_head list;
84 struct ieee80211_channel chan;
87 /* We keep a static world regulatory domain in case of the absence of CRDA */
88 static const struct ieee80211_regdomain world_regdom = {
89 .n_reg_rules = 5,
90 .alpha2 = "00",
91 .reg_rules = {
92 /* IEEE 802.11b/g, channels 1..11 */
93 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
94 /* IEEE 802.11b/g, channels 12..13. No HT40
95 * channel fits here. */
96 REG_RULE(2467-10, 2472+10, 20, 6, 20,
97 NL80211_RRF_PASSIVE_SCAN |
98 NL80211_RRF_NO_IBSS),
99 /* IEEE 802.11 channel 14 - Only JP enables
100 * this and for 802.11b only */
101 REG_RULE(2484-10, 2484+10, 20, 6, 20,
102 NL80211_RRF_PASSIVE_SCAN |
103 NL80211_RRF_NO_IBSS |
104 NL80211_RRF_NO_OFDM),
105 /* IEEE 802.11a, channel 36..48 */
106 REG_RULE(5180-10, 5240+10, 40, 6, 20,
107 NL80211_RRF_PASSIVE_SCAN |
108 NL80211_RRF_NO_IBSS),
110 /* NB: 5260 MHz - 5700 MHz requies DFS */
112 /* IEEE 802.11a, channel 149..165 */
113 REG_RULE(5745-10, 5825+10, 40, 6, 20,
114 NL80211_RRF_PASSIVE_SCAN |
115 NL80211_RRF_NO_IBSS),
119 static const struct ieee80211_regdomain *cfg80211_world_regdom =
120 &world_regdom;
122 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
123 static char *ieee80211_regdom = "US";
124 #else
125 static char *ieee80211_regdom = "00";
126 #endif
128 module_param(ieee80211_regdom, charp, 0444);
129 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
131 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
133 * We assume 40 MHz bandwidth for the old regulatory work.
134 * We make emphasis we are using the exact same frequencies
135 * as before
138 static const struct ieee80211_regdomain us_regdom = {
139 .n_reg_rules = 6,
140 .alpha2 = "US",
141 .reg_rules = {
142 /* IEEE 802.11b/g, channels 1..11 */
143 REG_RULE(2412-10, 2462+10, 40, 6, 27, 0),
144 /* IEEE 802.11a, channel 36 */
145 REG_RULE(5180-10, 5180+10, 40, 6, 23, 0),
146 /* IEEE 802.11a, channel 40 */
147 REG_RULE(5200-10, 5200+10, 40, 6, 23, 0),
148 /* IEEE 802.11a, channel 44 */
149 REG_RULE(5220-10, 5220+10, 40, 6, 23, 0),
150 /* IEEE 802.11a, channels 48..64 */
151 REG_RULE(5240-10, 5320+10, 40, 6, 23, 0),
152 /* IEEE 802.11a, channels 149..165, outdoor */
153 REG_RULE(5745-10, 5825+10, 40, 6, 30, 0),
157 static const struct ieee80211_regdomain jp_regdom = {
158 .n_reg_rules = 3,
159 .alpha2 = "JP",
160 .reg_rules = {
161 /* IEEE 802.11b/g, channels 1..14 */
162 REG_RULE(2412-10, 2484+10, 40, 6, 20, 0),
163 /* IEEE 802.11a, channels 34..48 */
164 REG_RULE(5170-10, 5240+10, 40, 6, 20,
165 NL80211_RRF_PASSIVE_SCAN),
166 /* IEEE 802.11a, channels 52..64 */
167 REG_RULE(5260-10, 5320+10, 40, 6, 20,
168 NL80211_RRF_NO_IBSS |
169 NL80211_RRF_DFS),
173 static const struct ieee80211_regdomain eu_regdom = {
174 .n_reg_rules = 6,
176 * This alpha2 is bogus, we leave it here just for stupid
177 * backward compatibility
179 .alpha2 = "EU",
180 .reg_rules = {
181 /* IEEE 802.11b/g, channels 1..13 */
182 REG_RULE(2412-10, 2472+10, 40, 6, 20, 0),
183 /* IEEE 802.11a, channel 36 */
184 REG_RULE(5180-10, 5180+10, 40, 6, 23,
185 NL80211_RRF_PASSIVE_SCAN),
186 /* IEEE 802.11a, channel 40 */
187 REG_RULE(5200-10, 5200+10, 40, 6, 23,
188 NL80211_RRF_PASSIVE_SCAN),
189 /* IEEE 802.11a, channel 44 */
190 REG_RULE(5220-10, 5220+10, 40, 6, 23,
191 NL80211_RRF_PASSIVE_SCAN),
192 /* IEEE 802.11a, channels 48..64 */
193 REG_RULE(5240-10, 5320+10, 40, 6, 20,
194 NL80211_RRF_NO_IBSS |
195 NL80211_RRF_DFS),
196 /* IEEE 802.11a, channels 100..140 */
197 REG_RULE(5500-10, 5700+10, 40, 6, 30,
198 NL80211_RRF_NO_IBSS |
199 NL80211_RRF_DFS),
203 static const struct ieee80211_regdomain *static_regdom(char *alpha2)
205 if (alpha2[0] == 'U' && alpha2[1] == 'S')
206 return &us_regdom;
207 if (alpha2[0] == 'J' && alpha2[1] == 'P')
208 return &jp_regdom;
209 if (alpha2[0] == 'E' && alpha2[1] == 'U')
210 return &eu_regdom;
211 /* Default, as per the old rules */
212 return &us_regdom;
215 static bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
217 if (rd == &us_regdom || rd == &jp_regdom || rd == &eu_regdom)
218 return true;
219 return false;
221 #else
222 static inline bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
224 return false;
226 #endif
228 static void reset_regdomains(void)
230 /* avoid freeing static information or freeing something twice */
231 if (cfg80211_regdomain == cfg80211_world_regdom)
232 cfg80211_regdomain = NULL;
233 if (cfg80211_world_regdom == &world_regdom)
234 cfg80211_world_regdom = NULL;
235 if (cfg80211_regdomain == &world_regdom)
236 cfg80211_regdomain = NULL;
237 if (is_old_static_regdom(cfg80211_regdomain))
238 cfg80211_regdomain = NULL;
240 kfree(cfg80211_regdomain);
241 kfree(cfg80211_world_regdom);
243 cfg80211_world_regdom = &world_regdom;
244 cfg80211_regdomain = NULL;
248 * Dynamic world regulatory domain requested by the wireless
249 * core upon initialization
251 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
253 BUG_ON(!last_request);
255 reset_regdomains();
257 cfg80211_world_regdom = rd;
258 cfg80211_regdomain = rd;
261 bool is_world_regdom(const char *alpha2)
263 if (!alpha2)
264 return false;
265 if (alpha2[0] == '0' && alpha2[1] == '0')
266 return true;
267 return false;
270 static bool is_alpha2_set(const char *alpha2)
272 if (!alpha2)
273 return false;
274 if (alpha2[0] != 0 && alpha2[1] != 0)
275 return true;
276 return false;
279 static bool is_alpha_upper(char letter)
281 /* ASCII A - Z */
282 if (letter >= 65 && letter <= 90)
283 return true;
284 return false;
287 static bool is_unknown_alpha2(const char *alpha2)
289 if (!alpha2)
290 return false;
292 * Special case where regulatory domain was built by driver
293 * but a specific alpha2 cannot be determined
295 if (alpha2[0] == '9' && alpha2[1] == '9')
296 return true;
297 return false;
300 static bool is_intersected_alpha2(const char *alpha2)
302 if (!alpha2)
303 return false;
305 * Special case where regulatory domain is the
306 * result of an intersection between two regulatory domain
307 * structures
309 if (alpha2[0] == '9' && alpha2[1] == '8')
310 return true;
311 return false;
314 static bool is_an_alpha2(const char *alpha2)
316 if (!alpha2)
317 return false;
318 if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
319 return true;
320 return false;
323 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
325 if (!alpha2_x || !alpha2_y)
326 return false;
327 if (alpha2_x[0] == alpha2_y[0] &&
328 alpha2_x[1] == alpha2_y[1])
329 return true;
330 return false;
333 static bool regdom_changes(const char *alpha2)
335 assert_cfg80211_lock();
337 if (!cfg80211_regdomain)
338 return true;
339 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
340 return false;
341 return true;
345 * country_ie_integrity_changes - tells us if the country IE has changed
346 * @checksum: checksum of country IE of fields we are interested in
348 * If the country IE has not changed you can ignore it safely. This is
349 * useful to determine if two devices are seeing two different country IEs
350 * even on the same alpha2. Note that this will return false if no IE has
351 * been set on the wireless core yet.
