Rename rtp_payload_data_t to avoid clashes with the POSIX namespace
[ffmpeg-lucabe.git] / libavcodec / mpegaudiodec.c
bloba853562a3f9baa4b18de4fca768c83521d0d226d
1 /*
2 * MPEG Audio decoder
3 * Copyright (c) 2001, 2002 Fabrice Bellard.
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 /**
23 * @file mpegaudiodec.c
24 * MPEG Audio decoder.
27 #include "avcodec.h"
28 #include "bitstream.h"
29 #include "dsputil.h"
32 * TODO:
33 * - in low precision mode, use more 16 bit multiplies in synth filter
34 * - test lsf / mpeg25 extensively.
37 /* define USE_HIGHPRECISION to have a bit exact (but slower) mpeg
38 audio decoder */
39 #ifdef CONFIG_MPEGAUDIO_HP
40 # define USE_HIGHPRECISION
41 #endif
43 #include "mpegaudio.h"
44 #include "mpegaudiodecheader.h"
46 #include "mathops.h"
48 /* WARNING: only correct for posititive numbers */
49 #define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
50 #define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS)
52 #define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
54 /****************/
56 #define HEADER_SIZE 4
58 /* layer 3 "granule" */
59 typedef struct GranuleDef {
60 uint8_t scfsi;
61 int part2_3_length;
62 int big_values;
63 int global_gain;
64 int scalefac_compress;
65 uint8_t block_type;
66 uint8_t switch_point;
67 int table_select[3];
68 int subblock_gain[3];
69 uint8_t scalefac_scale;
70 uint8_t count1table_select;
71 int region_size[3]; /* number of huffman codes in each region */
72 int preflag;
73 int short_start, long_end; /* long/short band indexes */
74 uint8_t scale_factors[40];
75 int32_t sb_hybrid[SBLIMIT * 18]; /* 576 samples */
76 } GranuleDef;
78 #include "mpegaudiodata.h"
79 #include "mpegaudiodectab.h"
81 static void compute_antialias_integer(MPADecodeContext *s, GranuleDef *g);
82 static void compute_antialias_float(MPADecodeContext *s, GranuleDef *g);
84 /* vlc structure for decoding layer 3 huffman tables */
85 static VLC huff_vlc[16];
86 static VLC_TYPE huff_vlc_tables[
87 0+128+128+128+130+128+154+166+
88 142+204+190+170+542+460+662+414
89 ][2];
90 static const int huff_vlc_tables_sizes[16] = {
91 0, 128, 128, 128, 130, 128, 154, 166,
92 142, 204, 190, 170, 542, 460, 662, 414
94 static VLC huff_quad_vlc[2];
95 static VLC_TYPE huff_quad_vlc_tables[128+16][2];
96 static const int huff_quad_vlc_tables_sizes[2] = {
97 128, 16
99 /* computed from band_size_long */
100 static uint16_t band_index_long[9][23];
101 /* XXX: free when all decoders are closed */
102 #define TABLE_4_3_SIZE (8191 + 16)*4
103 static int8_t table_4_3_exp[TABLE_4_3_SIZE];
104 static uint32_t table_4_3_value[TABLE_4_3_SIZE];
105 static uint32_t exp_table[512];
106 static uint32_t expval_table[512][16];
107 /* intensity stereo coef table */
108 static int32_t is_table[2][16];
109 static int32_t is_table_lsf[2][2][16];
110 static int32_t csa_table[8][4];
111 static float csa_table_float[8][4];
112 static int32_t mdct_win[8][36];
114 /* lower 2 bits: modulo 3, higher bits: shift */
115 static uint16_t scale_factor_modshift[64];
116 /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
117 static int32_t scale_factor_mult[15][3];
118 /* mult table for layer 2 group quantization */
120 #define SCALE_GEN(v) \
121 { FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }
123 static const int32_t scale_factor_mult2[3][3] = {
124 SCALE_GEN(4.0 / 3.0), /* 3 steps */
125 SCALE_GEN(4.0 / 5.0), /* 5 steps */
126 SCALE_GEN(4.0 / 9.0), /* 9 steps */
129 static DECLARE_ALIGNED_16(MPA_INT, window[512]);
132 * Convert region offsets to region sizes and truncate
133 * size to big_values.
135 void ff_region_offset2size(GranuleDef *g){
136 int i, k, j=0;
137 g->region_size[2] = (576 / 2);
138 for(i=0;i<3;i++) {
139 k = FFMIN(g->region_size[i], g->big_values);
140 g->region_size[i] = k - j;
141 j = k;
145 void ff_init_short_region(MPADecodeContext *s, GranuleDef *g){
146 if (g->block_type == 2)
147 g->region_size[0] = (36 / 2);
148 else {
149 if (s->sample_rate_index <= 2)
150 g->region_size[0] = (36 / 2);
151 else if (s->sample_rate_index != 8)
152 g->region_size[0] = (54 / 2);
153 else
154 g->region_size[0] = (108 / 2);
156 g->region_size[1] = (576 / 2);
159 void ff_init_long_region(MPADecodeContext *s, GranuleDef *g, int ra1, int ra2){
160 int l;
161 g->region_size[0] =
162 band_index_long[s->sample_rate_index][ra1 + 1] >> 1;
163 /* should not overflow */
164 l = FFMIN(ra1 + ra2 + 2, 22);
165 g->region_size[1] =
166 band_index_long[s->sample_rate_index][l] >> 1;
169 void ff_compute_band_indexes(MPADecodeContext *s, GranuleDef *g){
170 if (g->block_type == 2) {
171 if (g->switch_point) {
172 /* if switched mode, we handle the 36 first samples as
173 long blocks. For 8000Hz, we handle the 48 first
174 exponents as long blocks (XXX: check this!) */
175 if (s->sample_rate_index <= 2)
176 g->long_end = 8;
177 else if (s->sample_rate_index != 8)
178 g->long_end = 6;
179 else
180 g->long_end = 4; /* 8000 Hz */
182 g->short_start = 2 + (s->sample_rate_index != 8);
183 } else {
184 g->long_end = 0;
185 g->short_start = 0;
187 } else {
188 g->short_start = 13;
189 g->long_end = 22;
193 /* layer 1 unscaling */
194 /* n = number of bits of the mantissa minus 1 */
195 static inline int l1_unscale(int n, int mant, int scale_factor)
197 int shift, mod;
198 int64_t val;
200 shift = scale_factor_modshift[scale_factor];
201 mod = shift & 3;
202 shift >>= 2;
203 val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
204 shift += n;
205 /* NOTE: at this point, 1 <= shift >= 21 + 15 */
206 return (int)((val + (1LL << (shift - 1))) >> shift);
209 static inline int l2_unscale_group(int steps, int mant, int scale_factor)
211 int shift, mod, val;
213 shift = scale_factor_modshift[scale_factor];
214 mod = shift & 3;
215 shift >>= 2;
217 val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
218 /* NOTE: at this point, 0 <= shift <= 21 */
219 if (shift > 0)
220 val = (val + (1 << (shift - 1))) >> shift;
221 return val;
224 /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
225 static inline int l3_unscale(int value, int exponent)
227 unsigned int m;
228 int e;
230 e = table_4_3_exp [4*value + (exponent&3)];
231 m = table_4_3_value[4*value + (exponent&3)];
232 e -= (exponent >> 2);
233 assert(e>=1);
234 if (e > 31)
235 return 0;
236 m = (m + (1 << (e-1))) >> e;
238 return m;
241 /* all integer n^(4/3) computation code */
242 #define DEV_ORDER 13
244 #define POW_FRAC_BITS 24
245 #define POW_FRAC_ONE (1 << POW_FRAC_BITS)
246 #define POW_FIX(a) ((int)((a) * POW_FRAC_ONE))
247 #define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
249 static int dev_4_3_coefs[DEV_ORDER];
251 #if 0 /* unused */
252 static int pow_mult3[3] = {
253 POW_FIX(1.0),
254 POW_FIX(1.25992104989487316476),
255 POW_FIX(1.58740105196819947474),
257 #endif
259 static void int_pow_init(void)
261 int i, a;
263 a = POW_FIX(1.0);
264 for(i=0;i<DEV_ORDER;i++) {
265 a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
266 dev_4_3_coefs[i] = a;
270 #if 0 /* unused, remove? */
271 /* return the mantissa and the binary exponent */
272 static int int_pow(int i, int *exp_ptr)
274 int e, er, eq, j;
275 int a, a1;
277 /* renormalize */
278 a = i;
279 e = POW_FRAC_BITS;
280 while (a < (1 << (POW_FRAC_BITS - 1))) {
281 a = a << 1;
282 e--;
284 a -= (1 << POW_FRAC_BITS);
285 a1 = 0;
286 for(j = DEV_ORDER - 1; j >= 0; j--)
287 a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
288 a = (1 << POW_FRAC_BITS) + a1;
289 /* exponent compute (exact) */
290 e = e * 4;
291 er = e % 3;
292 eq = e / 3;
293 a = POW_MULL(a, pow_mult3[er]);
294 while (a >= 2 * POW_FRAC_ONE) {
295 a = a >> 1;
296 eq++;
298 /* convert to float */
299 while (a < POW_FRAC_ONE) {
300 a = a << 1;
301 eq--;
303 /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
304 #if POW_FRAC_BITS > FRAC_BITS
305 a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
306 /* correct overflow */
307 if (a >= 2 * (1 << FRAC_BITS)) {
308 a = a >> 1;
309 eq++;
311 #endif
312 *exp_ptr = eq;
313 return a;
315 #endif
317 static int decode_init(AVCodecContext * avctx)
319 MPADecodeContext *s = avctx->priv_data;
320 static int init=0;
321 int i, j, k;
323 s->avctx = avctx;
325 #if defined(USE_HIGHPRECISION) && defined(CONFIG_AUDIO_NONSHORT)
326 avctx->sample_fmt= SAMPLE_FMT_S32;
327 #else
328 avctx->sample_fmt= SAMPLE_FMT_S16;
329 #endif
330 s->error_recognition= avctx->error_recognition;
332 if(avctx->antialias_algo != FF_AA_FLOAT)
333 s->compute_antialias= compute_antialias_integer;
334 else
