Minor simplification of rotate_block()
[ffmpeg-lucabe.git] / libavcodec / apedec.c
blob60c12b169cbd2bbfbef73f24f44e3db6ca7ffd43
1 /*
2 * Monkey's Audio lossless audio decoder
3 * Copyright (c) 2007 Benjamin Zores <ben@geexbox.org>
4 * based upon libdemac from Dave Chapman.
6 * This file is part of FFmpeg.
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23 #define ALT_BITSTREAM_READER_LE
24 #include "avcodec.h"
25 #include "dsputil.h"
26 #include "bitstream.h"
27 #include "bytestream.h"
29 /**
30 * @file apedec.c
31 * Monkey's Audio lossless audio decoder
34 #define BLOCKS_PER_LOOP 4608
35 #define MAX_CHANNELS 2
36 #define MAX_BYTESPERSAMPLE 3
38 #define APE_FRAMECODE_MONO_SILENCE 1
39 #define APE_FRAMECODE_STEREO_SILENCE 3
40 #define APE_FRAMECODE_PSEUDO_STEREO 4
42 #define HISTORY_SIZE 512
43 #define PREDICTOR_ORDER 8
44 /** Total size of all predictor histories */
45 #define PREDICTOR_SIZE 50
47 #define YDELAYA (18 + PREDICTOR_ORDER*4)
48 #define YDELAYB (18 + PREDICTOR_ORDER*3)
49 #define XDELAYA (18 + PREDICTOR_ORDER*2)
50 #define XDELAYB (18 + PREDICTOR_ORDER)
52 #define YADAPTCOEFFSA 18
53 #define XADAPTCOEFFSA 14
54 #define YADAPTCOEFFSB 10
55 #define XADAPTCOEFFSB 5
57 /**
58 * Possible compression levels
59 * @{
61 enum APECompressionLevel {
62 COMPRESSION_LEVEL_FAST = 1000,
63 COMPRESSION_LEVEL_NORMAL = 2000,
64 COMPRESSION_LEVEL_HIGH = 3000,
65 COMPRESSION_LEVEL_EXTRA_HIGH = 4000,
66 COMPRESSION_LEVEL_INSANE = 5000
68 /** @} */
70 #define APE_FILTER_LEVELS 3
72 /** Filter orders depending on compression level */
73 static const uint16_t ape_filter_orders[5][APE_FILTER_LEVELS] = {
74 { 0, 0, 0 },
75 { 16, 0, 0 },
76 { 64, 0, 0 },
77 { 32, 256, 0 },
78 { 16, 256, 1280 }
81 /** Filter fraction bits depending on compression level */
82 static const uint8_t ape_filter_fracbits[5][APE_FILTER_LEVELS] = {
83 { 0, 0, 0 },
84 { 11, 0, 0 },
85 { 11, 0, 0 },
86 { 10, 13, 0 },
87 { 11, 13, 15 }
91 /** Filters applied to the decoded data */
92 typedef struct APEFilter {
93 int16_t *coeffs; ///< actual coefficients used in filtering
94 int16_t *adaptcoeffs; ///< adaptive filter coefficients used for correcting of actual filter coefficients
95 int16_t *historybuffer; ///< filter memory
96 int16_t *delay; ///< filtered values
98 int avg;
99 } APEFilter;
101 typedef struct APERice {
102 uint32_t k;
103 uint32_t ksum;
104 } APERice;
106 typedef struct APERangecoder {
107 uint32_t low; ///< low end of interval
108 uint32_t range; ///< length of interval
109 uint32_t help; ///< bytes_to_follow resp. intermediate value
110 unsigned int buffer; ///< buffer for input/output
111 } APERangecoder;
113 /** Filter histories */
114 typedef struct APEPredictor {
115 int32_t *buf;
117 int32_t lastA[2];
119 int32_t filterA[2];
120 int32_t filterB[2];
122 int32_t coeffsA[2][4]; ///< adaption coefficients
123 int32_t coeffsB[2][5]; ///< adaption coefficients
124 int32_t historybuffer[HISTORY_SIZE + PREDICTOR_SIZE];
125 } APEPredictor;
127 /** Decoder context */
128 typedef struct APEContext {
129 AVCodecContext *avctx;
130 DSPContext dsp;
131 int channels;
132 int samples; ///< samples left to decode in current frame
134 int fileversion; ///< codec version, very important in decoding process
135 int compression_level; ///< compression levels
136 int fset; ///< which filter set to use (calculated from compression level)
137 int flags; ///< global decoder flags
139 uint32_t CRC; ///< frame CRC
140 int frameflags; ///< frame flags
141 int currentframeblocks; ///< samples (per channel) in current frame
142 int blocksdecoded; ///< count of decoded samples in current frame
