Cosmetics: rename 'name' av_strtod() param to 'numstr'. The new name
[ffmpeg-lucabe.git] / libavcodec / aac.c
blobd1433bad4da24acb564b745f5288a5b05b798357
1 /*
2 * AAC decoder
3 * Copyright (c) 2005-2006 Oded Shimon ( ods15 ods15 dyndns org )
4 * Copyright (c) 2006-2007 Maxim Gavrilov ( maxim.gavrilov gmail com )
6 * This file is part of FFmpeg.
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23 /**
24 * @file libavcodec/aac.c
25 * AAC decoder
26 * @author Oded Shimon ( ods15 ods15 dyndns org )
27 * @author Maxim Gavrilov ( maxim.gavrilov gmail com )
31 * supported tools
33 * Support? Name
34 * N (code in SoC repo) gain control
35 * Y block switching
36 * Y window shapes - standard
37 * N window shapes - Low Delay
38 * Y filterbank - standard
39 * N (code in SoC repo) filterbank - Scalable Sample Rate
40 * Y Temporal Noise Shaping
41 * N (code in SoC repo) Long Term Prediction
42 * Y intensity stereo
43 * Y channel coupling
44 * Y frequency domain prediction
45 * Y Perceptual Noise Substitution
46 * Y Mid/Side stereo
47 * N Scalable Inverse AAC Quantization
48 * N Frequency Selective Switch
49 * N upsampling filter
50 * Y quantization & coding - AAC
51 * N quantization & coding - TwinVQ
52 * N quantization & coding - BSAC
53 * N AAC Error Resilience tools
54 * N Error Resilience payload syntax
55 * N Error Protection tool
56 * N CELP
57 * N Silence Compression
58 * N HVXC
59 * N HVXC 4kbits/s VR
60 * N Structured Audio tools
61 * N Structured Audio Sample Bank Format
62 * N MIDI
63 * N Harmonic and Individual Lines plus Noise
64 * N Text-To-Speech Interface
65 * N (in progress) Spectral Band Replication
66 * Y (not in this code) Layer-1
67 * Y (not in this code) Layer-2
68 * Y (not in this code) Layer-3
69 * N SinuSoidal Coding (Transient, Sinusoid, Noise)
70 * N (planned) Parametric Stereo
71 * N Direct Stream Transfer
73 * Note: - HE AAC v1 comprises LC AAC with Spectral Band Replication.
74 * - HE AAC v2 comprises LC AAC with Spectral Band Replication and
75 Parametric Stereo.
79 #include "avcodec.h"
80 #include "internal.h"
81 #include "get_bits.h"
82 #include "dsputil.h"
83 #include "lpc.h"
85 #include "aac.h"
86 #include "aactab.h"
87 #include "aacdectab.h"
88 #include "mpeg4audio.h"
89 #include "aac_parser.h"
91 #include <assert.h>
92 #include <errno.h>
93 #include <math.h>
94 #include <string.h>
96 union float754 { float f; uint32_t i; };
98 static VLC vlc_scalefactors;
99 static VLC vlc_spectral[11];
102 static ChannelElement* get_che(AACContext *ac, int type, int elem_id) {
103 static const int8_t tags_per_config[16] = { 0, 1, 1, 2, 3, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0 };
104 if (ac->tag_che_map[type][elem_id]) {
105 return ac->tag_che_map[type][elem_id];
107 if (ac->tags_mapped >= tags_per_config[ac->m4ac.chan_config]) {
108 return NULL;
110 switch (ac->m4ac.chan_config) {
111 case 7:
112 if (ac->tags_mapped == 3 && type == TYPE_CPE) {
113 ac->tags_mapped++;
114 return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][2];
116 case 6:
117 /* Some streams incorrectly code 5.1 audio as SCE[0] CPE[0] CPE[1] SCE[1]
118 instead of SCE[0] CPE[0] CPE[0] LFE[0]. If we seem to have
119 encountered such a stream, transfer the LFE[0] element to SCE[1] */
120 if (ac->tags_mapped == tags_per_config[ac->m4ac.chan_config] - 1 && (type == TYPE_LFE || type == TYPE_SCE)) {
121 ac->tags_mapped++;
122 return ac->tag_che_map[type][elem_id] = ac->che[TYPE_LFE][0];
124 case 5:
125 if (ac->tags_mapped == 2 && type == TYPE_CPE) {
126 ac->tags_mapped++;
127 return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][1];
129 case 4:
130 if (ac->tags_mapped == 2 && ac->m4ac.chan_config == 4 && type == TYPE_SCE) {
131 ac->tags_mapped++;
132 return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][1];
134 case 3:
135 case 2:
136 if (ac->tags_mapped == (ac->m4ac.chan_config != 2) && type == TYPE_CPE) {
137 ac->tags_mapped++;
138 return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][0];
139 } else if (ac->m4ac.chan_config == 2) {
140 return NULL;
142 case 1:
143 if (!ac->tags_mapped && type == TYPE_SCE) {
144 ac->tags_mapped++;
145 return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][0];
147 default:
148 return NULL;
153 * Configure output channel order based on the current program configuration element.
155 * @param che_pos current channel position configuration
156 * @param new_che_pos New channel position configuration - we only do something if it differs from the current one.
158 * @return Returns error status. 0 - OK, !0 - error
160 static int output_configure(AACContext *ac, enum ChannelPosition che_pos[4][MAX_ELEM_ID],
161 enum ChannelPosition new_che_pos[4][MAX_ELEM_ID], int channel_config) {
162 AVCodecContext *avctx = ac->avccontext;
163 int i, type, channels = 0;
165 memcpy(che_pos, new_che_pos, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
167 /* Allocate or free elements depending on if they are in the
168 * current program configuration.
170 * Set up default 1:1 output mapping.
172 * For a 5.1 stream the output order will be:
173 * [ Center ] [ Front Left ] [ Front Right ] [ LFE ] [ Surround Left ] [ Surround Right ]
176 for(i = 0; i < MAX_ELEM_ID; i++) {
177 for(type = 0; type < 4; type++) {
178 if(che_pos[type][i]) {
179 if(!ac->che[type][i] && !(ac->che[type][i] = av_mallocz(sizeof(ChannelElement))))
180 return AVERROR(ENOMEM);
181 if(type != TYPE_CCE) {
182 ac->output_data[channels++] = ac->che[type][i]->ch[0].ret;
183 if(type == TYPE_CPE) {
184 ac->output_data[channels++] = ac->che[type][i]->ch[1].ret;
187 } else
188 av_freep(&ac->che[type][i]);
192 if (channel_config) {
193 memset(ac->tag_che_map, 0, 4 * MAX_ELEM_ID * sizeof(ac->che[0][0]));
194 ac->tags_mapped = 0;
195 } else {
196 memcpy(ac->tag_che_map, ac->che, 4 * MAX_ELEM_ID * sizeof(ac->che[0][0]));
197 ac->tags_mapped = 4*MAX_ELEM_ID;
200 avctx->channels = channels;
202 return 0;
206 * Decode an array of 4 bit element IDs, optionally interleaved with a stereo/mono switching bit.
208 * @param cpe_map Stereo (Channel Pair Element) map, NULL if stereo bit is not present.
209 * @param sce_map mono (Single Channel Element) map
210 * @param type speaker type/position for these channels
212 static void decode_channel_map(enum ChannelPosition *cpe_map,
213 enum ChannelPosition *sce_map, enum ChannelPosition type, GetBitContext * gb, int n) {
214 while(n--) {
215 enum ChannelPosition *map = cpe_map && get_bits1(gb) ? cpe_map : sce_map; // stereo or mono map
216 map[get_bits(gb, 4)] = type;
221 * Decode program configuration element; reference: table 4.2.
223 * @param new_che_pos New channel position configuration - we only do something if it differs from the current one.