335 s->compute_antialias= compute_antialias_float;
337 if (!init && !avctx->parse_only) {
338 int offset;
340 /* scale factors table for layer 1/2 */
341 for(i=0;i<64;i++) {
342 int shift, mod;
343 /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
344 shift = (i / 3);
345 mod = i % 3;
346 scale_factor_modshift[i] = mod | (shift << 2);
349 /* scale factor multiply for layer 1 */
350 for(i=0;i<15;i++) {
351 int n, norm;
352 n = i + 2;
353 norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
354 scale_factor_mult[i][0] = MULL(FIXR(1.0 * 2.0), norm, FRAC_BITS);
355 scale_factor_mult[i][1] = MULL(FIXR(0.7937005259 * 2.0), norm, FRAC_BITS);
356 scale_factor_mult[i][2] = MULL(FIXR(0.6299605249 * 2.0), norm, FRAC_BITS);
357 dprintf(avctx, "%d: norm=%x s=%x %x %x\n",
358 i, norm,
359 scale_factor_mult[i][0],
360 scale_factor_mult[i][1],
361 scale_factor_mult[i][2]);
364 ff_mpa_synth_init(window);
366 /* huffman decode tables */
367 offset = 0;
368 for(i=1;i<16;i++) {
369 const HuffTable *h = &mpa_huff_tables[i];
370 int xsize, x, y;
371 unsigned int n;
372 uint8_t tmp_bits [512];
373 uint16_t tmp_codes[512];
375 memset(tmp_bits , 0, sizeof(tmp_bits ));
376 memset(tmp_codes, 0, sizeof(tmp_codes));
378 xsize = h->xsize;
379 n = xsize * xsize;
381 j = 0;
382 for(x=0;x<xsize;x++) {
383 for(y=0;y<xsize;y++){
384 tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j ];
385 tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
389 /* XXX: fail test */
390 huff_vlc[i].table = huff_vlc_tables+offset;
391 huff_vlc[i].table_allocated = huff_vlc_tables_sizes[i];
392 init_vlc(&huff_vlc[i], 7, 512,
393 tmp_bits, 1, 1, tmp_codes, 2, 2,
394 INIT_VLC_USE_NEW_STATIC);
395 offset += huff_vlc_tables_sizes[i];
397 assert(offset == FF_ARRAY_ELEMS(huff_vlc_tables));
399 offset = 0;
400 for(i=0;i<2;i++) {
401 huff_quad_vlc[i].table = huff_quad_vlc_tables+offset;
402 huff_quad_vlc[i].table_allocated = huff_quad_vlc_tables_sizes[i];
403 init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
404 mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1,
405 INIT_VLC_USE_NEW_STATIC);
406 offset += huff_quad_vlc_tables_sizes[i];
408 assert(offset == FF_ARRAY_ELEMS(huff_quad_vlc_tables));
410 for(i=0;i<9;i++) {
411 k = 0;
412 for(j=0;j<22;j++) {
413 band_index_long[i][j] = k;
414 k += band_size_long[i][j];
416 band_index_long[i][22] = k;
419 /* compute n ^ (4/3) and store it in mantissa/exp format */
421 int_pow_init();
422 for(i=1;i<TABLE_4_3_SIZE;i++) {
423 double f, fm;
424 int e, m;
425 f = pow((double)(i/4), 4.0 / 3.0) * pow(2, (i&3)*0.25);
426 fm = frexp(f, &e);
427 m = (uint32_t)(fm*(1LL<<31) + 0.5);
428 e+= FRAC_BITS - 31 + 5 - 100;
430 /* normalized to FRAC_BITS */
431 table_4_3_value[i] = m;
432 table_4_3_exp[i] = -e;
434 for(i=0; i<512*16; i++){
435 int exponent= (i>>4);
436 double f= pow(i&15, 4.0 / 3.0) * pow(2, (exponent-400)*0.25 + FRAC_BITS + 5);
437 expval_table[exponent][i&15]= llrint(f);
438 if((i&15)==1)
439 exp_table[exponent]= llrint(f);
442 for(i=0;i<7;i++) {
443 float f;
444 int v;
445 if (i != 6) {
446 f = tan((double)i * M_PI / 12.0);
447 v = FIXR(f / (1.0 + f));
448 } else {
449 v = FIXR(1.0);
451 is_table[0][i] = v;
452 is_table[1][6 - i] = v;
454 /* invalid values */
455 for(i=7;i<16;i++)
456 is_table[0][i] = is_table[1][i] = 0.0;
458 for(i=0;i<16;i++) {
459 double f;
460 int e, k;
462 for(j=0;j<2;j++) {
463 e = -(j + 1) * ((i + 1) >> 1);
464 f = pow(2.0, e / 4.0);
465 k = i & 1;
466 is_table_lsf[j][k ^ 1][i] = FIXR(f);
467 is_table_lsf[j][k][i] = FIXR(1.0);
468 dprintf(avctx, "is_table_lsf %d %d: %x %x\n",
469 i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
473 for(i=0;i<8;i++) {
474 float ci, cs, ca;
475 ci = ci_table[i];
476 cs = 1.0 / sqrt(1.0 + ci * ci);
477 ca = cs * ci;
478 csa_table[i][0] = FIXHR(cs/4);
479 csa_table[i][1] = FIXHR(ca/4);
480 csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
481 csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
482 csa_table_float[i][0] = cs;
483 csa_table_float[i][1] = ca;
484 csa_table_float[i][2] = ca + cs;
485 csa_table_float[i][3] = ca - cs;
488 /* compute mdct windows */
489 for(i=0;i<36;i++) {
490 for(j=0; j<4; j++){
491 double d;
493 if(j==2 && i%3 != 1)
494 continue;
496 d= sin(M_PI * (i + 0.5) / 36.0);
497 if(j==1){
498 if (i>=30) d= 0;
499 else if(i>=24) d= sin(M_PI * (i - 18 + 0.5) / 12.0);
500 else if(i>=18) d= 1;
501 }else if(j==3){
502 if (i< 6) d= 0;
503 else if(i< 12) d= sin(M_PI * (i - 6 + 0.5) / 12.0);
504 else if(i< 18) d= 1;
506 //merge last stage of imdct into the window coefficients
507 d*= 0.5 / cos(M_PI*(2*i + 19)/72);
509 if(j==2)
510 mdct_win[j][i/3] = FIXHR((d / (1<<5)));
511 else
512 mdct_win[j][i ] = FIXHR((d / (1<<5)));
516 /* NOTE: we do frequency inversion adter the MDCT by changing
517 the sign of the right window coefs */
518 for(j=0;j<4;j++) {
519 for(i=0;i<36;i+=2) {
520 mdct_win[j + 4][i] = mdct_win[j][i];
521 mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
525 init = 1;
528 if (avctx->codec_id == CODEC_ID_MP3ADU)
529 s->adu_mode = 1;
530 return 0;
533 /* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */
535 /* cos(i*pi/64) */
537 #define COS0_0 FIXHR(0.50060299823519630134/2)
538 #define COS0_1 FIXHR(0.50547095989754365998/2)
539 #define COS0_2 FIXHR(0.51544730992262454697/2)
540 #define COS0_3 FIXHR(0.53104259108978417447/2)
541 #define COS0_4 FIXHR(0.55310389603444452782/2)
542 #define COS0_5 FIXHR(0.58293496820613387367/2)
543 #define COS0_6 FIXHR(0.62250412303566481615/2)
544 #define COS0_7 FIXHR(0.67480834145500574602/2)
545 #define COS0_8 FIXHR(0.74453627100229844977/2)
546 #define COS0_9 FIXHR(0.83934964541552703873/2)
547 #define COS0_10 FIXHR(0.97256823786196069369/2)
548 #define COS0_11 FIXHR(1.16943993343288495515/4)
549 #define COS0_12 FIXHR(1.48416461631416627724/4)
550 #define COS0_13 FIXHR(2.05778100995341155085/8)
551 #define COS0_14 FIXHR(3.40760841846871878570/8)
552 #define COS0_15 FIXHR(10.19000812354805681150/32)
554 #define COS1_0 FIXHR(0.50241928618815570551/2)
555 #define COS1_1 FIXHR(0.52249861493968888062/2)
556 #define COS1_2 FIXHR(0.56694403481635770368/2)
557 #define COS1_3 FIXHR(0.64682178335999012954/2)
558 #define COS1_4 FIXHR(0.78815462345125022473/2)
559 #define COS1_5 FIXHR(1.06067768599034747134/4)
560 #define COS1_6 FIXHR(1.72244709823833392782/4)
561 #define COS1_7 FIXHR(5.10114861868916385802/16)
563 #define COS2_0 FIXHR(0.50979557910415916894/2)
564 #define COS2_1 FIXHR(0.60134488693504528054/2)
565 #define COS2_2 FIXHR(0.89997622313641570463/2)
566 #define COS2_3 FIXHR(2.56291544774150617881/8)
568 #define COS3_0 FIXHR(0.54119610014619698439/2)
569 #define COS3_1 FIXHR(1.30656296487637652785/4)
571 #define COS4_0 FIXHR(0.70710678118654752439/2)
573 /* butterfly operator */
574 #define BF(a, b, c, s)\
576 tmp0 = tab[a] + tab[b];\
577 tmp1 = tab[a] - tab[b];\
578 tab[a] = tmp0;\
579 tab[b] = MULH(tmp1<<(s), c);\
582 #define BF1(a, b, c, d)\
584 BF(a, b, COS4_0, 1);\
585 BF(c, d,-COS4_0, 1);\
586 tab[c] += tab[d];\
589 #define BF2(a, b, c, d)\
591 BF(a, b, COS4_0, 1);\
592 BF(c, d,-COS4_0, 1);\
593 tab[c] += tab[d];\
594 tab[a] += tab[c];\
595 tab[c] += tab[b];\
596 tab[b] += tab[d];\
599 #define ADD(a, b) tab[a] += tab[b]
601 /* DCT32 without 1/sqrt(2) coef zero scaling. */
602 static void dct32(int32_t *out, int32_t *tab)
604 int tmp0, tmp1;
606 /* pass 1 */
607 BF( 0, 31, COS0_0 , 1);
608 BF(15, 16, COS0_15, 5);
609 /* pass 2 */
610 BF( 0, 15, COS1_0 , 1);
611 BF(16, 31,-COS1_0 , 1);
612 /* pass 1 */
613 BF( 7, 24, COS0_7 , 1);
614 BF( 8, 23, COS0_8 , 1);
615 /* pass 2 */
616 BF( 7, 8, COS1_7 , 4);
617 BF(23, 24,-COS1_7 , 4);
618 /* pass 3 */
619 BF( 0, 7, COS2_0 , 1);
620 BF( 8, 15,-COS2_0 , 1);
621 BF(16, 23, COS2_0 , 1);
622 BF(24, 31,-COS2_0 , 1);
623 /* pass 1 */
624 BF( 3, 28, COS0_3 , 1);
625 BF(12, 19, COS0_12, 2);
626 /* pass 2 */
627 BF( 3, 12, COS1_3 , 1);
628 BF(19, 28,-COS1_3 , 1);
629 /* pass 1 */
630 BF( 4, 27, COS0_4 , 1);
631 BF(11, 20, COS0_11, 2);
632 /* pass 2 */
633 BF( 4, 11, COS1_4 , 1);
634 BF(20, 27,-COS1_4 , 1);
635 /* pass 3 */
636 BF( 3, 4, COS2_3 , 3);
637 BF(11, 12,-COS2_3 , 3);
638 BF(19, 20, COS2_3 , 3);
639 BF(27, 28,-COS2_3 , 3);
640 /* pass 4 */
641 BF( 0, 3, COS3_0 , 1);
642 BF( 4, 7,-COS3_0 , 1);
643 BF( 8, 11, COS3_0 , 1);
644 BF(12, 15,-COS3_0 , 1);
645 BF(16, 19, COS3_0 , 1);
646 BF(20, 23,-COS3_0 , 1);
647 BF(24, 27, COS3_0 , 1);
648 BF(28, 31,-COS3_0 , 1);
652 /* pass 1 */
653 BF( 1, 30, COS0_1 , 1);
