Vertical align.
[ffmpeg-lucabe.git] / libavcodec / wmaprodec.c
blobcbc97d9c82aaf50c3ea41a969bcb4e0af472e8fd
1 /*
2 * Wmapro compatible decoder
3 * Copyright (c) 2007 Baptiste Coudurier, Benjamin Larsson, Ulion
4 * Copyright (c) 2008 - 2009 Sascha Sommer, Benjamin Larsson
6 * This file is part of FFmpeg.
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23 /**
24 * @file libavcodec/wmaprodec.c
25 * @brief wmapro decoder implementation
26 * Wmapro is an MDCT based codec comparable to wma standard or AAC.
27 * The decoding therefore consists of the following steps:
28 * - bitstream decoding
29 * - reconstruction of per-channel data
30 * - rescaling and inverse quantization
31 * - IMDCT
32 * - windowing and overlapp-add
34 * The compressed wmapro bitstream is split into individual packets.
35 * Every such packet contains one or more wma frames.
36 * The compressed frames may have a variable length and frames may
37 * cross packet boundaries.
38 * Common to all wmapro frames is the number of samples that are stored in
39 * a frame.
40 * The number of samples and a few other decode flags are stored
41 * as extradata that has to be passed to the decoder.
43 * The wmapro frames themselves are again split into a variable number of
44 * subframes. Every subframe contains the data for 2^N time domain samples
45 * where N varies between 7 and 12.
47 * Example wmapro bitstream (in samples):
49 * || packet 0 || packet 1 || packet 2 packets
50 * ---------------------------------------------------
51 * || frame 0 || frame 1 || frame 2 || frames
52 * ---------------------------------------------------
53 * || | | || | | | || || subframes of channel 0
54 * ---------------------------------------------------
55 * || | | || | | | || || subframes of channel 1
56 * ---------------------------------------------------
58 * The frame layouts for the individual channels of a wma frame does not need
59 * to be the same.
61 * However, if the offsets and lengths of several subframes of a frame are the
62 * same, the subframes of the channels can be grouped.
63 * Every group may then use special coding techniques like M/S stereo coding
64 * to improve the compression ratio. These channel transformations do not
65 * need to be applied to a whole subframe. Instead, they can also work on
66 * individual scale factor bands (see below).
67 * The coefficients that carry the audio signal in the frequency domain
68 * are transmitted as huffman-coded vectors with 4, 2 and 1 elements.
69 * In addition to that, the encoder can switch to a runlevel coding scheme
70 * by transmitting subframe_length / 128 zero coefficients.
72 * Before the audio signal can be converted to the time domain, the
73 * coefficients have to be rescaled and inverse quantized.
74 * A subframe is therefore split into several scale factor bands that get
75 * scaled individually.
76 * Scale factors are submitted for every frame but they might be shared
77 * between the subframes of a channel. Scale factors are initially DPCM-coded.
78 * Once scale factors are shared, the differences are transmitted as runlevel
79 * codes.
80 * Every subframe length and offset combination in the frame layout shares a
81 * common quantization factor that can be adjusted for every channel by a
82 * modifier.
83 * After the inverse quantization, the coefficients get processed by an IMDCT.
84 * The resulting values are then windowed with a sine window and the first half
85 * of the values are added to the second half of the output from the previous
86 * subframe in order to reconstruct the output samples.
89 #include "avcodec.h"
90 #include "internal.h"
91 #include "get_bits.h"
92 #include "put_bits.h"
93 #include "wmaprodata.h"
94 #include "dsputil.h"
95 #include "wma.h"
97 /** current decoder limitations */
98 #define WMAPRO_MAX_CHANNELS 8 ///< max number of handled channels
99 #define MAX_SUBFRAMES 32 ///< max number of subframes per channel
100 #define MAX_BANDS 29 ///< max number of scale factor bands
101 #define MAX_FRAMESIZE 32768 ///< maximum compressed frame size
103 #define WMAPRO_BLOCK_MAX_BITS 12 ///< log2 of max block size
104 #define WMAPRO_BLOCK_MAX_SIZE (1 << WMAPRO_BLOCK_MAX_BITS) ///< maximum block size
105 #define WMAPRO_BLOCK_SIZES (WMAPRO_BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1) ///< possible block sizes
108 #define VLCBITS 9
109 #define SCALEVLCBITS 8
110 #define VEC4MAXDEPTH ((HUFF_VEC4_MAXBITS+VLCBITS-1)/VLCBITS)
111 #define VEC2MAXDEPTH ((HUFF_VEC2_MAXBITS+VLCBITS-1)/VLCBITS)
112 #define VEC1MAXDEPTH ((HUFF_VEC1_MAXBITS+VLCBITS-1)/VLCBITS)
113 #define SCALEMAXDEPTH ((HUFF_SCALE_MAXBITS+SCALEVLCBITS-1)/SCALEVLCBITS)
114 #define SCALERLMAXDEPTH ((HUFF_SCALE_RL_MAXBITS+VLCBITS-1)/VLCBITS)
116 static VLC sf_vlc; ///< scale factor DPCM vlc
117 static VLC sf_rl_vlc; ///< scale factor run length vlc
118 static VLC vec4_vlc; ///< 4 coefficients per symbol
119 static VLC vec2_vlc; ///< 2 coefficients per symbol
120 static VLC vec1_vlc; ///< 1 coefficient per symbol
121 static VLC coef_vlc[2]; ///< coefficient run length vlc codes
122 static float sin64[33]; ///< sinus table for decorrelation
125 * @brief frame specific decoder context for a single channel
127 typedef struct {
128 int16_t prev_block_len; ///< length of the previous block
129 uint8_t transmit_coefs;
130 uint8_t num_subframes;
131 uint16_t subframe_len[MAX_SUBFRAMES]; ///< subframe length in samples
132 uint16_t subframe_offset[MAX_SUBFRAMES]; ///< subframe positions in the current frame
133 uint8_t cur_subframe; ///< current subframe number
134 uint16_t decoded_samples; ///< number of already processed samples
135 uint8_t grouped; ///< channel is part of a group
136 int quant_step; ///< quantization step for the current subframe
137 int8_t reuse_sf; ///< share scale factors between subframes
138 int8_t scale_factor_step; ///< scaling step for the current subframe
139 int max_scale_factor; ///< maximum scale factor for the current subframe
140 int saved_scale_factors[2][MAX_BANDS]; ///< resampled and (previously) transmitted scale factor values
141 int8_t scale_factor_idx; ///< index for the transmitted scale factor values (used for resampling)
142 int* scale_factors; ///< pointer to the scale factor values used for decoding
143 uint8_t table_idx; ///< index in sf_offsets for the scale factor reference block
144 float* coeffs; ///< pointer to the subframe decode buffer
145 DECLARE_ALIGNED_16(float, out[WMAPRO_BLOCK_MAX_SIZE + WMAPRO_BLOCK_MAX_SIZE / 2]); ///< output buffer
146 } WMAProChannelCtx;
149 * @brief channel group for channel transformations
151 typedef struct {
152 uint8_t num_channels; ///< number of channels in the group
153 int8_t transform; ///< transform on / off
154 int8_t transform_band[MAX_BANDS]; ///< controls if the transform is enabled for a certain band