353 static bool country_ie_integrity_changes(u32 checksum)
355 /* If no IE has been set then the checksum doesn't change */
356 if (unlikely(!last_request->country_ie_checksum))
357 return false;
358 if (unlikely(last_request->country_ie_checksum != checksum))
359 return true;
360 return false;
364 * This lets us keep regulatory code which is updated on a regulatory
365 * basis in userspace.
367 static int call_crda(const char *alpha2)
369 char country_env[9 + 2] = "COUNTRY=";
370 char *envp[] = {
371 country_env,
372 NULL
375 if (!is_world_regdom((char *) alpha2))
376 printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
377 alpha2[0], alpha2[1]);
378 else
379 printk(KERN_INFO "cfg80211: Calling CRDA to update world "
380 "regulatory domain\n");
382 country_env[8] = alpha2[0];
383 country_env[9] = alpha2[1];
385 return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
388 /* Used by nl80211 before kmalloc'ing our regulatory domain */
389 bool reg_is_valid_request(const char *alpha2)
391 if (!last_request)
392 return false;
394 return alpha2_equal(last_request->alpha2, alpha2);
397 /* Sanity check on a regulatory rule */
398 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
400 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
401 u32 freq_diff;
403 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
404 return false;
406 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
407 return false;
409 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
411 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
412 freq_range->max_bandwidth_khz > freq_diff)
413 return false;
415 return true;
418 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
420 const struct ieee80211_reg_rule *reg_rule = NULL;
421 unsigned int i;
423 if (!rd->n_reg_rules)
424 return false;
426 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
427 return false;
429 for (i = 0; i < rd->n_reg_rules; i++) {
430 reg_rule = &rd->reg_rules[i];
431 if (!is_valid_reg_rule(reg_rule))
432 return false;
435 return true;
438 /* Returns value in KHz */
439 static u32 freq_max_bandwidth(const struct ieee80211_freq_range *freq_range,
440 u32 freq)
442 unsigned int i;
443 for (i = 0; i < ARRAY_SIZE(supported_bandwidths); i++) {
444 u32 start_freq_khz = freq - supported_bandwidths[i]/2;
445 u32 end_freq_khz = freq + supported_bandwidths[i]/2;
446 if (start_freq_khz >= freq_range->start_freq_khz &&
447 end_freq_khz <= freq_range->end_freq_khz)
448 return supported_bandwidths[i];
450 return 0;
454 * freq_in_rule_band - tells us if a frequency is in a frequency band
455 * @freq_range: frequency rule we want to query
456 * @freq_khz: frequency we are inquiring about
458 * This lets us know if a specific frequency rule is or is not relevant to
459 * a specific frequency's band. Bands are device specific and artificial
460 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
461 * safe for now to assume that a frequency rule should not be part of a
462 * frequency's band if the start freq or end freq are off by more than 2 GHz.
463 * This resolution can be lowered and should be considered as we add
464 * regulatory rule support for other "bands".
466 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
467 u32 freq_khz)
469 #define ONE_GHZ_IN_KHZ 1000000
470 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
471 return true;
472 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
473 return true;
474 return false;
475 #undef ONE_GHZ_IN_KHZ
479 * Converts a country IE to a regulatory domain. A regulatory domain
480 * structure has a lot of information which the IE doesn't yet have,
481 * so for the other values we use upper max values as we will intersect
482 * with our userspace regulatory agent to get lower bounds.
484 static struct ieee80211_regdomain *country_ie_2_rd(
485 u8 *country_ie,
486 u8 country_ie_len,
487 u32 *checksum)
489 struct ieee80211_regdomain *rd = NULL;
490 unsigned int i = 0;
491 char alpha2[2];
492 u32 flags = 0;
493 u32 num_rules = 0, size_of_regd = 0;
494 u8 *triplets_start = NULL;
495 u8 len_at_triplet = 0;
496 /* the last channel we have registered in a subband (triplet) */
497 int last_sub_max_channel = 0;
499 *checksum = 0xDEADBEEF;
501 /* Country IE requirements */
502 BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
503 country_ie_len & 0x01);
505 alpha2[0] = country_ie[0];
506 alpha2[1] = country_ie[1];
509 * Third octet can be:
510 * 'I' - Indoor
511 * 'O' - Outdoor
513 * anything else we assume is no restrictions
515 if (country_ie[2] == 'I')
516 flags = NL80211_RRF_NO_OUTDOOR;
517 else if (country_ie[2] == 'O')
518 flags = NL80211_RRF_NO_INDOOR;
520 country_ie += 3;
521 country_ie_len -= 3;
523 triplets_start = country_ie;
524 len_at_triplet = country_ie_len;
526 *checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);
529 * We need to build a reg rule for each triplet, but first we must
530 * calculate the number of reg rules we will need. We will need one
531 * for each channel subband
533 while (country_ie_len >= 3) {
534 int end_channel = 0;
535 struct ieee80211_country_ie_triplet *triplet =
536 (struct ieee80211_country_ie_triplet *) country_ie;
537 int cur_sub_max_channel = 0, cur_channel = 0;
539 if (triplet->ext.reg_extension_id >=
540 IEEE80211_COUNTRY_EXTENSION_ID) {
541 country_ie += 3;
542 country_ie_len -= 3;
543 continue;
546 /* 2 GHz */
547 if (triplet->chans.first_channel <= 14)
548 end_channel = triplet->chans.first_channel +
549 triplet->chans.num_channels;
550 else
552 * 5 GHz -- For example in country IEs if the first
553 * channel given is 36 and the number of channels is 4
554 * then the individual channel numbers defined for the
555 * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
556 * and not 36, 37, 38, 39.