654 BF(14, 17, COS0_14, 3);
655 /* pass 2 */
656 BF( 1, 14, COS1_1 , 1);
657 BF(17, 30,-COS1_1 , 1);
658 /* pass 1 */
659 BF( 6, 25, COS0_6 , 1);
660 BF( 9, 22, COS0_9 , 1);
661 /* pass 2 */
662 BF( 6, 9, COS1_6 , 2);
663 BF(22, 25,-COS1_6 , 2);
664 /* pass 3 */
665 BF( 1, 6, COS2_1 , 1);
666 BF( 9, 14,-COS2_1 , 1);
667 BF(17, 22, COS2_1 , 1);
668 BF(25, 30,-COS2_1 , 1);
670 /* pass 1 */
671 BF( 2, 29, COS0_2 , 1);
672 BF(13, 18, COS0_13, 3);
673 /* pass 2 */
674 BF( 2, 13, COS1_2 , 1);
675 BF(18, 29,-COS1_2 , 1);
676 /* pass 1 */
677 BF( 5, 26, COS0_5 , 1);
678 BF(10, 21, COS0_10, 1);
679 /* pass 2 */
680 BF( 5, 10, COS1_5 , 2);
681 BF(21, 26,-COS1_5 , 2);
682 /* pass 3 */
683 BF( 2, 5, COS2_2 , 1);
684 BF(10, 13,-COS2_2 , 1);
685 BF(18, 21, COS2_2 , 1);
686 BF(26, 29,-COS2_2 , 1);
687 /* pass 4 */
688 BF( 1, 2, COS3_1 , 2);
689 BF( 5, 6,-COS3_1 , 2);
690 BF( 9, 10, COS3_1 , 2);
691 BF(13, 14,-COS3_1 , 2);
692 BF(17, 18, COS3_1 , 2);
693 BF(21, 22,-COS3_1 , 2);
694 BF(25, 26, COS3_1 , 2);
695 BF(29, 30,-COS3_1 , 2);
697 /* pass 5 */
698 BF1( 0, 1, 2, 3);
699 BF2( 4, 5, 6, 7);
700 BF1( 8, 9, 10, 11);
701 BF2(12, 13, 14, 15);
702 BF1(16, 17, 18, 19);
703 BF2(20, 21, 22, 23);
704 BF1(24, 25, 26, 27);
705 BF2(28, 29, 30, 31);
707 /* pass 6 */
709 ADD( 8, 12);
710 ADD(12, 10);
711 ADD(10, 14);
712 ADD(14, 9);
713 ADD( 9, 13);
714 ADD(13, 11);
715 ADD(11, 15);
717 out[ 0] = tab[0];
718 out[16] = tab[1];
719 out[ 8] = tab[2];
720 out[24] = tab[3];
721 out[ 4] = tab[4];
722 out[20] = tab[5];
723 out[12] = tab[6];
724 out[28] = tab[7];
725 out[ 2] = tab[8];
726 out[18] = tab[9];
727 out[10] = tab[10];
728 out[26] = tab[11];
729 out[ 6] = tab[12];
730 out[22] = tab[13];
731 out[14] = tab[14];
732 out[30] = tab[15];
734 ADD(24, 28);
735 ADD(28, 26);
736 ADD(26, 30);
737 ADD(30, 25);
738 ADD(25, 29);
739 ADD(29, 27);
740 ADD(27, 31);
742 out[ 1] = tab[16] + tab[24];
743 out[17] = tab[17] + tab[25];
744 out[ 9] = tab[18] + tab[26];
745 out[25] = tab[19] + tab[27];
746 out[ 5] = tab[20] + tab[28];
747 out[21] = tab[21] + tab[29];
748 out[13] = tab[22] + tab[30];
749 out[29] = tab[23] + tab[31];
750 out[ 3] = tab[24] + tab[20];
751 out[19] = tab[25] + tab[21];
752 out[11] = tab[26] + tab[22];
753 out[27] = tab[27] + tab[23];
754 out[ 7] = tab[28] + tab[18];
755 out[23] = tab[29] + tab[19];
756 out[15] = tab[30] + tab[17];
757 out[31] = tab[31];
760 #if FRAC_BITS <= 15
762 static inline int round_sample(int *sum)
764 int sum1;
765 sum1 = (*sum) >> OUT_SHIFT;
766 *sum &= (1<<OUT_SHIFT)-1;
767 if (sum1 < OUT_MIN)
768 sum1 = OUT_MIN;
769 else if (sum1 > OUT_MAX)
770 sum1 = OUT_MAX;
771 return sum1;
774 /* signed 16x16 -> 32 multiply add accumulate */
775 #define MACS(rt, ra, rb) MAC16(rt, ra, rb)
777 /* signed 16x16 -> 32 multiply */
778 #define MULS(ra, rb) MUL16(ra, rb)
780 #define MLSS(rt, ra, rb) MLS16(rt, ra, rb)
782 #else
784 static inline int round_sample(int64_t *sum)
786 int sum1;
787 sum1 = (int)((*sum) >> OUT_SHIFT);
788 *sum &= (1<<OUT_SHIFT)-1;
789 if (sum1 < OUT_MIN)
790 sum1 = OUT_MIN;
791 else if (sum1 > OUT_MAX)
792 sum1 = OUT_MAX;
793 return sum1;
796 # define MULS(ra, rb) MUL64(ra, rb)
797 # define MACS(rt, ra, rb) MAC64(rt, ra, rb)
798 # define MLSS(rt, ra, rb) MLS64(rt, ra, rb)
799 #endif
801 #define SUM8(op, sum, w, p) \
803 op(sum, (w)[0 * 64], p[0 * 64]); \
804 op(sum, (w)[1 * 64], p[1 * 64]); \
805 op(sum, (w)[2 * 64], p[2 * 64]); \
806 op(sum, (w)[3 * 64], p[3 * 64]); \
807 op(sum, (w)[4 * 64], p[4 * 64]); \
808 op(sum, (w)[5 * 64], p[5 * 64]); \
809 op(sum, (w)[6 * 64], p[6 * 64]); \
810 op(sum, (w)[7 * 64], p[7 * 64]); \
813 #define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
815 int tmp;\
816 tmp = p[0 * 64];\
817 op1(sum1, (w1)[0 * 64], tmp);\
818 op2(sum2, (w2)[0 * 64], tmp);\
819 tmp = p[1 * 64];\
820 op1(sum1, (w1)[1 * 64], tmp);\
821 op2(sum2, (w2)[1 * 64], tmp);\
822 tmp = p[2 * 64];\
823 op1(sum1, (w1)[2 * 64], tmp);\
824 op2(sum2, (w2)[2 * 64], tmp);\
825 tmp = p[3 * 64];\
826 op1(sum1, (w1)[3 * 64], tmp);\
827 op2(sum2, (w2)[3 * 64], tmp);\
828 tmp = p[4 * 64];\
829 op1(sum1, (w1)[4 * 64], tmp);\
830 op2(sum2, (w2)[4 * 64], tmp);\
831 tmp = p[5 * 64];\
832 op1(sum1, (w1)[5 * 64], tmp);\
833 op2(sum2, (w2)[5 * 64], tmp);\
834 tmp = p[6 * 64];\
835 op1(sum1, (w1)[6 * 64], tmp);\
836 op2(sum2, (w2)[6 * 64], tmp);\
837 tmp = p[7 * 64];\
838 op1(sum1, (w1)[7 * 64], tmp);\
839 op2(sum2, (w2)[7 * 64], tmp);\
842 void ff_mpa_synth_init(MPA_INT *window)
844 int i;
846 /* max = 18760, max sum over all 16 coefs : 44736 */
847 for(i=0;i<257;i++) {
848 int v;
849 v = ff_mpa_enwindow[i];
850 #if WFRAC_BITS < 16
851 v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
852 #endif
853 window[i] = v;
854 if ((i & 63) != 0)
855 v = -v;
856 if (i != 0)
857 window[512 - i] = v;
861 /* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
862 32 samples. */
863 /* XXX: optimize by avoiding ring buffer usage */
864 void ff_mpa_synth_filter(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
865 MPA_INT *window, int *dither_state,
866 OUT_INT *samples, int incr,
867 int32_t sb_samples[SBLIMIT])
869 int32_t tmp[32];
870 register MPA_INT *synth_buf;
871 register const MPA_INT *w, *w2, *p;
872 int j, offset, v;
873 OUT_INT *samples2;
874 #if FRAC_BITS <= 15
875 int sum, sum2;
876 #else
877 int64_t sum, sum2;
878 #endif
880 dct32(tmp, sb_samples);
882 offset = *synth_buf_offset;
883 synth_buf = synth_buf_ptr + offset;
885 for(j=0;j<32;j++) {
886 v = tmp[j];
887 #if FRAC_BITS <= 15
888 /* NOTE: can cause a loss in precision if very high amplitude
889 sound */
890 v = av_clip_int16(v);
891 #endif
892 synth_buf[j] = v;
894 /* copy to avoid wrap */
895 memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));
897 samples2 = samples + 31 * incr;
898 w = window;
899 w2 = window + 31;
901 sum = *dither_state;
902 p = synth_buf + 16;
903 SUM8(MACS, sum, w, p);
904 p = synth_buf + 48;
905 SUM8(MLSS, sum, w + 32, p);
906 *samples = round_sample(&sum);
907 samples += incr;
908 w++;
910 /* we calculate two samples at the same time to avoid one memory
911 access per two sample */
912 for(j=1;j<16;j++) {
913 sum2 = 0;
914 p = synth_buf + 16 + j;
915 SUM8P2(sum, MACS, sum2, MLSS, w, w2, p);
916 p = synth_buf + 48 - j;
917 SUM8P2(sum, MLSS, sum2, MLSS, w + 32, w2 + 32, p);
919 *samples = round_sample(&sum);
920 samples += incr;
921 sum += sum2;
922 *samples2 = round_sample(&sum);
923 samples2 -= incr;
924 w++;
925 w2--;
928 p = synth_buf + 32;
929 SUM8(MLSS, sum, w + 32, p);
930 *samples = round_sample(&sum);
931 *dither_state= sum;
933 offset = (offset - 32) & 511;
934 *synth_buf_offset = offset;
937 #define C3 FIXHR(0.86602540378443864676/2)
939 /* 0.5 / cos(pi*(2*i+1)/36) */
940 static const int icos36[9] = {
941 FIXR(0.50190991877167369479),
942 FIXR(0.51763809020504152469), //0
943 FIXR(0.55168895948124587824),
944 FIXR(0.61038729438072803416),
945 FIXR(0.70710678118654752439), //1
946 FIXR(0.87172339781054900991),
947 FIXR(1.18310079157624925896),
948 FIXR(1.93185165257813657349), //2
949 FIXR(5.73685662283492756461),
952 /* 0.5 / cos(pi*(2*i+1)/36) */
953 static const int icos36h[9] = {
954 FIXHR(0.50190991877167369479/2),
955 FIXHR(0.51763809020504152469/2), //0
956 FIXHR(0.55168895948124587824/2),
957 FIXHR(0.61038729438072803416/2),
958 FIXHR(0.70710678118654752439/2), //1
959 FIXHR(0.87172339781054900991/2),
960 FIXHR(1.18310079157624925896/4),
961 FIXHR(1.93185165257813657349/4), //2
962 // FIXHR(5.73685662283492756461),
965 /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
966 cases. */
967 static void imdct12(int *out, int *in)
969 int in0, in1, in2, in3, in4, in5, t1, t2;
971 in0= in[0*3];
972 in1= in[1*3] + in[0*3];
973 in2= in[2*3] + in[1*3];
974 in3= in[3*3] + in[2*3];
975 in4= in[4*3] + in[3*3];
976 in5= in[5*3] + in[4*3];
977 in5 += in3;
978 in3 += in1;
980 in2= MULH(2*in2, C3);
981 in3= MULH(4*in3, C3);
983 t1 = in0 - in4;
984 t2 = MULH(2*(in1 - in5), icos36h[4]);
986 out[ 7]=
987 out[10]= t1 + t2;
988 out[ 1]=
989 out[ 4]= t1 - t2;
991 in0 += in4>>1;
992 in4 = in0 + in2;
993 in5 += 2*in1;
994 in1 = MULH(in5 + in3, icos36h[1]);
995 out[ 8]=
996 out[ 9]= in4 + in1;
997 out[ 2]=
998 out[ 3]= in4 - in1;
1000 in0 -= in2;
1001 in5 = MULH(2*(in5 - in3), icos36h[7]);
1002 out[ 0]=
1003 out[ 5]= in0 - in5;
1004 out[ 6]=
1005 out[11]= in0 + in5;
1008 /* cos(pi*i/18) */
1009 #define C1 FIXHR(0.98480775301220805936/2)
1010 #define C2 FIXHR(0.93969262078590838405/2)
1011 #define C3 FIXHR(0.86602540378443864676/2)