143 APEPredictor predictor; ///< predictor used for final reconstruction
145 int32_t decoded0[BLOCKS_PER_LOOP]; ///< decoded data for the first channel
146 int32_t decoded1[BLOCKS_PER_LOOP]; ///< decoded data for the second channel
148 int16_t* filterbuf[APE_FILTER_LEVELS]; ///< filter memory
150 APERangecoder rc; ///< rangecoder used to decode actual values
151 APERice riceX; ///< rice code parameters for the second channel
152 APERice riceY; ///< rice code parameters for the first channel
153 APEFilter filters[APE_FILTER_LEVELS][2]; ///< filters used for reconstruction
155 uint8_t *data; ///< current frame data
156 uint8_t *data_end; ///< frame data end
157 const uint8_t *ptr; ///< current position in frame data
158 const uint8_t *last_ptr; ///< position where last 4608-sample block ended
160 int error;
161 } APEContext;
163 // TODO: dsputilize
164 static inline void vector_add(int16_t * v1, int16_t * v2, int order)
166 while (order--)
167 *v1++ += *v2++;
170 // TODO: dsputilize
171 static inline void vector_sub(int16_t * v1, int16_t * v2, int order)
173 while (order--)
174 *v1++ -= *v2++;
177 // TODO: dsputilize
178 static inline int32_t scalarproduct(int16_t * v1, int16_t * v2, int order)
180 int res = 0;
182 while (order--)
183 res += *v1++ * *v2++;
185 return res;
188 static av_cold int ape_decode_init(AVCodecContext * avctx)
190 APEContext *s = avctx->priv_data;
191 int i;
193 if (avctx->extradata_size != 6) {
194 av_log(avctx, AV_LOG_ERROR, "Incorrect extradata\n");
195 return -1;
197 if (avctx->bits_per_sample != 16) {
198 av_log(avctx, AV_LOG_ERROR, "Only 16-bit samples are supported\n");
199 return -1;
201 if (avctx->channels > 2) {
202 av_log(avctx, AV_LOG_ERROR, "Only mono and stereo is supported\n");
203 return -1;
205 s->avctx = avctx;
206 s->channels = avctx->channels;
207 s->fileversion = AV_RL16(avctx->extradata);
208 s->compression_level = AV_RL16(avctx->extradata + 2);
209 s->flags = AV_RL16(avctx->extradata + 4);
211 av_log(avctx, AV_LOG_DEBUG, "Compression Level: %d - Flags: %d\n", s->compression_level, s->flags);
212 if (s->compression_level % 1000 || s->compression_level > COMPRESSION_LEVEL_INSANE) {
213 av_log(avctx, AV_LOG_ERROR, "Incorrect compression level %d\n", s->compression_level);
214 return -1;
216 s->fset = s->compression_level / 1000 - 1;
217 for (i = 0; i < APE_FILTER_LEVELS; i++) {
218 if (!ape_filter_orders[s->fset][i])
219 break;
220 s->filterbuf[i] = av_malloc((ape_filter_orders[s->fset][i] * 3 + HISTORY_SIZE) * 4);
223 dsputil_init(&s->dsp, avctx);
224 return 0;
227 static av_cold int ape_decode_close(AVCodecContext * avctx)
229 APEContext *s = avctx->priv_data;
230 int i;
232 for (i = 0; i < APE_FILTER_LEVELS; i++)
233 av_freep(&s->filterbuf[i]);
235 return 0;
239 * @defgroup rangecoder APE range decoder
240 * @{
243 #define CODE_BITS 32
244 #define TOP_VALUE ((unsigned int)1 << (CODE_BITS-1))
245 #define SHIFT_BITS (CODE_BITS - 9)
246 #define EXTRA_BITS ((CODE_BITS-2) % 8 + 1)
247 #define BOTTOM_VALUE (TOP_VALUE >> 8)
249 /** Start the decoder */
250 static inline void range_start_decoding(APEContext * ctx)
252 ctx->rc.buffer = bytestream_get_byte(&ctx->ptr);
253 ctx->rc.low = ctx->rc.buffer >> (8 - EXTRA_BITS);
254 ctx->rc.range = (uint32_t) 1 << EXTRA_BITS;
257 /** Perform normalization */
258 static inline void range_dec_normalize(APEContext * ctx)
260 while (ctx->rc.range <= BOTTOM_VALUE) {
261 ctx->rc.buffer <<= 8;
262 if(ctx->ptr < ctx->data_end)
263 ctx->rc.buffer += *ctx->ptr;
264 ctx->ptr++;
265 ctx->rc.low = (ctx->rc.low << 8) | ((ctx->rc.buffer >> 1) & 0xFF);
266 ctx->rc.range <<= 8;
271 * Calculate culmulative frequency for next symbol. Does NO update!