155 float decorrelation_matrix[WMAPRO_MAX_CHANNELS*WMAPRO_MAX_CHANNELS];
156 float* channel_data[WMAPRO_MAX_CHANNELS]; ///< transformation coefficients
157 } WMAProChannelGrp;
160 * @brief main decoder context
162 typedef struct WMAProDecodeCtx {
163 /* generic decoder variables */
164 AVCodecContext* avctx; ///< codec context for av_log
165 DSPContext dsp; ///< accelerated DSP functions
166 uint8_t frame_data[MAX_FRAMESIZE +
167 FF_INPUT_BUFFER_PADDING_SIZE];///< compressed frame data
168 PutBitContext pb; ///< context for filling the frame_data buffer
169 FFTContext mdct_ctx[WMAPRO_BLOCK_SIZES]; ///< MDCT context per block size
170 DECLARE_ALIGNED_16(float, tmp[WMAPRO_BLOCK_MAX_SIZE]); ///< IMDCT output buffer
171 float* windows[WMAPRO_BLOCK_SIZES]; ///< windows for the different block sizes
173 /* frame size dependent frame information (set during initialization) */
174 uint32_t decode_flags; ///< used compression features
175 uint8_t len_prefix; ///< frame is prefixed with its length
176 uint8_t dynamic_range_compression; ///< frame contains DRC data
177 uint8_t bits_per_sample; ///< integer audio sample size for the unscaled IMDCT output (used to scale to [-1.0, 1.0])
178 uint16_t samples_per_frame; ///< number of samples to output
179 uint16_t log2_frame_size;
180 int8_t num_channels; ///< number of channels in the stream (same as AVCodecContext.num_channels)
181 int8_t lfe_channel; ///< lfe channel index
182 uint8_t max_num_subframes;
183 uint8_t subframe_len_bits; ///< number of bits used for the subframe length
184 uint8_t max_subframe_len_bit; ///< flag indicating that the subframe is of maximum size when the first subframe length bit is 1
185 uint16_t min_samples_per_subframe;
186 int8_t num_sfb[WMAPRO_BLOCK_SIZES]; ///< scale factor bands per block size
187 int16_t sfb_offsets[WMAPRO_BLOCK_SIZES][MAX_BANDS]; ///< scale factor band offsets (multiples of 4)
188 int8_t sf_offsets[WMAPRO_BLOCK_SIZES][WMAPRO_BLOCK_SIZES][MAX_BANDS]; ///< scale factor resample matrix
189 int16_t subwoofer_cutoffs[WMAPRO_BLOCK_SIZES]; ///< subwoofer cutoff values
191 /* packet decode state */
192 GetBitContext pgb; ///< bitstream reader context for the packet
193 uint8_t packet_offset; ///< frame offset in the packet
194 uint8_t packet_sequence_number; ///< current packet number
195 int num_saved_bits; ///< saved number of bits
196 int frame_offset; ///< frame offset in the bit reservoir
197 int subframe_offset; ///< subframe offset in the bit reservoir
198 uint8_t packet_loss; ///< set in case of bitstream error
199 uint8_t packet_done; ///< set when a packet is fully decoded
201 /* frame decode state */
202 uint32_t frame_num; ///< current frame number (not used for decoding)
203 GetBitContext gb; ///< bitstream reader context
204 int buf_bit_size; ///< buffer size in bits
205 float* samples; ///< current samplebuffer pointer
206 float* samples_end; ///< maximum samplebuffer pointer
207 uint8_t drc_gain; ///< gain for the DRC tool
208 int8_t skip_frame; ///< skip output step
209 int8_t parsed_all_subframes; ///< all subframes decoded?
211 /* subframe/block decode state */
212 int16_t subframe_len; ///< current subframe length
213 int8_t channels_for_cur_subframe; ///< number of channels that contain the subframe
214 int8_t channel_indexes_for_cur_subframe[WMAPRO_MAX_CHANNELS];
215 int8_t num_bands; ///< number of scale factor bands
216 int16_t* cur_sfb_offsets; ///< sfb offsets for the current block
217 uint8_t table_idx; ///< index for the num_sfb, sfb_offsets, sf_offsets and subwoofer_cutoffs tables
218 int8_t esc_len; ///< length of escaped coefficients
220 uint8_t num_chgroups; ///< number of channel groups
221 WMAProChannelGrp chgroup[WMAPRO_MAX_CHANNELS]; ///< channel group information
223 WMAProChannelCtx channel[WMAPRO_MAX_CHANNELS]; ///< per channel data
224 } WMAProDecodeCtx;
228 *@brief helper function to print the most important members of the context
229 *@param s context
231 static void av_cold dump_context(WMAProDecodeCtx *s)
233 #define PRINT(a, b) av_log(s->avctx, AV_LOG_DEBUG, " %s = %d\n", a, b);
234 #define PRINT_HEX(a, b) av_log(s->avctx, AV_LOG_DEBUG, " %s = %x\n", a, b);
236 PRINT("ed sample bit depth", s->bits_per_sample);
237 PRINT_HEX("ed decode flags", s->decode_flags);
238 PRINT("samples per frame", s->samples_per_frame);
239 PRINT("log2 frame size", s->log2_frame_size);
240 PRINT("max num subframes", s->max_num_subframes);
241 PRINT("len prefix", s->len_prefix);
242 PRINT("num channels", s->num_channels);
246 *@brief Uninitialize the decoder and free all resources.
247 *@param avctx codec context
248 *@return 0 on success, < 0 otherwise
250 static av_cold int decode_end(AVCodecContext *avctx)
252 WMAProDecodeCtx *s = avctx->priv_data;
253 int i;
255 for (i = 0; i < WMAPRO_BLOCK_SIZES; i++)
256 ff_mdct_end(&s->mdct_ctx[i]);
258 return 0;
262 *@brief Initialize the decoder.
263 *@param avctx codec context
264 *@return 0 on success, -1 otherwise
266 static av_cold int decode_init(AVCodecContext *avctx)
268 WMAProDecodeCtx *s = avctx->priv_data;
269 uint8_t *edata_ptr = avctx->extradata;
270 unsigned int channel_mask;
271 int i;
272 int log2_max_num_subframes;
273 int num_possible_block_sizes;
275 s->avctx = avctx;
276 dsputil_init(&s->dsp, avctx);
277 init_put_bits(&s->pb, s->frame_data, MAX_FRAMESIZE);
279 avctx->sample_fmt = SAMPLE_FMT_FLT;
281 if (avctx->extradata_size >= 18) {
282 s->decode_flags = AV_RL16(edata_ptr+14);
283 channel_mask = AV_RL32(edata_ptr+2);
284 s->bits_per_sample = AV_RL16(edata_ptr);
285 /** dump the extradata */
286 for (i = 0; i < avctx->extradata_size; i++)
287 dprintf(avctx, "[%x] ", avctx->extradata[i]);
288 dprintf(avctx, "\n");
290 } else {
291 av_log_ask_for_sample(avctx, "Unknown extradata size\n");
292 return AVERROR_INVALIDDATA;
295 /** generic init */
296 s->log2_frame_size = av_log2(avctx->block_align) + 4;
298 /** frame info */
299 s->skip_frame = 1; /** skip first frame */
300 s->packet_loss = 1;
301 s->len_prefix = (s->decode_flags & 0x40);
303 if (!s->len_prefix) {
304 av_log_ask_for_sample(avctx, "no length prefix\n");
305 return AVERROR_INVALIDDATA;
308 /** get frame len */
309 s->samples_per_frame = 1 << ff_wma_get_frame_len_bits(avctx->sample_rate,
310 3, s->decode_flags);
312 /** init previous block len */
313 for (i = 0; i < avctx->channels; i++)
314 s->channel[i].prev_block_len = s->samples_per_frame;
316 /** subframe info */
317 log2_max_num_subframes = ((s->decode_flags & 0x38) >> 3);
318 s->max_num_subframes = 1 << log2_max_num_subframes;
319 if (s->max_num_subframes == 16)
320 s->max_subframe_len_bit = 1;
321 s->subframe_len_bits = av_log2(log2_max_num_subframes) + 1;
323 num_possible_block_sizes = log2_max_num_subframes + 1;