558 * See: http://tinyurl.com/11d-clarification
560 end_channel = triplet->chans.first_channel +
561 (4 * (triplet->chans.num_channels - 1));
563 cur_channel = triplet->chans.first_channel;
564 cur_sub_max_channel = end_channel;
566 /* Basic sanity check */
567 if (cur_sub_max_channel < cur_channel)
568 return NULL;
571 * Do not allow overlapping channels. Also channels
572 * passed in each subband must be monotonically
573 * increasing
575 if (last_sub_max_channel) {
576 if (cur_channel <= last_sub_max_channel)
577 return NULL;
578 if (cur_sub_max_channel <= last_sub_max_channel)
579 return NULL;
583 * When dot11RegulatoryClassesRequired is supported
584 * we can throw ext triplets as part of this soup,
585 * for now we don't care when those change as we
586 * don't support them
588 *checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
589 ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
590 ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);
592 last_sub_max_channel = cur_sub_max_channel;
594 country_ie += 3;
595 country_ie_len -= 3;
596 num_rules++;
599 * Note: this is not a IEEE requirement but
600 * simply a memory requirement
602 if (num_rules > NL80211_MAX_SUPP_REG_RULES)
603 return NULL;
606 country_ie = triplets_start;
607 country_ie_len = len_at_triplet;
609 size_of_regd = sizeof(struct ieee80211_regdomain) +
610 (num_rules * sizeof(struct ieee80211_reg_rule));
612 rd = kzalloc(size_of_regd, GFP_KERNEL);
613 if (!rd)
614 return NULL;
616 rd->n_reg_rules = num_rules;
617 rd->alpha2[0] = alpha2[0];
618 rd->alpha2[1] = alpha2[1];
620 /* This time around we fill in the rd */
621 while (country_ie_len >= 3) {
622 int end_channel = 0;
623 struct ieee80211_country_ie_triplet *triplet =
624 (struct ieee80211_country_ie_triplet *) country_ie;
625 struct ieee80211_reg_rule *reg_rule = NULL;
626 struct ieee80211_freq_range *freq_range = NULL;
627 struct ieee80211_power_rule *power_rule = NULL;
630 * Must parse if dot11RegulatoryClassesRequired is true,
631 * we don't support this yet
633 if (triplet->ext.reg_extension_id >=
634 IEEE80211_COUNTRY_EXTENSION_ID) {
635 country_ie += 3;
636 country_ie_len -= 3;
637 continue;
640 reg_rule = &rd->reg_rules[i];
641 freq_range = &reg_rule->freq_range;
642 power_rule = &reg_rule->power_rule;
644 reg_rule->flags = flags;
646 /* 2 GHz */
647 if (triplet->chans.first_channel <= 14)
648 end_channel = triplet->chans.first_channel +
649 triplet->chans.num_channels;
650 else
651 end_channel = triplet->chans.first_channel +
652 (4 * (triplet->chans.num_channels - 1));
655 * The +10 is since the regulatory domain expects
656 * the actual band edge, not the center of freq for
657 * its start and end freqs, assuming 20 MHz bandwidth on
658 * the channels passed
660 freq_range->start_freq_khz =
661 MHZ_TO_KHZ(ieee80211_channel_to_frequency(
662 triplet->chans.first_channel) - 10);
663 freq_range->end_freq_khz =
664 MHZ_TO_KHZ(ieee80211_channel_to_frequency(
665 end_channel) + 10);
668 * These are large arbitrary values we use to intersect later.
669 * Increment this if we ever support >= 40 MHz channels
670 * in IEEE 802.11
672 freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
673 power_rule->max_antenna_gain = DBI_TO_MBI(100);
674 power_rule->max_eirp = DBM_TO_MBM(100);
676 country_ie += 3;
677 country_ie_len -= 3;
678 i++;
680 BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
683 return rd;
688 * Helper for regdom_intersect(), this does the real
689 * mathematical intersection fun
691 static int reg_rules_intersect(
692 const struct ieee80211_reg_rule *rule1,
693 const struct ieee80211_reg_rule *rule2,
694 struct ieee80211_reg_rule *intersected_rule)
696 const struct ieee80211_freq_range *freq_range1, *freq_range2;
697 struct ieee80211_freq_range *freq_range;
698 const struct ieee80211_power_rule *power_rule1, *power_rule2;
699 struct ieee80211_power_rule *power_rule;
700 u32 freq_diff;
702 freq_range1 = &rule1->freq_range;
703 freq_range2 = &rule2->freq_range;
704 freq_range = &intersected_rule->freq_range;
706 power_rule1 = &rule1->power_rule;
707 power_rule2 = &rule2->power_rule;
708 power_rule = &intersected_rule->power_rule;
710 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
711 freq_range2->start_freq_khz);
712 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
713 freq_range2->end_freq_khz);
714 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
715 freq_range2->max_bandwidth_khz);
717 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
718 if (freq_range->max_bandwidth_khz > freq_diff)
719 freq_range->max_bandwidth_khz = freq_diff;
721 power_rule->max_eirp = min(power_rule1->max_eirp,
722 power_rule2->max_eirp);
723 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
724 power_rule2->max_antenna_gain);
726 intersected_rule->flags = (rule1->flags | rule2->flags);
728 if (!is_valid_reg_rule(intersected_rule))
729 return -EINVAL;
731 return 0;
735 * regdom_intersect - do the intersection between two regulatory domains
736 * @rd1: first regulatory domain
737 * @rd2: second regulatory domain
739 * Use this function to get the intersection between two regulatory domains.
740 * Once completed we will mark the alpha2 for the rd as intersected, "98",
741 * as no one single alpha2 can represent this regulatory domain.
743 * Returns a pointer to the regulatory domain structure which will hold the
744 * resulting intersection of rules between rd1 and rd2. We will
745 * kzalloc() this structure for you.
747 static struct ieee80211_regdomain *regdom_intersect(
748 const struct ieee80211_regdomain *rd1,
749 const struct ieee80211_regdomain *rd2)
751 int r, size_of_regd;
752 unsigned int x, y;
753 unsigned int num_rules = 0, rule_idx = 0;
754 const struct ieee80211_reg_rule *rule1, *rule2;
755 struct ieee80211_reg_rule *intersected_rule;
756 struct ieee80211_regdomain *rd;
757 /* This is just a dummy holder to help us count */
758 struct ieee80211_reg_rule irule;
760 /* Uses the stack temporarily for counter arithmetic */
761 intersected_rule = &irule;
763 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
765 if (!rd1 || !rd2)
766 return NULL;
769 * First we get a count of the rules we'll need, then we actually
770 * build them. This is to so we can malloc() and free() a
771 * regdomain once. The reason we use reg_rules_intersect() here
772 * is it will return -EINVAL if the rule computed makes no sense.
773 * All rules that do check out OK are valid.
