Normalize triplets in gain_val_tab[][] so gain_exp_tab[] can be just an
[ffmpeg-lucabe.git] / libavcodec / ra144.c
blobd2d1d4672578bcb629d3d63a13fb8606695440dc
1 /*
2 * Real Audio 1.0 (14.4K)
4 * Copyright (c) 2008 Vitor Sessak
5 * Copyright (c) 2003 Nick Kurshev
6 * Based on public domain decoder at http://www.honeypot.net/audio
8 * This file is part of FFmpeg.
10 * FFmpeg is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU Lesser General Public
12 * License as published by the Free Software Foundation; either
13 * version 2.1 of the License, or (at your option) any later version.
15 * FFmpeg is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * Lesser General Public License for more details.
20 * You should have received a copy of the GNU Lesser General Public
21 * License along with FFmpeg; if not, write to the Free Software
22 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
25 #include "avcodec.h"
26 #include "bitstream.h"
27 #include "ra144.h"
28 #include "acelp_filters.h"
30 #define NBLOCKS 4 ///< number of subblocks within a block
31 #define BLOCKSIZE 40 ///< subblock size in 16-bit words
32 #define BUFFERSIZE 146 ///< the size of the adaptive codebook
35 typedef struct {
36 unsigned int old_energy; ///< previous frame energy
38 unsigned int lpc_tables[2][10];
40 /** LPC coefficients: lpc_coef[0] is the coefficients of the current frame
41 * and lpc_coef[1] of the previous one */
42 unsigned int *lpc_coef[2];
44 unsigned int lpc_refl_rms[2];
46 /** the current subblock padded by the last 10 values of the previous one*/
47 int16_t curr_sblock[50];
49 /** adaptive codebook. Its size is two units bigger to avoid a
50 * buffer overflow */
51 uint16_t adapt_cb[146+2];
52 } RA144Context;
54 static av_cold int ra144_decode_init(AVCodecContext * avctx)
56 RA144Context *ractx = avctx->priv_data;
58 ractx->lpc_coef[0] = ractx->lpc_tables[0];
59 ractx->lpc_coef[1] = ractx->lpc_tables[1];
61 avctx->sample_fmt = SAMPLE_FMT_S16;
62 return 0;
65 /**
66 * Evaluate sqrt(x << 24). x must fit in 20 bits. This value is evaluated in an
67 * odd way to make the output identical to the binary decoder.
69 static int t_sqrt(unsigned int x)
71 int s = 2;
72 while (x > 0xfff) {
73 s++;
74 x >>= 2;
77 return ff_sqrt(x << 20) << s;
80 /**
81 * Evaluate the LPC filter coefficients from the reflection coefficients.
82 * Does the inverse of the eval_refl() function.
84 static void eval_coefs(int *coefs, const int *refl)
86 int buffer[10];
87 int *b1 = buffer;
88 int *b2 = coefs;
89 int i, j;
91 for (i=0; i < 10; i++) {
92 b1[i] = refl[i] << 4;
94 for (j=0; j < i; j++)
95 b1[j] = ((refl[i] * b2[i-j-1]) >> 12) + b2[j];
97 FFSWAP(int *, b1, b2);
100 for (i=0; i < 10; i++)
101 coefs[i] >>= 4;
105 * Copy the last offset values of *source to *target. If those values are not
106 * enough to fill the target buffer, fill it with another copy of those values.