225 * @return Returns error status. 0 - OK, !0 - error
227 static int decode_pce(AACContext * ac, enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
228 GetBitContext * gb) {
229 int num_front, num_side, num_back, num_lfe, num_assoc_data, num_cc, sampling_index;
231 skip_bits(gb, 2); // object_type
233 sampling_index = get_bits(gb, 4);
234 if (ac->m4ac.sampling_index != sampling_index)
235 av_log(ac->avccontext, AV_LOG_WARNING, "Sample rate index in program config element does not match the sample rate index configured by the container.\n");
237 num_front = get_bits(gb, 4);
238 num_side = get_bits(gb, 4);
239 num_back = get_bits(gb, 4);
240 num_lfe = get_bits(gb, 2);
241 num_assoc_data = get_bits(gb, 3);
242 num_cc = get_bits(gb, 4);
244 if (get_bits1(gb))
245 skip_bits(gb, 4); // mono_mixdown_tag
246 if (get_bits1(gb))
247 skip_bits(gb, 4); // stereo_mixdown_tag
249 if (get_bits1(gb))
250 skip_bits(gb, 3); // mixdown_coeff_index and pseudo_surround
252 decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_FRONT, gb, num_front);
253 decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_SIDE, gb, num_side );
254 decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_BACK, gb, num_back );
255 decode_channel_map(NULL, new_che_pos[TYPE_LFE], AAC_CHANNEL_LFE, gb, num_lfe );
257 skip_bits_long(gb, 4 * num_assoc_data);
259 decode_channel_map(new_che_pos[TYPE_CCE], new_che_pos[TYPE_CCE], AAC_CHANNEL_CC, gb, num_cc );
261 align_get_bits(gb);
263 /* comment field, first byte is length */
264 skip_bits_long(gb, 8 * get_bits(gb, 8));
265 return 0;
269 * Set up channel positions based on a default channel configuration
270 * as specified in table 1.17.
272 * @param new_che_pos New channel position configuration - we only do something if it differs from the current one.
274 * @return Returns error status. 0 - OK, !0 - error
276 static int set_default_channel_config(AACContext *ac, enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
277 int channel_config)
279 if(channel_config < 1 || channel_config > 7) {
280 av_log(ac->avccontext, AV_LOG_ERROR, "invalid default channel configuration (%d)\n",
281 channel_config);
282 return -1;
285 /* default channel configurations:
287 * 1ch : front center (mono)
288 * 2ch : L + R (stereo)
289 * 3ch : front center + L + R
290 * 4ch : front center + L + R + back center
291 * 5ch : front center + L + R + back stereo
292 * 6ch : front center + L + R + back stereo + LFE
293 * 7ch : front center + L + R + outer front left + outer front right + back stereo + LFE
296 if(channel_config != 2)
297 new_che_pos[TYPE_SCE][0] = AAC_CHANNEL_FRONT; // front center (or mono)
298 if(channel_config > 1)
299 new_che_pos[TYPE_CPE][0] = AAC_CHANNEL_FRONT; // L + R (or stereo)
300 if(channel_config == 4)
301 new_che_pos[TYPE_SCE][1] = AAC_CHANNEL_BACK; // back center
302 if(channel_config > 4)
303 new_che_pos[TYPE_CPE][(channel_config == 7) + 1]
304 = AAC_CHANNEL_BACK; // back stereo
305 if(channel_config > 5)
306 new_che_pos[TYPE_LFE][0] = AAC_CHANNEL_LFE; // LFE
307 if(channel_config == 7)
308 new_che_pos[TYPE_CPE][1] = AAC_CHANNEL_FRONT; // outer front left + outer front right
310 return 0;
314 * Decode GA "General Audio" specific configuration; reference: table 4.1.
316 * @return Returns error status. 0 - OK, !0 - error
318 static int decode_ga_specific_config(AACContext * ac, GetBitContext * gb, int channel_config) {
319 enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
320 int extension_flag, ret;
322 if(get_bits1(gb)) { // frameLengthFlag
323 ff_log_missing_feature(ac->avccontext, "960/120 MDCT window is", 1);
324 return -1;
327 if (get_bits1(gb)) // dependsOnCoreCoder
328 skip_bits(gb, 14); // coreCoderDelay
329 extension_flag = get_bits1(gb);
331 if(ac->m4ac.object_type == AOT_AAC_SCALABLE ||
332 ac->m4ac.object_type == AOT_ER_AAC_SCALABLE)
333 skip_bits(gb, 3); // layerNr
335 memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
336 if (channel_config == 0) {
337 skip_bits(gb, 4); // element_instance_tag
338 if((ret = decode_pce(ac, new_che_pos, gb)))
339 return ret;
340 } else {
341 if((ret = set_default_channel_config(ac, new_che_pos, channel_config)))
342 return ret;
344 if((ret = output_configure(ac, ac->che_pos, new_che_pos, channel_config)))
345 return ret;
347 if (extension_flag) {
348 switch (ac->m4ac.object_type) {
349 case AOT_ER_BSAC:
350 skip_bits(gb, 5); // numOfSubFrame
351 skip_bits(gb, 11); // layer_length
352 break;
353 case AOT_ER_AAC_LC:
354 case AOT_ER_AAC_LTP:
355 case AOT_ER_AAC_SCALABLE:
356 case AOT_ER_AAC_LD:
357 skip_bits(gb, 3); /* aacSectionDataResilienceFlag
358 * aacScalefactorDataResilienceFlag
359 * aacSpectralDataResilienceFlag
361 break;
363 skip_bits1(gb); // extensionFlag3 (TBD in version 3)
365 return 0;
369 * Decode audio specific configuration; reference: table 1.13.
371 * @param data pointer to AVCodecContext extradata
372 * @param data_size size of AVCCodecContext extradata
374 * @return Returns error status. 0 - OK, !0 - error
376 static int decode_audio_specific_config(AACContext * ac, void *data, int data_size) {
377 GetBitContext gb;
378 int i;
380 init_get_bits(&gb, data, data_size * 8);
382 if((i = ff_mpeg4audio_get_config(&ac->m4ac, data, data_size)) < 0)
383 return -1;
384 if(ac->m4ac.sampling_index > 12) {
385 av_log(ac->avccontext, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
386 return -1;
389 skip_bits_long(&gb, i);
391 switch (ac->m4ac.object_type) {
392 case AOT_AAC_MAIN:
393 case AOT_AAC_LC:
394 if (decode_ga_specific_config(ac, &gb, ac->m4ac.chan_config))
395 return -1;
396 break;
397 default:
398 av_log(ac->avccontext, AV_LOG_ERROR, "Audio object type %s%d is not supported.\n",
399 ac->m4ac.sbr == 1? "SBR+" : "", ac->m4ac.object_type);
400 return -1;
402 return 0;
406 * linear congruential pseudorandom number generator
408 * @param previous_val pointer to the current state of the generator
410 * @return Returns a 32-bit pseudorandom integer
412 static av_always_inline int lcg_random(int previous_val) {
413 return previous_val * 1664525 + 1013904223;
416 static void reset_predict_state(PredictorState * ps) {
417 ps->r0 = 0.0f;
418 ps->r1 = 0.0f;
419 ps->cor0 = 0.0f;
420 ps->cor1 = 0.0f;
421 ps->var0 = 1.0f;
422 ps->var1 = 1.0f;
425 static void reset_all_predictors(PredictorState * ps) {
426 int i;
427 for (i = 0; i < MAX_PREDICTORS; i++)
428 reset_predict_state(&ps[i]);
431 static void reset_predictor_group(PredictorState * ps, int group_num) {
432 int i;
433 for (i = group_num-1; i < MAX_PREDICTORS; i+=30)
434 reset_predict_state(&ps[i]);
437 static av_cold int aac_decode_init(AVCodecContext * avccontext) {
438 AACContext * ac = avccontext->priv_data;
439 int i;
441 ac->avccontext = avccontext;
443 if (avccontext->extradata_size > 0) {
444 if(decode_audio_specific_config(ac, avccontext->extradata, avccontext->extradata_size))
445 return -1;
446 avccontext->sample_rate = ac->m4ac.sample_rate;
447 } else if (avccontext->channels > 0) {
448 enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
449 memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
450 if(set_default_channel_config(ac, new_che_pos, avccontext->channels - (avccontext->channels == 8)))
451 return -1;
452 if(output_configure(ac, ac->che_pos, new_che_pos, 1))
453 return -1;
454 ac->m4ac.sample_rate = avccontext->sample_rate;
457 avccontext->sample_fmt = SAMPLE_FMT_S16;
458 avccontext->frame_size = 1024;
460 AAC_INIT_VLC_STATIC( 0, 144);
461 AAC_INIT_VLC_STATIC( 1, 114);
462 AAC_INIT_VLC_STATIC( 2, 188);
463 AAC_INIT_VLC_STATIC( 3, 180);
464 AAC_INIT_VLC_STATIC( 4, 172);
465 AAC_INIT_VLC_STATIC( 5, 140);
466 AAC_INIT_VLC_STATIC( 6, 168);
467 AAC_INIT_VLC_STATIC( 7, 114);
468 AAC_INIT_VLC_STATIC( 8, 262);
469 AAC_INIT_VLC_STATIC( 9, 248);
470 AAC_INIT_VLC_STATIC(10, 384);
472 dsputil_init(&ac->dsp, avccontext);
474 ac->random_state = 0x1f2e3d4c;
476 // -1024 - Compensate wrong IMDCT method.