1012 #define C4 FIXHR(0.76604444311897803520/2)
1013 #define C5 FIXHR(0.64278760968653932632/2)
1014 #define C6 FIXHR(0.5/2)
1015 #define C7 FIXHR(0.34202014332566873304/2)
1016 #define C8 FIXHR(0.17364817766693034885/2)
1019 /* using Lee like decomposition followed by hand coded 9 points DCT */
1020 static void imdct36(int *out, int *buf, int *in, int *win)
1022 int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
1023 int tmp[18], *tmp1, *in1;
1025 for(i=17;i>=1;i--)
1026 in[i] += in[i-1];
1027 for(i=17;i>=3;i-=2)
1028 in[i] += in[i-2];
1030 for(j=0;j<2;j++) {
1031 tmp1 = tmp + j;
1032 in1 = in + j;
1033 #if 0
1034 //more accurate but slower
1035 int64_t t0, t1, t2, t3;
1036 t2 = in1[2*4] + in1[2*8] - in1[2*2];
1038 t3 = (in1[2*0] + (int64_t)(in1[2*6]>>1))<<32;
1039 t1 = in1[2*0] - in1[2*6];
1040 tmp1[ 6] = t1 - (t2>>1);
1041 tmp1[16] = t1 + t2;
1043 t0 = MUL64(2*(in1[2*2] + in1[2*4]), C2);
1044 t1 = MUL64( in1[2*4] - in1[2*8] , -2*C8);
1045 t2 = MUL64(2*(in1[2*2] + in1[2*8]), -C4);
1047 tmp1[10] = (t3 - t0 - t2) >> 32;
1048 tmp1[ 2] = (t3 + t0 + t1) >> 32;
1049 tmp1[14] = (t3 + t2 - t1) >> 32;
1051 tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
1052 t2 = MUL64(2*(in1[2*1] + in1[2*5]), C1);
1053 t3 = MUL64( in1[2*5] - in1[2*7] , -2*C7);
1054 t0 = MUL64(2*in1[2*3], C3);
1056 t1 = MUL64(2*(in1[2*1] + in1[2*7]), -C5);
1058 tmp1[ 0] = (t2 + t3 + t0) >> 32;
1059 tmp1[12] = (t2 + t1 - t0) >> 32;
1060 tmp1[ 8] = (t3 - t1 - t0) >> 32;
1061 #else
1062 t2 = in1[2*4] + in1[2*8] - in1[2*2];
1064 t3 = in1[2*0] + (in1[2*6]>>1);
1065 t1 = in1[2*0] - in1[2*6];
1066 tmp1[ 6] = t1 - (t2>>1);
1067 tmp1[16] = t1 + t2;
1069 t0 = MULH(2*(in1[2*2] + in1[2*4]), C2);
1070 t1 = MULH( in1[2*4] - in1[2*8] , -2*C8);
1071 t2 = MULH(2*(in1[2*2] + in1[2*8]), -C4);
1073 tmp1[10] = t3 - t0 - t2;
1074 tmp1[ 2] = t3 + t0 + t1;
1075 tmp1[14] = t3 + t2 - t1;
1077 tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
1078 t2 = MULH(2*(in1[2*1] + in1[2*5]), C1);
1079 t3 = MULH( in1[2*5] - in1[2*7] , -2*C7);
1080 t0 = MULH(2*in1[2*3], C3);
1082 t1 = MULH(2*(in1[2*1] + in1[2*7]), -C5);
1084 tmp1[ 0] = t2 + t3 + t0;
1085 tmp1[12] = t2 + t1 - t0;
1086 tmp1[ 8] = t3 - t1 - t0;
1087 #endif
1090 i = 0;
1091 for(j=0;j<4;j++) {
1092 t0 = tmp[i];
1093 t1 = tmp[i + 2];
1094 s0 = t1 + t0;
1095 s2 = t1 - t0;
1097 t2 = tmp[i + 1];
1098 t3 = tmp[i + 3];
1099 s1 = MULH(2*(t3 + t2), icos36h[j]);
1100 s3 = MULL(t3 - t2, icos36[8 - j], FRAC_BITS);
1102 t0 = s0 + s1;
1103 t1 = s0 - s1;
1104 out[(9 + j)*SBLIMIT] = MULH(t1, win[9 + j]) + buf[9 + j];
1105 out[(8 - j)*SBLIMIT] = MULH(t1, win[8 - j]) + buf[8 - j];
1106 buf[9 + j] = MULH(t0, win[18 + 9 + j]);
1107 buf[8 - j] = MULH(t0, win[18 + 8 - j]);
1109 t0 = s2 + s3;
1110 t1 = s2 - s3;
1111 out[(9 + 8 - j)*SBLIMIT] = MULH(t1, win[9 + 8 - j]) + buf[9 + 8 - j];
1112 out[( j)*SBLIMIT] = MULH(t1, win[ j]) + buf[ j];
1113 buf[9 + 8 - j] = MULH(t0, win[18 + 9 + 8 - j]);
1114 buf[ + j] = MULH(t0, win[18 + j]);
1115 i += 4;
1118 s0 = tmp[16];
1119 s1 = MULH(2*tmp[17], icos36h[4]);
1120 t0 = s0 + s1;
1121 t1 = s0 - s1;
1122 out[(9 + 4)*SBLIMIT] = MULH(t1, win[9 + 4]) + buf[9 + 4];
1123 out[(8 - 4)*SBLIMIT] = MULH(t1, win[8 - 4]) + buf[8 - 4];
1124 buf[9 + 4] = MULH(t0, win[18 + 9 + 4]);
1125 buf[8 - 4] = MULH(t0, win[18 + 8 - 4]);
1128 /* return the number of decoded frames */
1129 static int mp_decode_layer1(MPADecodeContext *s)
1131 int bound, i, v, n, ch, j, mant;
1132 uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
1133 uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
1135 if (s->mode == MPA_JSTEREO)
1136 bound = (s->mode_ext + 1) * 4;
1137 else
1138 bound = SBLIMIT;
1140 /* allocation bits */
1141 for(i=0;i<bound;i++) {
1142 for(ch=0;ch<s->nb_channels;ch++) {
1143 allocation[ch][i] = get_bits(&s->gb, 4);
1146 for(i=bound;i<SBLIMIT;i++) {
1147 allocation[0][i] = get_bits(&s->gb, 4);
1150 /* scale factors */
1151 for(i=0;i<bound;i++) {
1152 for(ch=0;ch<s->nb_channels;ch++) {
1153 if (allocation[ch][i])
1154 scale_factors[ch][i] = get_bits(&s->gb, 6);
1157 for(i=bound;i<SBLIMIT;i++) {
1158 if (allocation[0][i]) {
1159 scale_factors[0][i] = get_bits(&s->gb, 6);
1160 scale_factors[1][i] = get_bits(&s->gb, 6);
1164 /* compute samples */
1165 for(j=0;j<12;j++) {
1166 for(i=0;i<bound;i++) {
1167 for(ch=0;ch<s->nb_channels;ch++) {
1168 n = allocation[ch][i];
1169 if (n) {
1170 mant = get_bits(&s->gb, n + 1);
1171 v = l1_unscale(n, mant, scale_factors[ch][i]);
1172 } else {
1173 v = 0;
1175 s->sb_samples[ch][j][i] = v;
1178 for(i=bound;i<SBLIMIT;i++) {
1179 n = allocation[0][i];
1180 if (n) {
1181 mant = get_bits(&s->gb, n + 1);
1182 v = l1_unscale(n, mant, scale_factors[0][i]);
1183 s->sb_samples[0][j][i] = v;
1184 v = l1_unscale(n, mant, scale_factors[1][i]);
1185 s->sb_samples[1][j][i] = v;
1186 } else {
1187 s->sb_samples[0][j][i] = 0;
1188 s->sb_samples[1][j][i] = 0;
1192 return 12;
1195 static int mp_decode_layer2(MPADecodeContext *s)
1197 int sblimit; /* number of used subbands */
1198 const unsigned char *alloc_table;
1199 int table, bit_alloc_bits, i, j, ch, bound, v;
1200 unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
1201 unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
1202 unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
1203 int scale, qindex, bits, steps, k, l, m, b;
1205 /* select decoding table */
1206 table = ff_mpa_l2_select_table(s->bit_rate / 1000, s->nb_channels,
1207 s->sample_rate, s->lsf);
1208 sblimit = ff_mpa_sblimit_table[table];
1209 alloc_table = ff_mpa_alloc_tables[table];
1211 if (s->mode == MPA_JSTEREO)
1212 bound = (s->mode_ext + 1) * 4;
1213 else
1214 bound = sblimit;
1216 dprintf(s->avctx, "bound=%d sblimit=%d\n", bound, sblimit);
1218 /* sanity check */
1219 if( bound > sblimit ) bound = sblimit;
1221 /* parse bit allocation */
1222 j = 0;
1223 for(i=0;i<bound;i++) {
1224 bit_alloc_bits = alloc_table[j];
1225 for(ch=0;ch<s->nb_channels;ch++) {
1226 bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
1228 j += 1 << bit_alloc_bits;
1230 for(i=bound;i<sblimit;i++) {
1231 bit_alloc_bits = alloc_table[j];
1232 v = get_bits(&s->gb, bit_alloc_bits);
1233 bit_alloc[0][i] = v;
1234 bit_alloc[1][i] = v;
1235 j += 1 << bit_alloc_bits;
1238 /* scale codes */
1239 for(i=0;i<sblimit;i++) {
1240 for(ch=0;ch<s->nb_channels;ch++) {
1241 if (bit_alloc[ch][i])
1242 scale_code[ch][i] = get_bits(&s->gb, 2);
1246 /* scale factors */
1247 for(i=0;i<sblimit;i++) {
1248 for(ch=0;ch<s->nb_channels;ch++) {
1249 if (bit_alloc[ch][i]) {
1250 sf = scale_factors[ch][i];
1251 switch(scale_code[ch][i]) {
1252 default:
1253 case 0:
1254 sf[0] = get_bits(&s->gb, 6);
1255 sf[1] = get_bits(&s->gb, 6);
1256 sf[2] = get_bits(&s->gb, 6);
1257 break;
1258 case 2:
1259 sf[0] = get_bits(&s->gb, 6);
1260 sf[1] = sf[0];
1261 sf[2] = sf[0];
1262 break;
1263 case 1:
1264 sf[0] = get_bits(&s->gb, 6);
1265 sf[2] = get_bits(&s->gb, 6);
1266 sf[1] = sf[0];
1267 break;
1268 case 3:
1269 sf[0] = get_bits(&s->gb, 6);
1270 sf[2] = get_bits(&s->gb, 6);
1271 sf[1] = sf[2];
1272 break;
1278 /* samples */
1279 for(k=0;k<3;k++) {
1280 for(l=0;l<12;l+=3) {
1281 j = 0;
1282 for(i=0;i<bound;i++) {
1283 bit_alloc_bits = alloc_table[j];
1284 for(ch=0;ch<s->nb_channels;ch++) {
1285 b = bit_alloc[ch][i];
1286 if (b) {
1287 scale = scale_factors[ch][i][k];
1288 qindex = alloc_table[j+b];
1289 bits = ff_mpa_quant_bits[qindex];
1290 if (bits < 0) {
1291 /* 3 values at the same time */
1292 v = get_bits(&s->gb, -bits);
1293 steps = ff_mpa_quant_steps[qindex];
1294 s->sb_samples[ch][k * 12 + l + 0][i] =
1295 l2_unscale_group(steps, v % steps, scale);
1296 v = v / steps;
1297 s->sb_samples[ch][k * 12 + l + 1][i] =
1298 l2_unscale_group(steps, v % steps, scale);
1299 v = v / steps;
1300 s->sb_samples[ch][k * 12 + l + 2][i] =
1301 l2_unscale_group(steps, v, scale);
1302 } else {
1303 for(m=0;m<3;m++) {
1304 v = get_bits(&s->gb, bits);
1305 v = l1_unscale(bits - 1, v, scale);
1306 s->sb_samples[ch][k * 12 + l + m][i] = v;
1309 } else {
1310 s->sb_samples[ch][k * 12 + l + 0][i] = 0;
1311 s->sb_samples[ch][k * 12 + l + 1][i] = 0;
1312 s->sb_samples[ch][k * 12 + l + 2][i] = 0;
1315 /* next subband in alloc table */
1316 j += 1 << bit_alloc_bits;
1318 /* XXX: find a way to avoid this duplication of code */
1319 for(i=bound;i<sblimit;i++) {
1320 bit_alloc_bits = alloc_table[j];
1321 b = bit_alloc[0][i];
1322 if (b) {
1323 int mant, scale0, scale1;
1324 scale0 = scale_factors[0][i][k];
1325 scale1 = scale_factors[1][i][k];