324 s->min_samples_per_subframe = s->samples_per_frame / s->max_num_subframes;
325 s->dynamic_range_compression = (s->decode_flags & 0x80);
327 if (s->max_num_subframes > MAX_SUBFRAMES) {
328 av_log(avctx, AV_LOG_ERROR, "invalid number of subframes %i\n",
329 s->max_num_subframes);
330 return AVERROR_INVALIDDATA;
333 s->num_channels = avctx->channels;
335 /** extract lfe channel position */
336 s->lfe_channel = -1;
338 if (channel_mask & 8) {
339 unsigned int mask;
340 for (mask = 1; mask < 16; mask <<= 1) {
341 if (channel_mask & mask)
342 ++s->lfe_channel;
346 if (s->num_channels < 0 || s->num_channels > WMAPRO_MAX_CHANNELS) {
347 av_log_ask_for_sample(avctx, "invalid number of channels\n");
348 return AVERROR_NOTSUPP;
351 INIT_VLC_STATIC(&sf_vlc, SCALEVLCBITS, HUFF_SCALE_SIZE,
352 scale_huffbits, 1, 1,
353 scale_huffcodes, 2, 2, 616);
355 INIT_VLC_STATIC(&sf_rl_vlc, VLCBITS, HUFF_SCALE_RL_SIZE,
356 scale_rl_huffbits, 1, 1,
357 scale_rl_huffcodes, 4, 4, 1406);
359 INIT_VLC_STATIC(&coef_vlc[0], VLCBITS, HUFF_COEF0_SIZE,
360 coef0_huffbits, 1, 1,
361 coef0_huffcodes, 4, 4, 2108);
363 INIT_VLC_STATIC(&coef_vlc[1], VLCBITS, HUFF_COEF1_SIZE,
364 coef1_huffbits, 1, 1,
365 coef1_huffcodes, 4, 4, 3912);
367 INIT_VLC_STATIC(&vec4_vlc, VLCBITS, HUFF_VEC4_SIZE,
368 vec4_huffbits, 1, 1,
369 vec4_huffcodes, 2, 2, 604);
371 INIT_VLC_STATIC(&vec2_vlc, VLCBITS, HUFF_VEC2_SIZE,
372 vec2_huffbits, 1, 1,
373 vec2_huffcodes, 2, 2, 562);
375 INIT_VLC_STATIC(&vec1_vlc, VLCBITS, HUFF_VEC1_SIZE,
376 vec1_huffbits, 1, 1,
377 vec1_huffcodes, 2, 2, 562);
379 /** calculate number of scale factor bands and their offsets
380 for every possible block size */
381 for (i = 0; i < num_possible_block_sizes; i++) {
382 int subframe_len = s->samples_per_frame >> i;
383 int x;
384 int band = 1;
386 s->sfb_offsets[i][0] = 0;
388 for (x = 0; x < MAX_BANDS-1 && s->sfb_offsets[i][band - 1] < subframe_len; x++) {
389 int offset = (subframe_len * 2 * critical_freq[x])
390 / s->avctx->sample_rate + 2;
391 offset &= ~3;
392 if (offset > s->sfb_offsets[i][band - 1])
393 s->sfb_offsets[i][band++] = offset;
395 s->sfb_offsets[i][band - 1] = subframe_len;
396 s->num_sfb[i] = band - 1;
400 /** Scale factors can be shared between blocks of different size
401 as every block has a different scale factor band layout.
402 The matrix sf_offsets is needed to find the correct scale factor.
405 for (i = 0; i < num_possible_block_sizes; i++) {
406 int b;
407 for (b = 0; b < s->num_sfb[i]; b++) {
408 int x;
409 int offset = ((s->sfb_offsets[i][b]
410 + s->sfb_offsets[i][b + 1] - 1) << i) >> 1;
411 for (x = 0; x < num_possible_block_sizes; x++) {
412 int v = 0;
413 while (s->sfb_offsets[x][v + 1] << x < offset)
414 ++v;
415 s->sf_offsets[i][x][b] = v;
420 /** init MDCT, FIXME: only init needed sizes */
421 for (i = 0; i < WMAPRO_BLOCK_SIZES; i++)
422 ff_mdct_init(&s->mdct_ctx[i], BLOCK_MIN_BITS+1+i, 1,
423 1.0 / (1 << (BLOCK_MIN_BITS + i - 1))
424 / (1 << (s->bits_per_sample - 1)));
426 /** init MDCT windows: simple sinus window */
427 for (i = 0; i < WMAPRO_BLOCK_SIZES; i++) {
428 const int n = 1 << (WMAPRO_BLOCK_MAX_BITS - i);
429 const int win_idx = WMAPRO_BLOCK_MAX_BITS - i;
430 ff_sine_window_init(ff_sine_windows[win_idx], n);
431 s->windows[WMAPRO_BLOCK_SIZES - i - 1] = ff_sine_windows[win_idx];
434 /** calculate subwoofer cutoff values */
435 for (i = 0; i < num_possible_block_sizes; i++) {
436 int block_size = s->samples_per_frame >> i;
437 int cutoff = (440*block_size + 3 * (s->avctx->sample_rate >> 1) - 1)
438 / s->avctx->sample_rate;
439 s->subwoofer_cutoffs[i] = av_clip(cutoff, 4, block_size);
442 /** calculate sine values for the decorrelation matrix */
443 for (i = 0; i < 33; i++)
444 sin64[i] = sin(i*M_PI / 64.0);
446 if (avctx->debug & FF_DEBUG_BITSTREAM)
447 dump_context(s);
449 avctx->channel_layout = channel_mask;
450 return 0;
454 *@brief Decode the subframe length.
455 *@param s context
456 *@param offset sample offset in the frame
457 *@return decoded subframe length on success, < 0 in case of an error
459 static int decode_subframe_length(WMAProDecodeCtx *s, int offset)
461 int frame_len_shift = 0;
462 int subframe_len;
464 /** no need to read from the bitstream when only one length is possible */
465 if (offset == s->samples_per_frame - s->min_samples_per_subframe)
466 return s->min_samples_per_subframe;
468 /** 1 bit indicates if the subframe is of maximum length */
469 if (s->max_subframe_len_bit) {
470 if (get_bits1(&s->gb))
471 frame_len_shift = 1 + get_bits(&s->gb, s->subframe_len_bits-1);
472 } else
473 frame_len_shift = get_bits(&s->gb, s->subframe_len_bits);
475 subframe_len = s->samples_per_frame >> frame_len_shift;
477 /** sanity check the length */
478 if (subframe_len < s->min_samples_per_subframe ||
479 subframe_len > s->samples_per_frame) {
480 av_log(s->avctx, AV_LOG_ERROR, "broken frame: subframe_len %i\n",
481 subframe_len);
482 return AVERROR_INVALIDDATA;
484 return subframe_len;
488 *@brief Decode how the data in the frame is split into subframes.
489 * Every WMA frame contains the encoded data for a fixed number of
490 * samples per channel. The data for every channel might be split
491 * into several subframes. This function will reconstruct the list of
492 * subframes for every channel.
494 * If the subframes are not evenly split, the algorithm estimates the
495 * channels with the lowest number of total samples.
496 * Afterwards, for each of these channels a bit is read from the
497 * bitstream that indicates if the channel contains a subframe with the
498 * next subframe size that is going to be read from the bitstream or not.
499 * If a channel contains such a subframe, the subframe size gets added to
500 * the channel's subframe list.
501 * The algorithm repeats these steps until the frame is properly divided
502 * between the individual channels.
504 *@param s context
505 *@return 0 on success, < 0 in case of an error
507 static int decode_tilehdr(WMAProDecodeCtx *s)
509 uint16_t num_samples[WMAPRO_MAX_CHANNELS]; /** sum of samples for all currently known subframes of a channel */
510 uint8_t contains_subframe[WMAPRO_MAX_CHANNELS]; /** flag indicating if a channel contains the current subframe */
511 int channels_for_cur_subframe = s->num_channels; /** number of channels that contain the current subframe */
512 int fixed_channel_layout = 0; /** flag indicating that all channels use the same subframe offsets and sizes */
513 int min_channel_len = 0; /** smallest sum of samples (channels with this length will be processed first) */
514 int c;
516 /* Should never consume more than 3073 bits (256 iterations for the
517 * while loop when always the minimum amount of 128 samples is substracted
518 * from missing samples in the 8 channel case).
