2 * COOK compatible decoder
3 * Copyright (c) 2003 Sascha Sommer
4 * Copyright (c) 2005 Benjamin Larsson
6 * This file is part of FFmpeg.
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24 * @file libavcodec/cook.c
25 * Cook compatible decoder. Bastardization of the G.722.1 standard.
26 * This decoder handles RealNetworks, RealAudio G2 data.
27 * Cook is identified by the codec name cook in RM files.
29 * To use this decoder, a calling application must supply the extradata
30 * bytes provided from the RM container; 8+ bytes for mono streams and
31 * 16+ for stereo streams (maybe more).
33 * Codec technicalities (all this assume a buffer length of 1024):
34 * Cook works with several different techniques to achieve its compression.
35 * In the timedomain the buffer is divided into 8 pieces and quantized. If
36 * two neighboring pieces have different quantization index a smooth
37 * quantization curve is used to get a smooth overlap between the different
39 * To get to the transformdomain Cook uses a modulated lapped transform.
40 * The transform domain has 50 subbands with 20 elements each. This
41 * means only a maximum of 50*20=1000 coefficients are used out of the 1024
49 #include "libavutil/lfg.h"
50 #include "libavutil/random_seed.h"
52 #include "bitstream.h"
54 #include "bytestream.h"
58 /* the different Cook versions */
59 #define MONO 0x1000001
60 #define STEREO 0x1000002
61 #define JOINT_STEREO 0x1000003
62 #define MC_COOK 0x2000000 //multichannel Cook, not supported
64 #define SUBBAND_SIZE 20
65 #define MAX_SUBPACKETS 5
75 * The following 5 functions provide the lowlevel arithmetic on
76 * the internal audio buffers.
78 void (* scalar_dequant
)(struct cook
*q
, int index
, int quant_index
,
79 int* subband_coef_index
, int* subband_coef_sign
,
82 void (* decouple
) (struct cook
*q
,
86 float *mlt_buffer1
, float *mlt_buffer2
);
88 void (* imlt_window
) (struct cook
*q
, float *buffer1
,
89 cook_gains
*gains_ptr
, float *previous_buffer
);
91 void (* interpolate
) (struct cook
*q
, float* buffer
,
92 int gain_index
, int gain_index_next
);
94 void (* saturate_output
) (struct cook
*q
, int chan
, int16_t *out
);
96 AVCodecContext
* avctx
;
103 int samples_per_channel
;
104 int samples_per_frame
;
106 int log2_numvector_size
;
107 int numvector_size
; //1 << log2_numvector_size;
108 int js_subband_start
;
111 int bits_per_subpacket
;
117 MDCTContext mdct_ctx
;
130 VLC envelope_quant_index
[13];
131 VLC sqvh
[7]; //scalar quantization
132 VLC ccpl
; //channel coupling
134 /* generatable tables and related variables */
135 int gain_size_factor
;
136 float gain_table
[23];
140 uint8_t* decoded_bytes_buffer
;
141 DECLARE_ALIGNED_16(float,mono_mdct_output
[2048]);
142 float mono_previous_buffer1
[1024];
143 float mono_previous_buffer2
[1024];
144 float decode_buffer_1
[1024];
145 float decode_buffer_2
[1024];
146 float decode_buffer_0
[1060]; /* static allocation for joint decode */
148 const float *cplscales
[5];
151 static float pow2tab
[127];
152 static float rootpow2tab
[127];
154 /* debug functions */
157 static void dump_float_table(float* table
, int size
, int delimiter
) {
159 av_log(NULL
,AV_LOG_ERROR
,"\n[%d]: ",i
);
160 for (i
=0 ; i
<size
; i
++) {
161 av_log(NULL
, AV_LOG_ERROR
, "%5.1f, ", table
[i
]);
162 if ((i
+1)%delimiter
== 0) av_log(NULL
,AV_LOG_ERROR
,"\n[%d]: ",i
+1);
166 static void dump_int_table(int* table
, int size
, int delimiter
) {
168 av_log(NULL
,AV_LOG_ERROR
,"\n[%d]: ",i
);
169 for (i
=0 ; i
<size
; i
++) {
170 av_log(NULL
, AV_LOG_ERROR
, "%d, ", table
[i
]);
171 if ((i
+1)%delimiter
== 0) av_log(NULL
,AV_LOG_ERROR
,"\n[%d]: ",i
+1);
175 static void dump_short_table(short* table
, int size
, int delimiter
) {
177 av_log(NULL
,AV_LOG_ERROR
,"\n[%d]: ",i
);
178 for (i
=0 ; i
<size
; i
++) {
179 av_log(NULL
, AV_LOG_ERROR
, "%d, ", table
[i
]);
180 if ((i
+1)%delimiter
== 0) av_log(NULL
,AV_LOG_ERROR
,"\n[%d]: ",i
+1);
186 /*************** init functions ***************/
188 /* table generator */
189 static av_cold
void init_pow2table(void){
191 for (i
=-63 ; i
<64 ; i
++){
192 pow2tab
[63+i
]= pow(2, i
);