477 // 32768 - Required to scale values to the correct range for the bias method
478 // for float to int16 conversion.
480 if(ac->dsp.float_to_int16 == ff_float_to_int16_c) {
481 ac->add_bias = 385.0f;
482 ac->sf_scale = 1. / (-1024. * 32768.);
483 ac->sf_offset = 0;
484 } else {
485 ac->add_bias = 0.0f;
486 ac->sf_scale = 1. / -1024.;
487 ac->sf_offset = 60;
490 #if !CONFIG_HARDCODED_TABLES
491 for (i = 0; i < 428; i++)
492 ff_aac_pow2sf_tab[i] = pow(2, (i - 200)/4.);
493 #endif /* CONFIG_HARDCODED_TABLES */
495 INIT_VLC_STATIC(&vlc_scalefactors,7,FF_ARRAY_ELEMS(ff_aac_scalefactor_code),
496 ff_aac_scalefactor_bits, sizeof(ff_aac_scalefactor_bits[0]), sizeof(ff_aac_scalefactor_bits[0]),
497 ff_aac_scalefactor_code, sizeof(ff_aac_scalefactor_code[0]), sizeof(ff_aac_scalefactor_code[0]),
498 352);
500 ff_mdct_init(&ac->mdct, 11, 1, 1.0);
501 ff_mdct_init(&ac->mdct_small, 8, 1, 1.0);
502 // window initialization
503 ff_kbd_window_init(ff_aac_kbd_long_1024, 4.0, 1024);
504 ff_kbd_window_init(ff_aac_kbd_short_128, 6.0, 128);
505 ff_sine_window_init(ff_sine_1024, 1024);
506 ff_sine_window_init(ff_sine_128, 128);
508 return 0;
512 * Skip data_stream_element; reference: table 4.10.
514 static void skip_data_stream_element(GetBitContext * gb) {
515 int byte_align = get_bits1(gb);
516 int count = get_bits(gb, 8);
517 if (count == 255)
518 count += get_bits(gb, 8);
519 if (byte_align)
520 align_get_bits(gb);
521 skip_bits_long(gb, 8 * count);
524 static int decode_prediction(AACContext * ac, IndividualChannelStream * ics, GetBitContext * gb) {
525 int sfb;
526 if (get_bits1(gb)) {
527 ics->predictor_reset_group = get_bits(gb, 5);
528 if (ics->predictor_reset_group == 0 || ics->predictor_reset_group > 30) {
529 av_log(ac->avccontext, AV_LOG_ERROR, "Invalid Predictor Reset Group.\n");
530 return -1;
533 for (sfb = 0; sfb < FFMIN(ics->max_sfb, ff_aac_pred_sfb_max[ac->m4ac.sampling_index]); sfb++) {
534 ics->prediction_used[sfb] = get_bits1(gb);
536 return 0;
540 * Decode Individual Channel Stream info; reference: table 4.6.
542 * @param common_window Channels have independent [0], or shared [1], Individual Channel Stream information.
544 static int decode_ics_info(AACContext * ac, IndividualChannelStream * ics, GetBitContext * gb, int common_window) {
545 if (get_bits1(gb)) {
546 av_log(ac->avccontext, AV_LOG_ERROR, "Reserved bit set.\n");
547 memset(ics, 0, sizeof(IndividualChannelStream));
548 return -1;
550 ics->window_sequence[1] = ics->window_sequence[0];
551 ics->window_sequence[0] = get_bits(gb, 2);
552 ics->use_kb_window[1] = ics->use_kb_window[0];
553 ics->use_kb_window[0] = get_bits1(gb);
554 ics->num_window_groups = 1;
555 ics->group_len[0] = 1;
556 if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
557 int i;
558 ics->max_sfb = get_bits(gb, 4);
559 for (i = 0; i < 7; i++) {
560 if (get_bits1(gb)) {
561 ics->group_len[ics->num_window_groups-1]++;
562 } else {
563 ics->num_window_groups++;
564 ics->group_len[ics->num_window_groups-1] = 1;
567 ics->num_windows = 8;
568 ics->swb_offset = ff_swb_offset_128[ac->m4ac.sampling_index];
569 ics->num_swb = ff_aac_num_swb_128[ac->m4ac.sampling_index];
570 ics->tns_max_bands = ff_tns_max_bands_128[ac->m4ac.sampling_index];
571 ics->predictor_present = 0;
572 } else {
573 ics->max_sfb = get_bits(gb, 6);
574 ics->num_windows = 1;
575 ics->swb_offset = ff_swb_offset_1024[ac->m4ac.sampling_index];
576 ics->num_swb = ff_aac_num_swb_1024[ac->m4ac.sampling_index];
577 ics->tns_max_bands = ff_tns_max_bands_1024[ac->m4ac.sampling_index];
578 ics->predictor_present = get_bits1(gb);
579 ics->predictor_reset_group = 0;
580 if (ics->predictor_present) {
581 if (ac->m4ac.object_type == AOT_AAC_MAIN) {
582 if (decode_prediction(ac, ics, gb)) {
583 memset(ics, 0, sizeof(IndividualChannelStream));
584 return -1;
586 } else if (ac->m4ac.object_type == AOT_AAC_LC) {
587 av_log(ac->avccontext, AV_LOG_ERROR, "Prediction is not allowed in AAC-LC.\n");
588 memset(ics, 0, sizeof(IndividualChannelStream));
589 return -1;
590 } else {
591 ff_log_missing_feature(ac->avccontext, "Predictor bit set but LTP is", 1);
592 memset(ics, 0, sizeof(IndividualChannelStream));
593 return -1;
598 if(ics->max_sfb > ics->num_swb) {
599 av_log(ac->avccontext, AV_LOG_ERROR,
600 "Number of scalefactor bands in group (%d) exceeds limit (%d).\n",
601 ics->max_sfb, ics->num_swb);
602 memset(ics, 0, sizeof(IndividualChannelStream));
603 return -1;
606 return 0;
610 * Decode band types (section_data payload); reference: table 4.46.
612 * @param band_type array of the used band type
613 * @param band_type_run_end array of the last scalefactor band of a band type run
615 * @return Returns error status. 0 - OK, !0 - error
617 static int decode_band_types(AACContext * ac, enum BandType band_type[120],
618 int band_type_run_end[120], GetBitContext * gb, IndividualChannelStream * ics) {
619 int g, idx = 0;
620 const int bits = (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) ? 3 : 5;
621 for (g = 0; g < ics->num_window_groups; g++) {
622 int k = 0;
623 while (k < ics->max_sfb) {
624 uint8_t sect_len = k;
625 int sect_len_incr;
626 int sect_band_type = get_bits(gb, 4);
627 if (sect_band_type == 12) {
628 av_log(ac->avccontext, AV_LOG_ERROR, "invalid band type\n");
629 return -1;
631 while ((sect_len_incr = get_bits(gb, bits)) == (1 << bits)-1)
632 sect_len += sect_len_incr;
633 sect_len += sect_len_incr;
634 if (sect_len > ics->max_sfb) {
635 av_log(ac->avccontext, AV_LOG_ERROR,
636 "Number of bands (%d) exceeds limit (%d).\n",
637 sect_len, ics->max_sfb);
638 return -1;
640 for (; k < sect_len; k++) {
641 band_type [idx] = sect_band_type;
642 band_type_run_end[idx++] = sect_len;
646 return 0;
650 * Decode scalefactors; reference: table 4.47.