1326 qindex = alloc_table[j+b];
1327 bits = ff_mpa_quant_bits[qindex];
1328 if (bits < 0) {
1329 /* 3 values at the same time */
1330 v = get_bits(&s->gb, -bits);
1331 steps = ff_mpa_quant_steps[qindex];
1332 mant = v % steps;
1333 v = v / steps;
1334 s->sb_samples[0][k * 12 + l + 0][i] =
1335 l2_unscale_group(steps, mant, scale0);
1336 s->sb_samples[1][k * 12 + l + 0][i] =
1337 l2_unscale_group(steps, mant, scale1);
1338 mant = v % steps;
1339 v = v / steps;
1340 s->sb_samples[0][k * 12 + l + 1][i] =
1341 l2_unscale_group(steps, mant, scale0);
1342 s->sb_samples[1][k * 12 + l + 1][i] =
1343 l2_unscale_group(steps, mant, scale1);
1344 s->sb_samples[0][k * 12 + l + 2][i] =
1345 l2_unscale_group(steps, v, scale0);
1346 s->sb_samples[1][k * 12 + l + 2][i] =
1347 l2_unscale_group(steps, v, scale1);
1348 } else {
1349 for(m=0;m<3;m++) {
1350 mant = get_bits(&s->gb, bits);
1351 s->sb_samples[0][k * 12 + l + m][i] =
1352 l1_unscale(bits - 1, mant, scale0);
1353 s->sb_samples[1][k * 12 + l + m][i] =
1354 l1_unscale(bits - 1, mant, scale1);
1357 } else {
1358 s->sb_samples[0][k * 12 + l + 0][i] = 0;
1359 s->sb_samples[0][k * 12 + l + 1][i] = 0;
1360 s->sb_samples[0][k * 12 + l + 2][i] = 0;
1361 s->sb_samples[1][k * 12 + l + 0][i] = 0;
1362 s->sb_samples[1][k * 12 + l + 1][i] = 0;
1363 s->sb_samples[1][k * 12 + l + 2][i] = 0;
1365 /* next subband in alloc table */
1366 j += 1 << bit_alloc_bits;
1368 /* fill remaining samples to zero */
1369 for(i=sblimit;i<SBLIMIT;i++) {
1370 for(ch=0;ch<s->nb_channels;ch++) {
1371 s->sb_samples[ch][k * 12 + l + 0][i] = 0;
1372 s->sb_samples[ch][k * 12 + l + 1][i] = 0;
1373 s->sb_samples[ch][k * 12 + l + 2][i] = 0;
1378 return 3 * 12;
1381 static inline void lsf_sf_expand(int *slen,
1382 int sf, int n1, int n2, int n3)
1384 if (n3) {
1385 slen[3] = sf % n3;
1386 sf /= n3;
1387 } else {
1388 slen[3] = 0;
1390 if (n2) {
1391 slen[2] = sf % n2;
1392 sf /= n2;
1393 } else {
1394 slen[2] = 0;
1396 slen[1] = sf % n1;
1397 sf /= n1;
1398 slen[0] = sf;
1401 static void exponents_from_scale_factors(MPADecodeContext *s,
1402 GranuleDef *g,
1403 int16_t *exponents)
1405 const uint8_t *bstab, *pretab;
1406 int len, i, j, k, l, v0, shift, gain, gains[3];
1407 int16_t *exp_ptr;
1409 exp_ptr = exponents;
1410 gain = g->global_gain - 210;
1411 shift = g->scalefac_scale + 1;
1413 bstab = band_size_long[s->sample_rate_index];
1414 pretab = mpa_pretab[g->preflag];
1415 for(i=0;i<g->long_end;i++) {
1416 v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
1417 len = bstab[i];
1418 for(j=len;j>0;j--)
1419 *exp_ptr++ = v0;
1422 if (g->short_start < 13) {
1423 bstab = band_size_short[s->sample_rate_index];
1424 gains[0] = gain - (g->subblock_gain[0] << 3);
1425 gains[1] = gain - (g->subblock_gain[1] << 3);
1426 gains[2] = gain - (g->subblock_gain[2] << 3);
1427 k = g->long_end;
1428 for(i=g->short_start;i<13;i++) {
1429 len = bstab[i];
1430 for(l=0;l<3;l++) {
1431 v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
1432 for(j=len;j>0;j--)
1433 *exp_ptr++ = v0;
1439 /* handle n = 0 too */
1440 static inline int get_bitsz(GetBitContext *s, int n)
1442 if (n == 0)
1443 return 0;
1444 else
1445 return get_bits(s, n);
1449 static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos, int *end_pos2){
1450 if(s->in_gb.buffer && *pos >= s->gb.size_in_bits){
1451 s->gb= s->in_gb;
1452 s->in_gb.buffer=NULL;
1453 assert((get_bits_count(&s->gb) & 7) == 0);
1454 skip_bits_long(&s->gb, *pos - *end_pos);
1455 *end_pos2=
1456 *end_pos= *end_pos2 + get_bits_count(&s->gb) - *pos;
1457 *pos= get_bits_count(&s->gb);
1461 static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
1462 int16_t *exponents, int end_pos2)
1464 int s_index;
1465 int i;
1466 int last_pos, bits_left;
1467 VLC *vlc;
1468 int end_pos= FFMIN(end_pos2, s->gb.size_in_bits);
1470 /* low frequencies (called big values) */
1471 s_index = 0;
1472 for(i=0;i<3;i++) {
1473 int j, k, l, linbits;
1474 j = g->region_size[i];
1475 if (j == 0)
1476 continue;
1477 /* select vlc table */
1478 k = g->table_select[i];
1479 l = mpa_huff_data[k][0];
1480 linbits = mpa_huff_data[k][1];
1481 vlc = &huff_vlc[l];
1483 if(!l){
1484 memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*2*j);
1485 s_index += 2*j;
1486 continue;
1489 /* read huffcode and compute each couple */
1490 for(;j>0;j--) {
1491 int exponent, x, y, v;
1492 int pos= get_bits_count(&s->gb);
1494 if (pos >= end_pos){
1495 // av_log(NULL, AV_LOG_ERROR, "pos: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
1496 switch_buffer(s, &pos, &end_pos, &end_pos2);
1497 // av_log(NULL, AV_LOG_ERROR, "new pos: %d %d\n", pos, end_pos);
1498 if(pos >= end_pos)
1499 break;
1501 y = get_vlc2(&s->gb, vlc->table, 7, 3);
1503 if(!y){
1504 g->sb_hybrid[s_index ] =
1505 g->sb_hybrid[s_index+1] = 0;
1506 s_index += 2;
1507 continue;
1510 exponent= exponents[s_index];
1512 dprintf(s->avctx, "region=%d n=%d x=%d y=%d exp=%d\n",
1513 i, g->region_size[i] - j, x, y, exponent);
1514 if(y&16){
1515 x = y >> 5;
1516 y = y & 0x0f;
1517 if (x < 15){
1518 v = expval_table[ exponent ][ x ];
1519 // v = expval_table[ (exponent&3) ][ x ] >> FFMIN(0 - (exponent>>2), 31);
1520 }else{
1521 x += get_bitsz(&s->gb, linbits);
1522 v = l3_unscale(x, exponent);
1524 if (get_bits1(&s->gb))
1525 v = -v;
1526 g->sb_hybrid[s_index] = v;
1527 if (y < 15){
1528 v = expval_table[ exponent ][ y ];
1529 }else{
1530 y += get_bitsz(&s->gb, linbits);
1531 v = l3_unscale(y, exponent);
1533 if (get_bits1(&s->gb))
1534 v = -v;
1535 g->sb_hybrid[s_index+1] = v;
1536 }else{
1537 x = y >> 5;
1538 y = y & 0x0f;
1539 x += y;
1540 if (x < 15){
1541 v = expval_table[ exponent ][ x ];
1542 }else{
1543 x += get_bitsz(&s->gb, linbits);
1544 v = l3_unscale(x, exponent);
1546 if (get_bits1(&s->gb))
1547 v = -v;
1548 g->sb_hybrid[s_index+!!y] = v;
1549 g->sb_hybrid[s_index+ !y] = 0;
1551 s_index+=2;
1555 /* high frequencies */
1556 vlc = &huff_quad_vlc[g->count1table_select];
1557 last_pos=0;
1558 while (s_index <= 572) {
1559 int pos, code;
1560 pos = get_bits_count(&s->gb);
1561 if (pos >= end_pos) {
1562 if (pos > end_pos2 && last_pos){
1563 /* some encoders generate an incorrect size for this
1564 part. We must go back into the data */
1565 s_index -= 4;
1566 skip_bits_long(&s->gb, last_pos - pos);
1567 av_log(s->avctx, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
1568 if(s->error_recognition >= FF_ER_COMPLIANT)
1569 s_index=0;
1570 break;
1572 // av_log(NULL, AV_LOG_ERROR, "pos2: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
1573 switch_buffer(s, &pos, &end_pos, &end_pos2);
1574 // av_log(NULL, AV_LOG_ERROR, "new pos2: %d %d %d\n", pos, end_pos, s_index);
1575 if(pos >= end_pos)
1576 break;
1578 last_pos= pos;
1580 code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
1581 dprintf(s->avctx, "t=%d code=%d\n", g->count1table_select, code);
1582 g->sb_hybrid[s_index+0]=
1583 g->sb_hybrid[s_index+1]=
1584 g->sb_hybrid[s_index+2]=
1585 g->sb_hybrid[s_index+3]= 0;
1586 while(code){
1587 static const int idxtab[16]={3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0};
1588 int v;
1589 int pos= s_index+idxtab[code];
1590 code ^= 8>>idxtab[code];
1591 v = exp_table[ exponents[pos] ];
1592 // v = exp_table[ (exponents[pos]&3) ] >> FFMIN(0 - (exponents[pos]>>2), 31);
1593 if(get_bits1(&s->gb))
1594 v = -v;
1595 g->sb_hybrid[pos] = v;
1597 s_index+=4;
1599 /* skip extension bits */
1600 bits_left = end_pos2 - get_bits_count(&s->gb);
1601 //av_log(NULL, AV_LOG_ERROR, "left:%d buf:%p\n", bits_left, s->in_gb.buffer);
1602 if (bits_left < 0 && s->error_recognition >= FF_ER_COMPLIANT) {
1603 av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
1604 s_index=0;
1605 }else if(bits_left > 0 && s->error_recognition >= FF_ER_AGGRESSIVE){
1606 av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
1607 s_index=0;
1609 memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*(576 - s_index));
1610 skip_bits_long(&s->gb, bits_left);
1612 i= get_bits_count(&s->gb);
1613 switch_buffer(s, &i, &end_pos, &end_pos2);
1615 return 0;
1618 /* Reorder short blocks from bitstream order to interleaved order. It
1619 would be faster to do it in parsing, but the code would be far more
1620 complicated */
1621 static void reorder_block(MPADecodeContext *s, GranuleDef *g)
1623 int i, j, len;
1624 int32_t *ptr, *dst, *ptr1;
1625 int32_t tmp[576];
1627 if (g->block_type != 2)
1628 return;
1630 if (g->switch_point) {
1631 if (s->sample_rate_index != 8) {