776 for (x = 0; x < rd1->n_reg_rules; x++) {
777 rule1 = &rd1->reg_rules[x];
778 for (y = 0; y < rd2->n_reg_rules; y++) {
779 rule2 = &rd2->reg_rules[y];
780 if (!reg_rules_intersect(rule1, rule2,
781 intersected_rule))
782 num_rules++;
783 memset(intersected_rule, 0,
784 sizeof(struct ieee80211_reg_rule));
788 if (!num_rules)
789 return NULL;
791 size_of_regd = sizeof(struct ieee80211_regdomain) +
792 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
794 rd = kzalloc(size_of_regd, GFP_KERNEL);
795 if (!rd)
796 return NULL;
798 for (x = 0; x < rd1->n_reg_rules; x++) {
799 rule1 = &rd1->reg_rules[x];
800 for (y = 0; y < rd2->n_reg_rules; y++) {
801 rule2 = &rd2->reg_rules[y];
803 * This time around instead of using the stack lets
804 * write to the target rule directly saving ourselves
805 * a memcpy()
807 intersected_rule = &rd->reg_rules[rule_idx];
808 r = reg_rules_intersect(rule1, rule2,
809 intersected_rule);
811 * No need to memset here the intersected rule here as
812 * we're not using the stack anymore
814 if (r)
815 continue;
816 rule_idx++;
820 if (rule_idx != num_rules) {
821 kfree(rd);
822 return NULL;
825 rd->n_reg_rules = num_rules;
826 rd->alpha2[0] = '9';
827 rd->alpha2[1] = '8';
829 return rd;
833 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
834 * want to just have the channel structure use these
836 static u32 map_regdom_flags(u32 rd_flags)
838 u32 channel_flags = 0;
839 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
840 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
841 if (rd_flags & NL80211_RRF_NO_IBSS)
842 channel_flags |= IEEE80211_CHAN_NO_IBSS;
843 if (rd_flags & NL80211_RRF_DFS)
844 channel_flags |= IEEE80211_CHAN_RADAR;
845 return channel_flags;
848 static int freq_reg_info_regd(struct wiphy *wiphy,
849 u32 center_freq,
850 u32 *bandwidth,
851 const struct ieee80211_reg_rule **reg_rule,
852 const struct ieee80211_regdomain *custom_regd)
854 int i;
855 bool band_rule_found = false;
856 const struct ieee80211_regdomain *regd;
857 u32 max_bandwidth = 0;
859 regd = custom_regd ? custom_regd : cfg80211_regdomain;
862 * Follow the driver's regulatory domain, if present, unless a country
863 * IE has been processed or a user wants to help complaince further
865 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
866 last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
867 wiphy->regd)
868 regd = wiphy->regd;
870 if (!regd)
871 return -EINVAL;
873 for (i = 0; i < regd->n_reg_rules; i++) {
874 const struct ieee80211_reg_rule *rr;
875 const struct ieee80211_freq_range *fr = NULL;
876 const struct ieee80211_power_rule *pr = NULL;
878 rr = &regd->reg_rules[i];
879 fr = &rr->freq_range;
880 pr = &rr->power_rule;
883 * We only need to know if one frequency rule was
884 * was in center_freq's band, that's enough, so lets
885 * not overwrite it once found
887 if (!band_rule_found)
888 band_rule_found = freq_in_rule_band(fr, center_freq);
890 max_bandwidth = freq_max_bandwidth(fr, center_freq);
892 if (max_bandwidth && *bandwidth <= max_bandwidth) {
893 *reg_rule = rr;
894 *bandwidth = max_bandwidth;
895 break;
899 if (!band_rule_found)
900 return -ERANGE;
902 return !max_bandwidth;
904 EXPORT_SYMBOL(freq_reg_info);
906 int freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 *bandwidth,
907 const struct ieee80211_reg_rule **reg_rule)
909 return freq_reg_info_regd(wiphy, center_freq,
910 bandwidth, reg_rule, NULL);
913 static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
914 unsigned int chan_idx)
916 int r;
917 u32 flags;
918 u32 max_bandwidth = 0;
919 const struct ieee80211_reg_rule *reg_rule = NULL;
920 const struct ieee80211_power_rule *power_rule = NULL;
921 struct ieee80211_supported_band *sband;
922 struct ieee80211_channel *chan;
923 struct wiphy *request_wiphy = NULL;
925 assert_cfg80211_lock();
927 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
929 sband = wiphy->bands[band];
930 BUG_ON(chan_idx >= sband->n_channels);
931 chan = &sband->channels[chan_idx];
933 flags = chan->orig_flags;
935 r = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq),
936 &max_bandwidth, &reg_rule);
938 if (r) {
940 * This means no regulatory rule was found in the country IE
941 * with a frequency range on the center_freq's band, since
942 * IEEE-802.11 allows for a country IE to have a subset of the
943 * regulatory information provided in a country we ignore
944 * disabling the channel unless at least one reg rule was
945 * found on the center_freq's band. For details see this
946 * clarification:
948 * http://tinyurl.com/11d-clarification
950 if (r == -ERANGE &&
951 last_request->initiator ==
952 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
953 #ifdef CONFIG_CFG80211_REG_DEBUG
954 printk(KERN_DEBUG "cfg80211: Leaving channel %d MHz "
955 "intact on %s - no rule found in band on "
956 "Country IE\n",
957 chan->center_freq, wiphy_name(wiphy));
958 #endif
959 } else {
961 * In this case we know the country IE has at least one reg rule
962 * for the band so we respect its band definitions
964 #ifdef CONFIG_CFG80211_REG_DEBUG
965 if (last_request->initiator ==
966 NL80211_REGDOM_SET_BY_COUNTRY_IE)
967 printk(KERN_DEBUG "cfg80211: Disabling "
968 "channel %d MHz on %s due to "
969 "Country IE\n",
970 chan->center_freq, wiphy_name(wiphy));
971 #endif
972 flags |= IEEE80211_CHAN_DISABLED;
973 chan->flags = flags;
975 return;
978 power_rule = &reg_rule->power_rule;
980 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
981 request_wiphy && request_wiphy == wiphy &&
982 request_wiphy->strict_regulatory) {
984 * This gaurantees the driver's requested regulatory domain
985 * will always be used as a base for further regulatory
986 * settings
988 chan->flags = chan->orig_flags =
989 map_regdom_flags(reg_rule->flags);
990 chan->max_antenna_gain = chan->orig_mag =
991 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
992 chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
993 chan->max_power = chan->orig_mpwr =
994 (int) MBM_TO_DBM(power_rule->max_eirp);
995 return;
998 chan->flags = flags | map_regdom_flags(reg_rule->flags);
999 chan->max_antenna_gain = min(chan->orig_mag,
1000 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
1001 chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
1002 if (chan->orig_mpwr)
1003 chan->max_power = min(chan->orig_mpwr,
1004 (int) MBM_TO_DBM(power_rule->max_eirp));
1005 else
1006 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1009 static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
1011 unsigned int i;
1012 struct ieee80211_supported_band *sband;
1014 BUG_ON(!wiphy->bands[band]);
1015 sband = wiphy->bands[band];
1017 for (i = 0; i < sband->n_channels; i++)
1018 handle_channel(wiphy, band, i);
1021 static bool ignore_reg_update(struct wiphy *wiphy,
1022 enum nl80211_reg_initiator initiator)
1024 if (!last_request)
1025 return true;
1026 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1027 wiphy->custom_regulatory)
1028 return true;
1030 * wiphy->regd will be set once the device has its own
1031 * desired regulatory domain set
1033 if (wiphy->strict_regulatory && !wiphy->regd &&
1034 !is_world_regdom(last_request->alpha2))
1035 return true;
1036 return false;
1039 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1041 struct cfg80211_registered_device *drv;
1043 list_for_each_entry(drv, &cfg80211_drv_list, list)
1044 wiphy_update_regulatory(&drv->wiphy, initiator);
1047 static void handle_reg_beacon(struct wiphy *wiphy,
1048 unsigned int chan_idx,
1049 struct reg_beacon *reg_beacon)
1051 struct ieee80211_supported_band *sband;
1052 struct ieee80211_channel *chan;
1053 bool channel_changed = false;
1054 struct ieee80211_channel chan_before;
1056 assert_cfg80211_lock();
1058 sband = wiphy->bands[reg_beacon->chan.band];
1059 chan = &sband->channels[chan_idx];
1061 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1062 return;
1064 if (chan->beacon_found)
1065 return;
1067 chan->beacon_found = true;
1069 chan_before.center_freq = chan->center_freq;
1070 chan_before.flags = chan->flags;
1072 if ((chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) &&