652 * @param global_gain first scalefactor value as scalefactors are differentially coded
653 * @param band_type array of the used band type
654 * @param band_type_run_end array of the last scalefactor band of a band type run
655 * @param sf array of scalefactors or intensity stereo positions
657 * @return Returns error status. 0 - OK, !0 - error
659 static int decode_scalefactors(AACContext * ac, float sf[120], GetBitContext * gb,
660 unsigned int global_gain, IndividualChannelStream * ics,
661 enum BandType band_type[120], int band_type_run_end[120]) {
662 const int sf_offset = ac->sf_offset + (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE ? 12 : 0);
663 int g, i, idx = 0;
664 int offset[3] = { global_gain, global_gain - 90, 100 };
665 int noise_flag = 1;
666 static const char *sf_str[3] = { "Global gain", "Noise gain", "Intensity stereo position" };
667 for (g = 0; g < ics->num_window_groups; g++) {
668 for (i = 0; i < ics->max_sfb;) {
669 int run_end = band_type_run_end[idx];
670 if (band_type[idx] == ZERO_BT) {
671 for(; i < run_end; i++, idx++)
672 sf[idx] = 0.;
673 }else if((band_type[idx] == INTENSITY_BT) || (band_type[idx] == INTENSITY_BT2)) {
674 for(; i < run_end; i++, idx++) {
675 offset[2] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
676 if(offset[2] > 255U) {
677 av_log(ac->avccontext, AV_LOG_ERROR,
678 "%s (%d) out of range.\n", sf_str[2], offset[2]);
679 return -1;
681 sf[idx] = ff_aac_pow2sf_tab[-offset[2] + 300];
683 }else if(band_type[idx] == NOISE_BT) {
684 for(; i < run_end; i++, idx++) {
685 if(noise_flag-- > 0)
686 offset[1] += get_bits(gb, 9) - 256;
687 else
688 offset[1] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
689 if(offset[1] > 255U) {
690 av_log(ac->avccontext, AV_LOG_ERROR,
691 "%s (%d) out of range.\n", sf_str[1], offset[1]);
692 return -1;
694 sf[idx] = -ff_aac_pow2sf_tab[ offset[1] + sf_offset + 100];
696 }else {
697 for(; i < run_end; i++, idx++) {
698 offset[0] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
699 if(offset[0] > 255U) {
700 av_log(ac->avccontext, AV_LOG_ERROR,
701 "%s (%d) out of range.\n", sf_str[0], offset[0]);
702 return -1;
704 sf[idx] = -ff_aac_pow2sf_tab[ offset[0] + sf_offset];
709 return 0;
713 * Decode pulse data; reference: table 4.7.
715 static int decode_pulses(Pulse * pulse, GetBitContext * gb, const uint16_t * swb_offset, int num_swb) {
716 int i, pulse_swb;
717 pulse->num_pulse = get_bits(gb, 2) + 1;
718 pulse_swb = get_bits(gb, 6);
719 if (pulse_swb >= num_swb)
720 return -1;
721 pulse->pos[0] = swb_offset[pulse_swb];
722 pulse->pos[0] += get_bits(gb, 5);
723 if (pulse->pos[0] > 1023)
724 return -1;
725 pulse->amp[0] = get_bits(gb, 4);
726 for (i = 1; i < pulse->num_pulse; i++) {
727 pulse->pos[i] = get_bits(gb, 5) + pulse->pos[i-1];
728 if (pulse->pos[i] > 1023)
729 return -1;
730 pulse->amp[i] = get_bits(gb, 4);
732 return 0;
736 * Decode Temporal Noise Shaping data; reference: table 4.48.
738 * @return Returns error status. 0 - OK, !0 - error
740 static int decode_tns(AACContext * ac, TemporalNoiseShaping * tns,
741 GetBitContext * gb, const IndividualChannelStream * ics) {
742 int w, filt, i, coef_len, coef_res, coef_compress;
743 const int is8 = ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE;
744 const int tns_max_order = is8 ? 7 : ac->m4ac.object_type == AOT_AAC_MAIN ? 20 : 12;
745 for (w = 0; w < ics->num_windows; w++) {
746 if ((tns->n_filt[w] = get_bits(gb, 2 - is8))) {
747 coef_res = get_bits1(gb);
749 for (filt = 0; filt < tns->n_filt[w]; filt++) {
750 int tmp2_idx;
751 tns->length[w][filt] = get_bits(gb, 6 - 2*is8);
753 if ((tns->order[w][filt] = get_bits(gb, 5 - 2*is8)) > tns_max_order) {
754 av_log(ac->avccontext, AV_LOG_ERROR, "TNS filter order %d is greater than maximum %d.",
755 tns->order[w][filt], tns_max_order);
756 tns->order[w][filt] = 0;
757 return -1;
759 if (tns->order[w][filt]) {
760 tns->direction[w][filt] = get_bits1(gb);
761 coef_compress = get_bits1(gb);
762 coef_len = coef_res + 3 - coef_compress;
763 tmp2_idx = 2*coef_compress + coef_res;
765 for (i = 0; i < tns->order[w][filt]; i++)
766 tns->coef[w][filt][i] = tns_tmp2_map[tmp2_idx][get_bits(gb, coef_len)];
771 return 0;
775 * Decode Mid/Side data; reference: table 4.54.
777 * @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s;
778 * [1] mask is decoded from bitstream; [2] mask is all 1s;
779 * [3] reserved for scalable AAC
781 static void decode_mid_side_stereo(ChannelElement * cpe, GetBitContext * gb,
782 int ms_present) {
783 int idx;
784 if (ms_present == 1) {
785 for (idx = 0; idx < cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb; idx++)
786 cpe->ms_mask[idx] = get_bits1(gb);
787 } else if (ms_present == 2) {
788 memset(cpe->ms_mask, 1, cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb * sizeof(cpe->ms_mask[0]));
793 * Decode spectral data; reference: table 4.50.
794 * Dequantize and scale spectral data; reference: 4.6.3.3.
796 * @param coef array of dequantized, scaled spectral data
797 * @param sf array of scalefactors or intensity stereo positions
798 * @param pulse_present set if pulses are present
799 * @param pulse pointer to pulse data struct
800 * @param band_type array of the used band type
802 * @return Returns error status. 0 - OK, !0 - error
804 static int decode_spectrum_and_dequant(AACContext * ac, float coef[1024], GetBitContext * gb, float sf[120],
805 int pulse_present, const Pulse * pulse, const IndividualChannelStream * ics, enum BandType band_type[120]) {
806 int i, k, g, idx = 0;
807 const int c = 1024/ics->num_windows;
808 const uint16_t * offsets = ics->swb_offset;
809 float *coef_base = coef;
810 static const float sign_lookup[] = { 1.0f, -1.0f };
812 for (g = 0; g < ics->num_windows; g++)
813 memset(coef + g * 128 + offsets[ics->max_sfb], 0, sizeof(float)*(c - offsets[ics->max_sfb]));
815 for (g = 0; g < ics->num_window_groups; g++) {
816 for (i = 0; i < ics->max_sfb; i++, idx++) {
817 const int cur_band_type = band_type[idx];
818 const int dim = cur_band_type >= FIRST_PAIR_BT ? 2 : 4;
819 const int is_cb_unsigned = IS_CODEBOOK_UNSIGNED(cur_band_type);
820 int group;
821 if (cur_band_type == ZERO_BT || cur_band_type == INTENSITY_BT2 || cur_band_type == INTENSITY_BT) {
822 for (group = 0; group < ics->group_len[g]; group++) {
823 memset(coef + group * 128 + offsets[i], 0, (offsets[i+1] - offsets[i])*sizeof(float));
825 }else if (cur_band_type == NOISE_BT) {
826 for (group = 0; group < ics->group_len[g]; group++) {
827 float scale;
828 float band_energy = 0;
829 for (k = offsets[i]; k < offsets[i+1]; k++) {
830 ac->random_state = lcg_random(ac->random_state);
831 coef[group*128+k] = ac->random_state;
832 band_energy += coef[group*128+k]*coef[group*128+k];
834 scale = sf[idx] / sqrtf(band_energy);
835 for (k = offsets[i]; k < offsets[i+1]; k++) {