1632 ptr = g->sb_hybrid + 36;
1633 } else {
1634 ptr = g->sb_hybrid + 48;
1636 } else {
1637 ptr = g->sb_hybrid;
1640 for(i=g->short_start;i<13;i++) {
1641 len = band_size_short[s->sample_rate_index][i];
1642 ptr1 = ptr;
1643 dst = tmp;
1644 for(j=len;j>0;j--) {
1645 *dst++ = ptr[0*len];
1646 *dst++ = ptr[1*len];
1647 *dst++ = ptr[2*len];
1648 ptr++;
1650 ptr+=2*len;
1651 memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
1655 #define ISQRT2 FIXR(0.70710678118654752440)
1657 static void compute_stereo(MPADecodeContext *s,
1658 GranuleDef *g0, GranuleDef *g1)
1660 int i, j, k, l;
1661 int32_t v1, v2;
1662 int sf_max, tmp0, tmp1, sf, len, non_zero_found;
1663 int32_t (*is_tab)[16];
1664 int32_t *tab0, *tab1;
1665 int non_zero_found_short[3];
1667 /* intensity stereo */
1668 if (s->mode_ext & MODE_EXT_I_STEREO) {
1669 if (!s->lsf) {
1670 is_tab = is_table;
1671 sf_max = 7;
1672 } else {
1673 is_tab = is_table_lsf[g1->scalefac_compress & 1];
1674 sf_max = 16;
1677 tab0 = g0->sb_hybrid + 576;
1678 tab1 = g1->sb_hybrid + 576;
1680 non_zero_found_short[0] = 0;
1681 non_zero_found_short[1] = 0;
1682 non_zero_found_short[2] = 0;
1683 k = (13 - g1->short_start) * 3 + g1->long_end - 3;
1684 for(i = 12;i >= g1->short_start;i--) {
1685 /* for last band, use previous scale factor */
1686 if (i != 11)
1687 k -= 3;
1688 len = band_size_short[s->sample_rate_index][i];
1689 for(l=2;l>=0;l--) {
1690 tab0 -= len;
1691 tab1 -= len;
1692 if (!non_zero_found_short[l]) {
1693 /* test if non zero band. if so, stop doing i-stereo */
1694 for(j=0;j<len;j++) {
1695 if (tab1[j] != 0) {
1696 non_zero_found_short[l] = 1;
1697 goto found1;
1700 sf = g1->scale_factors[k + l];
1701 if (sf >= sf_max)
1702 goto found1;
1704 v1 = is_tab[0][sf];
1705 v2 = is_tab[1][sf];
1706 for(j=0;j<len;j++) {
1707 tmp0 = tab0[j];
1708 tab0[j] = MULL(tmp0, v1, FRAC_BITS);
1709 tab1[j] = MULL(tmp0, v2, FRAC_BITS);
1711 } else {
1712 found1:
1713 if (s->mode_ext & MODE_EXT_MS_STEREO) {
1714 /* lower part of the spectrum : do ms stereo
1715 if enabled */
1716 for(j=0;j<len;j++) {
1717 tmp0 = tab0[j];
1718 tmp1 = tab1[j];
1719 tab0[j] = MULL(tmp0 + tmp1, ISQRT2, FRAC_BITS);
1720 tab1[j] = MULL(tmp0 - tmp1, ISQRT2, FRAC_BITS);
1727 non_zero_found = non_zero_found_short[0] |
1728 non_zero_found_short[1] |
1729 non_zero_found_short[2];
1731 for(i = g1->long_end - 1;i >= 0;i--) {
1732 len = band_size_long[s->sample_rate_index][i];
1733 tab0 -= len;
1734 tab1 -= len;
1735 /* test if non zero band. if so, stop doing i-stereo */
1736 if (!non_zero_found) {
1737 for(j=0;j<len;j++) {
1738 if (tab1[j] != 0) {
1739 non_zero_found = 1;
1740 goto found2;
1743 /* for last band, use previous scale factor */
1744 k = (i == 21) ? 20 : i;
1745 sf = g1->scale_factors[k];
1746 if (sf >= sf_max)
1747 goto found2;
1748 v1 = is_tab[0][sf];
1749 v2 = is_tab[1][sf];
1750 for(j=0;j<len;j++) {
1751 tmp0 = tab0[j];
1752 tab0[j] = MULL(tmp0, v1, FRAC_BITS);
1753 tab1[j] = MULL(tmp0, v2, FRAC_BITS);
1755 } else {
1756 found2:
1757 if (s->mode_ext & MODE_EXT_MS_STEREO) {
1758 /* lower part of the spectrum : do ms stereo
1759 if enabled */
1760 for(j=0;j<len;j++) {
1761 tmp0 = tab0[j];
1762 tmp1 = tab1[j];
1763 tab0[j] = MULL(tmp0 + tmp1, ISQRT2, FRAC_BITS);
1764 tab1[j] = MULL(tmp0 - tmp1, ISQRT2, FRAC_BITS);
1769 } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
1770 /* ms stereo ONLY */
1771 /* NOTE: the 1/sqrt(2) normalization factor is included in the
1772 global gain */
1773 tab0 = g0->sb_hybrid;
1774 tab1 = g1->sb_hybrid;
1775 for(i=0;i<576;i++) {
1776 tmp0 = tab0[i];
1777 tmp1 = tab1[i];
1778 tab0[i] = tmp0 + tmp1;
1779 tab1[i] = tmp0 - tmp1;
1784 static void compute_antialias_integer(MPADecodeContext *s,
1785 GranuleDef *g)
1787 int32_t *ptr, *csa;
1788 int n, i;
1790 /* we antialias only "long" bands */
1791 if (g->block_type == 2) {
1792 if (!g->switch_point)
1793 return;
1794 /* XXX: check this for 8000Hz case */
1795 n = 1;
1796 } else {
1797 n = SBLIMIT - 1;
1800 ptr = g->sb_hybrid + 18;
1801 for(i = n;i > 0;i--) {
1802 int tmp0, tmp1, tmp2;
1803 csa = &csa_table[0][0];
1804 #define INT_AA(j) \
1805 tmp0 = ptr[-1-j];\
1806 tmp1 = ptr[ j];\
1807 tmp2= MULH(tmp0 + tmp1, csa[0+4*j]);\
1808 ptr[-1-j] = 4*(tmp2 - MULH(tmp1, csa[2+4*j]));\
1809 ptr[ j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j]));
1811 INT_AA(0)
1812 INT_AA(1)
1813 INT_AA(2)
1814 INT_AA(3)
1815 INT_AA(4)
1816 INT_AA(5)
1817 INT_AA(6)
1818 INT_AA(7)
1820 ptr += 18;
1824 static void compute_antialias_float(MPADecodeContext *s,
1825 GranuleDef *g)
1827 int32_t *ptr;
1828 int n, i;
1830 /* we antialias only "long" bands */
1831 if (g->block_type == 2) {
1832 if (!g->switch_point)
1833 return;
1834 /* XXX: check this for 8000Hz case */
1835 n = 1;
1836 } else {
1837 n = SBLIMIT - 1;
1840 ptr = g->sb_hybrid + 18;
1841 for(i = n;i > 0;i--) {
1842 float tmp0, tmp1;
1843 float *csa = &csa_table_float[0][0];
1844 #define FLOAT_AA(j)\
1845 tmp0= ptr[-1-j];\
1846 tmp1= ptr[ j];\
1847 ptr[-1-j] = lrintf(tmp0 * csa[0+4*j] - tmp1 * csa[1+4*j]);\
1848 ptr[ j] = lrintf(tmp0 * csa[1+4*j] + tmp1 * csa[0+4*j]);
1850 FLOAT_AA(0)
1851 FLOAT_AA(1)
1852 FLOAT_AA(2)
1853 FLOAT_AA(3)
1854 FLOAT_AA(4)
1855 FLOAT_AA(5)
1856 FLOAT_AA(6)
1857 FLOAT_AA(7)
1859 ptr += 18;
1863 static void compute_imdct(MPADecodeContext *s,
1864 GranuleDef *g,
1865 int32_t *sb_samples,
1866 int32_t *mdct_buf)
1868 int32_t *ptr, *win, *win1, *buf, *out_ptr, *ptr1;
1869 int32_t out2[12];
1870 int i, j, mdct_long_end, v, sblimit;
1872 /* find last non zero block */
1873 ptr = g->sb_hybrid + 576;
1874 ptr1 = g->sb_hybrid + 2 * 18;
1875 while (ptr >= ptr1) {
1876 ptr -= 6;
1877 v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5];
1878 if (v != 0)
1879 break;
1881 sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
1883 if (g->block_type == 2) {
1884 /* XXX: check for 8000 Hz */
1885 if (g->switch_point)
1886 mdct_long_end = 2;
1887 else
1888 mdct_long_end = 0;
1889 } else {
1890 mdct_long_end = sblimit;
1893 buf = mdct_buf;
1894 ptr = g->sb_hybrid;
1895 for(j=0;j<mdct_long_end;j++) {
1896 /* apply window & overlap with previous buffer */
1897 out_ptr = sb_samples + j;
1898 /* select window */
1899 if (g->switch_point && j < 2)
1900 win1 = mdct_win[0];
1901 else
1902 win1 = mdct_win[g->block_type];
1903 /* select frequency inversion */
1904 win = win1 + ((4 * 36) & -(j & 1));
1905 imdct36(out_ptr, buf, ptr, win);
1906 out_ptr += 18*SBLIMIT;
1907 ptr += 18;
1908 buf += 18;
1910 for(j=mdct_long_end;j<sblimit;j++) {
1911 /* select frequency inversion */
1912 win = mdct_win[2] + ((4 * 36) & -(j & 1));
1913 out_ptr = sb_samples + j;
1915 for(i=0; i<6; i++){
1916 *out_ptr = buf[i];
1917 out_ptr += SBLIMIT;
1919 imdct12(out2, ptr + 0);
1920 for(i=0;i<6;i++) {
1921 *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*1];
1922 buf[i + 6*2] = MULH(out2[i + 6], win[i + 6]);
1923 out_ptr += SBLIMIT;
1925 imdct12(out2, ptr + 1);
1926 for(i=0;i<6;i++) {
1927 *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*2];
1928 buf[i + 6*0] = MULH(out2[i + 6], win[i + 6]);
1929 out_ptr += SBLIMIT;
1931 imdct12(out2, ptr + 2);
1932 for(i=0;i<6;i++) {
1933 buf[i + 6*0] = MULH(out2[i], win[i]) + buf[i + 6*0];
1934 buf[i + 6*1] = MULH(out2[i + 6], win[i + 6]);
1935 buf[i + 6*2] = 0;
1937 ptr += 18;
1938 buf += 18;
1940 /* zero bands */
1941 for(j=sblimit;j<SBLIMIT;j++) {
1942 /* overlap */
1943 out_ptr = sb_samples + j;
1944 for(i=0;i<18;i++) {
1945 *out_ptr = buf[i];
1946 buf[i] = 0;
1947 out_ptr += SBLIMIT;
1949 buf += 18;
1953 /* main layer3 decoding function */
1954 static int mp_decode_layer3(MPADecodeContext *s)
1956 int nb_granules, main_data_begin, private_bits;
1957 int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
1958 GranuleDef granules[2][2], *g;
1959 int16_t exponents[576];
1961 /* read side info */
1962 if (s->lsf) {
1963 main_data_begin = get_bits(&s->gb, 8);
1964 private_bits = get_bits(&s->gb, s->nb_channels);
1965 nb_granules = 1;
1966 } else {
1967 main_data_begin = get_bits(&s->gb, 9);
1968 if (s->nb_channels == 2)
1969 private_bits = get_bits(&s->gb, 3);
1970 else
1971 private_bits = get_bits(&s->gb, 5);
1972 nb_granules = 2;
1973 for(ch=0;ch<s->nb_channels;ch++) {
1974 granules[ch][0].scfsi = 0; /* all scale factors are transmitted */
1975 granules[ch][1].scfsi = get_bits(&s->gb, 4);
1979 for(gr=0;gr<nb_granules;gr++) {
1980 for(ch=0;ch<s->nb_channels;ch++) {
1981 dprintf(s->avctx, "gr=%d ch=%d: side_info\n", gr, ch);
1982 g = &granules[ch][gr];