519 * 1 + BLOCK_MAX_SIZE * MAX_CHANNELS / BLOCK_MIN_SIZE * (MAX_CHANNELS + 4)
522 /** reset tiling information */
523 for (c = 0; c < s->num_channels; c++)
524 s->channel[c].num_subframes = 0;
526 memset(num_samples, 0, sizeof(num_samples));
528 if (s->max_num_subframes == 1 || get_bits1(&s->gb))
529 fixed_channel_layout = 1;
531 /** loop until the frame data is split between the subframes */
532 do {
533 int subframe_len;
535 /** check which channels contain the subframe */
536 for (c = 0; c < s->num_channels; c++) {
537 if (num_samples[c] == min_channel_len) {
538 if (fixed_channel_layout || channels_for_cur_subframe == 1 ||
539 (min_channel_len == s->samples_per_frame - s->min_samples_per_subframe))
540 contains_subframe[c] = 1;
541 else
542 contains_subframe[c] = get_bits1(&s->gb);
543 } else
544 contains_subframe[c] = 0;
547 /** get subframe length, subframe_len == 0 is not allowed */
548 if ((subframe_len = decode_subframe_length(s, min_channel_len)) <= 0)
549 return AVERROR_INVALIDDATA;
551 /** add subframes to the individual channels and find new min_channel_len */
552 min_channel_len += subframe_len;
553 for (c = 0; c < s->num_channels; c++) {
554 WMAProChannelCtx* chan = &s->channel[c];
556 if (contains_subframe[c]) {
557 if (chan->num_subframes >= MAX_SUBFRAMES) {
558 av_log(s->avctx, AV_LOG_ERROR,
559 "broken frame: num subframes > 31\n");
560 return AVERROR_INVALIDDATA;
562 chan->subframe_len[chan->num_subframes] = subframe_len;
563 num_samples[c] += subframe_len;
564 ++chan->num_subframes;
565 if (num_samples[c] > s->samples_per_frame) {
566 av_log(s->avctx, AV_LOG_ERROR, "broken frame: "
567 "channel len > samples_per_frame\n");
568 return AVERROR_INVALIDDATA;
570 } else if (num_samples[c] <= min_channel_len) {
571 if (num_samples[c] < min_channel_len) {
572 channels_for_cur_subframe = 0;
573 min_channel_len = num_samples[c];
575 ++channels_for_cur_subframe;
578 } while (min_channel_len < s->samples_per_frame);
580 for (c = 0; c < s->num_channels; c++) {
581 int i;
582 int offset = 0;
583 for (i = 0; i < s->channel[c].num_subframes; i++) {
584 dprintf(s->avctx, "frame[%i] channel[%i] subframe[%i]"
585 " len %i\n", s->frame_num, c, i,
586 s->channel[c].subframe_len[i]);
587 s->channel[c].subframe_offset[i] = offset;
588 offset += s->channel[c].subframe_len[i];
592 return 0;
596 *@brief Calculate a decorrelation matrix from the bitstream parameters.
597 *@param s codec context
598 *@param chgroup channel group for which the matrix needs to be calculated
600 static void decode_decorrelation_matrix(WMAProDecodeCtx *s,
601 WMAProChannelGrp *chgroup)
603 int i;
604 int offset = 0;
605 int8_t rotation_offset[WMAPRO_MAX_CHANNELS * WMAPRO_MAX_CHANNELS];
606 memset(chgroup->decorrelation_matrix, 0, s->num_channels *
607 s->num_channels * sizeof(*chgroup->decorrelation_matrix));
609 for (i = 0; i < chgroup->num_channels * (chgroup->num_channels - 1) >> 1; i++)
610 rotation_offset[i] = get_bits(&s->gb, 6);
612 for (i = 0; i < chgroup->num_channels; i++)
613 chgroup->decorrelation_matrix[chgroup->num_channels * i + i] =
614 get_bits1(&s->gb) ? 1.0 : -1.0;
616 for (i = 1; i < chgroup->num_channels; i++) {
617 int x;
618 for (x = 0; x < i; x++) {
619 int y;
620 for (y = 0; y < i + 1; y++) {
621 float v1 = chgroup->decorrelation_matrix[x * chgroup->num_channels + y];
622 float v2 = chgroup->decorrelation_matrix[i * chgroup->num_channels + y];
623 int n = rotation_offset[offset + x];
624 float sinv;
625 float cosv;
627 if (n < 32) {
628 sinv = sin64[n];
629 cosv = sin64[32 - n];
630 } else {
631 sinv = sin64[64 - n];
632 cosv = -sin64[n - 32];
635 chgroup->decorrelation_matrix[y + x * chgroup->num_channels] =
636 (v1 * sinv) - (v2 * cosv);
637 chgroup->decorrelation_matrix[y + i * chgroup->num_channels] =
638 (v1 * cosv) + (v2 * sinv);
641 offset += i;
646 *@brief Decode channel transformation parameters
647 *@param s codec context
648 *@return 0 in case of success, < 0 in case of bitstream errors
650 static int decode_channel_transform(WMAProDecodeCtx* s)
652 int i;
653 /* should never consume more than 1921 bits for the 8 channel case
654 * 1 + MAX_CHANNELS * (MAX_CHANNELS + 2 + 3 * MAX_CHANNELS * MAX_CHANNELS
655 * + MAX_CHANNELS + MAX_BANDS + 1)
658 /** in the one channel case channel transforms are pointless */
659 s->num_chgroups = 0;
660 if (s->num_channels > 1) {
661 int remaining_channels = s->channels_for_cur_subframe;
663 if (get_bits1(&s->gb)) {
664 av_log_ask_for_sample(s->avctx,
665 "unsupported channel transform bit\n");
666 return AVERROR_INVALIDDATA;
669 for (s->num_chgroups = 0; remaining_channels &&
670 s->num_chgroups < s->channels_for_cur_subframe; s->num_chgroups++) {
671 WMAProChannelGrp* chgroup = &s->chgroup[s->num_chgroups];
672 float** channel_data = chgroup->channel_data;
673 chgroup->num_channels = 0;
674 chgroup->transform = 0;
676 /** decode channel mask */
677 if (remaining_channels > 2) {
678 for (i = 0; i < s->channels_for_cur_subframe; i++) {
679 int channel_idx = s->channel_indexes_for_cur_subframe[i];
680 if (!s->channel[channel_idx].grouped
681 && get_bits1(&s->gb)) {
682 ++chgroup->num_channels;
683 s->channel[channel_idx].grouped = 1;
684 *channel_data++ = s->channel[channel_idx].coeffs;
687 } else {
688 chgroup->num_channels = remaining_channels;
689 for (i = 0; i < s->channels_for_cur_subframe; i++) {
690 int channel_idx = s->channel_indexes_for_cur_subframe[i];
691 if (!s->channel[channel_idx].grouped)
692 *channel_data++ = s->channel[channel_idx].coeffs;
693 s->channel[channel_idx].grouped = 1;
697 /** decode transform type */
698 if (chgroup->num_channels == 2) {
699 if (get_bits1(&s->gb)) {
700 if (get_bits1(&s->gb)) {
701 av_log_ask_for_sample(s->avctx,
702 "unsupported channel transform type\n");
704 } else {
705 chgroup->transform = 1;
706 if (s->num_channels == 2) {
707 chgroup->decorrelation_matrix[0] = 1.0;
708 chgroup->decorrelation_matrix[1] = -1.0;
709 chgroup->decorrelation_matrix[2] = 1.0;
710 chgroup->decorrelation_matrix[3] = 1.0;
711 } else {
712 /** cos(pi/4) */
713 chgroup->decorrelation_matrix[0] = 0.70703125;
714 chgroup->decorrelation_matrix[1] = -0.70703125;
715 chgroup->decorrelation_matrix[2] = 0.70703125;
716 chgroup->decorrelation_matrix[3] = 0.70703125;
719 } else if (chgroup->num_channels > 2) {
720 if (get_bits1(&s->gb)) {
721 chgroup->transform = 1;
722 if (get_bits1(&s->gb)) {
723 decode_decorrelation_matrix(s, chgroup);
724 } else {
725 /** FIXME: more than 6 coupled channels not supported */
726 if (chgroup->num_channels > 6) {
727 av_log_ask_for_sample(s->avctx,
728 "coupled channels > 6\n");
729 } else {
730 memcpy(chgroup->decorrelation_matrix,
731 default_decorrelation[chgroup->num_channels],
732 chgroup->num_channels * chgroup->num_channels *
733 sizeof(*chgroup->decorrelation_matrix));
739 /** decode transform on / off */
740 if (chgroup->transform) {
741 if (!get_bits1(&s->gb)) {
742 int i;
743 /** transform can be enabled for individual bands */
744 for (i = 0; i < s->num_bands; i++) {
745 chgroup->transform_band[i] = get_bits1(&s->gb);
747 } else {
748 memset(chgroup->transform_band, 1, s->num_bands);
751 remaining_channels -= chgroup->num_channels;
754 return 0;
758 *@brief Extract the coefficients from the bitstream.