836 coef[group*128+k] *= scale;
839 }else {
840 for (group = 0; group < ics->group_len[g]; group++) {
841 for (k = offsets[i]; k < offsets[i+1]; k += dim) {
842 const int index = get_vlc2(gb, vlc_spectral[cur_band_type - 1].table, 6, 3);
843 const int coef_tmp_idx = (group << 7) + k;
844 const float *vq_ptr;
845 int j;
846 if(index >= ff_aac_spectral_sizes[cur_band_type - 1]) {
847 av_log(ac->avccontext, AV_LOG_ERROR,
848 "Read beyond end of ff_aac_codebook_vectors[%d][]. index %d >= %d\n",
849 cur_band_type - 1, index, ff_aac_spectral_sizes[cur_band_type - 1]);
850 return -1;
852 vq_ptr = &ff_aac_codebook_vectors[cur_band_type - 1][index * dim];
853 if (is_cb_unsigned) {
854 if (vq_ptr[0]) coef[coef_tmp_idx ] = sign_lookup[get_bits1(gb)];
855 if (vq_ptr[1]) coef[coef_tmp_idx + 1] = sign_lookup[get_bits1(gb)];
856 if (dim == 4) {
857 if (vq_ptr[2]) coef[coef_tmp_idx + 2] = sign_lookup[get_bits1(gb)];
858 if (vq_ptr[3]) coef[coef_tmp_idx + 3] = sign_lookup[get_bits1(gb)];
860 if (cur_band_type == ESC_BT) {
861 for (j = 0; j < 2; j++) {
862 if (vq_ptr[j] == 64.0f) {
863 int n = 4;
864 /* The total length of escape_sequence must be < 22 bits according
865 to the specification (i.e. max is 11111111110xxxxxxxxxx). */
866 while (get_bits1(gb) && n < 15) n++;
867 if(n == 15) {
868 av_log(ac->avccontext, AV_LOG_ERROR, "error in spectral data, ESC overflow\n");
869 return -1;
871 n = (1<<n) + get_bits(gb, n);
872 coef[coef_tmp_idx + j] *= cbrtf(n) * n;
873 }else
874 coef[coef_tmp_idx + j] *= vq_ptr[j];
876 }else
878 coef[coef_tmp_idx ] *= vq_ptr[0];
879 coef[coef_tmp_idx + 1] *= vq_ptr[1];
880 if (dim == 4) {
881 coef[coef_tmp_idx + 2] *= vq_ptr[2];
882 coef[coef_tmp_idx + 3] *= vq_ptr[3];
885 }else {
886 coef[coef_tmp_idx ] = vq_ptr[0];
887 coef[coef_tmp_idx + 1] = vq_ptr[1];
888 if (dim == 4) {
889 coef[coef_tmp_idx + 2] = vq_ptr[2];
890 coef[coef_tmp_idx + 3] = vq_ptr[3];
893 coef[coef_tmp_idx ] *= sf[idx];
894 coef[coef_tmp_idx + 1] *= sf[idx];
895 if (dim == 4) {
896 coef[coef_tmp_idx + 2] *= sf[idx];
897 coef[coef_tmp_idx + 3] *= sf[idx];
903 coef += ics->group_len[g]<<7;
906 if (pulse_present) {
907 idx = 0;
908 for(i = 0; i < pulse->num_pulse; i++){
909 float co = coef_base[ pulse->pos[i] ];
910 while(offsets[idx + 1] <= pulse->pos[i])
911 idx++;
912 if (band_type[idx] != NOISE_BT && sf[idx]) {
913 float ico = -pulse->amp[i];
914 if (co) {
915 co /= sf[idx];
916 ico = co / sqrtf(sqrtf(fabsf(co))) + (co > 0 ? -ico : ico);
918 coef_base[ pulse->pos[i] ] = cbrtf(fabsf(ico)) * ico * sf[idx];
922 return 0;
925 static av_always_inline float flt16_round(float pf) {
926 union float754 tmp;
927 tmp.f = pf;
928 tmp.i = (tmp.i + 0x00008000U) & 0xFFFF0000U;
929 return tmp.f;
932 static av_always_inline float flt16_even(float pf) {
933 union float754 tmp;
934 tmp.f = pf;
935 tmp.i = (tmp.i + 0x00007FFFU + (tmp.i & 0x00010000U>>16)) & 0xFFFF0000U;
936 return tmp.f;
939 static av_always_inline float flt16_trunc(float pf) {
940 union float754 pun;
941 pun.f = pf;
942 pun.i &= 0xFFFF0000U;
943 return pun.f;
946 static void predict(AACContext * ac, PredictorState * ps, float* coef, int output_enable) {
947 const float a = 0.953125; // 61.0/64
948 const float alpha = 0.90625; // 29.0/32
949 float e0, e1;
950 float pv;
951 float k1, k2;
953 k1 = ps->var0 > 1 ? ps->cor0 * flt16_even(a / ps->var0) : 0;
954 k2 = ps->var1 > 1 ? ps->cor1 * flt16_even(a / ps->var1) : 0;
956 pv = flt16_round(k1 * ps->r0 + k2 * ps->r1);
957 if (output_enable)
958 *coef += pv * ac->sf_scale;
960 e0 = *coef / ac->sf_scale;
961 e1 = e0 - k1 * ps->r0;
963 ps->cor1 = flt16_trunc(alpha * ps->cor1 + ps->r1 * e1);
964 ps->var1 = flt16_trunc(alpha * ps->var1 + 0.5 * (ps->r1 * ps->r1 + e1 * e1));
965 ps->cor0 = flt16_trunc(alpha * ps->cor0 + ps->r0 * e0);
966 ps->var0 = flt16_trunc(alpha * ps->var0 + 0.5 * (ps->r0 * ps->r0 + e0 * e0));
968 ps->r1 = flt16_trunc(a * (ps->r0 - k1 * e0));
969 ps->r0 = flt16_trunc(a * e0);
973 * Apply AAC-Main style frequency domain prediction.
975 static void apply_prediction(AACContext * ac, SingleChannelElement * sce) {
976 int sfb, k;
978 if (!sce->ics.predictor_initialized) {
979 reset_all_predictors(sce->predictor_state);
980 sce->ics.predictor_initialized = 1;
983 if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
984 for (sfb = 0; sfb < ff_aac_pred_sfb_max[ac->m4ac.sampling_index]; sfb++) {
985 for (k = sce->ics.swb_offset[sfb]; k < sce->ics.swb_offset[sfb + 1]; k++) {
986 predict(ac, &sce->predictor_state[k], &sce->coeffs[k],
987 sce->ics.predictor_present && sce->ics.prediction_used[sfb]);
990 if (sce->ics.predictor_reset_group)
991 reset_predictor_group(sce->predictor_state, sce->ics.predictor_reset_group);
992 } else
993 reset_all_predictors(sce->predictor_state);
997 * Decode an individual_channel_stream payload; reference: table 4.44.
999 * @param common_window Channels have independent [0], or shared [1], Individual Channel Stream information.
1000 * @param scale_flag scalable [1] or non-scalable [0] AAC (Unused until scalable AAC is implemented.)
1002 * @return Returns error status. 0 - OK, !0 - error
1004 static int decode_ics(AACContext * ac, SingleChannelElement * sce, GetBitContext * gb, int common_window, int scale_flag) {
1005 Pulse pulse;
1006 TemporalNoiseShaping * tns = &sce->tns;
1007 IndividualChannelStream * ics = &sce->ics;
1008 float * out = sce->coeffs;
1009 int global_gain, pulse_present = 0;
1011 /* This assignment is to silence a GCC warning about the variable being used
1012 * uninitialized when in fact it always is.
1014 pulse.num_pulse = 0;
1016 global_gain = get_bits(gb, 8);
1018 if (!common_window && !scale_flag) {
1019 if (decode_ics_info(ac, ics, gb, 0) < 0)
1020 return -1;
1023 if (decode_band_types(ac, sce->band_type, sce->band_type_run_end, gb, ics) < 0)
1024 return -1;
1025 if (decode_scalefactors(ac, sce->sf, gb, global_gain, ics, sce->band_type, sce->band_type_run_end) < 0)
1026 return -1;
1028 pulse_present = 0;
1029 if (!scale_flag) {
1030 if ((pulse_present = get_bits1(gb))) {
1031 if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
1032 av_log(ac->avccontext, AV_LOG_ERROR, "Pulse tool not allowed in eight short sequence.\n");
1033 return -1;
1035 if (decode_pulses(&pulse, gb, ics->swb_offset, ics->num_swb)) {
1036 av_log(ac->avccontext, AV_LOG_ERROR, "Pulse data corrupt or invalid.\n");
1037 return -1;
1040 if ((tns->present = get_bits1(gb)) && decode_tns(ac, tns, gb, ics))
1041 return -1;
1042 if (get_bits1(gb)) {
1043 ff_log_missing_feature(ac->avccontext, "SSR", 1);
1044 return -1;
1048 if (decode_spectrum_and_dequant(ac, out, gb, sce->sf, pulse_present, &pulse, ics, sce->band_type) < 0)
1049 return -1;
1051 if(ac->m4ac.object_type == AOT_AAC_MAIN && !common_window)
1052 apply_prediction(ac, sce);
1054 return 0;
1058 * Mid/Side stereo decoding; reference: 4.6.8.1.3.