272 * @param tot_f is the total frequency or (code_value)1<<shift
273 * @return the culmulative frequency
275 static inline int range_decode_culfreq(APEContext * ctx, int tot_f)
277 range_dec_normalize(ctx);
278 ctx->rc.help = ctx->rc.range / tot_f;
279 return ctx->rc.low / ctx->rc.help;
283 * Decode value with given size in bits
284 * @param shift number of bits to decode
286 static inline int range_decode_culshift(APEContext * ctx, int shift)
288 range_dec_normalize(ctx);
289 ctx->rc.help = ctx->rc.range >> shift;
290 return ctx->rc.low / ctx->rc.help;
295 * Update decoding state
296 * @param sy_f the interval length (frequency of the symbol)
297 * @param lt_f the lower end (frequency sum of < symbols)
299 static inline void range_decode_update(APEContext * ctx, int sy_f, int lt_f)
301 ctx->rc.low -= ctx->rc.help * lt_f;
302 ctx->rc.range = ctx->rc.help * sy_f;
305 /** Decode n bits (n <= 16) without modelling */
306 static inline int range_decode_bits(APEContext * ctx, int n)
308 int sym = range_decode_culshift(ctx, n);
309 range_decode_update(ctx, 1, sym);
310 return sym;
314 #define MODEL_ELEMENTS 64
317 * Fixed probabilities for symbols in Monkey Audio version 3.97
319 static const uint16_t counts_3970[22] = {
320 0, 14824, 28224, 39348, 47855, 53994, 58171, 60926,
321 62682, 63786, 64463, 64878, 65126, 65276, 65365, 65419,
322 65450, 65469, 65480, 65487, 65491, 65493,
326 * Probability ranges for symbols in Monkey Audio version 3.97
328 static const uint16_t counts_diff_3970[21] = {
329 14824, 13400, 11124, 8507, 6139, 4177, 2755, 1756,
330 1104, 677, 415, 248, 150, 89, 54, 31,
331 19, 11, 7, 4, 2,
335 * Fixed probabilities for symbols in Monkey Audio version 3.98
337 static const uint16_t counts_3980[22] = {
338 0, 19578, 36160, 48417, 56323, 60899, 63265, 64435,
339 64971, 65232, 65351, 65416, 65447, 65466, 65476, 65482,
340 65485, 65488, 65490, 65491, 65492, 65493,
344 * Probability ranges for symbols in Monkey Audio version 3.98
346 static const uint16_t counts_diff_3980[21] = {
347 19578, 16582, 12257, 7906, 4576, 2366, 1170, 536,
348 261, 119, 65, 31, 19, 10, 6, 3,
349 3, 2, 1, 1, 1,
353 * Decode symbol
354 * @param counts probability range start position
355 * @param count_diffs probability range widths
357 static inline int range_get_symbol(APEContext * ctx,
358 const uint16_t counts[],
359 const uint16_t counts_diff[])
361 int symbol, cf;
363 cf = range_decode_culshift(ctx, 16);
365 if(cf > 65492){
366 symbol= cf - 65535 + 63;
367 range_decode_update(ctx, 1, cf);
368 if(cf > 65535)
369 ctx->error=1;
370 return symbol;
372 /* figure out the symbol inefficiently; a binary search would be much better */
373 for (symbol = 0; counts[symbol + 1] <= cf; symbol++);
375 range_decode_update(ctx, counts_diff[symbol], counts[symbol]);
377 return symbol;
379 /** @} */ // group rangecoder
381 static inline void update_rice(APERice *rice, int x)
383 rice->ksum += ((x + 1) / 2) - ((rice->ksum + 16) >> 5);
385 if (rice->k == 0)
386 rice->k = 1;