1073 !(chan->orig_flags & IEEE80211_CHAN_PASSIVE_SCAN)) {
1074 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1075 channel_changed = true;
1078 if ((chan->flags & IEEE80211_CHAN_NO_IBSS) &&
1079 !(chan->orig_flags & IEEE80211_CHAN_NO_IBSS)) {
1080 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1081 channel_changed = true;
1084 if (channel_changed)
1085 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1089 * Called when a scan on a wiphy finds a beacon on
1090 * new channel
1092 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1093 struct reg_beacon *reg_beacon)
1095 unsigned int i;
1096 struct ieee80211_supported_band *sband;
1098 assert_cfg80211_lock();
1100 if (!wiphy->bands[reg_beacon->chan.band])
1101 return;
1103 sband = wiphy->bands[reg_beacon->chan.band];
1105 for (i = 0; i < sband->n_channels; i++)
1106 handle_reg_beacon(wiphy, i, reg_beacon);
1110 * Called upon reg changes or a new wiphy is added
1112 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1114 unsigned int i;
1115 struct ieee80211_supported_band *sband;
1116 struct reg_beacon *reg_beacon;
1118 assert_cfg80211_lock();
1120 if (list_empty(&reg_beacon_list))
1121 return;
1123 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1124 if (!wiphy->bands[reg_beacon->chan.band])
1125 continue;
1126 sband = wiphy->bands[reg_beacon->chan.band];
1127 for (i = 0; i < sband->n_channels; i++)
1128 handle_reg_beacon(wiphy, i, reg_beacon);
1132 static bool reg_is_world_roaming(struct wiphy *wiphy)
1134 if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1135 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1136 return true;
1137 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1138 wiphy->custom_regulatory)
1139 return true;
1140 return false;
1143 /* Reap the advantages of previously found beacons */
1144 static void reg_process_beacons(struct wiphy *wiphy)
1146 if (!reg_is_world_roaming(wiphy))
1147 return;
1148 wiphy_update_beacon_reg(wiphy);
1151 void wiphy_update_regulatory(struct wiphy *wiphy,
1152 enum nl80211_reg_initiator initiator)
1154 enum ieee80211_band band;
1156 if (ignore_reg_update(wiphy, initiator))
1157 goto out;
1158 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1159 if (wiphy->bands[band])
1160 handle_band(wiphy, band);
1162 out:
1163 reg_process_beacons(wiphy);
1164 if (wiphy->reg_notifier)
1165 wiphy->reg_notifier(wiphy, last_request);
1168 static void handle_channel_custom(struct wiphy *wiphy,
1169 enum ieee80211_band band,
1170 unsigned int chan_idx,
1171 const struct ieee80211_regdomain *regd)
1173 int r;
1174 u32 max_bandwidth = 0;
1175 const struct ieee80211_reg_rule *reg_rule = NULL;
1176 const struct ieee80211_power_rule *power_rule = NULL;
1177 struct ieee80211_supported_band *sband;
1178 struct ieee80211_channel *chan;
1180 sband = wiphy->bands[band];
1181 BUG_ON(chan_idx >= sband->n_channels);
1182 chan = &sband->channels[chan_idx];
1184 r = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1185 &max_bandwidth, &reg_rule, regd);
1187 if (r) {
1188 chan->flags = IEEE80211_CHAN_DISABLED;
1189 return;
1192 power_rule = &reg_rule->power_rule;
1194 chan->flags |= map_regdom_flags(reg_rule->flags);
1195 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1196 chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
1197 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1200 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1201 const struct ieee80211_regdomain *regd)
1203 unsigned int i;
1204 struct ieee80211_supported_band *sband;
1206 BUG_ON(!wiphy->bands[band]);
1207 sband = wiphy->bands[band];
1209 for (i = 0; i < sband->n_channels; i++)
1210 handle_channel_custom(wiphy, band, i, regd);
1213 /* Used by drivers prior to wiphy registration */
1214 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1215 const struct ieee80211_regdomain *regd)
1217 enum ieee80211_band band;
1218 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1219 if (wiphy->bands[band])
1220 handle_band_custom(wiphy, band, regd);
1223 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1225 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
1226 const struct ieee80211_regdomain *src_regd)
1228 struct ieee80211_regdomain *regd;
1229 int size_of_regd = 0;
1230 unsigned int i;
1232 size_of_regd = sizeof(struct ieee80211_regdomain) +
1233 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
1235 regd = kzalloc(size_of_regd, GFP_KERNEL);
1236 if (!regd)
1237 return -ENOMEM;
1239 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
1241 for (i = 0; i < src_regd->n_reg_rules; i++)
1242 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
1243 sizeof(struct ieee80211_reg_rule));
1245 *dst_regd = regd;
1246 return 0;
1250 * Return value which can be used by ignore_request() to indicate
1251 * it has been determined we should intersect two regulatory domains
1253 #define REG_INTERSECT 1
1255 /* This has the logic which determines when a new request
1256 * should be ignored. */
1257 static int ignore_request(struct wiphy *wiphy,
1258 struct regulatory_request *pending_request)
1260 struct wiphy *last_wiphy = NULL;
1262 assert_cfg80211_lock();
1264 /* All initial requests are respected */
1265 if (!last_request)
1266 return 0;
1268 switch (pending_request->initiator) {
1269 case NL80211_REGDOM_SET_BY_CORE:
1270 return -EINVAL;
1271 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1273 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1275 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1276 return -EINVAL;
1277 if (last_request->initiator ==
1278 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1279 if (last_wiphy != wiphy) {
1281 * Two cards with two APs claiming different
1282 * different Country IE alpha2s. We could
1283 * intersect them, but that seems unlikely
1284 * to be correct. Reject second one for now.
1286 if (regdom_changes(pending_request->alpha2))
1287 return -EOPNOTSUPP;
1288 return -EALREADY;
1291 * Two consecutive Country IE hints on the same wiphy.
1292 * This should be picked up early by the driver/stack
1294 if (WARN_ON(regdom_changes(pending_request->alpha2)))
1295 return 0;
1296 return -EALREADY;
1298 return REG_INTERSECT;
1299 case NL80211_REGDOM_SET_BY_DRIVER:
1300 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1301 if (is_old_static_regdom(cfg80211_regdomain))
1302 return 0;
1303 if (regdom_changes(pending_request->alpha2))
1304 return 0;
1305 return -EALREADY;
1309 * This would happen if you unplug and plug your card
1310 * back in or if you add a new device for which the previously
1311 * loaded card also agrees on the regulatory domain.
1313 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1314 !regdom_changes(pending_request->alpha2))
1315 return -EALREADY;
1317 return REG_INTERSECT;
1318 case NL80211_REGDOM_SET_BY_USER:
1319 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1320 return REG_INTERSECT;
1322 * If the user knows better the user should set the regdom
1323 * to their country before the IE is picked up
1325 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1326 last_request->intersect)
1327 return -EOPNOTSUPP;
1329 * Process user requests only after previous user/driver/core
1330 * requests have been processed
1332 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1333 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1334 last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1335 if (regdom_changes(last_request->alpha2))
1336 return -EAGAIN;
1339 if (!is_old_static_regdom(cfg80211_regdomain) &&
1340 !regdom_changes(pending_request->alpha2))
1341 return -EALREADY;
1343 return 0;
1346 return -EINVAL;
1350 * __regulatory_hint - hint to the wireless core a regulatory domain
1351 * @wiphy: if the hint comes from country information from an AP, this
1352 * is required to be set to the wiphy that received the information
1353 * @pending_request: the regulatory request currently being processed
1355 * The Wireless subsystem can use this function to hint to the wireless core
1356 * what it believes should be the current regulatory domain.
1358 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1359 * already been set or other standard error codes.