193 rootpow2tab
[63+i
]=sqrt(pow(2, i
));
197 /* table generator */
198 static av_cold
void init_gain_table(COOKContext
*q
) {
200 q
->gain_size_factor
= q
->samples_per_channel
/8;
201 for (i
=0 ; i
<23 ; i
++) {
202 q
->gain_table
[i
] = pow(pow2tab
[i
+52] ,
203 (1.0/(double)q
->gain_size_factor
));
208 static av_cold
int init_cook_vlc_tables(COOKContext
*q
) {
212 for (i
=0 ; i
<13 ; i
++) {
213 result
|= init_vlc (&q
->envelope_quant_index
[i
], 9, 24,
214 envelope_quant_index_huffbits
[i
], 1, 1,
215 envelope_quant_index_huffcodes
[i
], 2, 2, 0);
217 av_log(q
->avctx
,AV_LOG_DEBUG
,"sqvh VLC init\n");
218 for (i
=0 ; i
<7 ; i
++) {
219 result
|= init_vlc (&q
->sqvh
[i
], vhvlcsize_tab
[i
], vhsize_tab
[i
],
220 cvh_huffbits
[i
], 1, 1,
221 cvh_huffcodes
[i
], 2, 2, 0);
224 if (q
->nb_channels
==2 && q
->joint_stereo
==1){
225 result
|= init_vlc (&q
->ccpl
, 6, (1<<q
->js_vlc_bits
)-1,
226 ccpl_huffbits
[q
->js_vlc_bits
-2], 1, 1,
227 ccpl_huffcodes
[q
->js_vlc_bits
-2], 2, 2, 0);
228 av_log(q
->avctx
,AV_LOG_DEBUG
,"Joint-stereo VLC used.\n");
231 av_log(q
->avctx
,AV_LOG_DEBUG
,"VLC tables initialized.\n");
235 static av_cold
int init_cook_mlt(COOKContext
*q
) {
237 int mlt_size
= q
->samples_per_channel
;
239 if ((q
->mlt_window
= av_malloc(sizeof(float)*mlt_size
)) == 0)
242 /* Initialize the MLT window: simple sine window. */
243 ff_sine_window_init(q
->mlt_window
, mlt_size
);
244 for(j
=0 ; j
<mlt_size
; j
++)
245 q
->mlt_window
[j
] *= sqrt(2.0 / q
->samples_per_channel
);
247 /* Initialize the MDCT. */
248 if (ff_mdct_init(&q
->mdct_ctx
, av_log2(mlt_size
)+1, 1)) {
249 av_free(q
->mlt_window
);
252 av_log(q
->avctx
,AV_LOG_DEBUG
,"MDCT initialized, order = %d.\n",
253 av_log2(mlt_size
)+1);
258 static const float *maybe_reformat_buffer32 (COOKContext
*q
, const float *ptr
, int n
)
264 static av_cold
void init_cplscales_table (COOKContext
*q
) {
267 q
->cplscales
[i
] = maybe_reformat_buffer32 (q
, cplscales
[i
], (1<<(i
+2))-1);
270 /*************** init functions end ***********/
273 * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
274 * Why? No idea, some checksum/error detection method maybe.
276 * Out buffer size: extra bytes are needed to cope with
277 * padding/misalignment.
278 * Subpackets passed to the decoder can contain two, consecutive
279 * half-subpackets, of identical but arbitrary size.
280 * 1234 1234 1234 1234 extraA extraB
281 * Case 1: AAAA BBBB 0 0
282 * Case 2: AAAA ABBB BB-- 3 3
283 * Case 3: AAAA AABB BBBB 2 2
284 * Case 4: AAAA AAAB BBBB BB-- 1 5
286 * Nice way to waste CPU cycles.
288 * @param inbuffer pointer to byte array of indata
289 * @param out pointer to byte array of outdata
290 * @param bytes number of bytes
292 #define DECODE_BYTES_PAD1(bytes) (3 - ((bytes)+3) % 4)
293 #define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
295 static inline int decode_bytes(const uint8_t* inbuffer
, uint8_t* out
, int bytes
){
299 uint32_t* obuf
= (uint32_t*) out
;
300 /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
301 * I'm too lazy though, should be something like
302 * for(i=0 ; i<bitamount/64 ; i++)
303 * (int64_t)out[i] = 0x37c511f237c511f2^be2me_64(int64_t)in[i]);
304 * Buffer alignment needs to be checked. */
306 off
= (intptr_t)inbuffer
& 3;
307 buf
= (const uint32_t*) (inbuffer
- off
);
308 c
= be2me_32((0x37c511f2 >> (off
*8)) | (0x37c511f2 << (32-(off
*8))));
310 for (i
= 0; i
< bytes
/4; i
++)
311 obuf
[i
] = c
^ buf
[i
];
320 static av_cold
int cook_decode_close(AVCodecContext
*avctx
)
323 COOKContext
*q
= avctx
->priv_data
;
324 av_log(avctx
,AV_LOG_DEBUG
, "Deallocating memory.\n");
326 /* Free allocated memory buffers. */
327 av_free(q
->mlt_window
);
328 av_free(q
->decoded_bytes_buffer
);
330 /* Free the transform. */
331 ff_mdct_end(&q
->mdct_ctx
);
333 /* Free the VLC tables. */
334 for (i
=0 ; i
<13 ; i
++) {
335 free_vlc(&q
->envelope_quant_index
[i
]);
337 for (i
=0 ; i
<7 ; i
++) {
338 free_vlc(&q
->sqvh
[i
]);
340 if(q
->nb_channels
==2 && q
->joint_stereo
==1 ){
344 av_log(avctx
,AV_LOG_DEBUG
,"Memory deallocated.\n");
350 * Fill the gain array for the timedomain quantization.