387 else if (rice->ksum < (1 << (rice->k + 4)))
388 rice->k--;
389 else if (rice->ksum >= (1 << (rice->k + 5)))
390 rice->k++;
393 static inline int ape_decode_value(APEContext * ctx, APERice *rice)
395 int x, overflow;
397 if (ctx->fileversion < 3980) {
398 int tmpk;
400 overflow = range_get_symbol(ctx, counts_3970, counts_diff_3970);
402 if (overflow == (MODEL_ELEMENTS - 1)) {
403 tmpk = range_decode_bits(ctx, 5);
404 overflow = 0;
405 } else
406 tmpk = (rice->k < 1) ? 0 : rice->k - 1;
408 if (tmpk <= 16)
409 x = range_decode_bits(ctx, tmpk);
410 else {
411 x = range_decode_bits(ctx, 16);
412 x |= (range_decode_bits(ctx, tmpk - 16) << 16);
414 x += overflow << tmpk;
415 } else {
416 int base, pivot;
418 pivot = rice->ksum >> 5;
419 if (pivot == 0)
420 pivot = 1;
422 overflow = range_get_symbol(ctx, counts_3980, counts_diff_3980);
424 if (overflow == (MODEL_ELEMENTS - 1)) {
425 overflow = range_decode_bits(ctx, 16) << 16;
426 overflow |= range_decode_bits(ctx, 16);
429 base = range_decode_culfreq(ctx, pivot);
430 range_decode_update(ctx, 1, base);
432 x = base + overflow * pivot;
435 update_rice(rice, x);
437 /* Convert to signed */
438 if (x & 1)
439 return (x >> 1) + 1;
440 else
441 return -(x >> 1);
444 static void entropy_decode(APEContext * ctx, int blockstodecode, int stereo)
446 int32_t *decoded0 = ctx->decoded0;
447 int32_t *decoded1 = ctx->decoded1;
449 ctx->blocksdecoded = blockstodecode;
451 if (ctx->frameflags & APE_FRAMECODE_STEREO_SILENCE) {
452 /* We are pure silence, just memset the output buffer. */
453 memset(decoded0, 0, blockstodecode * sizeof(int32_t));
454 memset(decoded1, 0, blockstodecode * sizeof(int32_t));
455 } else {
456 while (blockstodecode--) {
457 *decoded0++ = ape_decode_value(ctx, &ctx->riceY);
458 if (stereo)
459 *decoded1++ = ape_decode_value(ctx, &ctx->riceX);
463 if (ctx->blocksdecoded == ctx->currentframeblocks)
464 range_dec_normalize(ctx); /* normalize to use up all bytes */
467 static void init_entropy_decoder(APEContext * ctx)
469 /* Read the CRC */
470 ctx->CRC = bytestream_get_be32(&ctx->ptr);
472 /* Read the frame flags if they exist */
473 ctx->frameflags = 0;
474 if ((ctx->fileversion > 3820) && (ctx->CRC & 0x80000000)) {
475 ctx->CRC &= ~0x80000000;
477 ctx->frameflags = bytestream_get_be32(&ctx->ptr);
480 /* Keep a count of the blocks decoded in this frame */
481 ctx->blocksdecoded = 0;
483 /* Initialize the rice structs */
484 ctx->riceX.k = 10;
485 ctx->riceX.ksum = (1 << ctx->riceX.k) * 16;
486 ctx->riceY.k = 10;
487 ctx->riceY.ksum = (1 << ctx->riceY.k) * 16;
489 /* The first 8 bits of input are ignored. */
490 ctx->ptr++;
492 range_start_decoding(ctx);
495 static const int32_t initial_coeffs[4] = {
496 360, 317, -109, 98
499 static void init_predictor_decoder(APEContext * ctx)
501 APEPredictor *p = &ctx->predictor;
503 /* Zero the history buffers */
504 memset(p->historybuffer, 0, PREDICTOR_SIZE * sizeof(int32_t));
505 p->buf = p->historybuffer;
507 /* Initialize and zero the coefficients */