108 static void copy_and_dup(int16_t *target, const int16_t *source, int offset)
110 source += BUFFERSIZE - offset;
112 memcpy(target, source, FFMIN(BLOCKSIZE, offset)*sizeof(*target));
113 if (offset < BLOCKSIZE)
114 memcpy(target + offset, source, (BLOCKSIZE - offset)*sizeof(*target));
117 /** inverse root mean square */
118 static int irms(const int16_t *data)
120 unsigned int i, sum = 0;
122 for (i=0; i < BLOCKSIZE; i++)
123 sum += data[i] * data[i];
125 if (sum == 0)
126 return 0; /* OOPS - division by zero */
128 return 0x20000000 / (t_sqrt(sum) >> 8);
131 static void add_wav(int16_t *dest, int n, int skip_first, int *m,
132 const int16_t *s1, const int8_t *s2, const int8_t *s3)
134 int i;
135 int v[3];
137 v[0] = 0;
138 for (i=!skip_first; i<3; i++)
139 v[i] = (gain_val_tab[n][i] * m[i]) >> gain_exp_tab[n];
141 for (i=0; i < BLOCKSIZE; i++)
142 dest[i] = (s1[i]*v[0] + s2[i]*v[1] + s3[i]*v[2]) >> 12;
145 static unsigned int rescale_rms(unsigned int rms, unsigned int energy)
147 return (rms * energy) >> 10;
150 static unsigned int rms(const int *data)
152 int i;
153 unsigned int res = 0x10000;
154 int b = 10;
156 for (i=0; i < 10; i++) {
157 res = (((0x1000000 - data[i]*data[i]) >> 12) * res) >> 12;
159 if (res == 0)
160 return 0;
162 while (res <= 0x3fff) {
163 b++;
164 res <<= 2;
168 return t_sqrt(res) >> b;
171 static void do_output_subblock(RA144Context *ractx, const uint16_t *lpc_coefs,
172 int gval, GetBitContext *gb)
174 uint16_t buffer_a[40];
175 uint16_t *block;
176 int cba_idx = get_bits(gb, 7); // index of the adaptive CB, 0 if none
177 int gain = get_bits(gb, 8);
178 int cb1_idx = get_bits(gb, 7);
179 int cb2_idx = get_bits(gb, 7);
180 int m[3];
182 if (cba_idx) {
183 cba_idx += BLOCKSIZE/2 - 1;
184 copy_and_dup(buffer_a, ractx->adapt_cb, cba_idx);
185 m[0] = (irms(buffer_a) * gval) >> 12;
186 } else {
187 m[0] = 0;
190 m[1] = (cb1_base[cb1_idx] * gval) >> 8;
191 m[2] = (cb2_base[cb2_idx] * gval) >> 8;
193 memmove(ractx->adapt_cb, ractx->adapt_cb + BLOCKSIZE,
194 (BUFFERSIZE - BLOCKSIZE) * sizeof(*ractx->adapt_cb));
196 block = ractx->adapt_cb + BUFFERSIZE - BLOCKSIZE;
198 add_wav(block, gain, cba_idx, m, buffer_a,
199 cb1_vects[cb1_idx], cb2_vects[cb2_idx]);
201 memcpy(ractx->curr_sblock, ractx->curr_sblock + 40,
202 10*sizeof(*ractx->curr_sblock));
204 if (ff_acelp_lp_synthesis_filter(ractx->curr_sblock + 10, lpc_coefs,
205 block, BLOCKSIZE, 10, 1, 0xfff))
206 memset(ractx->curr_sblock, 0, 50*sizeof(*ractx->curr_sblock));
209 static void int_to_int16(int16_t *out, const int *inp)
211 int i;
213 for (i=0; i < 30; i++)
214 *out++ = *inp++;
218 * Evaluate the reflection coefficients from the filter coefficients.
219 * Does the inverse of the eval_coefs() function.
221 * @return 1 if one of the reflection coefficients is of magnitude greater than
222 * 4095, 0 if not.