1983 g->part2_3_length = get_bits(&s->gb, 12);
1984 g->big_values = get_bits(&s->gb, 9);
1985 if(g->big_values > 288){
1986 av_log(s->avctx, AV_LOG_ERROR, "big_values too big\n");
1987 return -1;
1990 g->global_gain = get_bits(&s->gb, 8);
1991 /* if MS stereo only is selected, we precompute the
1992 1/sqrt(2) renormalization factor */
1993 if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
1994 MODE_EXT_MS_STEREO)
1995 g->global_gain -= 2;
1996 if (s->lsf)
1997 g->scalefac_compress = get_bits(&s->gb, 9);
1998 else
1999 g->scalefac_compress = get_bits(&s->gb, 4);
2000 blocksplit_flag = get_bits1(&s->gb);
2001 if (blocksplit_flag) {
2002 g->block_type = get_bits(&s->gb, 2);
2003 if (g->block_type == 0){
2004 av_log(s->avctx, AV_LOG_ERROR, "invalid block type\n");
2005 return -1;
2007 g->switch_point = get_bits1(&s->gb);
2008 for(i=0;i<2;i++)
2009 g->table_select[i] = get_bits(&s->gb, 5);
2010 for(i=0;i<3;i++)
2011 g->subblock_gain[i] = get_bits(&s->gb, 3);
2012 ff_init_short_region(s, g);
2013 } else {
2014 int region_address1, region_address2;
2015 g->block_type = 0;
2016 g->switch_point = 0;
2017 for(i=0;i<3;i++)
2018 g->table_select[i] = get_bits(&s->gb, 5);
2019 /* compute huffman coded region sizes */
2020 region_address1 = get_bits(&s->gb, 4);
2021 region_address2 = get_bits(&s->gb, 3);
2022 dprintf(s->avctx, "region1=%d region2=%d\n",
2023 region_address1, region_address2);
2024 ff_init_long_region(s, g, region_address1, region_address2);
2026 ff_region_offset2size(g);
2027 ff_compute_band_indexes(s, g);
2029 g->preflag = 0;
2030 if (!s->lsf)
2031 g->preflag = get_bits1(&s->gb);
2032 g->scalefac_scale = get_bits1(&s->gb);
2033 g->count1table_select = get_bits1(&s->gb);
2034 dprintf(s->avctx, "block_type=%d switch_point=%d\n",
2035 g->block_type, g->switch_point);
2039 if (!s->adu_mode) {
2040 const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
2041 assert((get_bits_count(&s->gb) & 7) == 0);
2042 /* now we get bits from the main_data_begin offset */
2043 dprintf(s->avctx, "seekback: %d\n", main_data_begin);
2044 //av_log(NULL, AV_LOG_ERROR, "backstep:%d, lastbuf:%d\n", main_data_begin, s->last_buf_size);
2046 memcpy(s->last_buf + s->last_buf_size, ptr, EXTRABYTES);
2047 s->in_gb= s->gb;
2048 init_get_bits(&s->gb, s->last_buf, s->last_buf_size*8);
2049 skip_bits_long(&s->gb, 8*(s->last_buf_size - main_data_begin));
2052 for(gr=0;gr<nb_granules;gr++) {
2053 for(ch=0;ch<s->nb_channels;ch++) {
2054 g = &granules[ch][gr];
2055 if(get_bits_count(&s->gb)<0){
2056 av_log(s->avctx, AV_LOG_ERROR, "mdb:%d, lastbuf:%d skipping granule %d\n",
2057 main_data_begin, s->last_buf_size, gr);
2058 skip_bits_long(&s->gb, g->part2_3_length);
2059 memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid));
2060 if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->in_gb.buffer){
2061 skip_bits_long(&s->in_gb, get_bits_count(&s->gb) - s->gb.size_in_bits);
2062 s->gb= s->in_gb;
2063 s->in_gb.buffer=NULL;
2065 continue;
2068 bits_pos = get_bits_count(&s->gb);
2070 if (!s->lsf) {
2071 uint8_t *sc;
2072 int slen, slen1, slen2;
2074 /* MPEG1 scale factors */
2075 slen1 = slen_table[0][g->scalefac_compress];
2076 slen2 = slen_table[1][g->scalefac_compress];
2077 dprintf(s->avctx, "slen1=%d slen2=%d\n", slen1, slen2);
2078 if (g->block_type == 2) {
2079 n = g->switch_point ? 17 : 18;
2080 j = 0;
2081 if(slen1){
2082 for(i=0;i<n;i++)
2083 g->scale_factors[j++] = get_bits(&s->gb, slen1);
2084 }else{
2085 for(i=0;i<n;i++)
2086 g->scale_factors[j++] = 0;
2088 if(slen2){
2089 for(i=0;i<18;i++)
2090 g->scale_factors[j++] = get_bits(&s->gb, slen2);
2091 for(i=0;i<3;i++)
2092 g->scale_factors[j++] = 0;
2093 }else{
2094 for(i=0;i<21;i++)
2095 g->scale_factors[j++] = 0;
2097 } else {
2098 sc = granules[ch][0].scale_factors;
2099 j = 0;
2100 for(k=0;k<4;k++) {
2101 n = (k == 0 ? 6 : 5);
2102 if ((g->scfsi & (0x8 >> k)) == 0) {
2103 slen = (k < 2) ? slen1 : slen2;
2104 if(slen){
2105 for(i=0;i<n;i++)
2106 g->scale_factors[j++] = get_bits(&s->gb, slen);
2107 }else{
2108 for(i=0;i<n;i++)
2109 g->scale_factors[j++] = 0;
2111 } else {
2112 /* simply copy from last granule */
2113 for(i=0;i<n;i++) {
2114 g->scale_factors[j] = sc[j];
2115 j++;
2119 g->scale_factors[j++] = 0;
2121 } else {
2122 int tindex, tindex2, slen[4], sl, sf;
2124 /* LSF scale factors */
2125 if (g->block_type == 2) {
2126 tindex = g->switch_point ? 2 : 1;
2127 } else {
2128 tindex = 0;
2130 sf = g->scalefac_compress;
2131 if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
2132 /* intensity stereo case */
2133 sf >>= 1;
2134 if (sf < 180) {
2135 lsf_sf_expand(slen, sf, 6, 6, 0);
2136 tindex2 = 3;
2137 } else if (sf < 244) {
2138 lsf_sf_expand(slen, sf - 180, 4, 4, 0);
2139 tindex2 = 4;
2140 } else {
2141 lsf_sf_expand(slen, sf - 244, 3, 0, 0);
2142 tindex2 = 5;
2144 } else {
2145 /* normal case */
2146 if (sf < 400) {
2147 lsf_sf_expand(slen, sf, 5, 4, 4);
2148 tindex2 = 0;
2149 } else if (sf < 500) {
2150 lsf_sf_expand(slen, sf - 400, 5, 4, 0);
2151 tindex2 = 1;
2152 } else {
2153 lsf_sf_expand(slen, sf - 500, 3, 0, 0);
2154 tindex2 = 2;
2155 g->preflag = 1;
2159 j = 0;
2160 for(k=0;k<4;k++) {
2161 n = lsf_nsf_table[tindex2][tindex][k];
2162 sl = slen[k];
2163 if(sl){
2164 for(i=0;i<n;i++)
2165 g->scale_factors[j++] = get_bits(&s->gb, sl);
2166 }else{
2167 for(i=0;i<n;i++)
2168 g->scale_factors[j++] = 0;
2171 /* XXX: should compute exact size */
2172 for(;j<40;j++)
2173 g->scale_factors[j] = 0;
2176 exponents_from_scale_factors(s, g, exponents);
2178 /* read Huffman coded residue */
2179 huffman_decode(s, g, exponents, bits_pos + g->part2_3_length);
2180 } /* ch */
2182 if (s->nb_channels == 2)
2183 compute_stereo(s, &granules[0][gr], &granules[1][gr]);
2185 for(ch=0;ch<s->nb_channels;ch++) {
2186 g = &granules[ch][gr];
2188 reorder_block(s, g);
2189 s->compute_antialias(s, g);
2190 compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
2192 } /* gr */
2193 if(get_bits_count(&s->gb)<0)
2194 skip_bits_long(&s->gb, -get_bits_count(&s->gb));
2195 return nb_granules * 18;
2198 static int mp_decode_frame(MPADecodeContext *s,
2199 OUT_INT *samples, const uint8_t *buf, int buf_size)
2201 int i, nb_frames, ch;
2202 OUT_INT *samples_ptr;
2204 init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE)*8);
2206 /* skip error protection field */
2207 if (s->error_protection)
2208 skip_bits(&s->gb, 16);
2210 dprintf(s->avctx, "frame %d:\n", s->frame_count);
2211 switch(s->layer) {
2212 case 1:
2213 s->avctx->frame_size = 384;
2214 nb_frames = mp_decode_layer1(s);
2215 break;
2216 case 2:
2217 s->avctx->frame_size = 1152;
2218 nb_frames = mp_decode_layer2(s);
2219 break;
2220 case 3:
2221 s->avctx->frame_size = s->lsf ? 576 : 1152;
2222 default:
2223 nb_frames = mp_decode_layer3(s);
2225 s->last_buf_size=0;
2226 if(s->in_gb.buffer){
2227 align_get_bits(&s->gb);
2228 i= (s->gb.size_in_bits - get_bits_count(&s->gb))>>3;
2229 if(i >= 0 && i <= BACKSTEP_SIZE){
2230 memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
2231 s->last_buf_size=i;
2232 }else
2233 av_log(s->avctx, AV_LOG_ERROR, "invalid old backstep %d\n", i);
2234 s->gb= s->in_gb;
2235 s->in_gb.buffer= NULL;
2238 align_get_bits(&s->gb);
2239 assert((get_bits_count(&s->gb) & 7) == 0);
2240 i= (s->gb.size_in_bits - get_bits_count(&s->gb))>>3;
2242 if(i<0 || i > BACKSTEP_SIZE || nb_frames<0){
2243 if(i<0)
2244 av_log(s->avctx, AV_LOG_ERROR, "invalid new backstep %d\n", i);
2245 i= FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
2247 assert(i <= buf_size - HEADER_SIZE && i>= 0);
2248 memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
2249 s->last_buf_size += i;
2251 break;
2254 /* apply the synthesis filter */
2255 for(ch=0;ch<s->nb_channels;ch++) {
2256 samples_ptr = samples + ch;
2257 for(i=0;i<nb_frames;i++) {
2258 ff_mpa_synth_filter(s->synth_buf[ch], &(s->synth_buf_offset[ch]),
2259 window, &s->dither_state,
2260 samples_ptr, s->nb_channels,
2261 s->sb_samples[ch][i]);
2262 samples_ptr += 32 * s->nb_channels;
2266 return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
2269 static int decode_frame(AVCodecContext * avctx,
2270 void *data, int *data_size,
2271 const uint8_t * buf, int buf_size)
2273 MPADecodeContext *s = avctx->priv_data;
2274 uint32_t header;
2275 int out_size;
2276 OUT_INT *out_samples = data;
2278 retry:
2279 if(buf_size < HEADER_SIZE)
2280 return -1;
2282 header = AV_RB32(buf);
2283 if(ff_mpa_check_header(header) < 0){
2284 buf++;
2285 // buf_size--;