508 memcpy(p->coeffsA[0], initial_coeffs, sizeof(initial_coeffs));
509 memcpy(p->coeffsA[1], initial_coeffs, sizeof(initial_coeffs));
510 memset(p->coeffsB, 0, sizeof(p->coeffsB));
512 p->filterA[0] = p->filterA[1] = 0;
513 p->filterB[0] = p->filterB[1] = 0;
514 p->lastA[0] = p->lastA[1] = 0;
517 /** Get inverse sign of integer (-1 for positive, 1 for negative and 0 for zero) */
518 static inline int APESIGN(int32_t x) {
519 return (x < 0) - (x > 0);
522 static int predictor_update_filter(APEPredictor *p, const int decoded, const int filter, const int delayA, const int delayB, const int adaptA, const int adaptB)
524 int32_t predictionA, predictionB;
526 p->buf[delayA] = p->lastA[filter];
527 p->buf[adaptA] = APESIGN(p->buf[delayA]);
528 p->buf[delayA - 1] = p->buf[delayA] - p->buf[delayA - 1];
529 p->buf[adaptA - 1] = APESIGN(p->buf[delayA - 1]);
531 predictionA = p->buf[delayA ] * p->coeffsA[filter][0] +
532 p->buf[delayA - 1] * p->coeffsA[filter][1] +
533 p->buf[delayA - 2] * p->coeffsA[filter][2] +
534 p->buf[delayA - 3] * p->coeffsA[filter][3];
536 /* Apply a scaled first-order filter compression */
537 p->buf[delayB] = p->filterA[filter ^ 1] - ((p->filterB[filter] * 31) >> 5);
538 p->buf[adaptB] = APESIGN(p->buf[delayB]);
539 p->buf[delayB - 1] = p->buf[delayB] - p->buf[delayB - 1];
540 p->buf[adaptB - 1] = APESIGN(p->buf[delayB - 1]);
541 p->filterB[filter] = p->filterA[filter ^ 1];
543 predictionB = p->buf[delayB ] * p->coeffsB[filter][0] +
544 p->buf[delayB - 1] * p->coeffsB[filter][1] +
545 p->buf[delayB - 2] * p->coeffsB[filter][2] +
546 p->buf[delayB - 3] * p->coeffsB[filter][3] +
547 p->buf[delayB - 4] * p->coeffsB[filter][4];
549 p->lastA[filter] = decoded + ((predictionA + (predictionB >> 1)) >> 10);
550 p->filterA[filter] = p->lastA[filter] + ((p->filterA[filter] * 31) >> 5);
552 if (!decoded) // no need updating filter coefficients
553 return p->filterA[filter];
555 if (decoded > 0) {
556 p->coeffsA[filter][0] -= p->buf[adaptA ];
557 p->coeffsA[filter][1] -= p->buf[adaptA - 1];
558 p->coeffsA[filter][2] -= p->buf[adaptA - 2];
559 p->coeffsA[filter][3] -= p->buf[adaptA - 3];
561 p->coeffsB[filter][0] -= p->buf[adaptB ];
562 p->coeffsB[filter][1] -= p->buf[adaptB - 1];
563 p->coeffsB[filter][2] -= p->buf[adaptB - 2];
564 p->coeffsB[filter][3] -= p->buf[adaptB - 3];
565 p->coeffsB[filter][4] -= p->buf[adaptB - 4];
566 } else {
567 p->coeffsA[filter][0] += p->buf[adaptA ];
568 p->coeffsA[filter][1] += p->buf[adaptA - 1];
569 p->coeffsA[filter][2] += p->buf[adaptA - 2];
570 p->coeffsA[filter][3] += p->buf[adaptA - 3];
572 p->coeffsB[filter][0] += p->buf[adaptB ];
573 p->coeffsB[filter][1] += p->buf[adaptB - 1];
574 p->coeffsB[filter][2] += p->buf[adaptB - 2];
575 p->coeffsB[filter][3] += p->buf[adaptB - 3];
576 p->coeffsB[filter][4] += p->buf[adaptB - 4];
578 return p->filterA[filter];
581 static void predictor_decode_stereo(APEContext * ctx, int count)
583 int32_t predictionA, predictionB;
584 APEPredictor *p = &ctx->predictor;
585 int32_t *decoded0 = ctx->decoded0;