1361 * Caller must hold &cfg80211_mutex
1363 static int __regulatory_hint(struct wiphy *wiphy,
1364 struct regulatory_request *pending_request)
1366 bool intersect = false;
1367 int r = 0;
1369 assert_cfg80211_lock();
1371 r = ignore_request(wiphy, pending_request);
1373 if (r == REG_INTERSECT) {
1374 if (pending_request->initiator ==
1375 NL80211_REGDOM_SET_BY_DRIVER) {
1376 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1377 if (r) {
1378 kfree(pending_request);
1379 return r;
1382 intersect = true;
1383 } else if (r) {
1385 * If the regulatory domain being requested by the
1386 * driver has already been set just copy it to the
1387 * wiphy
1389 if (r == -EALREADY &&
1390 pending_request->initiator ==
1391 NL80211_REGDOM_SET_BY_DRIVER) {
1392 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1393 if (r) {
1394 kfree(pending_request);
1395 return r;
1397 r = -EALREADY;
1398 goto new_request;
1400 kfree(pending_request);
1401 return r;
1404 new_request:
1405 kfree(last_request);
1407 last_request = pending_request;
1408 last_request->intersect = intersect;
1410 pending_request = NULL;
1412 /* When r == REG_INTERSECT we do need to call CRDA */
1413 if (r < 0) {
1415 * Since CRDA will not be called in this case as we already
1416 * have applied the requested regulatory domain before we just
1417 * inform userspace we have processed the request
1419 if (r == -EALREADY)
1420 nl80211_send_reg_change_event(last_request);
1421 return r;
1424 return call_crda(last_request->alpha2);
1427 /* This currently only processes user and driver regulatory hints */
1428 static void reg_process_hint(struct regulatory_request *reg_request)
1430 int r = 0;
1431 struct wiphy *wiphy = NULL;
1433 BUG_ON(!reg_request->alpha2);
1435 mutex_lock(&cfg80211_mutex);
1437 if (wiphy_idx_valid(reg_request->wiphy_idx))
1438 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1440 if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1441 !wiphy) {
1442 kfree(reg_request);
1443 goto out;
1446 r = __regulatory_hint(wiphy, reg_request);
1447 /* This is required so that the orig_* parameters are saved */
1448 if (r == -EALREADY && wiphy && wiphy->strict_regulatory)
1449 wiphy_update_regulatory(wiphy, reg_request->initiator);
1450 out:
1451 mutex_unlock(&cfg80211_mutex);
1454 /* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1455 static void reg_process_pending_hints(void)
1457 struct regulatory_request *reg_request;
1459 spin_lock(&reg_requests_lock);
1460 while (!list_empty(&reg_requests_list)) {
1461 reg_request = list_first_entry(&reg_requests_list,
1462 struct regulatory_request,
1463 list);
1464 list_del_init(&reg_request->list);
1466 spin_unlock(&reg_requests_lock);
1467 reg_process_hint(reg_request);
1468 spin_lock(&reg_requests_lock);
1470 spin_unlock(&reg_requests_lock);
1473 /* Processes beacon hints -- this has nothing to do with country IEs */
1474 static void reg_process_pending_beacon_hints(void)
1476 struct cfg80211_registered_device *drv;
1477 struct reg_beacon *pending_beacon, *tmp;
1479 mutex_lock(&cfg80211_mutex);
1481 /* This goes through the _pending_ beacon list */
1482 spin_lock_bh(&reg_pending_beacons_lock);
1484 if (list_empty(&reg_pending_beacons)) {
1485 spin_unlock_bh(&reg_pending_beacons_lock);
1486 goto out;
1489 list_for_each_entry_safe(pending_beacon, tmp,
1490 &reg_pending_beacons, list) {
1492 list_del_init(&pending_beacon->list);
1494 /* Applies the beacon hint to current wiphys */
1495 list_for_each_entry(drv, &cfg80211_drv_list, list)
1496 wiphy_update_new_beacon(&drv->wiphy, pending_beacon);
1498 /* Remembers the beacon hint for new wiphys or reg changes */
1499 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1502 spin_unlock_bh(&reg_pending_beacons_lock);
1503 out:
1504 mutex_unlock(&cfg80211_mutex);
1507 static void reg_todo(struct work_struct *work)
1509 reg_process_pending_hints();
1510 reg_process_pending_beacon_hints();
1513 static DECLARE_WORK(reg_work, reg_todo);
1515 static void queue_regulatory_request(struct regulatory_request *request)
1517 spin_lock(&reg_requests_lock);
1518 list_add_tail(&request->list, &reg_requests_list);
1519 spin_unlock(&reg_requests_lock);
1521 schedule_work(&reg_work);
1524 /* Core regulatory hint -- happens once during cfg80211_init() */
1525 static int regulatory_hint_core(const char *alpha2)
1527 struct regulatory_request *request;
1529 BUG_ON(last_request);
1531 request = kzalloc(sizeof(struct regulatory_request),
1532 GFP_KERNEL);
1533 if (!request)
1534 return -ENOMEM;
1536 request->alpha2[0] = alpha2[0];
1537 request->alpha2[1] = alpha2[1];
1538 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1540 queue_regulatory_request(request);
1542 return 0;
1545 /* User hints */
1546 int regulatory_hint_user(const char *alpha2)
1548 struct regulatory_request *request;
1550 BUG_ON(!alpha2);
1552 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1553 if (!request)
1554 return -ENOMEM;
1556 request->wiphy_idx = WIPHY_IDX_STALE;
1557 request->alpha2[0] = alpha2[0];
1558 request->alpha2[1] = alpha2[1];
1559 request->initiator = NL80211_REGDOM_SET_BY_USER,
1561 queue_regulatory_request(request);
1563 return 0;
1566 /* Driver hints */
1567 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1569 struct regulatory_request *request;
1571 BUG_ON(!alpha2);
1572 BUG_ON(!wiphy);
1574 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1575 if (!request)
1576 return -ENOMEM;
1578 request->wiphy_idx = get_wiphy_idx(wiphy);
1580 /* Must have registered wiphy first */
1581 BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1583 request->alpha2[0] = alpha2[0];
1584 request->alpha2[1] = alpha2[1];
1585 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1587 queue_regulatory_request(request);
1589 return 0;
1591 EXPORT_SYMBOL(regulatory_hint);
1593 static bool reg_same_country_ie_hint(struct wiphy *wiphy,
1594 u32 country_ie_checksum)
1596 struct wiphy *request_wiphy;
1598 assert_cfg80211_lock();
1600 if (unlikely(last_request->initiator !=
1601 NL80211_REGDOM_SET_BY_COUNTRY_IE))
1602 return false;
1604 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1606 if (!request_wiphy)
1607 return false;
1609 if (likely(request_wiphy != wiphy))
1610 return !country_ie_integrity_changes(country_ie_checksum);
1612 * We should not have let these through at this point, they
1613 * should have been picked up earlier by the first alpha2 check
1614 * on the device
1616 if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
1617 return true;
1618 return false;
1621 void regulatory_hint_11d(struct wiphy *wiphy,
1622 u8 *country_ie,
1623 u8 country_ie_len)
1625 struct ieee80211_regdomain *rd = NULL;
1626 char alpha2[2];
1627 u32 checksum = 0;
1628 enum environment_cap env = ENVIRON_ANY;
1629 struct regulatory_request *request;
1631 mutex_lock(&cfg80211_mutex);
1633 if (unlikely(!last_request)) {
1634 mutex_unlock(&cfg80211_mutex);
1635 return;
1638 /* IE len must be evenly divisible by 2 */
1639 if (country_ie_len & 0x01)
1640 goto out;
1642 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1643 goto out;
1646 * Pending country IE processing, this can happen after we
1647 * call CRDA and wait for a response if a beacon was received before
1648 * we were able to process the last regulatory_hint_11d() call
1650 if (country_ie_regdomain)
1651 goto out;
1653 alpha2[0] = country_ie[0];
1654 alpha2[1] = country_ie[1];
1656 if (country_ie[2] == 'I')
1657 env = ENVIRON_INDOOR;
1658 else if (country_ie[2] == 'O')
1659 env = ENVIRON_OUTDOOR;
1662 * We will run this for *every* beacon processed for the BSSID, so
1663 * we optimize an early check to exit out early if we don't have to
1664 * do anything
1666 if (likely(last_request->initiator ==
1667 NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1668 wiphy_idx_valid(last_request->wiphy_idx))) {
1669 struct cfg80211_registered_device *drv_last_ie;
1671 drv_last_ie =
1672 cfg80211_drv_by_wiphy_idx(last_request->wiphy_idx);
1675 * Lets keep this simple -- we trust the first AP
1676 * after we intersect with CRDA
1678 if (likely(&drv_last_ie->wiphy == wiphy)) {
1680 * Ignore IEs coming in on this wiphy with
1681 * the same alpha2 and environment cap
1683 if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
1684 alpha2) &&
1685 env == drv_last_ie->env)) {
1686 goto out;
1689 * the wiphy moved on to another BSSID or the AP
1690 * was reconfigured. XXX: We need to deal with the
1691 * case where the user suspends and goes to goes
1692 * to another country, and then gets IEs from an
1693 * AP with different settings
1695 goto out;
1696 } else {
1698 * Ignore IEs coming in on two separate wiphys with
1699 * the same alpha2 and environment cap
1701 if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
1702 alpha2) &&
1703 env == drv_last_ie->env)) {
1704 goto out;
1706 /* We could potentially intersect though */
1707 goto out;
1711 rd = country_ie_2_rd(country_ie, country_ie_len, &checksum);
1712 if (!rd)
1713 goto out;
1716 * This will not happen right now but we leave it here for the
1717 * the future when we want to add suspend/resume support and having
1718 * the user move to another country after doing so, or having the user
1719 * move to another AP. Right now we just trust the first AP.