759 *@param s codec context
760 *@param c current channel number
761 *@return 0 on success, < 0 in case of bitstream errors
763 static int decode_coeffs(WMAProDecodeCtx *s, int c)
765 /* Integers 0..15 as single-precision floats. The table saves a
766 costly int to float conversion, and storing the values as
767 integers allows fast sign-flipping. */
768 static const int fval_tab[16] = {
769 0x00000000, 0x3f800000, 0x40000000, 0x40400000,
770 0x40800000, 0x40a00000, 0x40c00000, 0x40e00000,
771 0x41000000, 0x41100000, 0x41200000, 0x41300000,
772 0x41400000, 0x41500000, 0x41600000, 0x41700000,
774 int vlctable;
775 VLC* vlc;
776 WMAProChannelCtx* ci = &s->channel[c];
777 int rl_mode = 0;
778 int cur_coeff = 0;
779 int num_zeros = 0;
780 const uint16_t* run;
781 const float* level;
783 dprintf(s->avctx, "decode coefficients for channel %i\n", c);
785 vlctable = get_bits1(&s->gb);
786 vlc = &coef_vlc[vlctable];
788 if (vlctable) {
789 run = coef1_run;
790 level = coef1_level;
791 } else {
792 run = coef0_run;
793 level = coef0_level;
796 /** decode vector coefficients (consumes up to 167 bits per iteration for
797 4 vector coded large values) */
798 while (!rl_mode && cur_coeff + 3 < s->subframe_len) {
799 int vals[4];
800 int i;
801 unsigned int idx;
803 idx = get_vlc2(&s->gb, vec4_vlc.table, VLCBITS, VEC4MAXDEPTH);
805 if (idx == HUFF_VEC4_SIZE - 1) {
806 for (i = 0; i < 4; i += 2) {
807 idx = get_vlc2(&s->gb, vec2_vlc.table, VLCBITS, VEC2MAXDEPTH);
808 if (idx == HUFF_VEC2_SIZE - 1) {
809 int v0, v1;
810 v0 = get_vlc2(&s->gb, vec1_vlc.table, VLCBITS, VEC1MAXDEPTH);
811 if (v0 == HUFF_VEC1_SIZE - 1)
812 v0 += ff_wma_get_large_val(&s->gb);
813 v1 = get_vlc2(&s->gb, vec1_vlc.table, VLCBITS, VEC1MAXDEPTH);
814 if (v1 == HUFF_VEC1_SIZE - 1)
815 v1 += ff_wma_get_large_val(&s->gb);
816 ((float*)vals)[i ] = v0;
817 ((float*)vals)[i+1] = v1;
818 } else {
819 vals[i] = fval_tab[symbol_to_vec2[idx] >> 4 ];
820 vals[i+1] = fval_tab[symbol_to_vec2[idx] & 0xF];
823 } else {
824 vals[0] = fval_tab[ symbol_to_vec4[idx] >> 12 ];
825 vals[1] = fval_tab[(symbol_to_vec4[idx] >> 8) & 0xF];
826 vals[2] = fval_tab[(symbol_to_vec4[idx] >> 4) & 0xF];
827 vals[3] = fval_tab[ symbol_to_vec4[idx] & 0xF];
830 /** decode sign */
831 for (i = 0; i < 4; i++) {
832 if (vals[i]) {
833 int sign = get_bits1(&s->gb) - 1;
834 *(uint32_t*)&ci->coeffs[cur_coeff] = vals[i] ^ sign<<31;
835 num_zeros = 0;
836 } else {
837 ci->coeffs[cur_coeff] = 0;
838 /** switch to run level mode when subframe_len / 128 zeros
839 were found in a row */
840 rl_mode |= (++num_zeros > s->subframe_len >> 8);
842 ++cur_coeff;
846 /** decode run level coded coefficients */
847 if (rl_mode) {
848 memset(&ci->coeffs[cur_coeff], 0,
849 sizeof(*ci->coeffs) * (s->subframe_len - cur_coeff));
850 if (ff_wma_run_level_decode(s->avctx, &s->gb, vlc,
851 level, run, 1, ci->coeffs,
852 cur_coeff, s->subframe_len,
853 s->subframe_len, s->esc_len, 0))
854 return AVERROR_INVALIDDATA;
857 return 0;
861 *@brief Extract scale factors from the bitstream.
862 *@param s codec context
863 *@return 0 on success, < 0 in case of bitstream errors
865 static int decode_scale_factors(WMAProDecodeCtx* s)
867 int i;
869 /** should never consume more than 5344 bits
870 * MAX_CHANNELS * (1 + MAX_BANDS * 23)
873 for (i = 0; i < s->channels_for_cur_subframe; i++) {
874 int c = s->channel_indexes_for_cur_subframe[i];
875 int* sf;
876 int* sf_end;
877 s->channel[c].scale_factors = s->channel[c].saved_scale_factors[!s->channel[c].scale_factor_idx];
878 sf_end = s->channel[c].scale_factors + s->num_bands;
880 /** resample scale factors for the new block size
881 * as the scale factors might need to be resampled several times
882 * before some new values are transmitted, a backup of the last
883 * transmitted scale factors is kept in saved_scale_factors
885 if (s->channel[c].reuse_sf) {
886 const int8_t* sf_offsets = s->sf_offsets[s->table_idx][s->channel[c].table_idx];
887 int b;
888 for (b = 0; b < s->num_bands; b++)
889 s->channel[c].scale_factors[b] =
890 s->channel[c].saved_scale_factors[s->channel[c].scale_factor_idx][*sf_offsets++];
893 if (!s->channel[c].cur_subframe || get_bits1(&s->gb)) {
895 if (!s->channel[c].reuse_sf) {
896 int val;
897 /** decode DPCM coded scale factors */
898 s->channel[c].scale_factor_step = get_bits(&s->gb, 2) + 1;
899 val = 45 / s->channel[c].scale_factor_step;
900 for (sf = s->channel[c].scale_factors; sf < sf_end; sf++) {
901 val += get_vlc2(&s->gb, sf_vlc.table, SCALEVLCBITS, SCALEMAXDEPTH) - 60;
902 *sf = val;
904 } else {
905 int i;
906 /** run level decode differences to the resampled factors */
907 for (i = 0; i < s->num_bands; i++) {
908 int idx;
909 int skip;
910 int val;
911 int sign;
913 idx = get_vlc2(&s->gb, sf_rl_vlc.table, VLCBITS, SCALERLMAXDEPTH);
915 if (!idx) {
916 uint32_t code = get_bits(&s->gb, 14);
917 val = code >> 6;
918 sign = (code & 1) - 1;
919 skip = (code & 0x3f) >> 1;
920 } else if (idx == 1) {
921 break;
922 } else {
923 skip = scale_rl_run[idx];
924 val = scale_rl_level[idx];
925 sign = get_bits1(&s->gb)-1;
928 i += skip;
929 if (i >= s->num_bands) {
930 av_log(s->avctx, AV_LOG_ERROR,
931 "invalid scale factor coding\n");
932 return AVERROR_INVALIDDATA;
934 s->channel[c].scale_factors[i] += (val ^ sign) - sign;
937 /** swap buffers */
938 s->channel[c].scale_factor_idx = !s->channel[c].scale_factor_idx;
939 s->channel[c].table_idx = s->table_idx;
940 s->channel[c].reuse_sf = 1;
943 /** calculate new scale factor maximum */
944 s->channel[c].max_scale_factor = s->channel[c].scale_factors[0];
945 for (sf = s->channel[c].scale_factors + 1; sf < sf_end; sf++) {
946 s->channel[c].max_scale_factor =
947 FFMAX(s->channel[c].max_scale_factor, *sf);
951 return 0;
955 *@brief Reconstruct the individual channel data.