224 static int eval_refl(int *refl, const int16_t *coefs, RA144Context *ractx)
226 int b, i, j;
227 int buffer1[10];
228 int buffer2[10];
229 int *bp1 = buffer1;
230 int *bp2 = buffer2;
232 for (i=0; i < 10; i++)
233 buffer2[i] = coefs[i];
235 refl[9] = bp2[9];
237 if ((unsigned) bp2[9] + 0x1000 > 0x1fff) {
238 av_log(ractx, AV_LOG_ERROR, "Overflow. Broken sample?\n");
239 return 1;
242 for (i=8; i >= 0; i--) {
243 b = 0x1000-((bp2[i+1] * bp2[i+1]) >> 12);
245 if (!b)
246 b = -2;
248 for (j=0; j <= i; j++)
249 bp1[j] = ((bp2[j] - ((refl[i+1] * bp2[i-j]) >> 12)) * (0x1000000 / b)) >> 12;
251 if ((unsigned) bp1[i] + 0x1000 > 0x1fff)
252 return 1;
254 refl[i] = bp1[i];
256 FFSWAP(int *, bp1, bp2);
258 return 0;
261 static int interp(RA144Context *ractx, int16_t *out, int a,
262 int copyold, int energy)
264 int work[10];
265 int b = NBLOCKS - a;
266 int i;
268 // Interpolate block coefficients from the this frame forth block and
269 // last frame forth block
270 for (i=0; i<30; i++)
271 out[i] = (a * ractx->lpc_coef[0][i] + b * ractx->lpc_coef[1][i])>> 2;
273 if (eval_refl(work, out, ractx)) {
274 // The interpolated coefficients are unstable, copy either new or old
275 // coefficients
276 int_to_int16(out, ractx->lpc_coef[copyold]);
277 return rescale_rms(ractx->lpc_refl_rms[copyold], energy);
278 } else {
279 return rescale_rms(rms(work), energy);
283 /** Uncompress one block (20 bytes -> 160*2 bytes) */
284 static int ra144_decode_frame(AVCodecContext * avctx, void *vdata,
285 int *data_size, const uint8_t *buf, int buf_size)
287 static const uint8_t sizes[10] = {6, 5, 5, 4, 4, 3, 3, 3, 3, 2};
288 unsigned int refl_rms[4]; // RMS of the reflection coefficients
289 uint16_t block_coefs[4][30]; // LPC coefficients of each sub-block
290 unsigned int lpc_refl[10]; // LPC reflection coefficients of the frame
291 int i, j;
292 int16_t *data = vdata;
293 unsigned int energy;
295 RA144Context *ractx = avctx->priv_data;
296 GetBitContext gb;
298 if (*data_size < 2*160)
299 return -1;
301 if(buf_size < 20) {
302 av_log(avctx, AV_LOG_ERROR,
303 "Frame too small (%d bytes). Truncated file?\n", buf_size);
304 *data_size = 0;
305 return buf_size;
307 init_get_bits(&gb, buf, 20 * 8);
309 for (i=0; i<10; i++)
310 lpc_refl[i] = lpc_refl_cb[i][get_bits(&gb, sizes[i])];
312 eval_coefs(ractx->lpc_coef[0], lpc_refl);
313 ractx->lpc_refl_rms[0] = rms(lpc_refl);
315 energy = energy_tab[get_bits(&gb, 5)];
317 refl_rms[0] = interp(ractx, block_coefs[0], 1, 1, ractx->old_energy);
318 refl_rms[1] = interp(ractx, block_coefs[1], 2, energy <= ractx->old_energy,
319 t_sqrt(energy*ractx->old_energy) >> 12);
320 refl_rms[2] = interp(ractx, block_coefs[2], 3, 0, energy);
321 refl_rms[3] = rescale_rms(ractx->lpc_refl_rms[0], energy);
323 int_to_int16(block_coefs[3], ractx->lpc_coef[0]);
325 for (i=0; i < 4; i++) {
326 do_output_subblock(ractx, block_coefs[i], refl_rms[i], &gb);
328 for (j=0; j < BLOCKSIZE; j++)
329 *data++ = av_clip_int16(ractx->curr_sblock[j + 10] << 2);
332 ractx->old_energy = energy;
333 ractx->lpc_refl_rms[1] = ractx->lpc_refl_rms[0];
335 FFSWAP(unsigned int *, ractx->lpc_coef[0], ractx->lpc_coef[1]);
337 *data_size = 2*160;
338 return 20;
341 AVCodec ra_144_decoder =
343 "real_144",
344 CODEC_TYPE_AUDIO,
345 CODEC_ID_RA_144,
346 sizeof(RA144Context),
347 ra144_decode_init,
348 NULL,
349 NULL,
350 ra144_decode_frame,
351 .long_name = NULL_IF_CONFIG_SMALL("RealAudio 1.0 (14.4K)"),