1721 * If we hit this before we add this support we want to be informed of
1722 * it as it would indicate a mistake in the current design
1724 if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))
1725 goto free_rd_out;
1727 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1728 if (!request)
1729 goto free_rd_out;
1732 * We keep this around for when CRDA comes back with a response so
1733 * we can intersect with that
1735 country_ie_regdomain = rd;
1737 request->wiphy_idx = get_wiphy_idx(wiphy);
1738 request->alpha2[0] = rd->alpha2[0];
1739 request->alpha2[1] = rd->alpha2[1];
1740 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1741 request->country_ie_checksum = checksum;
1742 request->country_ie_env = env;
1744 mutex_unlock(&cfg80211_mutex);
1746 queue_regulatory_request(request);
1748 return;
1750 free_rd_out:
1751 kfree(rd);
1752 out:
1753 mutex_unlock(&cfg80211_mutex);
1755 EXPORT_SYMBOL(regulatory_hint_11d);
1757 static bool freq_is_chan_12_13_14(u16 freq)
1759 if (freq == ieee80211_channel_to_frequency(12) ||
1760 freq == ieee80211_channel_to_frequency(13) ||
1761 freq == ieee80211_channel_to_frequency(14))
1762 return true;
1763 return false;
1766 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1767 struct ieee80211_channel *beacon_chan,
1768 gfp_t gfp)
1770 struct reg_beacon *reg_beacon;
1772 if (likely((beacon_chan->beacon_found ||
1773 (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1774 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1775 !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1776 return 0;
1778 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1779 if (!reg_beacon)
1780 return -ENOMEM;
1782 #ifdef CONFIG_CFG80211_REG_DEBUG
1783 printk(KERN_DEBUG "cfg80211: Found new beacon on "
1784 "frequency: %d MHz (Ch %d) on %s\n",
1785 beacon_chan->center_freq,
1786 ieee80211_frequency_to_channel(beacon_chan->center_freq),
1787 wiphy_name(wiphy));
1788 #endif
1789 memcpy(&reg_beacon->chan, beacon_chan,
1790 sizeof(struct ieee80211_channel));
1794 * Since we can be called from BH or and non-BH context
1795 * we must use spin_lock_bh()
1797 spin_lock_bh(&reg_pending_beacons_lock);
1798 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1799 spin_unlock_bh(&reg_pending_beacons_lock);
1801 schedule_work(&reg_work);
1803 return 0;
1806 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1808 unsigned int i;
1809 const struct ieee80211_reg_rule *reg_rule = NULL;
1810 const struct ieee80211_freq_range *freq_range = NULL;
1811 const struct ieee80211_power_rule *power_rule = NULL;
1813 printk(KERN_INFO "\t(start_freq - end_freq @ bandwidth), "
1814 "(max_antenna_gain, max_eirp)\n");
1816 for (i = 0; i < rd->n_reg_rules; i++) {
1817 reg_rule = &rd->reg_rules[i];
1818 freq_range = &reg_rule->freq_range;
1819 power_rule = &reg_rule->power_rule;
1822 * There may not be documentation for max antenna gain
1823 * in certain regions
1825 if (power_rule->max_antenna_gain)
1826 printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
1827 "(%d mBi, %d mBm)\n",
1828 freq_range->start_freq_khz,
1829 freq_range->end_freq_khz,
1830 freq_range->max_bandwidth_khz,
1831 power_rule->max_antenna_gain,
1832 power_rule->max_eirp);
1833 else
1834 printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
1835 "(N/A, %d mBm)\n",
1836 freq_range->start_freq_khz,
1837 freq_range->end_freq_khz,
1838 freq_range->max_bandwidth_khz,
1839 power_rule->max_eirp);
1843 static void print_regdomain(const struct ieee80211_regdomain *rd)
1846 if (is_intersected_alpha2(rd->alpha2)) {
1848 if (last_request->initiator ==
1849 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1850 struct cfg80211_registered_device *drv;
1851 drv = cfg80211_drv_by_wiphy_idx(
1852 last_request->wiphy_idx);
1853 if (drv) {
1854 printk(KERN_INFO "cfg80211: Current regulatory "
1855 "domain updated by AP to: %c%c\n",
1856 drv->country_ie_alpha2[0],
1857 drv->country_ie_alpha2[1]);
1858 } else
1859 printk(KERN_INFO "cfg80211: Current regulatory "
1860 "domain intersected: \n");
1861 } else
1862 printk(KERN_INFO "cfg80211: Current regulatory "
1863 "domain intersected: \n");
1864 } else if (is_world_regdom(rd->alpha2))
1865 printk(KERN_INFO "cfg80211: World regulatory "
1866 "domain updated:\n");
1867 else {
1868 if (is_unknown_alpha2(rd->alpha2))
1869 printk(KERN_INFO "cfg80211: Regulatory domain "
1870 "changed to driver built-in settings "
1871 "(unknown country)\n");
1872 else
1873 printk(KERN_INFO "cfg80211: Regulatory domain "
1874 "changed to country: %c%c\n",
1875 rd->alpha2[0], rd->alpha2[1]);
1877 print_rd_rules(rd);
1880 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1882 printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
1883 rd->alpha2[0], rd->alpha2[1]);
1884 print_rd_rules(rd);
1887 #ifdef CONFIG_CFG80211_REG_DEBUG
1888 static void reg_country_ie_process_debug(
1889 const struct ieee80211_regdomain *rd,
1890 const struct ieee80211_regdomain *country_ie_regdomain,
1891 const struct ieee80211_regdomain *intersected_rd)
1893 printk(KERN_DEBUG "cfg80211: Received country IE:\n");
1894 print_regdomain_info(country_ie_regdomain);
1895 printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
1896 print_regdomain_info(rd);
1897 if (intersected_rd) {
1898 printk(KERN_DEBUG "cfg80211: We intersect both of these "
1899 "and get:\n");
1900 print_regdomain_info(intersected_rd);
1901 return;
1903 printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
1905 #else
1906 static inline void reg_country_ie_process_debug(
1907 const struct ieee80211_regdomain *rd,
1908 const struct ieee80211_regdomain *country_ie_regdomain,
1909 const struct ieee80211_regdomain *intersected_rd)
1912 #endif
1914 /* Takes ownership of rd only if it doesn't fail */
1915 static int __set_regdom(const struct ieee80211_regdomain *rd)
1917 const struct ieee80211_regdomain *intersected_rd = NULL;
1918 struct cfg80211_registered_device *drv = NULL;
1919 struct wiphy *request_wiphy;
1920 /* Some basic sanity checks first */
1922 if (is_world_regdom(rd->alpha2)) {
1923 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1924 return -EINVAL;
1925 update_world_regdomain(rd);
1926 return 0;
1929 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
1930 !is_unknown_alpha2(rd->alpha2))
1931 return -EINVAL;
1933 if (!last_request)
1934 return -EINVAL;
1937 * Lets only bother proceeding on the same alpha2 if the current
1938 * rd is non static (it means CRDA was present and was used last)
1939 * and the pending request came in from a country IE
1941 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1943 * If someone else asked us to change the rd lets only bother
1944 * checking if the alpha2 changes if CRDA was already called
1946 if (!is_old_static_regdom(cfg80211_regdomain) &&
1947 !regdom_changes(rd->alpha2))
1948 return -EINVAL;
1952 * Now lets set the regulatory domain, update all driver channels
1953 * and finally inform them of what we have done, in case they want
1954 * to review or adjust their own settings based on their own
1955 * internal EEPROM data
1958 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1959 return -EINVAL;
1961 if (!is_valid_rd(rd)) {
1962 printk(KERN_ERR "cfg80211: Invalid "
1963 "regulatory domain detected:\n");
1964 print_regdomain_info(rd);
1965 return -EINVAL;
1968 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1970 if (!last_request->intersect) {
1971 int r;
1973 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
1974 reset_regdomains();
1975 cfg80211_regdomain = rd;
1976 return 0;
1980 * For a driver hint, lets copy the regulatory domain the
1981 * driver wanted to the wiphy to deal with conflicts
1984 BUG_ON(request_wiphy->regd);
1986 r = reg_copy_regd(&request_wiphy->regd, rd);
1987 if (r)
1988 return r;
1990 reset_regdomains();
1991 cfg80211_regdomain = rd;
1992 return 0;
1995 /* Intersection requires a bit more work */
1997 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1999 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2000 if (!intersected_rd)
2001 return -EINVAL;
2004 * We can trash what CRDA provided now.