586 int32_t *decoded1 = ctx->decoded1;
588 while (count--) {
589 /* Predictor Y */
590 predictionA = predictor_update_filter(p, *decoded0, 0, YDELAYA, YDELAYB, YADAPTCOEFFSA, YADAPTCOEFFSB);
591 predictionB = predictor_update_filter(p, *decoded1, 1, XDELAYA, XDELAYB, XADAPTCOEFFSA, XADAPTCOEFFSB);
592 *(decoded0++) = predictionA;
593 *(decoded1++) = predictionB;
595 /* Combined */
596 p->buf++;
598 /* Have we filled the history buffer? */
599 if (p->buf == p->historybuffer + HISTORY_SIZE) {
600 memmove(p->historybuffer, p->buf, PREDICTOR_SIZE * sizeof(int32_t));
601 p->buf = p->historybuffer;
606 static void predictor_decode_mono(APEContext * ctx, int count)
608 APEPredictor *p = &ctx->predictor;
609 int32_t *decoded0 = ctx->decoded0;
610 int32_t predictionA, currentA, A;
612 currentA = p->lastA[0];
614 while (count--) {
615 A = *decoded0;
617 p->buf[YDELAYA] = currentA;
618 p->buf[YDELAYA - 1] = p->buf[YDELAYA] - p->buf[YDELAYA - 1];
620 predictionA = p->buf[YDELAYA ] * p->coeffsA[0][0] +
621 p->buf[YDELAYA - 1] * p->coeffsA[0][1] +
622 p->buf[YDELAYA - 2] * p->coeffsA[0][2] +
623 p->buf[YDELAYA - 3] * p->coeffsA[0][3];
625 currentA = A + (predictionA >> 10);
627 p->buf[YADAPTCOEFFSA] = APESIGN(p->buf[YDELAYA ]);
628 p->buf[YADAPTCOEFFSA - 1] = APESIGN(p->buf[YDELAYA - 1]);
630 if (A > 0) {
631 p->coeffsA[0][0] -= p->buf[YADAPTCOEFFSA ];
632 p->coeffsA[0][1] -= p->buf[YADAPTCOEFFSA - 1];
633 p->coeffsA[0][2] -= p->buf[YADAPTCOEFFSA - 2];
634 p->coeffsA[0][3] -= p->buf[YADAPTCOEFFSA - 3];
635 } else if (A < 0) {
636 p->coeffsA[0][0] += p->buf[YADAPTCOEFFSA ];
637 p->coeffsA[0][1] += p->buf[YADAPTCOEFFSA - 1];
638 p->coeffsA[0][2] += p->buf[YADAPTCOEFFSA - 2];
639 p->coeffsA[0][3] += p->buf[YADAPTCOEFFSA - 3];
642 p->buf++;
644 /* Have we filled the history buffer? */
645 if (p->buf == p->historybuffer + HISTORY_SIZE) {
646 memmove(p->historybuffer, p->buf, PREDICTOR_SIZE * sizeof(int32_t));
647 p->buf = p->historybuffer;
650 p->filterA[0] = currentA + ((p->filterA[0] * 31) >> 5);
651 *(decoded0++) = p->filterA[0];
654 p->lastA[0] = currentA;
657 static void do_init_filter(APEFilter *f, int16_t * buf, int order)
659 f->coeffs = buf;
660 f->historybuffer = buf + order;
661 f->delay = f->historybuffer + order * 2;
662 f->adaptcoeffs = f->historybuffer + order;
664 memset(f->historybuffer, 0, (order * 2) * sizeof(int16_t));
665 memset(f->coeffs, 0, order * sizeof(int16_t));
666 f->avg = 0;
669 static void init_filter(APEContext * ctx, APEFilter *f, int16_t * buf, int order)
671 do_init_filter(&f[0], buf, order);
672 do_init_filter(&f[1], buf + order * 3 + HISTORY_SIZE, order);
675 static inline void do_apply_filter(int version, APEFilter *f, int32_t *data, int count, int order, int fracbits)
677 int res;
678 int absres;
680 while (count--) {
681 /* round fixedpoint scalar product */
682 res = (scalarproduct(f->delay - order, f->coeffs, order) + (1 << (fracbits - 1))) >> fracbits;
684 if (*data < 0)
685 vector_add(f->coeffs, f->adaptcoeffs - order, order);