1060 static void apply_mid_side_stereo(ChannelElement * cpe) {
1061 const IndividualChannelStream * ics = &cpe->ch[0].ics;
1062 float *ch0 = cpe->ch[0].coeffs;
1063 float *ch1 = cpe->ch[1].coeffs;
1064 int g, i, k, group, idx = 0;
1065 const uint16_t * offsets = ics->swb_offset;
1066 for (g = 0; g < ics->num_window_groups; g++) {
1067 for (i = 0; i < ics->max_sfb; i++, idx++) {
1068 if (cpe->ms_mask[idx] &&
1069 cpe->ch[0].band_type[idx] < NOISE_BT && cpe->ch[1].band_type[idx] < NOISE_BT) {
1070 for (group = 0; group < ics->group_len[g]; group++) {
1071 for (k = offsets[i]; k < offsets[i+1]; k++) {
1072 float tmp = ch0[group*128 + k] - ch1[group*128 + k];
1073 ch0[group*128 + k] += ch1[group*128 + k];
1074 ch1[group*128 + k] = tmp;
1079 ch0 += ics->group_len[g]*128;
1080 ch1 += ics->group_len[g]*128;
1085 * intensity stereo decoding; reference: 4.6.8.2.3
1087 * @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s;
1088 * [1] mask is decoded from bitstream; [2] mask is all 1s;
1089 * [3] reserved for scalable AAC
1091 static void apply_intensity_stereo(ChannelElement * cpe, int ms_present) {
1092 const IndividualChannelStream * ics = &cpe->ch[1].ics;
1093 SingleChannelElement * sce1 = &cpe->ch[1];
1094 float *coef0 = cpe->ch[0].coeffs, *coef1 = cpe->ch[1].coeffs;
1095 const uint16_t * offsets = ics->swb_offset;
1096 int g, group, i, k, idx = 0;
1097 int c;
1098 float scale;
1099 for (g = 0; g < ics->num_window_groups; g++) {
1100 for (i = 0; i < ics->max_sfb;) {
1101 if (sce1->band_type[idx] == INTENSITY_BT || sce1->band_type[idx] == INTENSITY_BT2) {
1102 const int bt_run_end = sce1->band_type_run_end[idx];
1103 for (; i < bt_run_end; i++, idx++) {
1104 c = -1 + 2 * (sce1->band_type[idx] - 14);
1105 if (ms_present)
1106 c *= 1 - 2 * cpe->ms_mask[idx];
1107 scale = c * sce1->sf[idx];
1108 for (group = 0; group < ics->group_len[g]; group++)
1109 for (k = offsets[i]; k < offsets[i+1]; k++)
1110 coef1[group*128 + k] = scale * coef0[group*128 + k];
1112 } else {
1113 int bt_run_end = sce1->band_type_run_end[idx];
1114 idx += bt_run_end - i;
1115 i = bt_run_end;
1118 coef0 += ics->group_len[g]*128;
1119 coef1 += ics->group_len[g]*128;
1124 * Decode a channel_pair_element; reference: table 4.4.
1126 * @param elem_id Identifies the instance of a syntax element.
1128 * @return Returns error status. 0 - OK, !0 - error
1130 static int decode_cpe(AACContext * ac, GetBitContext * gb, ChannelElement * cpe) {
1131 int i, ret, common_window, ms_present = 0;
1133 common_window = get_bits1(gb);
1134 if (common_window) {
1135 if (decode_ics_info(ac, &cpe->ch[0].ics, gb, 1))
1136 return -1;
1137 i = cpe->ch[1].ics.use_kb_window[0];
1138 cpe->ch[1].ics = cpe->ch[0].ics;
1139 cpe->ch[1].ics.use_kb_window[1] = i;
1140 ms_present = get_bits(gb, 2);
1141 if(ms_present == 3) {
1142 av_log(ac->avccontext, AV_LOG_ERROR, "ms_present = 3 is reserved.\n");
1143 return -1;
1144 } else if(ms_present)
1145 decode_mid_side_stereo(cpe, gb, ms_present);
1147 if ((ret = decode_ics(ac, &cpe->ch[0], gb, common_window, 0)))
1148 return ret;
1149 if ((ret = decode_ics(ac, &cpe->ch[1], gb, common_window, 0)))
1150 return ret;
1152 if (common_window) {
1153 if (ms_present)
1154 apply_mid_side_stereo(cpe);
1155 if (ac->m4ac.object_type == AOT_AAC_MAIN) {
1156 apply_prediction(ac, &cpe->ch[0]);
1157 apply_prediction(ac, &cpe->ch[1]);
1161 apply_intensity_stereo(cpe, ms_present);
1162 return 0;
1166 * Decode coupling_channel_element; reference: table 4.8.
1168 * @param elem_id Identifies the instance of a syntax element.
1170 * @return Returns error status. 0 - OK, !0 - error
1172 static int decode_cce(AACContext * ac, GetBitContext * gb, ChannelElement * che) {
1173 int num_gain = 0;
1174 int c, g, sfb, ret;
1175 int sign;
1176 float scale;
1177 SingleChannelElement * sce = &che->ch[0];
1178 ChannelCoupling * coup = &che->coup;
1180 coup->coupling_point = 2*get_bits1(gb);
1181 coup->num_coupled = get_bits(gb, 3);
1182 for (c = 0; c <= coup->num_coupled; c++) {
1183 num_gain++;
1184 coup->type[c] = get_bits1(gb) ? TYPE_CPE : TYPE_SCE;
1185 coup->id_select[c] = get_bits(gb, 4);
1186 if (coup->type[c] == TYPE_CPE) {
1187 coup->ch_select[c] = get_bits(gb, 2);
1188 if (coup->ch_select[c] == 3)
1189 num_gain++;
1190 } else
1191 coup->ch_select[c] = 2;
1193 coup->coupling_point += get_bits1(gb) || (coup->coupling_point>>1);
1195 sign = get_bits(gb, 1);
1196 scale = pow(2., pow(2., (int)get_bits(gb, 2) - 3));
1198 if ((ret = decode_ics(ac, sce, gb, 0, 0)))
1199 return ret;
1201 for (c = 0; c < num_gain; c++) {
1202 int idx = 0;
1203 int cge = 1;
1204 int gain = 0;
1205 float gain_cache = 1.;
1206 if (c) {
1207 cge = coup->coupling_point == AFTER_IMDCT ? 1 : get_bits1(gb);
1208 gain = cge ? get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60: 0;
1209 gain_cache = pow(scale, -gain);
1211 if (coup->coupling_point == AFTER_IMDCT) {
1212 coup->gain[c][0] = gain_cache;
1213 } else {
1214 for (g = 0; g < sce->ics.num_window_groups; g++) {
1215 for (sfb = 0; sfb < sce->ics.max_sfb; sfb++, idx++) {
1216 if (sce->band_type[idx] != ZERO_BT) {
1217 if (!cge) {
1218 int t = get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
1219 if (t) {
1220 int s = 1;
1221 t = gain += t;
1222 if (sign) {
1223 s -= 2 * (t & 0x1);
1224 t >>= 1;
1226 gain_cache = pow(scale, -t) * s;
1229 coup->gain[c][idx] = gain_cache;
1235 return 0;
1239 * Decode Spectral Band Replication extension data; reference: table 4.55.
1241 * @param crc flag indicating the presence of CRC checksum
1242 * @param cnt length of TYPE_FIL syntactic element in bytes
1244 * @return Returns number of bytes consumed from the TYPE_FIL element.
1246 static int decode_sbr_extension(AACContext * ac, GetBitContext * gb, int crc, int cnt) {
1247 // TODO : sbr_extension implementation
1248 ff_log_missing_feature(ac->avccontext, "SBR", 0);
1249 skip_bits_long(gb, 8*cnt - 4); // -4 due to reading extension type
1250 return cnt;
1254 * Parse whether channels are to be excluded from Dynamic Range Compression; reference: table 4.53.
1256 * @return Returns number of bytes consumed.
1258 static int decode_drc_channel_exclusions(DynamicRangeControl *che_drc, GetBitContext * gb) {
1259 int i;
1260 int num_excl_chan = 0;
1262 do {
1263 for (i = 0; i < 7; i++)
1264 che_drc->exclude_mask[num_excl_chan++] = get_bits1(gb);
1265 } while (num_excl_chan < MAX_CHANNELS - 7 && get_bits1(gb));
1267 return num_excl_chan / 7;
1271 * Decode dynamic range information; reference: table 4.52.
1273 * @param cnt length of TYPE_FIL syntactic element in bytes
1275 * @return Returns number of bytes consumed.