2005 * However if a driver requested this specific regulatory
2006 * domain we keep it for its private use
2008 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2009 request_wiphy->regd = rd;
2010 else
2011 kfree(rd);
2013 rd = NULL;
2015 reset_regdomains();
2016 cfg80211_regdomain = intersected_rd;
2018 return 0;
2022 * Country IE requests are handled a bit differently, we intersect
2023 * the country IE rd with what CRDA believes that country should have
2026 BUG_ON(!country_ie_regdomain);
2027 BUG_ON(rd == country_ie_regdomain);
2030 * Intersect what CRDA returned and our what we
2031 * had built from the Country IE received
2034 intersected_rd = regdom_intersect(rd, country_ie_regdomain);
2036 reg_country_ie_process_debug(rd,
2037 country_ie_regdomain,
2038 intersected_rd);
2040 kfree(country_ie_regdomain);
2041 country_ie_regdomain = NULL;
2043 if (!intersected_rd)
2044 return -EINVAL;
2046 drv = wiphy_to_dev(request_wiphy);
2048 drv->country_ie_alpha2[0] = rd->alpha2[0];
2049 drv->country_ie_alpha2[1] = rd->alpha2[1];
2050 drv->env = last_request->country_ie_env;
2052 BUG_ON(intersected_rd == rd);
2054 kfree(rd);
2055 rd = NULL;
2057 reset_regdomains();
2058 cfg80211_regdomain = intersected_rd;
2060 return 0;
2065 * Use this call to set the current regulatory domain. Conflicts with
2066 * multiple drivers can be ironed out later. Caller must've already
2067 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2069 int set_regdom(const struct ieee80211_regdomain *rd)
2071 int r;
2073 assert_cfg80211_lock();
2075 /* Note that this doesn't update the wiphys, this is done below */
2076 r = __set_regdom(rd);
2077 if (r) {
2078 kfree(rd);
2079 return r;
2082 /* This would make this whole thing pointless */
2083 if (!last_request->intersect)
2084 BUG_ON(rd != cfg80211_regdomain);
2086 /* update all wiphys now with the new established regulatory domain */
2087 update_all_wiphy_regulatory(last_request->initiator);
2089 print_regdomain(cfg80211_regdomain);
2091 nl80211_send_reg_change_event(last_request);
2093 return r;
2096 /* Caller must hold cfg80211_mutex */
2097 void reg_device_remove(struct wiphy *wiphy)
2099 struct wiphy *request_wiphy = NULL;
2101 assert_cfg80211_lock();
2103 kfree(wiphy->regd);
2105 if (last_request)
2106 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2108 if (!request_wiphy || request_wiphy != wiphy)
2109 return;
2111 last_request->wiphy_idx = WIPHY_IDX_STALE;
2112 last_request->country_ie_env = ENVIRON_ANY;
2115 int regulatory_init(void)
2117 int err = 0;
2119 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2120 if (IS_ERR(reg_pdev))
2121 return PTR_ERR(reg_pdev);
2123 spin_lock_init(&reg_requests_lock);
2124 spin_lock_init(&reg_pending_beacons_lock);
2126 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
2127 cfg80211_regdomain = static_regdom(ieee80211_regdom);
2129 printk(KERN_INFO "cfg80211: Using static regulatory domain info\n");
2130 print_regdomain_info(cfg80211_regdomain);
2132 * The old code still requests for a new regdomain and if
2133 * you have CRDA you get it updated, otherwise you get
2134 * stuck with the static values. Since "EU" is not a valid
2135 * ISO / IEC 3166 alpha2 code we can't expect userpace to
2136 * give us a regulatory domain for it. We need last_request
2137 * iniitalized though so lets just send a request which we
2138 * know will be ignored... this crap will be removed once
2139 * OLD_REG dies.
2141 err = regulatory_hint_core(ieee80211_regdom);
2142 #else
2143 cfg80211_regdomain = cfg80211_world_regdom;
2145 err = regulatory_hint_core(ieee80211_regdom);
2146 #endif
2147 if (err) {
2148 if (err == -ENOMEM)
2149 return err;
2151 * N.B. kobject_uevent_env() can fail mainly for when we're out
2152 * memory which is handled and propagated appropriately above
2153 * but it can also fail during a netlink_broadcast() or during
2154 * early boot for call_usermodehelper(). For now treat these
2155 * errors as non-fatal.
2157 printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
2158 "to call CRDA during init");
2159 #ifdef CONFIG_CFG80211_REG_DEBUG
2160 /* We want to find out exactly why when debugging */
2161 WARN_ON(err);
2162 #endif
2165 return 0;
2168 void regulatory_exit(void)
2170 struct regulatory_request *reg_request, *tmp;
2171 struct reg_beacon *reg_beacon, *btmp;
2173 cancel_work_sync(&reg_work);
2175 mutex_lock(&cfg80211_mutex);
2177 reset_regdomains();
2179 kfree(country_ie_regdomain);
2180 country_ie_regdomain = NULL;
2182 kfree(last_request);
2184 platform_device_unregister(reg_pdev);
2186 spin_lock_bh(&reg_pending_beacons_lock);
2187 if (!list_empty(&reg_pending_beacons)) {
2188 list_for_each_entry_safe(reg_beacon, btmp,
2189 &reg_pending_beacons, list) {
2190 list_del(&reg_beacon->list);
2191 kfree(reg_beacon);
2194 spin_unlock_bh(&reg_pending_beacons_lock);
2196 if (!list_empty(&reg_beacon_list)) {
2197 list_for_each_entry_safe(reg_beacon, btmp,
2198 &reg_beacon_list, list) {
2199 list_del(&reg_beacon->list);
2200 kfree(reg_beacon);
2204 spin_lock(&reg_requests_lock);
2205 if (!list_empty(&reg_requests_list)) {
2206 list_for_each_entry_safe(reg_request, tmp,
2207 &reg_requests_list, list) {
2208 list_del(&reg_request->list);
2209 kfree(reg_request);
2212 spin_unlock(&reg_requests_lock);
2214 mutex_unlock(&cfg80211_mutex);