686 else if (*data > 0)
687 vector_sub(f->coeffs, f->adaptcoeffs - order, order);
689 res += *data;
691 *data++ = res;
693 /* Update the output history */
694 *f->delay++ = av_clip_int16(res);
696 if (version < 3980) {
697 /* Version ??? to < 3.98 files (untested) */
698 f->adaptcoeffs[0] = (res == 0) ? 0 : ((res >> 28) & 8) - 4;
699 f->adaptcoeffs[-4] >>= 1;
700 f->adaptcoeffs[-8] >>= 1;
701 } else {
702 /* Version 3.98 and later files */
704 /* Update the adaption coefficients */
705 absres = (res < 0 ? -res : res);
707 if (absres > (f->avg * 3))
708 *f->adaptcoeffs = ((res >> 25) & 64) - 32;
709 else if (absres > (f->avg * 4) / 3)
710 *f->adaptcoeffs = ((res >> 26) & 32) - 16;
711 else if (absres > 0)
712 *f->adaptcoeffs = ((res >> 27) & 16) - 8;
713 else
714 *f->adaptcoeffs = 0;
716 f->avg += (absres - f->avg) / 16;
718 f->adaptcoeffs[-1] >>= 1;
719 f->adaptcoeffs[-2] >>= 1;
720 f->adaptcoeffs[-8] >>= 1;
723 f->adaptcoeffs++;
725 /* Have we filled the history buffer? */
726 if (f->delay == f->historybuffer + HISTORY_SIZE + (order * 2)) {
727 memmove(f->historybuffer, f->delay - (order * 2),
728 (order * 2) * sizeof(int16_t));
729 f->delay = f->historybuffer + order * 2;
730 f->adaptcoeffs = f->historybuffer + order;
735 static void apply_filter(APEContext * ctx, APEFilter *f,
736 int32_t * data0, int32_t * data1,
737 int count, int order, int fracbits)
739 do_apply_filter(ctx->fileversion, &f[0], data0, count, order, fracbits);
740 if (data1)
741 do_apply_filter(ctx->fileversion, &f[1], data1, count, order, fracbits);
744 static void ape_apply_filters(APEContext * ctx, int32_t * decoded0,
745 int32_t * decoded1, int count)
747 int i;
749 for (i = 0; i < APE_FILTER_LEVELS; i++) {
750 if (!ape_filter_orders[ctx->fset][i])
751 break;
752 apply_filter(ctx, ctx->filters[i], decoded0, decoded1, count, ape_filter_orders[ctx->fset][i], ape_filter_fracbits[ctx->fset][i]);
756 static void init_frame_decoder(APEContext * ctx)
758 int i;
759 init_entropy_decoder(ctx);
760 init_predictor_decoder(ctx);
762 for (i = 0; i < APE_FILTER_LEVELS; i++) {
763 if (!ape_filter_orders[ctx->fset][i])
764 break;
765 init_filter(ctx, ctx->filters[i], ctx->filterbuf[i], ape_filter_orders[ctx->fset][i]);
769 static void ape_unpack_mono(APEContext * ctx, int count)
771 int32_t left;
772 int32_t *decoded0 = ctx->decoded0;
773 int32_t *decoded1 = ctx->decoded1;
775 if (ctx->frameflags & APE_FRAMECODE_STEREO_SILENCE) {
776 entropy_decode(ctx, count, 0);
777 /* We are pure silence, so we're done. */
778 av_log(ctx->avctx, AV_LOG_DEBUG, "pure silence mono\n");
779 return;
782 entropy_decode(ctx, count, 0);
783 ape_apply_filters(ctx, decoded0, NULL, count);
785 /* Now apply the predictor decoding */
786 predictor_decode_mono(ctx, count);
788 /* Pseudo-stereo - just copy left channel to right channel */
789 if (ctx->channels == 2) {
790 while (count--) {
791 left = *decoded0;
792 *(decoded1++) = *(decoded0++) = left;
797 static void ape_unpack_stereo(APEContext * ctx, int count)