352 * @param q pointer to the COOKContext
353 * @param gaininfo[9] array of gain indexes
356 static void decode_gain_info(GetBitContext
*gb
, int *gaininfo
)
360 while (get_bits1(gb
)) {}
361 n
= get_bits_count(gb
) - 1; //amount of elements*2 to update
365 int index
= get_bits(gb
, 3);
366 int gain
= get_bits1(gb
) ? get_bits(gb
, 4) - 7 : -1;
368 while (i
<= index
) gaininfo
[i
++] = gain
;
370 while (i
<= 8) gaininfo
[i
++] = 0;
374 * Create the quant index table needed for the envelope.
376 * @param q pointer to the COOKContext
377 * @param quant_index_table pointer to the array
380 static void decode_envelope(COOKContext
*q
, int* quant_index_table
) {
383 quant_index_table
[0]= get_bits(&q
->gb
,6) - 6; //This is used later in categorize
385 for (i
=1 ; i
< q
->total_subbands
; i
++){
387 if (i
>= q
->js_subband_start
* 2) {
388 vlc_index
-=q
->js_subband_start
;
391 if(vlc_index
< 1) vlc_index
= 1;
393 if (vlc_index
>13) vlc_index
= 13; //the VLC tables >13 are identical to No. 13
395 j
= get_vlc2(&q
->gb
, q
->envelope_quant_index
[vlc_index
-1].table
,
396 q
->envelope_quant_index
[vlc_index
-1].bits
,2);
397 quant_index_table
[i
] = quant_index_table
[i
-1] + j
- 12; //differential encoding
402 * Calculate the category and category_index vector.
404 * @param q pointer to the COOKContext
405 * @param quant_index_table pointer to the array
406 * @param category pointer to the category array
407 * @param category_index pointer to the category_index array
410 static void categorize(COOKContext
*q
, int* quant_index_table
,
411 int* category
, int* category_index
){
412 int exp_idx
, bias
, tmpbias1
, tmpbias2
, bits_left
, num_bits
, index
, v
, i
, j
;
416 int tmp_categorize_array
[128*2];
417 int tmp_categorize_array1_idx
=q
->numvector_size
;
418 int tmp_categorize_array2_idx
=q
->numvector_size
;
420 bits_left
= q
->bits_per_subpacket
- get_bits_count(&q
->gb
);
422 if(bits_left
> q
->samples_per_channel
) {
423 bits_left
= q
->samples_per_channel
+
424 ((bits_left
- q
->samples_per_channel
)*5)/8;
425 //av_log(q->avctx, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
428 memset(&exp_index1
,0,102*sizeof(int));
429 memset(&exp_index2
,0,102*sizeof(int));
430 memset(&tmp_categorize_array
,0,128*2*sizeof(int));
435 for (i
=32 ; i
>0 ; i
=i
/2){
438 for (j
=q
->total_subbands
; j
>0 ; j
--){
439 exp_idx
= av_clip((i
- quant_index_table
[index
] + bias
) / 2, 0, 7);
441 num_bits
+=expbits_tab
[exp_idx
];
443 if(num_bits
>= bits_left
- 32){
448 /* Calculate total number of bits. */
450 for (i
=0 ; i
<q
->total_subbands
; i
++) {
451 exp_idx
= av_clip((bias
- quant_index_table
[i
]) / 2, 0, 7);
452 num_bits
+= expbits_tab
[exp_idx
];
453 exp_index1
[i
] = exp_idx
;
454 exp_index2
[i
] = exp_idx
;
456 tmpbias1
= tmpbias2
= num_bits
;
458 for (j
= 1 ; j
< q
->numvector_size
; j
++) {
459 if (tmpbias1
+ tmpbias2
> 2*bits_left
) { /* ---> */
462 for (i
=0 ; i
<q
->total_subbands
; i
++){
463 if (exp_index1
[i
] < 7) {
464 v
= (-2*exp_index1
[i
]) - quant_index_table
[i
] + bias
;
472 tmp_categorize_array
[tmp_categorize_array1_idx
++] = index
;
473 tmpbias1
-= expbits_tab
[exp_index1
[index
]] -
474 expbits_tab
[exp_index1
[index
]+1];
479 for (i
=0 ; i
<q
->total_subbands
; i
++){
480 if(exp_index2
[i
] > 0){
481 v
= (-2*exp_index2
[i
])-quant_index_table
[i
]+bias
;
488 if(index
== -1)break;
489 tmp_categorize_array
[--tmp_categorize_array2_idx
] = index
;
490 tmpbias2
-= expbits_tab
[exp_index2
[index
]] -
491 expbits_tab
[exp_index2
[index
]-1];
496 for(i
=0 ; i
<q
->total_subbands
; i
++)
497 category
[i
] = exp_index2
[i
];
499 for(i
=0 ; i
<q
->numvector_size
-1 ; i
++)
500 category_index
[i
] = tmp_categorize_array
[tmp_categorize_array2_idx
++];
506 * Expand the category vector.