1277 static int decode_dynamic_range(DynamicRangeControl *che_drc, GetBitContext * gb, int cnt) {
1278 int n = 1;
1279 int drc_num_bands = 1;
1280 int i;
1282 /* pce_tag_present? */
1283 if(get_bits1(gb)) {
1284 che_drc->pce_instance_tag = get_bits(gb, 4);
1285 skip_bits(gb, 4); // tag_reserved_bits
1286 n++;
1289 /* excluded_chns_present? */
1290 if(get_bits1(gb)) {
1291 n += decode_drc_channel_exclusions(che_drc, gb);
1294 /* drc_bands_present? */
1295 if (get_bits1(gb)) {
1296 che_drc->band_incr = get_bits(gb, 4);
1297 che_drc->interpolation_scheme = get_bits(gb, 4);
1298 n++;
1299 drc_num_bands += che_drc->band_incr;
1300 for (i = 0; i < drc_num_bands; i++) {
1301 che_drc->band_top[i] = get_bits(gb, 8);
1302 n++;
1306 /* prog_ref_level_present? */
1307 if (get_bits1(gb)) {
1308 che_drc->prog_ref_level = get_bits(gb, 7);
1309 skip_bits1(gb); // prog_ref_level_reserved_bits
1310 n++;
1313 for (i = 0; i < drc_num_bands; i++) {
1314 che_drc->dyn_rng_sgn[i] = get_bits1(gb);
1315 che_drc->dyn_rng_ctl[i] = get_bits(gb, 7);
1316 n++;
1319 return n;
1323 * Decode extension data (incomplete); reference: table 4.51.
1325 * @param cnt length of TYPE_FIL syntactic element in bytes
1327 * @return Returns number of bytes consumed
1329 static int decode_extension_payload(AACContext * ac, GetBitContext * gb, int cnt) {
1330 int crc_flag = 0;
1331 int res = cnt;
1332 switch (get_bits(gb, 4)) { // extension type
1333 case EXT_SBR_DATA_CRC:
1334 crc_flag++;
1335 case EXT_SBR_DATA:
1336 res = decode_sbr_extension(ac, gb, crc_flag, cnt);
1337 break;
1338 case EXT_DYNAMIC_RANGE:
1339 res = decode_dynamic_range(&ac->che_drc, gb, cnt);
1340 break;
1341 case EXT_FILL:
1342 case EXT_FILL_DATA:
1343 case EXT_DATA_ELEMENT:
1344 default:
1345 skip_bits_long(gb, 8*cnt - 4);
1346 break;
1348 return res;
1352 * Decode Temporal Noise Shaping filter coefficients and apply all-pole filters; reference: 4.6.9.3.
1354 * @param decode 1 if tool is used normally, 0 if tool is used in LTP.
1355 * @param coef spectral coefficients
1357 static void apply_tns(float coef[1024], TemporalNoiseShaping * tns, IndividualChannelStream * ics, int decode) {
1358 const int mmm = FFMIN(ics->tns_max_bands, ics->max_sfb);
1359 int w, filt, m, i;
1360 int bottom, top, order, start, end, size, inc;
1361 float lpc[TNS_MAX_ORDER];
1363 for (w = 0; w < ics->num_windows; w++) {
1364 bottom = ics->num_swb;
1365 for (filt = 0; filt < tns->n_filt[w]; filt++) {
1366 top = bottom;
1367 bottom = FFMAX(0, top - tns->length[w][filt]);
1368 order = tns->order[w][filt];
1369 if (order == 0)
1370 continue;
1372 // tns_decode_coef
1373 compute_lpc_coefs(tns->coef[w][filt], order, lpc, 0, 0, 0);
1375 start = ics->swb_offset[FFMIN(bottom, mmm)];
1376 end = ics->swb_offset[FFMIN( top, mmm)];
1377 if ((size = end - start) <= 0)
1378 continue;
1379 if (tns->direction[w][filt]) {
1380 inc = -1; start = end - 1;
1381 } else {
1382 inc = 1;
1384 start += w * 128;
1386 // ar filter
1387 for (m = 0; m < size; m++, start += inc)
1388 for (i = 1; i <= FFMIN(m, order); i++)
1389 coef[start] -= coef[start - i*inc] * lpc[i-1];
1395 * Conduct IMDCT and windowing.
1397 static void imdct_and_windowing(AACContext * ac, SingleChannelElement * sce) {
1398 IndividualChannelStream * ics = &sce->ics;
1399 float * in = sce->coeffs;
1400 float * out = sce->ret;
1401 float * saved = sce->saved;
1402 const float * swindow = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
1403 const float * lwindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
1404 const float * swindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
1405 float * buf = ac->buf_mdct;
1406 float * temp = ac->temp;
1407 int i;
1409 // imdct
1410 if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
1411 if (ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE)
1412 av_log(ac->avccontext, AV_LOG_WARNING,
1413 "Transition from an ONLY_LONG or LONG_STOP to an EIGHT_SHORT sequence detected. "
1414 "If you heard an audible artifact, please submit the sample to the FFmpeg developers.\n");
1415 for (i = 0; i < 1024; i += 128)
1416 ff_imdct_half(&ac->mdct_small, buf + i, in + i);
1417 } else
1418 ff_imdct_half(&ac->mdct, buf, in);
1420 /* window overlapping
1421 * NOTE: To simplify the overlapping code, all 'meaningless' short to long
1422 * and long to short transitions are considered to be short to short
1423 * transitions. This leaves just two cases (long to long and short to short)
1424 * with a little special sauce for EIGHT_SHORT_SEQUENCE.
1426 if ((ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE) &&
1427 (ics->window_sequence[0] == ONLY_LONG_SEQUENCE || ics->window_sequence[0] == LONG_START_SEQUENCE)) {
1428 ac->dsp.vector_fmul_window( out, saved, buf, lwindow_prev, ac->add_bias, 512);
1429 } else {
1430 for (i = 0; i < 448; i++)
1431 out[i] = saved[i] + ac->add_bias;
1433 if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
1434 ac->dsp.vector_fmul_window(out + 448 + 0*128, saved + 448, buf + 0*128, swindow_prev, ac->add_bias, 64);
1435 ac->dsp.vector_fmul_window(out + 448 + 1*128, buf + 0*128 + 64, buf + 1*128, swindow, ac->add_bias, 64);
1436 ac->dsp.vector_fmul_window(out + 448 + 2*128, buf + 1*128 + 64, buf + 2*128, swindow, ac->add_bias, 64);
1437 ac->dsp.vector_fmul_window(out + 448 + 3*128, buf + 2*128 + 64, buf + 3*128, swindow, ac->add_bias, 64);
1438 ac->dsp.vector_fmul_window(temp, buf + 3*128 + 64, buf + 4*128, swindow, ac->add_bias, 64);
1439 memcpy( out + 448 + 4*128, temp, 64 * sizeof(float));
1440 } else {
1441 ac->dsp.vector_fmul_window(out + 448, saved + 448, buf, swindow_prev, ac->add_bias, 64);
1442 for (i = 576; i < 1024; i++)
1443 out[i] = buf[i-512] + ac->add_bias;
1447 // buffer update
1448 if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
1449 for (i = 0; i < 64; i++)
1450 saved[i] = temp[64 + i] - ac->add_bias;
1451 ac->dsp.vector_fmul_window(saved + 64, buf + 4*128 + 64, buf + 5*128, swindow, 0, 64);
1452 ac->dsp.vector_fmul_window(saved + 192, buf + 5*128 + 64, buf + 6*128, swindow, 0, 64);
1453 ac->dsp.vector_fmul_window(saved + 320, buf + 6*128 + 64, buf + 7*128, swindow, 0, 64);
1454 memcpy( saved + 448, buf + 7*128 + 64, 64 * sizeof(float));
1455 } else if (ics->window_sequence[0] == LONG_START_SEQUENCE) {
1456 memcpy( saved, buf + 512, 448 * sizeof(float));
1457 memcpy( saved + 448, buf + 7*128 + 64, 64 * sizeof(float));
1458 } else { // LONG_STOP or ONLY_LONG
1459 memcpy( saved, buf + 512, 512 * sizeof(float));
1464 * Apply dependent channel coupling (applied before IMDCT).
1466 * @param index index into coupling gain array
1468 static void apply_dependent_coupling(AACContext * ac, SingleChannelElement * target, ChannelElement * cce, int index) {
1469 IndividualChannelStream * ics = &cce->ch[0].ics;
1470 const uint16_t * offsets = ics->swb_offset;
1471 float * dest = target->coeffs;
1472 const float * src = cce->ch[0].coeffs;
1473 int g, i, group, k, idx = 0;
1474 if(ac->m4ac.object_type == AOT_AAC_LTP) {
1475 av_log(ac->avccontext, AV_LOG_ERROR,
1476 "Dependent coupling is not supported together with LTP\n");
1477 return;
1479 for (g = 0; g < ics->num_window_groups; g++) {
1480 for (i = 0; i < ics->max_sfb; i++, idx++) {
1481 if (cce->ch[0].band_type[idx] != ZERO_BT) {
1482 const float gain = cce->coup.gain[index][idx];
1483 for (group = 0; group < ics->group_len[g]; group++) {
1484 for (k = offsets[i]; k < offsets[i+1]; k++) {
1485 // XXX dsputil-ize
1486 dest[group*128+k] += gain * src[group*128+k];
1491 dest += ics->group_len[g]*128;
1492 src += ics->group_len[g]*128;
1497 * Apply independent channel coupling (applied after IMDCT).