956 *@param s codec context
958 static void inverse_channel_transform(WMAProDecodeCtx *s)
960 int i;
962 for (i = 0; i < s->num_chgroups; i++) {
963 if (s->chgroup[i].transform) {
964 float data[WMAPRO_MAX_CHANNELS];
965 const int num_channels = s->chgroup[i].num_channels;
966 float** ch_data = s->chgroup[i].channel_data;
967 float** ch_end = ch_data + num_channels;
968 const int8_t* tb = s->chgroup[i].transform_band;
969 int16_t* sfb;
971 /** multichannel decorrelation */
972 for (sfb = s->cur_sfb_offsets;
973 sfb < s->cur_sfb_offsets + s->num_bands; sfb++) {
974 int y;
975 if (*tb++ == 1) {
976 /** multiply values with the decorrelation_matrix */
977 for (y = sfb[0]; y < FFMIN(sfb[1], s->subframe_len); y++) {
978 const float* mat = s->chgroup[i].decorrelation_matrix;
979 const float* data_end = data + num_channels;
980 float* data_ptr = data;
981 float** ch;
983 for (ch = ch_data; ch < ch_end; ch++)
984 *data_ptr++ = (*ch)[y];
986 for (ch = ch_data; ch < ch_end; ch++) {
987 float sum = 0;
988 data_ptr = data;
989 while (data_ptr < data_end)
990 sum += *data_ptr++ * *mat++;
992 (*ch)[y] = sum;
995 } else if (s->num_channels == 2) {
996 int len = FFMIN(sfb[1], s->subframe_len) - sfb[0];
997 s->dsp.vector_fmul_scalar(ch_data[0] + sfb[0],
998 ch_data[0] + sfb[0],
999 181.0 / 128, len);
1000 s->dsp.vector_fmul_scalar(ch_data[1] + sfb[0],
1001 ch_data[1] + sfb[0],
1002 181.0 / 128, len);
1010 *@brief Apply sine window and reconstruct the output buffer.
1011 *@param s codec context
1013 static void wmapro_window(WMAProDecodeCtx *s)
1015 int i;
1016 for (i = 0; i < s->channels_for_cur_subframe; i++) {
1017 int c = s->channel_indexes_for_cur_subframe[i];
1018 float* window;
1019 int winlen = s->channel[c].prev_block_len;
1020 float* start = s->channel[c].coeffs - (winlen >> 1);
1022 if (s->subframe_len < winlen) {
1023 start += (winlen - s->subframe_len) >> 1;
1024 winlen = s->subframe_len;
1027 window = s->windows[av_log2(winlen) - BLOCK_MIN_BITS];
1029 winlen >>= 1;
1031 s->dsp.vector_fmul_window(start, start, start + winlen,
1032 window, 0, winlen);
1034 s->channel[c].prev_block_len = s->subframe_len;
1039 *@brief Decode a single subframe (block).
1040 *@param s codec context
1041 *@return 0 on success, < 0 when decoding failed
1043 static int decode_subframe(WMAProDecodeCtx *s)
1045 int offset = s->samples_per_frame;
1046 int subframe_len = s->samples_per_frame;
1047 int i;
1048 int total_samples = s->samples_per_frame * s->num_channels;
1049 int transmit_coeffs = 0;
1050 int cur_subwoofer_cutoff;
1052 s->subframe_offset = get_bits_count(&s->gb);
1054 /** reset channel context and find the next block offset and size
1055 == the next block of the channel with the smallest number of
1056 decoded samples
1058 for (i = 0; i < s->num_channels; i++) {
1059 s->channel[i].grouped = 0;
1060 if (offset > s->channel[i].decoded_samples) {
1061 offset = s->channel[i].decoded_samples;
1062 subframe_len =
1063 s->channel[i].subframe_len[s->channel[i].cur_subframe];
1067 dprintf(s->avctx,
1068 "processing subframe with offset %i len %i\n", offset, subframe_len);
1070 /** get a list of all channels that contain the estimated block */
1071 s->channels_for_cur_subframe = 0;
1072 for (i = 0; i < s->num_channels; i++) {
1073 const int cur_subframe = s->channel[i].cur_subframe;
1074 /** substract already processed samples */
1075 total_samples -= s->channel[i].decoded_samples;
1077 /** and count if there are multiple subframes that match our profile */
1078 if (offset == s->channel[i].decoded_samples &&
1079 subframe_len == s->channel[i].subframe_len[cur_subframe]) {
1080 total_samples -= s->channel[i].subframe_len[cur_subframe];
1081 s->channel[i].decoded_samples +=
1082 s->channel[i].subframe_len[cur_subframe];
1083 s->channel_indexes_for_cur_subframe[s->channels_for_cur_subframe] = i;
1084 ++s->channels_for_cur_subframe;
1088 /** check if the frame will be complete after processing the
1089 estimated block */
1090 if (!total_samples)
1091 s->parsed_all_subframes = 1;
1094 dprintf(s->avctx, "subframe is part of %i channels\n",
1095 s->channels_for_cur_subframe);
1097 /** calculate number of scale factor bands and their offsets */
1098 s->table_idx = av_log2(s->samples_per_frame/subframe_len);
1099 s->num_bands = s->num_sfb[s->table_idx];
1100 s->cur_sfb_offsets = s->sfb_offsets[s->table_idx];
1101 cur_subwoofer_cutoff = s->subwoofer_cutoffs[s->table_idx];
1103 /** configure the decoder for the current subframe */
1104 for (i = 0; i < s->channels_for_cur_subframe; i++) {
1105 int c = s->channel_indexes_for_cur_subframe[i];
1107 s->channel[c].coeffs = &s->channel[c].out[(s->samples_per_frame >> 1)
1108 + offset];
1111 s->subframe_len = subframe_len;
1112 s->esc_len = av_log2(s->subframe_len - 1) + 1;
1114 /** skip extended header if any */
1115 if (get_bits1(&s->gb)) {
1116 int num_fill_bits;
1117 if (!(num_fill_bits = get_bits(&s->gb, 2))) {
1118 int len = get_bits(&s->gb, 4);
1119 num_fill_bits = get_bits(&s->gb, len) + 1;
1122 if (num_fill_bits >= 0) {
1123 if (get_bits_count(&s->gb) + num_fill_bits > s->num_saved_bits) {
1124 av_log(s->avctx, AV_LOG_ERROR, "invalid number of fill bits\n");
1125 return AVERROR_INVALIDDATA;
1128 skip_bits_long(&s->gb, num_fill_bits);
1132 /** no idea for what the following bit is used */
1133 if (get_bits1(&s->gb)) {
1134 av_log_ask_for_sample(s->avctx, "reserved bit set\n");
1135 return AVERROR_INVALIDDATA;
1139 if (decode_channel_transform(s) < 0)
1140 return AVERROR_INVALIDDATA;
1143 for (i = 0; i < s->channels_for_cur_subframe; i++) {
1144 int c = s->channel_indexes_for_cur_subframe[i];
1145 if ((s->channel[c].transmit_coefs = get_bits1(&s->gb)))
1146 transmit_coeffs = 1;
1149 if (transmit_coeffs) {
1150 int step;
1151 int quant_step = 90 * s->bits_per_sample >> 4;
1152 if ((get_bits1(&s->gb))) {
1153 /** FIXME: might change run level mode decision */
1154 av_log_ask_for_sample(s->avctx, "unsupported quant step coding\n");
1155 return AVERROR_INVALIDDATA;
1157 /** decode quantization step */
1158 step = get_sbits(&s->gb, 6);
1159 quant_step += step;
1160 if (step == -32 || step == 31) {
1161 const int sign = (step == 31) - 1;
1162 int quant = 0;
1163 while (get_bits_count(&s->gb) + 5 < s->num_saved_bits &&
1164 (step = get_bits(&s->gb, 5)) == 31) {
1165 quant += 31;
1167 quant_step += ((quant + step) ^ sign) - sign;
1169 if (quant_step < 0) {