508 * @param q pointer to the COOKContext
509 * @param category pointer to the category array
510 * @param category_index pointer to the category_index array
513 static inline void expand_category(COOKContext
*q
, int* category
,
514 int* category_index
){
516 for(i
=0 ; i
<q
->num_vectors
; i
++){
517 ++category
[category_index
[i
]];
522 * The real requantization of the mltcoefs
524 * @param q pointer to the COOKContext
526 * @param quant_index quantisation index
527 * @param subband_coef_index array of indexes to quant_centroid_tab
528 * @param subband_coef_sign signs of coefficients
529 * @param mlt_p pointer into the mlt buffer
532 static void scalar_dequant_float(COOKContext
*q
, int index
, int quant_index
,
533 int* subband_coef_index
, int* subband_coef_sign
,
538 for(i
=0 ; i
<SUBBAND_SIZE
; i
++) {
539 if (subband_coef_index
[i
]) {
540 f1
= quant_centroid_tab
[index
][subband_coef_index
[i
]];
541 if (subband_coef_sign
[i
]) f1
= -f1
;
543 /* noise coding if subband_coef_index[i] == 0 */
544 f1
= dither_tab
[index
];
545 if (av_lfg_get(&q
->random_state
) < 0x80000000) f1
= -f1
;
547 mlt_p
[i
] = f1
* rootpow2tab
[quant_index
+63];
551 * Unpack the subband_coef_index and subband_coef_sign vectors.
553 * @param q pointer to the COOKContext
554 * @param category pointer to the category array
555 * @param subband_coef_index array of indexes to quant_centroid_tab
556 * @param subband_coef_sign signs of coefficients
559 static int unpack_SQVH(COOKContext
*q
, int category
, int* subband_coef_index
,
560 int* subband_coef_sign
) {
562 int vlc
, vd
,tmp
, result
;
564 vd
= vd_tab
[category
];
566 for(i
=0 ; i
<vpr_tab
[category
] ; i
++){
567 vlc
= get_vlc2(&q
->gb
, q
->sqvh
[category
].table
, q
->sqvh
[category
].bits
, 3);
568 if (q
->bits_per_subpacket
< get_bits_count(&q
->gb
)){
572 for(j
=vd
-1 ; j
>=0 ; j
--){
573 tmp
= (vlc
* invradix_tab
[category
])/0x100000;
574 subband_coef_index
[vd
*i
+j
] = vlc
- tmp
* (kmax_tab
[category
]+1);
577 for(j
=0 ; j
<vd
; j
++){
578 if (subband_coef_index
[i
*vd
+ j
]) {
579 if(get_bits_count(&q
->gb
) < q
->bits_per_subpacket
){
580 subband_coef_sign
[i
*vd
+j
] = get_bits1(&q
->gb
);
583 subband_coef_sign
[i
*vd
+j
]=0;
586 subband_coef_sign
[i
*vd
+j
]=0;
595 * Fill the mlt_buffer with mlt coefficients.
597 * @param q pointer to the COOKContext
598 * @param category pointer to the category array
599 * @param quant_index_table pointer to the array
600 * @param mlt_buffer pointer to mlt coefficients
604 static void decode_vectors(COOKContext
* q
, int* category
,
605 int *quant_index_table
, float* mlt_buffer
){
606 /* A zero in this table means that the subband coefficient is
607 random noise coded. */
608 int subband_coef_index
[SUBBAND_SIZE
];
609 /* A zero in this table means that the subband coefficient is a
610 positive multiplicator. */
611 int subband_coef_sign
[SUBBAND_SIZE
];
615 for(band
=0 ; band
<q
->total_subbands
; band
++){
616 index
= category
[band
];
617 if(category
[band
] < 7){
618 if(unpack_SQVH(q
, category
[band
], subband_coef_index
, subband_coef_sign
)){
620 for(j
=0 ; j
<q
->total_subbands
; j
++) category
[band
+j
]=7;
624 memset(subband_coef_index
, 0, sizeof(subband_coef_index
));
625 memset(subband_coef_sign
, 0, sizeof(subband_coef_sign
));
627 q
->scalar_dequant(q
, index
, quant_index_table
[band
],
628 subband_coef_index
, subband_coef_sign
,
629 &mlt_buffer
[band
* SUBBAND_SIZE
]);
632 if(q
->total_subbands
*SUBBAND_SIZE
>= q
->samples_per_channel
){
634 } /* FIXME: should this be removed, or moved into loop above? */
639 * function for decoding mono data
641 * @param q pointer to the COOKContext
642 * @param mlt_buffer pointer to mlt coefficients
645 static void mono_decode(COOKContext
*q
, float* mlt_buffer
) {
647 int category_index
[128];
648 int quant_index_table
[102];
651 memset(&category
, 0, 128*sizeof(int));
652 memset(&category_index
, 0, 128*sizeof(int));
654 decode_envelope(q
, quant_index_table
);
655 q
->num_vectors
= get_bits(&q
->gb
,q
->log2_numvector_size
);
656 categorize(q
, quant_index_table
, category
, category_index
);
657 expand_category(q
, category
, category_index
);
658 decode_vectors(q
, category
, quant_index_table
, mlt_buffer
);
663 * the actual requantization of the timedomain samples
665 * @param q pointer to the COOKContext
666 * @param buffer pointer to the timedomain buffer
667 * @param gain_index index for the block multiplier
668 * @param gain_index_next index for the next block multiplier
671 static void interpolate_float(COOKContext
*q
, float* buffer
,
672 int gain_index
, int gain_index_next
){
675 fc1
= pow2tab
[gain_index
+63];
677 if(gain_index
== gain_index_next
){ //static gain
678 for(i
=0 ; i
<q
->gain_size_factor
; i
++){
682 } else { //smooth gain
683 fc2
= q
->gain_table
[11 + (gain_index_next
-gain_index
)];
684 for(i
=0 ; i
<q
->gain_size_factor
; i
++){
693 * Apply transform window, overlap buffers.