1499 * @param index index into coupling gain array
1501 static void apply_independent_coupling(AACContext * ac, SingleChannelElement * target, ChannelElement * cce, int index) {
1502 int i;
1503 const float gain = cce->coup.gain[index][0];
1504 const float bias = ac->add_bias;
1505 const float* src = cce->ch[0].ret;
1506 float* dest = target->ret;
1508 for (i = 0; i < 1024; i++)
1509 dest[i] += gain * (src[i] - bias);
1513 * channel coupling transformation interface
1515 * @param index index into coupling gain array
1516 * @param apply_coupling_method pointer to (in)dependent coupling function
1518 static void apply_channel_coupling(AACContext * ac, ChannelElement * cc,
1519 enum RawDataBlockType type, int elem_id, enum CouplingPoint coupling_point,
1520 void (*apply_coupling_method)(AACContext * ac, SingleChannelElement * target, ChannelElement * cce, int index))
1522 int i, c;
1524 for (i = 0; i < MAX_ELEM_ID; i++) {
1525 ChannelElement *cce = ac->che[TYPE_CCE][i];
1526 int index = 0;
1528 if (cce && cce->coup.coupling_point == coupling_point) {
1529 ChannelCoupling * coup = &cce->coup;
1531 for (c = 0; c <= coup->num_coupled; c++) {
1532 if (coup->type[c] == type && coup->id_select[c] == elem_id) {
1533 if (coup->ch_select[c] != 1) {
1534 apply_coupling_method(ac, &cc->ch[0], cce, index);
1535 if (coup->ch_select[c] != 0)
1536 index++;
1538 if (coup->ch_select[c] != 2)
1539 apply_coupling_method(ac, &cc->ch[1], cce, index++);
1540 } else
1541 index += 1 + (coup->ch_select[c] == 3);
1548 * Convert spectral data to float samples, applying all supported tools as appropriate.
1550 static void spectral_to_sample(AACContext * ac) {
1551 int i, type;
1552 for(type = 3; type >= 0; type--) {
1553 for (i = 0; i < MAX_ELEM_ID; i++) {
1554 ChannelElement *che = ac->che[type][i];
1555 if(che) {
1556 if(type <= TYPE_CPE)
1557 apply_channel_coupling(ac, che, type, i, BEFORE_TNS, apply_dependent_coupling);
1558 if(che->ch[0].tns.present)
1559 apply_tns(che->ch[0].coeffs, &che->ch[0].tns, &che->ch[0].ics, 1);
1560 if(che->ch[1].tns.present)
1561 apply_tns(che->ch[1].coeffs, &che->ch[1].tns, &che->ch[1].ics, 1);
1562 if(type <= TYPE_CPE)
1563 apply_channel_coupling(ac, che, type, i, BETWEEN_TNS_AND_IMDCT, apply_dependent_coupling);
1564 if(type != TYPE_CCE || che->coup.coupling_point == AFTER_IMDCT)
1565 imdct_and_windowing(ac, &che->ch[0]);
1566 if(type == TYPE_CPE)
1567 imdct_and_windowing(ac, &che->ch[1]);
1568 if(type <= TYPE_CCE)
1569 apply_channel_coupling(ac, che, type, i, AFTER_IMDCT, apply_independent_coupling);
1575 static int parse_adts_frame_header(AACContext * ac, GetBitContext * gb) {
1577 int size;
1578 AACADTSHeaderInfo hdr_info;
1580 size = ff_aac_parse_header(gb, &hdr_info);
1581 if (size > 0) {
1582 if (hdr_info.chan_config)
1583 ac->m4ac.chan_config = hdr_info.chan_config;
1584 ac->m4ac.sample_rate = hdr_info.sample_rate;
1585 ac->m4ac.sampling_index = hdr_info.sampling_index;
1586 ac->m4ac.object_type = hdr_info.object_type;
1587 if (hdr_info.num_aac_frames == 1) {
1588 if (!hdr_info.crc_absent)
1589 skip_bits(gb, 16);
1590 } else {
1591 ff_log_missing_feature(ac->avccontext, "More than one AAC RDB per ADTS frame is", 0);
1592 return -1;
1595 return size;
1598 static int aac_decode_frame(AVCodecContext * avccontext, void * data, int * data_size, AVPacket *avpkt) {
1599 const uint8_t *buf = avpkt->data;
1600 int buf_size = avpkt->size;
1601 AACContext * ac = avccontext->priv_data;
1602 ChannelElement * che = NULL;
1603 GetBitContext gb;
1604 enum RawDataBlockType elem_type;
1605 int err, elem_id, data_size_tmp;
1607 init_get_bits(&gb, buf, buf_size*8);
1609 if (show_bits(&gb, 12) == 0xfff) {
1610 if (parse_adts_frame_header(ac, &gb) < 0) {
1611 av_log(avccontext, AV_LOG_ERROR, "Error decoding AAC frame header.\n");
1612 return -1;
1614 if (ac->m4ac.sampling_index > 12) {
1615 av_log(ac->avccontext, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
1616 return -1;
1620 // parse
1621 while ((elem_type = get_bits(&gb, 3)) != TYPE_END) {
1622 elem_id = get_bits(&gb, 4);
1624 if(elem_type < TYPE_DSE && !(che=get_che(ac, elem_type, elem_id))) {
1625 av_log(ac->avccontext, AV_LOG_ERROR, "channel element %d.%d is not allocated\n", elem_type, elem_id);
1626 return -1;
1629 switch (elem_type) {
1631 case TYPE_SCE:
1632 err = decode_ics(ac, &che->ch[0], &gb, 0, 0);
1633 break;
1635 case TYPE_CPE:
1636 err = decode_cpe(ac, &gb, che);
1637 break;
1639 case TYPE_CCE:
1640 err = decode_cce(ac, &gb, che);
1641 break;
1643 case TYPE_LFE:
1644 err = decode_ics(ac, &che->ch[0], &gb, 0, 0);
1645 break;
1647 case TYPE_DSE:
1648 skip_data_stream_element(&gb);
1649 err = 0;
1650 break;
1652 case TYPE_PCE:
1654 enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
1655 memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
1656 if((err = decode_pce(ac, new_che_pos, &gb)))
1657 break;
1658 err = output_configure(ac, ac->che_pos, new_che_pos, 0);
1659 break;
1662 case TYPE_FIL:
1663 if (elem_id == 15)
1664 elem_id += get_bits(&gb, 8) - 1;
1665 while (elem_id > 0)
1666 elem_id -= decode_extension_payload(ac, &gb, elem_id);
1667 err = 0; /* FIXME */
1668 break;
1670 default:
1671 err = -1; /* should not happen, but keeps compiler happy */
1672 break;
1675 if(err)
1676 return err;
1679 spectral_to_sample(ac);
1681 if (!ac->is_saved) {
1682 ac->is_saved = 1;
1683 *data_size = 0;
1684 return buf_size;
1687 data_size_tmp = 1024 * avccontext->channels * sizeof(int16_t);
1688 if(*data_size < data_size_tmp) {
1689 av_log(avccontext, AV_LOG_ERROR,
1690 "Output buffer too small (%d) or trying to output too many samples (%d) for this frame.\n",
1691 *data_size, data_size_tmp);
1692 return -1;
1694 *data_size = data_size_tmp;
1696 ac->dsp.float_to_int16_interleave(data, (const float **)ac->output_data, 1024, avccontext->channels);
1698 return buf_size;
1701 static av_cold int aac_decode_close(AVCodecContext * avccontext) {
1702 AACContext * ac = avccontext->priv_data;
1703 int i, type;
1705 for (i = 0; i < MAX_ELEM_ID; i++) {
1706 for(type = 0; type < 4; type++)
1707 av_freep(&ac->che[type][i]);
1710 ff_mdct_end(&ac->mdct);
1711 ff_mdct_end(&ac->mdct_small);
1712 return 0 ;
1715 AVCodec aac_decoder = {
1716 "aac",
1717 CODEC_TYPE_AUDIO,
1718 CODEC_ID_AAC,
1719 sizeof(AACContext),
1720 aac_decode_init,
1721 NULL,
1722 aac_decode_close,
1723 aac_decode_frame,
1724 .long_name = NULL_IF_CONFIG_SMALL("Advanced Audio Coding"),
1725 .sample_fmts = (enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE},