3 * Copyright (c) 2001-2003 The ffmpeg Project
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 #include "bitstream.h"
23 #include "bytestream.h"
26 * @file libavcodec/adpcm.c
28 * First version by Francois Revol (revol@free.fr)
29 * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
30 * by Mike Melanson (melanson@pcisys.net)
31 * CD-ROM XA ADPCM codec by BERO
32 * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
33 * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
34 * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
35 * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
36 * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
37 * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com)
38 * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
40 * Features and limitations:
42 * Reference documents:
43 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html
44 * http://www.geocities.com/SiliconValley/8682/aud3.txt
45 * http://openquicktime.sourceforge.net/plugins.htm
46 * XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html
47 * http://www.cs.ucla.edu/~leec/mediabench/applications.html
48 * SoX source code http://home.sprynet.com/~cbagwell/sox.html
51 * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html
52 * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html
53 * readstr http://www.geocities.co.jp/Playtown/2004/
58 /* step_table[] and index_table[] are from the ADPCM reference source */
59 /* This is the index table: */
60 static const int index_table
[16] = {
61 -1, -1, -1, -1, 2, 4, 6, 8,
62 -1, -1, -1, -1, 2, 4, 6, 8,
66 * This is the step table. Note that many programs use slight deviations from
67 * this table, but such deviations are negligible:
69 static const int step_table
[89] = {
70 7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
71 19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
72 50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
73 130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
74 337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
75 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
76 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
77 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
78 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
81 /* These are for MS-ADPCM */
82 /* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */
83 static const int AdaptationTable
[] = {
84 230, 230, 230, 230, 307, 409, 512, 614,
85 768, 614, 512, 409, 307, 230, 230, 230
88 static const uint8_t AdaptCoeff1
[] = {
89 64, 128, 0, 48, 60, 115, 98
92 static const int8_t AdaptCoeff2
[] = {
93 0, -64, 0, 16, 0, -52, -58
96 /* These are for CD-ROM XA ADPCM */
97 static const int xa_adpcm_table
[5][2] = {
105 static const int ea_adpcm_table
[] = {
106 0, 240, 460, 392, 0, 0, -208, -220, 0, 1,
107 3, 4, 7, 8, 10, 11, 0, -1, -3, -4
110 // padded to zero where table size is less then 16
111 static const int swf_index_tables
[4][16] = {
113 /*3*/ { -1, -1, 2, 4 },
114 /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
115 /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
118 static const int yamaha_indexscale
[] = {
119 230, 230, 230, 230, 307, 409, 512, 614,
120 230, 230, 230, 230, 307, 409, 512, 614
123 static const int yamaha_difflookup
[] = {
124 1, 3, 5, 7, 9, 11, 13, 15,
125 -1, -3, -5, -7, -9, -11, -13, -15
130 typedef struct ADPCMChannelStatus
{
132 short int step_index
;
143 } ADPCMChannelStatus
;
145 typedef struct ADPCMContext
{
146 ADPCMChannelStatus status
[6];
149 /* XXX: implement encoding */
152 static av_cold
int adpcm_encode_init(AVCodecContext
*avctx
)
154 if (avctx
->channels
> 2)
155 return -1; /* only stereo or mono =) */
157 if(avctx
->trellis
&& (unsigned)avctx
->trellis
> 16U){
158 av_log(avctx
, AV_LOG_ERROR
, "invalid trellis size\n");
162 switch(avctx
->codec
->id
) {
163 case CODEC_ID_ADPCM_IMA_WAV
:
164 avctx
->frame_size
= (BLKSIZE
- 4 * avctx
->channels
) * 8 / (4 * avctx
->channels
) + 1; /* each 16 bits sample gives one nibble */
165 /* and we have 4 bytes per channel overhead */
166 avctx
->block_align
= BLKSIZE
;
167 /* seems frame_size isn't taken into account... have to buffer the samples :-( */
169 case CODEC_ID_ADPCM_IMA_QT
:
170 avctx
->frame_size
= 64;
171 avctx
->block_align
= 34 * avctx
->channels
;
173 case CODEC_ID_ADPCM_MS
:
174 avctx
->frame_size
= (BLKSIZE
- 7 * avctx
->channels
) * 2 / avctx
->channels
+ 2; /* each 16 bits sample gives one nibble */
175 /* and we have 7 bytes per channel overhead */
176 avctx
->block_align
= BLKSIZE
;
178 case CODEC_ID_ADPCM_YAMAHA
:
179 avctx
->frame_size
= BLKSIZE
* avctx
->channels
;
180 avctx
->block_align
= BLKSIZE
;
182 case CODEC_ID_ADPCM_SWF
:
183 if (avctx
->sample_rate
!= 11025 &&
184 avctx
->sample_rate
!= 22050 &&
185 avctx
->sample_rate
!= 44100) {
186 av_log(avctx
, AV_LOG_ERROR
, "Sample rate must be 11025, 22050 or 44100\n");
189 avctx
->frame_size
= 512 * (avctx
->sample_rate
/ 11025);
196 avctx
->coded_frame
= avcodec_alloc_frame();
197 avctx
->coded_frame
->key_frame
= 1;
202 static av_cold
int adpcm_encode_close(AVCodecContext
*avctx
)
204 av_freep(&avctx
->coded_frame
);
210 static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus
*c
, short sample
)
212 int delta
= sample
- c
->prev_sample
;
213 int nibble
= FFMIN(7, abs(delta
)*4/step_table
[c
->step_index
]) + (delta
<0)*8;
214 c
->prev_sample
+= ((step_table
[c
->step_index
] * yamaha_difflookup
[nibble
]) / 8);
215 c
->prev_sample
= av_clip_int16(c
->prev_sample
);
216 c
->step_index
= av_clip(c
->step_index
+ index_table
[nibble
], 0, 88);
220 static inline unsigned char adpcm_ms_compress_sample(ADPCMChannelStatus
*c
, short sample
)
222 int predictor
, nibble
, bias
;
224 predictor
= (((c
->sample1
) * (c
->coeff1
)) + ((c
->sample2
) * (c
->coeff2
))) / 64;
226 nibble
= sample
- predictor
;
227 if(nibble
>=0) bias
= c
->idelta
/2;
228 else bias
=-c
->idelta
/2;
230 nibble
= (nibble
+ bias
) / c
->idelta
;
231 nibble
= av_clip(nibble
, -8, 7)&0x0F;
233 predictor
+= (signed)((nibble
& 0x08)?(nibble
- 0x10):(nibble
)) * c
->idelta
;
235 c
->sample2
= c
->sample1
;
236 c
->sample1
= av_clip_int16(predictor
);
238 c
->idelta
= (AdaptationTable
[(int)nibble
] * c
->idelta
) >> 8;
239 if (c
->idelta
< 16) c
->idelta
= 16;
244 static inline unsigned char adpcm_yamaha_compress_sample(ADPCMChannelStatus
*c
, short sample
)
253 delta
= sample
- c
->predictor
;
255 nibble
= FFMIN(7, abs(delta
)*4/c
->step
) + (delta
<0)*8;
257 c
->predictor
+= ((c
->step
* yamaha_difflookup
[nibble
]) / 8);
258 c
->predictor
= av_clip_int16(c
->predictor
);
259 c
->step
= (c
->step
* yamaha_indexscale
[nibble
]) >> 8;
260 c
->step
= av_clip(c
->step
, 127, 24567);
265 typedef struct TrellisPath
{
270 typedef struct TrellisNode
{
278 static void adpcm_compress_trellis(AVCodecContext
*avctx
, const short *samples
,
279 uint8_t *dst
, ADPCMChannelStatus
*c
, int n
)
281 #define FREEZE_INTERVAL 128
282 //FIXME 6% faster if frontier is a compile-time constant
283 const int frontier
= 1 << avctx
->trellis
;
284 const int stride
= avctx
->channels
;
285 const int version
= avctx
->codec
->id
;
286 const int max_paths
= frontier
*FREEZE_INTERVAL
;
287 TrellisPath paths
[max_paths
], *p
;
288 TrellisNode node_buf
[2][frontier
];
289 TrellisNode
*nodep_buf
[2][frontier
];
290 TrellisNode
**nodes
= nodep_buf
[0]; // nodes[] is always sorted by .ssd
291 TrellisNode
**nodes_next
= nodep_buf
[1];
292 int pathn
= 0, froze
= -1, i
, j
, k
;
294 assert(!(max_paths
&(max_paths
-1)));
296 memset(nodep_buf
, 0, sizeof(nodep_buf
));
297 nodes
[0] = &node_buf
[1][0];
300 nodes
[0]->step
= c
->step_index
;
301 nodes
[0]->sample1
= c
->sample1
;
302 nodes
[0]->sample2
= c
->sample2
;
303 if((version
== CODEC_ID_ADPCM_IMA_WAV
) || (version
== CODEC_ID_ADPCM_IMA_QT
) || (version
== CODEC_ID_ADPCM_SWF
))
304 nodes
[0]->sample1
= c
->prev_sample
;
305 if(version
== CODEC_ID_ADPCM_MS
)
306 nodes
[0]->step
= c
->idelta
;
307 if(version
== CODEC_ID_ADPCM_YAMAHA
) {
309 nodes
[0]->step
= 127;
310 nodes
[0]->sample1
= 0;
312 nodes
[0]->step
= c
->step
;
313 nodes
[0]->sample1
= c
->predictor
;
318 TrellisNode
*t
= node_buf
[i
&1];
320 int sample
= samples
[i
*stride
];
321 memset(nodes_next
, 0, frontier
*sizeof(TrellisNode
*));
322 for(j
=0; j
<frontier
&& nodes
[j
]; j
++) {
323 // higher j have higher ssd already, so they're unlikely to use a suboptimal next sample too
324 const int range
= (j
< frontier
/2) ? 1 : 0;
325 const int step
= nodes
[j
]->step
;
327 if(version
== CODEC_ID_ADPCM_MS
) {
328 const int predictor
= ((nodes
[j
]->sample1
* c
->coeff1
) + (nodes
[j
]->sample2
* c
->coeff2
)) / 64;
329 const int div
= (sample
- predictor
) / step
;
330 const int nmin
= av_clip(div
-range
, -8, 6);
331 const int nmax
= av_clip(div
+range
, -7, 7);
332 for(nidx
=nmin
; nidx
<=nmax
; nidx
++) {
333 const int nibble
= nidx
& 0xf;
334 int dec_sample
= predictor
+ nidx
* step
;
335 #define STORE_NODE(NAME, STEP_INDEX)\
338 dec_sample = av_clip_int16(dec_sample);\
339 d = sample - dec_sample;\
340 ssd = nodes[j]->ssd + d*d;\
341 if(nodes_next[frontier-1] && ssd >= nodes_next[frontier-1]->ssd)\
343 /* Collapse any two states with the same previous sample value. \
344 * One could also distinguish states by step and by 2nd to last
345 * sample, but the effects of that are negligible. */\
346 for(k=0; k<frontier && nodes_next[k]; k++) {\
347 if(dec_sample == nodes_next[k]->sample1) {\
348 assert(ssd >= nodes_next[k]->ssd);\
352 for(k=0; k<frontier; k++) {\
353 if(!nodes_next[k] || ssd < nodes_next[k]->ssd) {\
354 TrellisNode *u = nodes_next[frontier-1];\
356 assert(pathn < max_paths);\
361 u->step = STEP_INDEX;\
362 u->sample2 = nodes[j]->sample1;\
363 u->sample1 = dec_sample;\
364 paths[u->path].nibble = nibble;\
365 paths[u->path].prev = nodes[j]->path;\
366 memmove(&nodes_next[k+1], &nodes_next[k], (frontier-k-1)*sizeof(TrellisNode*));\
372 STORE_NODE(ms
, FFMAX(16, (AdaptationTable
[nibble
] * step
) >> 8));
374 } else if((version
== CODEC_ID_ADPCM_IMA_WAV
)|| (version
== CODEC_ID_ADPCM_IMA_QT
)|| (version
== CODEC_ID_ADPCM_SWF
)) {
375 #define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\
376 const int predictor = nodes[j]->sample1;\
377 const int div = (sample - predictor) * 4 / STEP_TABLE;\
378 int nmin = av_clip(div-range, -7, 6);\
379 int nmax = av_clip(div+range, -6, 7);\
380 if(nmin<=0) nmin--; /* distinguish -0 from +0 */\
382 for(nidx=nmin; nidx<=nmax; nidx++) {\
383 const int nibble = nidx<0 ? 7-nidx : nidx;\
384 int dec_sample = predictor + (STEP_TABLE * yamaha_difflookup[nibble]) / 8;\
385 STORE_NODE(NAME, STEP_INDEX);\
387 LOOP_NODES(ima
, step_table
[step
], av_clip(step
+ index_table
[nibble
], 0, 88));
388 } else { //CODEC_ID_ADPCM_YAMAHA
389 LOOP_NODES(yamaha
, step
, av_clip((step
* yamaha_indexscale
[nibble
]) >> 8, 127, 24567));
400 if(nodes
[0]->ssd
> (1<<28)) {
401 for(j
=1; j
<frontier
&& nodes
[j
]; j
++)
402 nodes
[j
]->ssd
-= nodes
[0]->ssd
;
406 // merge old paths to save memory
407 if(i
== froze
+ FREEZE_INTERVAL
) {
408 p
= &paths
[nodes
[0]->path
];
409 for(k
=i
; k
>froze
; k
--) {
415 // other nodes might use paths that don't coincide with the frozen one.
416 // checking which nodes do so is too slow, so just kill them all.
417 // this also slightly improves quality, but I don't know why.
418 memset(nodes
+1, 0, (frontier
-1)*sizeof(TrellisNode
*));
422 p
= &paths
[nodes
[0]->path
];
423 for(i
=n
-1; i
>froze
; i
--) {
428 c
->predictor
= nodes
[0]->sample1
;
429 c
->sample1
= nodes
[0]->sample1
;
430 c
->sample2
= nodes
[0]->sample2
;
431 c
->step_index
= nodes
[0]->step
;
432 c
->step
= nodes
[0]->step
;
433 c
->idelta
= nodes
[0]->step
;
436 static int adpcm_encode_frame(AVCodecContext
*avctx
,
437 unsigned char *frame
, int buf_size
, void *data
)
442 ADPCMContext
*c
= avctx
->priv_data
;
445 samples
= (short *)data
;
446 st
= avctx
->channels
== 2;
447 /* n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */
449 switch(avctx
->codec
->id
) {
450 case CODEC_ID_ADPCM_IMA_WAV
:
451 n
= avctx
->frame_size
/ 8;
452 c
->status
[0].prev_sample
= (signed short)samples
[0]; /* XXX */
453 /* c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */
454 bytestream_put_le16(&dst
, c
->status
[0].prev_sample
);
455 *dst
++ = (unsigned char)c
->status
[0].step_index
;
456 *dst
++ = 0; /* unknown */
458 if (avctx
->channels
== 2) {
459 c
->status
[1].prev_sample
= (signed short)samples
[0];
460 /* c->status[1].step_index = 0; */
461 bytestream_put_le16(&dst
, c
->status
[1].prev_sample
);
462 *dst
++ = (unsigned char)c
->status
[1].step_index
;
467 /* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */
468 if(avctx
->trellis
> 0) {
470 adpcm_compress_trellis(avctx
, samples
, buf
[0], &c
->status
[0], n
*8);
471 if(avctx
->channels
== 2)
472 adpcm_compress_trellis(avctx
, samples
+1, buf
[1], &c
->status
[1], n
*8);
474 *dst
++ = buf
[0][8*i
+0] | (buf
[0][8*i
+1] << 4);
475 *dst
++ = buf
[0][8*i
+2] | (buf
[0][8*i
+3] << 4);
476 *dst
++ = buf
[0][8*i
+4] | (buf
[0][8*i
+5] << 4);
477 *dst
++ = buf
[0][8*i
+6] | (buf
[0][8*i
+7] << 4);
478 if (avctx
->channels
== 2) {
479 *dst
++ = buf
[1][8*i
+0] | (buf
[1][8*i
+1] << 4);
480 *dst
++ = buf
[1][8*i
+2] | (buf
[1][8*i
+3] << 4);
481 *dst
++ = buf
[1][8*i
+4] | (buf
[1][8*i
+5] << 4);
482 *dst
++ = buf
[1][8*i
+6] | (buf
[1][8*i
+7] << 4);
487 *dst
= adpcm_ima_compress_sample(&c
->status
[0], samples
[0]);
488 *dst
|= adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
]) << 4;
490 *dst
= adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
* 2]);
491 *dst
|= adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
* 3]) << 4;
493 *dst
= adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
* 4]);
494 *dst
|= adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
* 5]) << 4;
496 *dst
= adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
* 6]);
497 *dst
|= adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
* 7]) << 4;
500 if (avctx
->channels
== 2) {
501 *dst
= adpcm_ima_compress_sample(&c
->status
[1], samples
[1]);
502 *dst
|= adpcm_ima_compress_sample(&c
->status
[1], samples
[3]) << 4;
504 *dst
= adpcm_ima_compress_sample(&c
->status
[1], samples
[5]);
505 *dst
|= adpcm_ima_compress_sample(&c
->status
[1], samples
[7]) << 4;
507 *dst
= adpcm_ima_compress_sample(&c
->status
[1], samples
[9]);
508 *dst
|= adpcm_ima_compress_sample(&c
->status
[1], samples
[11]) << 4;
510 *dst
= adpcm_ima_compress_sample(&c
->status
[1], samples
[13]);
511 *dst
|= adpcm_ima_compress_sample(&c
->status
[1], samples
[15]) << 4;
514 samples
+= 8 * avctx
->channels
;
517 case CODEC_ID_ADPCM_IMA_QT
:
521 init_put_bits(&pb
, dst
, buf_size
*8);
523 for(ch
=0; ch
<avctx
->channels
; ch
++){
524 put_bits(&pb
, 9, (c
->status
[ch
].prev_sample
+ 0x10000) >> 7);
525 put_bits(&pb
, 7, c
->status
[ch
].step_index
);
526 if(avctx
->trellis
> 0) {
528 adpcm_compress_trellis(avctx
, samples
+ch
, buf
, &c
->status
[ch
], 64);
530 put_bits(&pb
, 4, buf
[i
^1]);
531 c
->status
[ch
].prev_sample
= c
->status
[ch
].predictor
& ~0x7F;
533 for (i
=0; i
<64; i
+=2){
535 t1
= adpcm_ima_compress_sample(&c
->status
[ch
], samples
[avctx
->channels
*(i
+0)+ch
]);
536 t2
= adpcm_ima_compress_sample(&c
->status
[ch
], samples
[avctx
->channels
*(i
+1)+ch
]);
537 put_bits(&pb
, 4, t2
);
538 put_bits(&pb
, 4, t1
);
540 c
->status
[ch
].prev_sample
&= ~0x7F;
544 dst
+= put_bits_count(&pb
)>>3;
547 case CODEC_ID_ADPCM_SWF
:
551 init_put_bits(&pb
, dst
, buf_size
*8);
553 n
= avctx
->frame_size
-1;
555 //Store AdpcmCodeSize
556 put_bits(&pb
, 2, 2); //Set 4bits flash adpcm format
558 //Init the encoder state
559 for(i
=0; i
<avctx
->channels
; i
++){
560 c
->status
[i
].step_index
= av_clip(c
->status
[i
].step_index
, 0, 63); // clip step so it fits 6 bits
561 put_sbits(&pb
, 16, samples
[i
]);
562 put_bits(&pb
, 6, c
->status
[i
].step_index
);
563 c
->status
[i
].prev_sample
= (signed short)samples
[i
];
566 if(avctx
->trellis
> 0) {
568 adpcm_compress_trellis(avctx
, samples
+2, buf
[0], &c
->status
[0], n
);
569 if (avctx
->channels
== 2)
570 adpcm_compress_trellis(avctx
, samples
+3, buf
[1], &c
->status
[1], n
);
572 put_bits(&pb
, 4, buf
[0][i
]);
573 if (avctx
->channels
== 2)
574 put_bits(&pb
, 4, buf
[1][i
]);
577 for (i
=1; i
<avctx
->frame_size
; i
++) {
578 put_bits(&pb
, 4, adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
*i
]));
579 if (avctx
->channels
== 2)
580 put_bits(&pb
, 4, adpcm_ima_compress_sample(&c
->status
[1], samples
[2*i
+1]));
584 dst
+= put_bits_count(&pb
)>>3;
587 case CODEC_ID_ADPCM_MS
:
588 for(i
=0; i
<avctx
->channels
; i
++){
592 c
->status
[i
].coeff1
= AdaptCoeff1
[predictor
];
593 c
->status
[i
].coeff2
= AdaptCoeff2
[predictor
];
595 for(i
=0; i
<avctx
->channels
; i
++){
596 if (c
->status
[i
].idelta
< 16)
597 c
->status
[i
].idelta
= 16;
599 bytestream_put_le16(&dst
, c
->status
[i
].idelta
);
601 for(i
=0; i
<avctx
->channels
; i
++){
602 c
->status
[i
].sample2
= *samples
++;
604 for(i
=0; i
<avctx
->channels
; i
++){
605 c
->status
[i
].sample1
= *samples
++;
607 bytestream_put_le16(&dst
, c
->status
[i
].sample1
);
609 for(i
=0; i
<avctx
->channels
; i
++)
610 bytestream_put_le16(&dst
, c
->status
[i
].sample2
);
612 if(avctx
->trellis
> 0) {
613 int n
= avctx
->block_align
- 7*avctx
->channels
;
615 if(avctx
->channels
== 1) {
617 adpcm_compress_trellis(avctx
, samples
, buf
[0], &c
->status
[0], n
);
619 *dst
++ = (buf
[0][i
] << 4) | buf
[0][i
+1];
621 adpcm_compress_trellis(avctx
, samples
, buf
[0], &c
->status
[0], n
);
622 adpcm_compress_trellis(avctx
, samples
+1, buf
[1], &c
->status
[1], n
);
624 *dst
++ = (buf
[0][i
] << 4) | buf
[1][i
];
627 for(i
=7*avctx
->channels
; i
<avctx
->block_align
; i
++) {
629 nibble
= adpcm_ms_compress_sample(&c
->status
[ 0], *samples
++)<<4;
630 nibble
|= adpcm_ms_compress_sample(&c
->status
[st
], *samples
++);
634 case CODEC_ID_ADPCM_YAMAHA
:
635 n
= avctx
->frame_size
/ 2;
636 if(avctx
->trellis
> 0) {
639 if(avctx
->channels
== 1) {
640 adpcm_compress_trellis(avctx
, samples
, buf
[0], &c
->status
[0], n
);
642 *dst
++ = buf
[0][i
] | (buf
[0][i
+1] << 4);
644 adpcm_compress_trellis(avctx
, samples
, buf
[0], &c
->status
[0], n
);
645 adpcm_compress_trellis(avctx
, samples
+1, buf
[1], &c
->status
[1], n
);
647 *dst
++ = buf
[0][i
] | (buf
[1][i
] << 4);
651 for(i
= 0; i
< avctx
->channels
; i
++) {
653 nibble
= adpcm_yamaha_compress_sample(&c
->status
[i
], samples
[i
]);
654 nibble
|= adpcm_yamaha_compress_sample(&c
->status
[i
], samples
[i
+avctx
->channels
]) << 4;
657 samples
+= 2 * avctx
->channels
;
665 #endif //CONFIG_ENCODERS
667 static av_cold
int adpcm_decode_init(AVCodecContext
* avctx
)
669 ADPCMContext
*c
= avctx
->priv_data
;
670 unsigned int max_channels
= 2;
672 switch(avctx
->codec
->id
) {
673 case CODEC_ID_ADPCM_EA_R1
:
674 case CODEC_ID_ADPCM_EA_R2
:
675 case CODEC_ID_ADPCM_EA_R3
:
679 if(avctx
->channels
> max_channels
){
683 switch(avctx
->codec
->id
) {
684 case CODEC_ID_ADPCM_CT
:
685 c
->status
[0].step
= c
->status
[1].step
= 511;
687 case CODEC_ID_ADPCM_IMA_WS
:
688 if (avctx
->extradata
&& avctx
->extradata_size
== 2 * 4) {
689 c
->status
[0].predictor
= AV_RL32(avctx
->extradata
);
690 c
->status
[1].predictor
= AV_RL32(avctx
->extradata
+ 4);
696 avctx
->sample_fmt
= SAMPLE_FMT_S16
;
700 static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus
*c
, char nibble
, int shift
)
704 int sign
, delta
, diff
, step
;
706 step
= step_table
[c
->step_index
];
707 step_index
= c
->step_index
+ index_table
[(unsigned)nibble
];
708 if (step_index
< 0) step_index
= 0;
709 else if (step_index
> 88) step_index
= 88;
713 /* perform direct multiplication instead of series of jumps proposed by
714 * the reference ADPCM implementation since modern CPUs can do the mults
716 diff
= ((2 * delta
+ 1) * step
) >> shift
;
717 predictor
= c
->predictor
;
718 if (sign
) predictor
-= diff
;
719 else predictor
+= diff
;
721 c
->predictor
= av_clip_int16(predictor
);
722 c
->step_index
= step_index
;
724 return (short)c
->predictor
;
727 static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus
*c
, char nibble
)
731 predictor
= (((c
->sample1
) * (c
->coeff1
)) + ((c
->sample2
) * (c
->coeff2
))) / 64;
732 predictor
+= (signed)((nibble
& 0x08)?(nibble
- 0x10):(nibble
)) * c
->idelta
;
734 c
->sample2
= c
->sample1
;
735 c
->sample1
= av_clip_int16(predictor
);
736 c
->idelta
= (AdaptationTable
[(int)nibble
] * c
->idelta
) >> 8;
737 if (c
->idelta
< 16) c
->idelta
= 16;
742 static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus
*c
, char nibble
)
744 int sign
, delta
, diff
;
749 /* perform direct multiplication instead of series of jumps proposed by
750 * the reference ADPCM implementation since modern CPUs can do the mults
752 diff
= ((2 * delta
+ 1) * c
->step
) >> 3;
753 /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
754 c
->predictor
= ((c
->predictor
* 254) >> 8) + (sign
? -diff
: diff
);
755 c
->predictor
= av_clip_int16(c
->predictor
);
756 /* calculate new step and clamp it to range 511..32767 */
757 new_step
= (AdaptationTable
[nibble
& 7] * c
->step
) >> 8;
758 c
->step
= av_clip(new_step
, 511, 32767);
760 return (short)c
->predictor
;
763 static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus
*c
, char nibble
, int size
, int shift
)
765 int sign
, delta
, diff
;
767 sign
= nibble
& (1<<(size
-1));
768 delta
= nibble
& ((1<<(size
-1))-1);
769 diff
= delta
<< (7 + c
->step
+ shift
);
772 c
->predictor
= av_clip(c
->predictor
+ (sign
? -diff
: diff
), -16384,16256);
774 /* calculate new step */
775 if (delta
>= (2*size
- 3) && c
->step
< 3)
777 else if (delta
== 0 && c
->step
> 0)
780 return (short) c
->predictor
;
783 static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus
*c
, unsigned char nibble
)
790 c
->predictor
+= (c
->step
* yamaha_difflookup
[nibble
]) / 8;
791 c
->predictor
= av_clip_int16(c
->predictor
);
792 c
->step
= (c
->step
* yamaha_indexscale
[nibble
]) >> 8;
793 c
->step
= av_clip(c
->step
, 127, 24567);
797 static void xa_decode(short *out
, const unsigned char *in
,
798 ADPCMChannelStatus
*left
, ADPCMChannelStatus
*right
, int inc
)
801 int shift
,filter
,f0
,f1
;
807 shift
= 12 - (in
[4+i
*2] & 15);
808 filter
= in
[4+i
*2] >> 4;
809 f0
= xa_adpcm_table
[filter
][0];
810 f1
= xa_adpcm_table
[filter
][1];
818 t
= (signed char)(d
<<4)>>4;
819 s
= ( t
<<shift
) + ((s_1
*f0
+ s_2
*f1
+32)>>6);
821 s_1
= av_clip_int16(s
);
826 if (inc
==2) { /* stereo */
829 s_1
= right
->sample1
;
830 s_2
= right
->sample2
;
831 out
= out
+ 1 - 28*2;
834 shift
= 12 - (in
[5+i
*2] & 15);
835 filter
= in
[5+i
*2] >> 4;
837 f0
= xa_adpcm_table
[filter
][0];
838 f1
= xa_adpcm_table
[filter
][1];
843 t
= (signed char)d
>> 4;
844 s
= ( t
<<shift
) + ((s_1
*f0
+ s_2
*f1
+32)>>6);
846 s_1
= av_clip_int16(s
);
851 if (inc
==2) { /* stereo */
852 right
->sample1
= s_1
;
853 right
->sample2
= s_2
;
863 /* DK3 ADPCM support macro */
864 #define DK3_GET_NEXT_NIBBLE() \
865 if (decode_top_nibble_next) \
867 nibble = last_byte >> 4; \
868 decode_top_nibble_next = 0; \
872 last_byte = *src++; \
873 if (src >= buf + buf_size) break; \
874 nibble = last_byte & 0x0F; \
875 decode_top_nibble_next = 1; \
878 static int adpcm_decode_frame(AVCodecContext
*avctx
,
879 void *data
, int *data_size
,
882 const uint8_t *buf
= avpkt
->data
;
883 int buf_size
= avpkt
->size
;
884 ADPCMContext
*c
= avctx
->priv_data
;
885 ADPCMChannelStatus
*cs
;
886 int n
, m
, channel
, i
;
887 int block_predictor
[2];
893 /* DK3 ADPCM accounting variables */
894 unsigned char last_byte
= 0;
895 unsigned char nibble
;
896 int decode_top_nibble_next
= 0;
899 /* EA ADPCM state variables */
900 uint32_t samples_in_chunk
;
901 int32_t previous_left_sample
, previous_right_sample
;
902 int32_t current_left_sample
, current_right_sample
;
903 int32_t next_left_sample
, next_right_sample
;
904 int32_t coeff1l
, coeff2l
, coeff1r
, coeff2r
;
905 uint8_t shift_left
, shift_right
;
907 int coeff
[2][2], shift
[2];//used in EA MAXIS ADPCM
912 //should protect all 4bit ADPCM variants
913 //8 is needed for CODEC_ID_ADPCM_IMA_WAV with 2 channels
915 if(*data_size
/4 < buf_size
+ 8)
919 samples_end
= samples
+ *data_size
/2;
923 st
= avctx
->channels
== 2 ? 1 : 0;
925 switch(avctx
->codec
->id
) {
926 case CODEC_ID_ADPCM_IMA_QT
:
927 n
= buf_size
- 2*avctx
->channels
;
928 for (channel
= 0; channel
< avctx
->channels
; channel
++) {
929 cs
= &(c
->status
[channel
]);
930 /* (pppppp) (piiiiiii) */
932 /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
933 cs
->predictor
= (*src
++) << 8;
934 cs
->predictor
|= (*src
& 0x80);
935 cs
->predictor
&= 0xFF80;
938 if(cs
->predictor
& 0x8000)
939 cs
->predictor
-= 0x10000;
941 cs
->predictor
= av_clip_int16(cs
->predictor
);
943 cs
->step_index
= (*src
++) & 0x7F;
945 if (cs
->step_index
> 88){
946 av_log(avctx
, AV_LOG_ERROR
, "ERROR: step_index = %i\n", cs
->step_index
);
950 cs
->step
= step_table
[cs
->step_index
];
952 samples
= (short*)data
+ channel
;
954 for(m
=32; n
>0 && m
>0; n
--, m
--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */
955 *samples
= adpcm_ima_expand_nibble(cs
, src
[0] & 0x0F, 3);
956 samples
+= avctx
->channels
;
957 *samples
= adpcm_ima_expand_nibble(cs
, src
[0] >> 4 , 3);
958 samples
+= avctx
->channels
;
965 case CODEC_ID_ADPCM_IMA_WAV
:
966 if (avctx
->block_align
!= 0 && buf_size
> avctx
->block_align
)
967 buf_size
= avctx
->block_align
;
969 // samples_per_block= (block_align-4*chanels)*8 / (bits_per_sample * chanels) + 1;
971 for(i
=0; i
<avctx
->channels
; i
++){
972 cs
= &(c
->status
[i
]);
973 cs
->predictor
= *samples
++ = (int16_t)bytestream_get_le16(&src
);
975 cs
->step_index
= *src
++;
976 if (cs
->step_index
> 88){
977 av_log(avctx
, AV_LOG_ERROR
, "ERROR: step_index = %i\n", cs
->step_index
);
980 if (*src
++) av_log(avctx
, AV_LOG_ERROR
, "unused byte should be null but is %d!!\n", src
[-1]); /* unused */
983 while(src
< buf
+ buf_size
){
986 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[i
], src
[4*i
] & 0x0F, 3);
988 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[i
], src
[4*i
] >> 4 , 3);
994 case CODEC_ID_ADPCM_4XM
:
995 cs
= &(c
->status
[0]);
996 c
->status
[0].predictor
= (int16_t)bytestream_get_le16(&src
);
998 c
->status
[1].predictor
= (int16_t)bytestream_get_le16(&src
);
1000 c
->status
[0].step_index
= (int16_t)bytestream_get_le16(&src
);
1002 c
->status
[1].step_index
= (int16_t)bytestream_get_le16(&src
);
1004 if (cs
->step_index
< 0) cs
->step_index
= 0;
1005 if (cs
->step_index
> 88) cs
->step_index
= 88;
1007 m
= (buf_size
- (src
- buf
))>>st
;
1008 for(i
=0; i
<m
; i
++) {
1009 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0], src
[i
] & 0x0F, 4);
1011 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[1], src
[i
+m
] & 0x0F, 4);
1012 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0], src
[i
] >> 4, 4);
1014 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[1], src
[i
+m
] >> 4, 4);
1020 case CODEC_ID_ADPCM_MS
:
1021 if (avctx
->block_align
!= 0 && buf_size
> avctx
->block_align
)
1022 buf_size
= avctx
->block_align
;
1023 n
= buf_size
- 7 * avctx
->channels
;
1026 block_predictor
[0] = av_clip(*src
++, 0, 6);
1027 block_predictor
[1] = 0;
1029 block_predictor
[1] = av_clip(*src
++, 0, 6);
1030 c
->status
[0].idelta
= (int16_t)bytestream_get_le16(&src
);
1032 c
->status
[1].idelta
= (int16_t)bytestream_get_le16(&src
);
1034 c
->status
[0].coeff1
= AdaptCoeff1
[block_predictor
[0]];
1035 c
->status
[0].coeff2
= AdaptCoeff2
[block_predictor
[0]];
1036 c
->status
[1].coeff1
= AdaptCoeff1
[block_predictor
[1]];
1037 c
->status
[1].coeff2
= AdaptCoeff2
[block_predictor
[1]];
1039 c
->status
[0].sample1
= bytestream_get_le16(&src
);
1040 if (st
) c
->status
[1].sample1
= bytestream_get_le16(&src
);
1041 c
->status
[0].sample2
= bytestream_get_le16(&src
);
1042 if (st
) c
->status
[1].sample2
= bytestream_get_le16(&src
);
1044 *samples
++ = c
->status
[0].sample2
;
1045 if (st
) *samples
++ = c
->status
[1].sample2
;
1046 *samples
++ = c
->status
[0].sample1
;
1047 if (st
) *samples
++ = c
->status
[1].sample1
;
1049 *samples
++ = adpcm_ms_expand_nibble(&c
->status
[0 ], src
[0] >> 4 );
1050 *samples
++ = adpcm_ms_expand_nibble(&c
->status
[st
], src
[0] & 0x0F);
1054 case CODEC_ID_ADPCM_IMA_DK4
:
1055 if (avctx
->block_align
!= 0 && buf_size
> avctx
->block_align
)
1056 buf_size
= avctx
->block_align
;
1058 c
->status
[0].predictor
= (int16_t)bytestream_get_le16(&src
);
1059 c
->status
[0].step_index
= *src
++;
1061 *samples
++ = c
->status
[0].predictor
;
1063 c
->status
[1].predictor
= (int16_t)bytestream_get_le16(&src
);
1064 c
->status
[1].step_index
= *src
++;
1066 *samples
++ = c
->status
[1].predictor
;
1068 while (src
< buf
+ buf_size
) {
1070 /* take care of the top nibble (always left or mono channel) */
1071 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0],
1074 /* take care of the bottom nibble, which is right sample for
1075 * stereo, or another mono sample */