799 int32_t left, right;
800 int32_t *decoded0 = ctx->decoded0;
801 int32_t *decoded1 = ctx->decoded1;
803 if (ctx->frameflags & APE_FRAMECODE_STEREO_SILENCE) {
804 /* We are pure silence, so we're done. */
805 av_log(ctx->avctx, AV_LOG_DEBUG, "pure silence stereo\n");
806 return;
809 entropy_decode(ctx, count, 1);
810 ape_apply_filters(ctx, decoded0, decoded1, count);
812 /* Now apply the predictor decoding */
813 predictor_decode_stereo(ctx, count);
815 /* Decorrelate and scale to output depth */
816 while (count--) {
817 left = *decoded1 - (*decoded0 / 2);
818 right = left + *decoded0;
820 *(decoded0++) = left;
821 *(decoded1++) = right;
825 static int ape_decode_frame(AVCodecContext * avctx,
826 void *data, int *data_size,
827 const uint8_t * buf, int buf_size)
829 APEContext *s = avctx->priv_data;
830 int16_t *samples = data;
831 int nblocks;
832 int i, n;
833 int blockstodecode;
834 int bytes_used;
836 if (buf_size == 0 && !s->samples) {
837 *data_size = 0;
838 return 0;
841 /* should not happen but who knows */
842 if (BLOCKS_PER_LOOP * 2 * avctx->channels > *data_size) {
843 av_log (avctx, AV_LOG_ERROR, "Packet size is too big to be handled in lavc! (max is %d where you have %d)\n", *data_size, s->samples * 2 * avctx->channels);
844 return -1;
847 if(!s->samples){
848 s->data = av_realloc(s->data, (buf_size + 3) & ~3);
849 s->dsp.bswap_buf((uint32_t*)s->data, (const uint32_t*)buf, buf_size >> 2);
850 s->ptr = s->last_ptr = s->data;
851 s->data_end = s->data + buf_size;
853 nblocks = s->samples = bytestream_get_be32(&s->ptr);
854 n = bytestream_get_be32(&s->ptr);
855 if(n < 0 || n > 3){
856 av_log(avctx, AV_LOG_ERROR, "Incorrect offset passed\n");
857 s->data = NULL;
858 return -1;
860 s->ptr += n;
862 s->currentframeblocks = nblocks;
863 buf += 4;
864 if (s->samples <= 0) {
865 *data_size = 0;
866 return buf_size;
869 memset(s->decoded0, 0, sizeof(s->decoded0));
870 memset(s->decoded1, 0, sizeof(s->decoded1));
872 /* Initialize the frame decoder */
873 init_frame_decoder(s);
876 if (!s->data) {
877 *data_size = 0;
878 return buf_size;
881 nblocks = s->samples;
882 blockstodecode = FFMIN(BLOCKS_PER_LOOP, nblocks);
884 s->error=0;
886 if ((s->channels == 1) || (s->frameflags & APE_FRAMECODE_PSEUDO_STEREO))
887 ape_unpack_mono(s, blockstodecode);
888 else
889 ape_unpack_stereo(s, blockstodecode);
891 if(s->error || s->ptr > s->data_end){
892 s->samples=0;
893 av_log(avctx, AV_LOG_ERROR, "Error decoding frame\n");
894 return -1;
897 for (i = 0; i < blockstodecode; i++) {
898 *samples++ = s->decoded0[i];
899 if(s->channels == 2)
900 *samples++ = s->decoded1[i];
903 s->samples -= blockstodecode;
905 *data_size = blockstodecode * 2 * s->channels;
906 bytes_used = s->samples ? s->ptr - s->last_ptr : buf_size;
907 s->last_ptr = s->ptr;
908 return bytes_used;
911 AVCodec ape_decoder = {
912 "ape",
913 CODEC_TYPE_AUDIO,
914 CODEC_ID_APE,
915 sizeof(APEContext),
916 ape_decode_init,
917 NULL,
918 ape_decode_close,
919 ape_decode_frame,
920 .long_name = "Monkey's Audio",