2286 av_log(avctx, AV_LOG_ERROR, "Header missing skipping one byte.\n");
2287 goto retry;
2290 if (ff_mpegaudio_decode_header(s, header) == 1) {
2291 /* free format: prepare to compute frame size */
2292 s->frame_size = -1;
2293 return -1;
2295 /* update codec info */
2296 avctx->channels = s->nb_channels;
2297 avctx->bit_rate = s->bit_rate;
2298 avctx->sub_id = s->layer;
2300 if(s->frame_size<=0 || s->frame_size > buf_size){
2301 av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
2302 return -1;
2303 }else if(s->frame_size < buf_size){
2304 av_log(avctx, AV_LOG_ERROR, "incorrect frame size\n");
2305 buf_size= s->frame_size;
2308 out_size = mp_decode_frame(s, out_samples, buf, buf_size);
2309 if(out_size>=0){
2310 *data_size = out_size;
2311 avctx->sample_rate = s->sample_rate;
2312 //FIXME maybe move the other codec info stuff from above here too
2313 }else
2314 av_log(avctx, AV_LOG_DEBUG, "Error while decoding MPEG audio frame.\n"); //FIXME return -1 / but also return the number of bytes consumed
2315 s->frame_size = 0;
2316 return buf_size;
2319 static void flush(AVCodecContext *avctx){
2320 MPADecodeContext *s = avctx->priv_data;
2321 memset(s->synth_buf, 0, sizeof(s->synth_buf));
2322 s->last_buf_size= 0;
2325 #ifdef CONFIG_MP3ADU_DECODER
2326 static int decode_frame_adu(AVCodecContext * avctx,
2327 void *data, int *data_size,
2328 const uint8_t * buf, int buf_size)
2330 MPADecodeContext *s = avctx->priv_data;
2331 uint32_t header;
2332 int len, out_size;
2333 OUT_INT *out_samples = data;
2335 len = buf_size;
2337 // Discard too short frames
2338 if (buf_size < HEADER_SIZE) {
2339 *data_size = 0;
2340 return buf_size;
2344 if (len > MPA_MAX_CODED_FRAME_SIZE)
2345 len = MPA_MAX_CODED_FRAME_SIZE;
2347 // Get header and restore sync word
2348 header = AV_RB32(buf) | 0xffe00000;
2350 if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
2351 *data_size = 0;
2352 return buf_size;
2355 ff_mpegaudio_decode_header(s, header);
2356 /* update codec info */
2357 avctx->sample_rate = s->sample_rate;
2358 avctx->channels = s->nb_channels;
2359 avctx->bit_rate = s->bit_rate;
2360 avctx->sub_id = s->layer;
2362 s->frame_size = len;
2364 if (avctx->parse_only) {
2365 out_size = buf_size;
2366 } else {
2367 out_size = mp_decode_frame(s, out_samples, buf, buf_size);
2370 *data_size = out_size;
2371 return buf_size;
2373 #endif /* CONFIG_MP3ADU_DECODER */
2375 #ifdef CONFIG_MP3ON4_DECODER
2378 * Context for MP3On4 decoder
2380 typedef struct MP3On4DecodeContext {
2381 int frames; ///< number of mp3 frames per block (number of mp3 decoder instances)
2382 int syncword; ///< syncword patch
2383 const uint8_t *coff; ///< channels offsets in output buffer
2384 MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
2385 } MP3On4DecodeContext;
2387 #include "mpeg4audio.h"
2389 /* Next 3 arrays are indexed by channel config number (passed via codecdata) */
2390 static const uint8_t mp3Frames[8] = {0,1,1,2,3,3,4,5}; /* number of mp3 decoder instances */
2391 /* offsets into output buffer, assume output order is FL FR BL BR C LFE */
2392 static const uint8_t chan_offset[8][5] = {
2393 {0},
2394 {0}, // C
2395 {0}, // FLR
2396 {2,0}, // C FLR
2397 {2,0,3}, // C FLR BS
2398 {4,0,2}, // C FLR BLRS
2399 {4,0,2,5}, // C FLR BLRS LFE
2400 {4,0,2,6,5}, // C FLR BLRS BLR LFE
2404 static int decode_init_mp3on4(AVCodecContext * avctx)
2406 MP3On4DecodeContext *s = avctx->priv_data;
2407 MPEG4AudioConfig cfg;
2408 int i;
2410 if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
2411 av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
2412 return -1;
2415 ff_mpeg4audio_get_config(&cfg, avctx->extradata, avctx->extradata_size);
2416 if (!cfg.chan_config || cfg.chan_config > 7) {
2417 av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
2418 return -1;
2420 s->frames = mp3Frames[cfg.chan_config];
2421 s->coff = chan_offset[cfg.chan_config];
2422 avctx->channels = ff_mpeg4audio_channels[cfg.chan_config];
2424 if (cfg.sample_rate < 16000)
2425 s->syncword = 0xffe00000;
2426 else
2427 s->syncword = 0xfff00000;
2429 /* Init the first mp3 decoder in standard way, so that all tables get builded
2430 * We replace avctx->priv_data with the context of the first decoder so that
2431 * decode_init() does not have to be changed.
2432 * Other decoders will be initialized here copying data from the first context
2434 // Allocate zeroed memory for the first decoder context
2435 s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
2436 // Put decoder context in place to make init_decode() happy
2437 avctx->priv_data = s->mp3decctx[0];
2438 decode_init(avctx);
2439 // Restore mp3on4 context pointer
2440 avctx->priv_data = s;
2441 s->mp3decctx[0]->adu_mode = 1; // Set adu mode
2443 /* Create a separate codec/context for each frame (first is already ok).
2444 * Each frame is 1 or 2 channels - up to 5 frames allowed
2446 for (i = 1; i < s->frames; i++) {
2447 s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
2448 s->mp3decctx[i]->compute_antialias = s->mp3decctx[0]->compute_antialias;
2449 s->mp3decctx[i]->adu_mode = 1;
2450 s->mp3decctx[i]->avctx = avctx;
2453 return 0;
2457 static int decode_close_mp3on4(AVCodecContext * avctx)
2459 MP3On4DecodeContext *s = avctx->priv_data;
2460 int i;
2462 for (i = 0; i < s->frames; i++)
2463 if (s->mp3decctx[i])
2464 av_free(s->mp3decctx[i]);
2466 return 0;
2470 static int decode_frame_mp3on4(AVCodecContext * avctx,
2471 void *data, int *data_size,
2472 const uint8_t * buf, int buf_size)
2474 MP3On4DecodeContext *s = avctx->priv_data;
2475 MPADecodeContext *m;
2476 int fsize, len = buf_size, out_size = 0;
2477 uint32_t header;
2478 OUT_INT *out_samples = data;
2479 OUT_INT decoded_buf[MPA_FRAME_SIZE * MPA_MAX_CHANNELS];
2480 OUT_INT *outptr, *bp;
2481 int fr, j, n;
2483 *data_size = 0;
2484 // Discard too short frames
2485 if (buf_size < HEADER_SIZE)
2486 return -1;
2488 // If only one decoder interleave is not needed
2489 outptr = s->frames == 1 ? out_samples : decoded_buf;
2491 avctx->bit_rate = 0;
2493 for (fr = 0; fr < s->frames; fr++) {
2494 fsize = AV_RB16(buf) >> 4;
2495 fsize = FFMIN3(fsize, len, MPA_MAX_CODED_FRAME_SIZE);
2496 m = s->mp3decctx[fr];
2497 assert (m != NULL);
2499 header = (AV_RB32(buf) & 0x000fffff) | s->syncword; // patch header
2501 if (ff_mpa_check_header(header) < 0) // Bad header, discard block
2502 break;
2504 ff_mpegaudio_decode_header(m, header);
2505 out_size += mp_decode_frame(m, outptr, buf, fsize);
2506 buf += fsize;
2507 len -= fsize;
2509 if(s->frames > 1) {
2510 n = m->avctx->frame_size*m->nb_channels;
2511 /* interleave output data */
2512 bp = out_samples + s->coff[fr];
2513 if(m->nb_channels == 1) {
2514 for(j = 0; j < n; j++) {
2515 *bp = decoded_buf[j];
2516 bp += avctx->channels;
2518 } else {
2519 for(j = 0; j < n; j++) {
2520 bp[0] = decoded_buf[j++];
2521 bp[1] = decoded_buf[j];
2522 bp += avctx->channels;
2526 avctx->bit_rate += m->bit_rate;
2529 /* update codec info */
2530 avctx->sample_rate = s->mp3decctx[0]->sample_rate;
2532 *data_size = out_size;
2533 return buf_size;
2535 #endif /* CONFIG_MP3ON4_DECODER */
2537 #ifdef CONFIG_MP2_DECODER
2538 AVCodec mp2_decoder =
2540 "mp2",
2541 CODEC_TYPE_AUDIO,
2542 CODEC_ID_MP2,
2543 sizeof(MPADecodeContext),
2544 decode_init,
2545 NULL,
2546 NULL,
2547 decode_frame,
2548 CODEC_CAP_PARSE_ONLY,
2549 .flush= flush,
2550 .long_name= NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"),
2552 #endif
2553 #ifdef CONFIG_MP3_DECODER
2554 AVCodec mp3_decoder =
2556 "mp3",
2557 CODEC_TYPE_AUDIO,
2558 CODEC_ID_MP3,
2559 sizeof(MPADecodeContext),
2560 decode_init,
2561 NULL,
2562 NULL,
2563 decode_frame,
2564 CODEC_CAP_PARSE_ONLY,
2565 .flush= flush,
2566 .long_name= NULL_IF_CONFIG_SMALL("MP3 (MPEG audio layer 3)"),
2568 #endif
2569 #ifdef CONFIG_MP3ADU_DECODER
2570 AVCodec mp3adu_decoder =
2572 "mp3adu",
2573 CODEC_TYPE_AUDIO,
2574 CODEC_ID_MP3ADU,
2575 sizeof(MPADecodeContext),
2576 decode_init,
2577 NULL,
2578 NULL,
2579 decode_frame_adu,
2580 CODEC_CAP_PARSE_ONLY,
2581 .flush= flush,
2582 .long_name= NULL_IF_CONFIG_SMALL("ADU (Application Data Unit) MP3 (MPEG audio layer 3)"),
2584 #endif
2585 #ifdef CONFIG_MP3ON4_DECODER
2586 AVCodec mp3on4_decoder =
2588 "mp3on4",
2589 CODEC_TYPE_AUDIO,
2590 CODEC_ID_MP3ON4,
2591 sizeof(MP3On4DecodeContext),
2592 decode_init_mp3on4,
2593 NULL,
2594 decode_close_mp3on4,
2595 decode_frame_mp3on4,
2596 .flush= flush,
2597 .long_name= NULL_IF_CONFIG_SMALL("MP3onMP4"),
2599 #endif