1170 av_log(s->avctx, AV_LOG_DEBUG, "negative quant step\n");
1173 /** decode quantization step modifiers for every channel */
1175 if (s->channels_for_cur_subframe == 1) {
1176 s->channel[s->channel_indexes_for_cur_subframe[0]].quant_step = quant_step;
1177 } else {
1178 int modifier_len = get_bits(&s->gb, 3);
1179 for (i = 0; i < s->channels_for_cur_subframe; i++) {
1180 int c = s->channel_indexes_for_cur_subframe[i];
1181 s->channel[c].quant_step = quant_step;
1182 if (get_bits1(&s->gb)) {
1183 if (modifier_len) {
1184 s->channel[c].quant_step += get_bits(&s->gb, modifier_len) + 1;
1185 } else
1186 ++s->channel[c].quant_step;
1191 /** decode scale factors */
1192 if (decode_scale_factors(s) < 0)
1193 return AVERROR_INVALIDDATA;
1196 dprintf(s->avctx, "BITSTREAM: subframe header length was %i\n",
1197 get_bits_count(&s->gb) - s->subframe_offset);
1199 /** parse coefficients */
1200 for (i = 0; i < s->channels_for_cur_subframe; i++) {
1201 int c = s->channel_indexes_for_cur_subframe[i];
1202 if (s->channel[c].transmit_coefs &&
1203 get_bits_count(&s->gb) < s->num_saved_bits) {
1204 decode_coeffs(s, c);
1205 } else
1206 memset(s->channel[c].coeffs, 0,
1207 sizeof(*s->channel[c].coeffs) * subframe_len);
1210 dprintf(s->avctx, "BITSTREAM: subframe length was %i\n",
1211 get_bits_count(&s->gb) - s->subframe_offset);
1213 if (transmit_coeffs) {
1214 /** reconstruct the per channel data */
1215 inverse_channel_transform(s);
1216 for (i = 0; i < s->channels_for_cur_subframe; i++) {
1217 int c = s->channel_indexes_for_cur_subframe[i];
1218 const int* sf = s->channel[c].scale_factors;
1219 int b;
1221 if (c == s->lfe_channel)
1222 memset(&s->tmp[cur_subwoofer_cutoff], 0, sizeof(*s->tmp) *
1223 (subframe_len - cur_subwoofer_cutoff));
1225 /** inverse quantization and rescaling */
1226 for (b = 0; b < s->num_bands; b++) {
1227 const int end = FFMIN(s->cur_sfb_offsets[b+1], s->subframe_len);
1228 const int exp = s->channel[c].quant_step -
1229 (s->channel[c].max_scale_factor - *sf++) *
1230 s->channel[c].scale_factor_step;
1231 const float quant = pow(10.0, exp / 20.0);
1232 int start = s->cur_sfb_offsets[b];
1233 s->dsp.vector_fmul_scalar(s->tmp + start,
1234 s->channel[c].coeffs + start,
1235 quant, end - start);
1238 /** apply imdct (ff_imdct_half == DCTIV with reverse) */
1239 ff_imdct_half(&s->mdct_ctx[av_log2(subframe_len) - BLOCK_MIN_BITS],
1240 s->channel[c].coeffs, s->tmp);
1244 /** window and overlapp-add */
1245 wmapro_window(s);
1247 /** handled one subframe */
1248 for (i = 0; i < s->channels_for_cur_subframe; i++) {
1249 int c = s->channel_indexes_for_cur_subframe[i];
1250 if (s->channel[c].cur_subframe >= s->channel[c].num_subframes) {
1251 av_log(s->avctx, AV_LOG_ERROR, "broken subframe\n");
1252 return AVERROR_INVALIDDATA;
1254 ++s->channel[c].cur_subframe;
1257 return 0;
1261 *@brief Decode one WMA frame.
1262 *@param s codec context
1263 *@return 0 if the trailer bit indicates that this is the last frame,
1264 * 1 if there are additional frames
1266 static int decode_frame(WMAProDecodeCtx *s)
1268 GetBitContext* gb = &s->gb;
1269 int more_frames = 0;
1270 int len = 0;
1271 int i;
1273 /** check for potential output buffer overflow */
1274 if (s->num_channels * s->samples_per_frame > s->samples_end - s->samples) {
1275 /** return an error if no frame could be decoded at all */
1276 av_log(s->avctx, AV_LOG_ERROR,
1277 "not enough space for the output samples\n");
1278 s->packet_loss = 1;
1279 return 0;
1282 /** get frame length */
1283 if (s->len_prefix)
1284 len = get_bits(gb, s->log2_frame_size);
1286 dprintf(s->avctx, "decoding frame with length %x\n", len);
1288 /** decode tile information */
1289 if (decode_tilehdr(s)) {
1290 s->packet_loss = 1;
1291 return 0;
1294 /** read postproc transform */
1295 if (s->num_channels > 1 && get_bits1(gb)) {
1296 av_log_ask_for_sample(s->avctx, "Unsupported postproc transform found\n");
1297 s->packet_loss = 1;
1298 return 0;
1301 /** read drc info */
1302 if (s->dynamic_range_compression) {
1303 s->drc_gain = get_bits(gb, 8);
1304 dprintf(s->avctx, "drc_gain %i\n", s->drc_gain);
1307 /** no idea what these are for, might be the number of samples
1308 that need to be skipped at the beginning or end of a stream */
1309 if (get_bits1(gb)) {
1310 int skip;
1312 /** usually true for the first frame */
1313 if (get_bits1(gb)) {
1314 skip = get_bits(gb, av_log2(s->samples_per_frame * 2));
1315 dprintf(s->avctx, "start skip: %i\n", skip);
1318 /** sometimes true for the last frame */
1319 if (get_bits1(gb)) {
1320 skip = get_bits(gb, av_log2(s->samples_per_frame * 2));
1321 dprintf(s->avctx, "end skip: %i\n", skip);
1326 dprintf(s->avctx, "BITSTREAM: frame header length was %i\n",
1327 get_bits_count(gb) - s->frame_offset);
1329 /** reset subframe states */
1330 s->parsed_all_subframes = 0;
1331 for (i = 0; i < s->num_channels; i++) {
1332 s->channel[i].decoded_samples = 0;
1333 s->channel[i].cur_subframe = 0;
1334 s->channel[i].reuse_sf = 0;
1337 /** decode all subframes */
1338 while (!s->parsed_all_subframes) {
1339 if (decode_subframe(s) < 0) {
1340 s->packet_loss = 1;
1341 return 0;
1345 /** interleave samples and write them to the output buffer */
1346 for (i = 0; i < s->num_channels; i++) {
1347 float* ptr;
1348 int incr = s->num_channels;
1349 float* iptr = s->channel[i].out;
1350 int x;
1352 ptr = s->samples + i;
1354 for (x = 0; x < s->samples_per_frame; x++) {
1355 *ptr = av_clipf(*iptr++, -1.0, 32767.0 / 32768.0);
1356 ptr += incr;
1359 /** reuse second half of the IMDCT output for the next frame */
1360 memcpy(&s->channel[i].out[0],
1361 &s->channel[i].out[s->samples_per_frame],
1362 s->samples_per_frame * sizeof(*s->channel[i].out) >> 1);
1365 if (s->skip_frame) {
1366 s->skip_frame = 0;
1367 } else
1368 s->samples += s->num_channels * s->samples_per_frame;
1370 if (len != (get_bits_count(gb) - s->frame_offset) + 2) {
1371 /** FIXME: not sure if this is always an error */
1372 av_log(s->avctx, AV_LOG_ERROR, "frame[%i] would have to skip %i bits\n",
1373 s->frame_num, len - (get_bits_count(gb) - s->frame_offset) - 1);
1374 s->packet_loss = 1;
1375 return 0;
1378 /** skip the rest of the frame data */
1379 skip_bits_long(gb, len - (get_bits_count(gb) - s->frame_offset) - 1);
1381 /** decode trailer bit */
1382 more_frames = get_bits1(gb);
1384 ++s->frame_num;
1385 return more_frames;
1389 *@brief Calculate remaining input buffer length.
1390 *@param s codec context
1391 *@param gb bitstream reader context
1392 *@return remaining size in bits
1394 static int remaining_bits(WMAProDecodeCtx *s, GetBitContext *gb)
1396 return s->buf_bit_size - get_bits_count(gb);
1400 *@brief Fill the bit reservoir with a (partial) frame.
1401 *@param s codec context
1402 *@param gb bitstream reader context
1403 *@param len length of the partial frame
1404 *@param append decides wether to reset the buffer or not
1406 static void save_bits(WMAProDecodeCtx *s, GetBitContext* gb, int len,
1407 int append)
1409 int buflen;
1411 /** when the frame data does not need to be concatenated, the input buffer
1412 is resetted and additional bits from the previous frame are copyed
1413 and skipped later so that a fast byte copy is possible */
1415 if (!append) {
1416 s->frame_offset = get_bits_count(gb) & 7;
1417 s->num_saved_bits = s->frame_offset;
1418 init_put_bits(&s->pb, s->frame_data, MAX_FRAMESIZE);
1421 buflen = (s->num_saved_bits + len + 8) >> 3;
1423 if (len <= 0 || buflen > MAX_FRAMESIZE) {
1424 av_log_ask_for_sample(s->avctx, "input buffer too small\n");
1425 s->packet_loss = 1;
1426 return;
1429 s->num_saved_bits += len;
1430 if (!append) {
1431 ff_copy_bits(&s->pb, gb->buffer + (get_bits_count(gb) >> 3),
1432 s->num_saved_bits);
1433 } else {
1434 int align = 8 - (get_bits_count(gb) & 7);
1435 align = FFMIN(align, len);
1436 put_bits(&s->pb, align, get_bits(gb, align));
1437 len -= align;
1438 ff_copy_bits(&s->pb, gb->buffer + (get_bits_count(gb) >> 3), len);
1440 skip_bits_long(gb, len);
1443 PutBitContext tmp = s->pb;
1444 flush_put_bits(&tmp);
1447 init_get_bits(&s->gb, s->frame_data, s->num_saved_bits);
1448 skip_bits(&s->gb, s->frame_offset);
1452 *@brief Decode a single WMA packet.
1453 *@param avctx codec context
1454 *@param data the output buffer
1455 *@param data_size number of bytes that were written to the output buffer
1456 *@param avpkt input packet
1457 *@return number of bytes that were read from the input buffer
1459 static int decode_packet(AVCodecContext *avctx,
1460 void *data, int *data_size, AVPacket* avpkt)
1462 WMAProDecodeCtx *s = avctx->priv_data;
1463 GetBitContext* gb = &s->pgb;
1464 const uint8_t* buf = avpkt->data;
1465 int buf_size = avpkt->size;
1466 int num_bits_prev_frame;
1467 int packet_sequence_number;
1469 s->samples = data;
1470 s->samples_end = (float*)((int8_t*)data + *data_size);
1471 *data_size = 0;
1473 if (s->packet_done || s->packet_loss) {
1474 s->packet_done = 0;
1475 s->buf_bit_size = buf_size << 3;
1477 /** sanity check for the buffer length */
1478 if (buf_size < avctx->block_align)
1479 return 0;
1481 buf_size = avctx->block_align;
1483 /** parse packet header */
1484 init_get_bits(gb, buf, s->buf_bit_size);
1485 packet_sequence_number = get_bits(gb, 4);
1486 skip_bits(gb, 2);
1488 /** get number of bits that need to be added to the previous frame */
1489 num_bits_prev_frame = get_bits(gb, s->log2_frame_size);
1490 dprintf(avctx, "packet[%d]: nbpf %x\n", avctx->frame_number,
1491 num_bits_prev_frame);
1493 /** check for packet loss */
1494 if (!s->packet_loss &&
1495 ((s->packet_sequence_number + 1) & 0xF) != packet_sequence_number) {
1496 s->packet_loss = 1;
1497 av_log(avctx, AV_LOG_ERROR, "Packet loss detected! seq %x vs %x\n",
1498 s->packet_sequence_number, packet_sequence_number);
1500 s->packet_sequence_number = packet_sequence_number;
1502 if (num_bits_prev_frame > 0) {
1503 /** append the previous frame data to the remaining data from the
1504 previous packet to create a full frame */
1505 save_bits(s, gb, num_bits_prev_frame, 1);
1506 dprintf(avctx, "accumulated %x bits of frame data\n",
1507 s->num_saved_bits - s->frame_offset);
1509 /** decode the cross packet frame if it is valid */
1510 if (!s->packet_loss)
1511 decode_frame(s);
1512 } else if (s->num_saved_bits - s->frame_offset) {
1513 dprintf(avctx, "ignoring %x previously saved bits\n",
1514 s->num_saved_bits - s->frame_offset);
1517 s->packet_loss = 0;
1519 } else {
1520 int frame_size;
1521 s->buf_bit_size = avpkt->size << 3;
1522 init_get_bits(gb, avpkt->data, s->buf_bit_size);
1523 skip_bits(gb, s->packet_offset);
1524 if (remaining_bits(s, gb) > s->log2_frame_size &&
1525 (frame_size = show_bits(gb, s->log2_frame_size)) &&
1526 frame_size <= remaining_bits(s, gb)) {
1527 save_bits(s, gb, frame_size, 0);
1528 s->packet_done = !decode_frame(s);
1529 } else
1530 s->packet_done = 1;
1533 if (s->packet_done && !s->packet_loss &&
1534 remaining_bits(s, gb) > 0) {
1535 /** save the rest of the data so that it can be decoded
1536 with the next packet */
1537 save_bits(s, gb, remaining_bits(s, gb), 0);
1540 *data_size = (int8_t *)s->samples - (int8_t *)data;
1541 s->packet_offset = get_bits_count(gb) & 7;
1543 return (s->packet_loss) ? AVERROR_INVALIDDATA : get_bits_count(gb) >> 3;
1547 *@brief Clear decoder buffers (for seeking).
1548 *@param avctx codec context
1550 static void flush(AVCodecContext *avctx)
1552 WMAProDecodeCtx *s = avctx->priv_data;
1553 int i;
1554 /** reset output buffer as a part of it is used during the windowing of a
1555 new frame */
1556 for (i = 0; i < s->num_channels; i++)
1557 memset(s->channel[i].out, 0, s->samples_per_frame *
1558 sizeof(*s->channel[i].out));
1559 s->packet_loss = 1;
1564 *@brief wmapro decoder
1566 AVCodec wmapro_decoder = {
1567 "wmapro",
1568 CODEC_TYPE_AUDIO,
1569 CODEC_ID_WMAPRO,
1570 sizeof(WMAProDecodeCtx),
1571 decode_init,
1572 NULL,
1573 decode_end,
1574 decode_packet,
1575 .capabilities = CODEC_CAP_SUBFRAMES,
1576 .flush= flush,
1577 .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 9 Professional"),