695 * @param q pointer to the COOKContext
696 * @param inbuffer pointer to the mltcoefficients
697 * @param gains_ptr current and previous gains
698 * @param previous_buffer pointer to the previous buffer to be used for overlapping
701 static void imlt_window_float (COOKContext
*q
, float *buffer1
,
702 cook_gains
*gains_ptr
, float *previous_buffer
)
704 const float fc
= pow2tab
[gains_ptr
->previous
[0] + 63];
706 /* The weird thing here, is that the two halves of the time domain
707 * buffer are swapped. Also, the newest data, that we save away for
708 * next frame, has the wrong sign. Hence the subtraction below.
709 * Almost sounds like a complex conjugate/reverse data/FFT effect.
712 /* Apply window and overlap */
713 for(i
= 0; i
< q
->samples_per_channel
; i
++){
714 buffer1
[i
] = buffer1
[i
] * fc
* q
->mlt_window
[i
] -
715 previous_buffer
[i
] * q
->mlt_window
[q
->samples_per_channel
- 1 - i
];
720 * The modulated lapped transform, this takes transform coefficients
721 * and transforms them into timedomain samples.
722 * Apply transform window, overlap buffers, apply gain profile
723 * and buffer management.
725 * @param q pointer to the COOKContext
726 * @param inbuffer pointer to the mltcoefficients
727 * @param gains_ptr current and previous gains
728 * @param previous_buffer pointer to the previous buffer to be used for overlapping
731 static void imlt_gain(COOKContext
*q
, float *inbuffer
,
732 cook_gains
*gains_ptr
, float* previous_buffer
)
734 float *buffer0
= q
->mono_mdct_output
;
735 float *buffer1
= q
->mono_mdct_output
+ q
->samples_per_channel
;
738 /* Inverse modified discrete cosine transform */
739 ff_imdct_calc(&q
->mdct_ctx
, q
->mono_mdct_output
, inbuffer
);
741 q
->imlt_window (q
, buffer1
, gains_ptr
, previous_buffer
);
743 /* Apply gain profile */
744 for (i
= 0; i
< 8; i
++) {
745 if (gains_ptr
->now
[i
] || gains_ptr
->now
[i
+ 1])
746 q
->interpolate(q
, &buffer1
[q
->gain_size_factor
* i
],
747 gains_ptr
->now
[i
], gains_ptr
->now
[i
+ 1]);
750 /* Save away the current to be previous block. */
751 memcpy(previous_buffer
, buffer0
, sizeof(float)*q
->samples_per_channel
);
756 * function for getting the jointstereo coupling information
758 * @param q pointer to the COOKContext
759 * @param decouple_tab decoupling array
763 static void decouple_info(COOKContext
*q
, int* decouple_tab
){
766 if(get_bits1(&q
->gb
)) {
767 if(cplband
[q
->js_subband_start
] > cplband
[q
->subbands
-1]) return;
769 length
= cplband
[q
->subbands
-1] - cplband
[q
->js_subband_start
] + 1;
770 for (i
=0 ; i
<length
; i
++) {
771 decouple_tab
[cplband
[q
->js_subband_start
] + i
] = get_vlc2(&q
->gb
, q
->ccpl
.table
, q
->ccpl
.bits
, 2);
776 if(cplband
[q
->js_subband_start
] > cplband
[q
->subbands
-1]) return;
778 length
= cplband
[q
->subbands
-1] - cplband
[q
->js_subband_start
] + 1;
779 for (i
=0 ; i
<length
; i
++) {
780 decouple_tab
[cplband
[q
->js_subband_start
] + i
] = get_bits(&q
->gb
, q
->js_vlc_bits
);
786 * function decouples a pair of signals from a single signal via multiplication.
788 * @param q pointer to the COOKContext
789 * @param subband index of the current subband
790 * @param f1 multiplier for channel 1 extraction
791 * @param f2 multiplier for channel 2 extraction
792 * @param decode_buffer input buffer
793 * @param mlt_buffer1 pointer to left channel mlt coefficients
794 * @param mlt_buffer2 pointer to right channel mlt coefficients
796 static void decouple_float (COOKContext
*q
,
799 float *decode_buffer
,
800 float *mlt_buffer1
, float *mlt_buffer2
)
803 for (j
=0 ; j
<SUBBAND_SIZE
; j
++) {
804 tmp_idx
= ((q
->js_subband_start
+ subband
)*SUBBAND_SIZE
)+j
;
805 mlt_buffer1
[SUBBAND_SIZE
*subband
+ j
] = f1
* decode_buffer
[tmp_idx
];
806 mlt_buffer2
[SUBBAND_SIZE
*subband
+ j
] = f2
* decode_buffer
[tmp_idx
];
811 * function for decoding joint stereo data
813 * @param q pointer to the COOKContext
814 * @param mlt_buffer1 pointer to left channel mlt coefficients
815 * @param mlt_buffer2 pointer to right channel mlt coefficients
818 static void joint_decode(COOKContext
*q
, float* mlt_buffer1
,
819 float* mlt_buffer2
) {
821 int decouple_tab
[SUBBAND_SIZE
];
822 float *decode_buffer
= q
->decode_buffer_0
;
825 const float* cplscale
;
827 memset(decouple_tab
, 0, sizeof(decouple_tab
));
828 memset(decode_buffer
, 0, sizeof(decode_buffer
));
830 /* Make sure the buffers are zeroed out. */
831 memset(mlt_buffer1
,0, 1024*sizeof(float));
832 memset(mlt_buffer2
,0, 1024*sizeof(float));
833 decouple_info(q
, decouple_tab
);
834 mono_decode(q
, decode_buffer
);
836 /* The two channels are stored interleaved in decode_buffer. */
837 for (i
=0 ; i
<q
->js_subband_start
; i
++) {
838 for (j
=0 ; j
<SUBBAND_SIZE
; j
++) {
839 mlt_buffer1
[i
*20+j
] = decode_buffer
[i
*40+j
];
840 mlt_buffer2
[i
*20+j
] = decode_buffer
[i
*40+20+j
];
844 /* When we reach js_subband_start (the higher frequencies)
845 the coefficients are stored in a coupling scheme. */
846 idx
= (1 << q
->js_vlc_bits
) - 1;
847 for (i
=q
->js_subband_start
; i
<q
->subbands
; i
++) {
848 cpl_tmp
= cplband
[i
];
849 idx
-=decouple_tab
[cpl_tmp
];
850 cplscale
= q
->cplscales
[q
->js_vlc_bits
-2]; //choose decoupler table
851 f1
= cplscale
[decouple_tab
[cpl_tmp
]];
852 f2
= cplscale
[idx
-1];
853 q
->decouple (q
, i
, f1
, f2
, decode_buffer
, mlt_buffer1
, mlt_buffer2
);
854 idx
= (1 << q
->js_vlc_bits
) - 1;
859 * First part of subpacket decoding:
860 * decode raw stream bytes and read gain info.
862 * @param q pointer to the COOKContext
863 * @param inbuffer pointer to raw stream data
864 * @param gain_ptr array of current/prev gain pointers
868 decode_bytes_and_gain(COOKContext
*q
, const uint8_t *inbuffer
,
869 cook_gains
*gains_ptr
)
873 offset
= decode_bytes(inbuffer
, q
->decoded_bytes_buffer
,
874 q
->bits_per_subpacket
/8);
875 init_get_bits(&q
->gb
, q
->decoded_bytes_buffer
+ offset
,
876 q
->bits_per_subpacket
);
877 decode_gain_info(&q
->gb
, gains_ptr
->now
);
879 /* Swap current and previous gains */
880 FFSWAP(int *, gains_ptr
->now
, gains_ptr
->previous
);
884 * Saturate the output signal to signed 16bit integers.
886 * @param q pointer to the COOKContext
887 * @param chan channel to saturate
888 * @param out pointer to the output vector
891 saturate_output_float (COOKContext
*q
, int chan
, int16_t *out
)
894 float *output
= q
->mono_mdct_output
+ q
->samples_per_channel
;
895 /* Clip and convert floats to 16 bits.
897 for (j
= 0; j
< q
->samples_per_channel
; j
++) {
898 out
[chan
+ q
->nb_channels
* j
] =
899 av_clip_int16(lrintf(output
[j
]));
904 * Final part of subpacket decoding:
905 * Apply modulated lapped transform, gain compensation,
906 * clip and convert to integer.
908 * @param q pointer to the COOKContext
909 * @param decode_buffer pointer to the mlt coefficients
910 * @param gain_ptr array of current/prev gain pointers
911 * @param previous_buffer pointer to the previous buffer to be used for overlapping
912 * @param out pointer to the output buffer
913 * @param chan 0: left or single channel, 1: right channel
917 mlt_compensate_output(COOKContext
*q
, float *decode_buffer
,
918 cook_gains
*gains
, float *previous_buffer
,
919 int16_t *out
, int chan
)
921 imlt_gain(q
, decode_buffer
, gains
, previous_buffer
);
922 q
->saturate_output (q
, chan
, out
);
927 * Cook subpacket decoding. This function returns one decoded subpacket,
928 * usually 1024 samples per channel.
930 * @param q pointer to the COOKContext
931 * @param inbuffer pointer to the inbuffer
932 * @param sub_packet_size subpacket size
933 * @param outbuffer pointer to the outbuffer
937 static int decode_subpacket(COOKContext
*q
, const uint8_t *inbuffer
,
938 int sub_packet_size
, int16_t *outbuffer
) {
940 // for (i=0 ; i<sub_packet_size ; i++) {
941 // av_log(q->avctx, AV_LOG_ERROR, "%02x", inbuffer[i]);
943 // av_log(q->avctx, AV_LOG_ERROR, "\n");
945 decode_bytes_and_gain(q
, inbuffer
, &q
->gains1
);
947 if (q
->joint_stereo
) {
948 joint_decode(q
, q
->decode_buffer_1
, q
->decode_buffer_2
);
950 mono_decode(q
, q
->decode_buffer_1
);
952 if (q
->nb_channels
== 2) {
953 decode_bytes_and_gain(q
, inbuffer
+ sub_packet_size
/2, &q
->gains2
);
954 mono_decode(q
, q
->decode_buffer_2
);
958 mlt_compensate_output(q
, q
->decode_buffer_1
, &q
->gains1
,
959 q
->mono_previous_buffer1
, outbuffer
, 0);
961 if (q
->nb_channels
== 2) {
962 if (q
->joint_stereo
) {
963 mlt_compensate_output(q
, q
->decode_buffer_2
, &q
->gains1
,
964 q
->mono_previous_buffer2
, outbuffer
, 1);
966 mlt_compensate_output(q
, q
->decode_buffer_2
, &q
->gains2
,
967 q
->mono_previous_buffer2
, outbuffer
, 1);
970 return q
->samples_per_frame
* sizeof(int16_t);
975 * Cook frame decoding
977 * @param avctx pointer to the AVCodecContext
980 static int cook_decode_frame(AVCodecContext
*avctx
,
981 void *data
, int *data_size
,
983 const uint8_t *buf
= avpkt
->data
;
984 int buf_size
= avpkt
->size
;
985 COOKContext
*q
= avctx
->priv_data
;
987 if (buf_size
< avctx
->block_align
)
990 *data_size
= decode_subpacket(q
, buf
, avctx
->block_align
, data
);
992 /* Discard the first two frames: no valid audio. */
993 if (avctx
->frame_number
< 2) *data_size
= 0;
995 return avctx
->block_align
;
999 static void dump_cook_context(COOKContext
*q
)
1002 #define PRINT(a,b) av_log(q->avctx,AV_LOG_ERROR," %s = %d\n", a, b);
1003 av_log(q
->avctx
,AV_LOG_ERROR
,"COOKextradata\n");
1004 av_log(q
->avctx
,AV_LOG_ERROR
,"cookversion=%x\n",q
->cookversion
);
1005 if (q
->cookversion
> STEREO
) {
1006 PRINT("js_subband_start",q
->js_subband_start
);
1007 PRINT("js_vlc_bits",q
->js_vlc_bits
);
1009 av_log(q
->avctx
,AV_LOG_ERROR
,"COOKContext\n");
1010 PRINT("nb_channels",q
->nb_channels
);
1011 PRINT("bit_rate",q
->bit_rate
);
1012 PRINT("sample_rate",q
->sample_rate
);
1013 PRINT("samples_per_channel",q
->samples_per_channel
);
1014 PRINT("samples_per_frame",q
->samples_per_frame
);
1015 PRINT("subbands",q
->subbands
);
1016 PRINT("random_state",q
->random_state
);
1017 PRINT("js_subband_start",q
->js_subband_start
);
1018 PRINT("log2_numvector_size",q
->log2_numvector_size
);
1019 PRINT("numvector_size",q
->numvector_size
);
1020 PRINT("total_subbands",q
->total_subbands
);
1024 static av_cold
int cook_count_channels(unsigned int mask
){
1027 for(i
= 0;i
<32;i
++){
1035 * Cook initialization
1037 * @param avctx pointer to the AVCodecContext
1040 static av_cold
int cook_decode_init(AVCodecContext
*avctx
)
1042 COOKContext
*q
= avctx
->priv_data
;
1043 const uint8_t *edata_ptr
= avctx
->extradata
;
1046 /* Take care of the codec specific extradata. */
1047 if (avctx
->extradata_size
<= 0) {
1048 av_log(avctx
,AV_LOG_ERROR
,"Necessary extradata missing!\n");
1051 /* 8 for mono, 16 for stereo, ? for multichannel
1052 Swap to right endianness so we don't need to care later on. */
1053 av_log(avctx
,AV_LOG_DEBUG
,"codecdata_length=%d\n",avctx
->extradata_size
);
1054 if (avctx
->extradata_size
>= 8){
1055 q
->cookversion
= bytestream_get_be32(&edata_ptr
);
1056 q
->samples_per_frame
= bytestream_get_be16(&edata_ptr
);
1057 q
->subbands
= bytestream_get_be16(&edata_ptr
);
1059 if (avctx
->extradata_size
>= 16){
1060 bytestream_get_be32(&edata_ptr
); //Unknown unused
1061 q
->js_subband_start
= bytestream_get_be16(&edata_ptr
);
1062 q
->js_vlc_bits
= bytestream_get_be16(&edata_ptr
);
1066 /* Take data from the AVCodecContext (RM container). */
1067 q
->sample_rate
= avctx
->sample_rate
;
1068 q
->nb_channels
= avctx
->channels
;
1069 q
->bit_rate
= avctx
->bit_rate
;
1071 /* Initialize RNG. */
1072 av_lfg_init(&q
->random_state
, ff_random_get_seed());
1074 /* Initialize extradata related variables. */
1075 q
->samples_per_channel
= q
->samples_per_frame
/ q
->nb_channels
;
1076 q
->bits_per_subpacket
= avctx
->block_align
* 8;
1078 /* Initialize default data states. */
1079 q
->log2_numvector_size
= 5;
1080 q
->total_subbands
= q
->subbands
;
1082 /* Initialize version-dependent variables */
1083 av_log(avctx
,AV_LOG_DEBUG
,"q->cookversion=%x\n",q
->cookversion
);
1084 q
->joint_stereo
= 0;
1085 switch (q
->cookversion
) {
1087 if (q
->nb_channels
!= 1) {
1088 av_log(avctx
,AV_LOG_ERROR
,"Container channels != 1, report sample!\n");
1091 av_log(avctx
,AV_LOG_DEBUG
,"MONO\n");
1094 if (q
->nb_channels
!= 1) {
1095 q
->bits_per_subpacket
= q
->bits_per_subpacket
/2;
1097 av_log(avctx
,AV_LOG_DEBUG
,"STEREO\n");
1100 if (q
->nb_channels
!= 2) {
1101 av_log(avctx
,AV_LOG_ERROR
,"Container channels != 2, report sample!\n");
1104 av_log(avctx
,AV_LOG_DEBUG
,"JOINT_STEREO\n");
1105 if (avctx
->extradata_size
>= 16){
1106 q
->total_subbands
= q
->subbands
+ q
->js_subband_start
;
1107 q
->joint_stereo
= 1;
1109 if (q
->samples_per_channel
> 256) {
1110 q
->log2_numvector_size
= 6;
1112 if (q
->samples_per_channel
> 512) {
1113 q
->log2_numvector_size
= 7;
1117 av_log(avctx
,AV_LOG_ERROR
,"MC_COOK not supported!\n");
1121 av_log(avctx
,AV_LOG_ERROR
,"Unknown Cook version, report sample!\n");
1126 /* Initialize variable relations */
1127 q
->numvector_size
= (1 << q
->log2_numvector_size
);
1129 /* Generate tables */
1132 init_cplscales_table(q
);
1134 if (init_cook_vlc_tables(q
) != 0)
1138 if(avctx
->block_align
>= UINT_MAX
/2)
1141 /* Pad the databuffer with:
1142 DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
1143 FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
1144 if (q
->nb_channels
==2 && q
->joint_stereo
==0) {
1145 q
->decoded_bytes_buffer
=
1146 av_mallocz(avctx
->block_align
/2
1147 + DECODE_BYTES_PAD2(avctx
->block_align
/2)
1148 + FF_INPUT_BUFFER_PADDING_SIZE
);
1150 q
->decoded_bytes_buffer
=
1151 av_mallocz(avctx
->block_align
1152 + DECODE_BYTES_PAD1(avctx
->block_align
)
1153 + FF_INPUT_BUFFER_PADDING_SIZE
);
1155 if (q
->decoded_bytes_buffer
== NULL
)
1158 q
->gains1
.now
= q
->gain_1
;
1159 q
->gains1
.previous
= q
->gain_2
;
1160 q
->gains2
.now
= q
->gain_3
;
1161 q
->gains2
.previous
= q
->gain_4
;
1163 /* Initialize transform. */
1164 if ( init_cook_mlt(q
) != 0 )
1167 /* Initialize COOK signal arithmetic handling */
1169 q
->scalar_dequant
= scalar_dequant_float
;
1170 q
->decouple
= decouple_float
;
1171 q
->imlt_window
= imlt_window_float
;
1172 q
->interpolate
= interpolate_float
;
1173 q
->saturate_output
= saturate_output_float
;
1176 /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1177 if (q
->total_subbands
> 53) {
1178 av_log(avctx
,AV_LOG_ERROR
,"total_subbands > 53, report sample!\n");
1181 if (q
->subbands
> 50) {
1182 av_log(avctx
,AV_LOG_ERROR
,"subbands > 50, report sample!\n");
1185 if ((q
->samples_per_channel
== 256) || (q
->samples_per_channel
== 512) || (q
->samples_per_channel
== 1024)) {
1187 av_log(avctx
,AV_LOG_ERROR
,"unknown amount of samples_per_channel = %d, report sample!\n",q
->samples_per_channel
);
1190 if ((q
->js_vlc_bits
> 6) || (q
->js_vlc_bits
< 0)) {
1191 av_log(avctx
,AV_LOG_ERROR
,"q->js_vlc_bits = %d, only >= 0 and <= 6 allowed!\n",q
->js_vlc_bits
);
1195 avctx
->sample_fmt
= SAMPLE_FMT_S16
;
1196 avctx
->channel_layout
= (avctx
->channels
==2) ? CH_LAYOUT_STEREO
: CH_LAYOUT_MONO
;
1199 dump_cook_context(q
);
1205 AVCodec cook_decoder
=
1208 .type
= CODEC_TYPE_AUDIO
,
1209 .id
= CODEC_ID_COOK
,
1210 .priv_data_size
= sizeof(COOKContext
),
1211 .init
= cook_decode_init
,
1212 .close
= cook_decode_close
,
1213 .decode
= cook_decode_frame
,
1214 .long_name
= NULL_IF_CONFIG_SMALL("COOK"),