1077 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[1],
1080 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0],
1086 case CODEC_ID_ADPCM_IMA_DK3
:
1087 if (avctx
->block_align
!= 0 && buf_size
> avctx
->block_align
)
1088 buf_size
= avctx
->block_align
;
1090 if(buf_size
+ 16 > (samples_end
- samples
)*3/8)
1093 c
->status
[0].predictor
= (int16_t)AV_RL16(src
+ 10);
1094 c
->status
[1].predictor
= (int16_t)AV_RL16(src
+ 12);
1095 c
->status
[0].step_index
= src
[14];
1096 c
->status
[1].step_index
= src
[15];
1097 /* sign extend the predictors */
1099 diff_channel
= c
->status
[1].predictor
;
1101 /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
1102 * the buffer is consumed */
1105 /* for this algorithm, c->status[0] is the sum channel and
1106 * c->status[1] is the diff channel */
1108 /* process the first predictor of the sum channel */
1109 DK3_GET_NEXT_NIBBLE();
1110 adpcm_ima_expand_nibble(&c
->status
[0], nibble
, 3);
1112 /* process the diff channel predictor */
1113 DK3_GET_NEXT_NIBBLE();
1114 adpcm_ima_expand_nibble(&c
->status
[1], nibble
, 3);
1116 /* process the first pair of stereo PCM samples */
1117 diff_channel
= (diff_channel
+ c
->status
[1].predictor
) / 2;
1118 *samples
++ = c
->status
[0].predictor
+ c
->status
[1].predictor
;
1119 *samples
++ = c
->status
[0].predictor
- c
->status
[1].predictor
;
1121 /* process the second predictor of the sum channel */
1122 DK3_GET_NEXT_NIBBLE();
1123 adpcm_ima_expand_nibble(&c
->status
[0], nibble
, 3);
1125 /* process the second pair of stereo PCM samples */
1126 diff_channel
= (diff_channel
+ c
->status
[1].predictor
) / 2;
1127 *samples
++ = c
->status
[0].predictor
+ c
->status
[1].predictor
;
1128 *samples
++ = c
->status
[0].predictor
- c
->status
[1].predictor
;
1131 case CODEC_ID_ADPCM_IMA_ISS
:
1132 c
->status
[0].predictor
= (int16_t)AV_RL16(src
+ 0);
1133 c
->status
[0].step_index
= src
[2];
1136 c
->status
[1].predictor
= (int16_t)AV_RL16(src
+ 0);
1137 c
->status
[1].step_index
= src
[2];
1141 while (src
< buf
+ buf_size
) {
1144 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0],
1146 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[1],
1149 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0],
1151 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0],
1158 case CODEC_ID_ADPCM_IMA_WS
:
1159 /* no per-block initialization; just start decoding the data */
1160 while (src
< buf
+ buf_size
) {
1163 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0],
1165 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[1],
1168 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0],
1170 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0],
1177 case CODEC_ID_ADPCM_XA
:
1178 while (buf_size
>= 128) {
1179 xa_decode(samples
, src
, &c
->status
[0], &c
->status
[1],
1186 case CODEC_ID_ADPCM_IMA_EA_EACS
:
1187 samples_in_chunk
= bytestream_get_le32(&src
) >> (1-st
);
1189 if (samples_in_chunk
> buf_size
-4-(8<<st
)) {
1190 src
+= buf_size
- 4;
1194 for (i
=0; i
<=st
; i
++)
1195 c
->status
[i
].step_index
= bytestream_get_le32(&src
);
1196 for (i
=0; i
<=st
; i
++)
1197 c
->status
[i
].predictor
= bytestream_get_le32(&src
);
1199 for (; samples_in_chunk
; samples_in_chunk
--, src
++) {
1200 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0], *src
>>4, 3);
1201 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[st
], *src
&0x0F, 3);
1204 case CODEC_ID_ADPCM_IMA_EA_SEAD
:
1205 for (; src
< buf
+buf_size
; src
++) {
1206 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0], src
[0] >> 4, 6);
1207 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[st
],src
[0]&0x0F, 6);
1210 case CODEC_ID_ADPCM_EA
:
1211 samples_in_chunk
= AV_RL32(src
);
1212 if (samples_in_chunk
>= ((buf_size
- 12) * 2)) {
1217 current_left_sample
= (int16_t)bytestream_get_le16(&src
);
1218 previous_left_sample
= (int16_t)bytestream_get_le16(&src
);
1219 current_right_sample
= (int16_t)bytestream_get_le16(&src
);
1220 previous_right_sample
= (int16_t)bytestream_get_le16(&src
);
1222 for (count1
= 0; count1
< samples_in_chunk
/28;count1
++) {
1223 coeff1l
= ea_adpcm_table
[ *src
>> 4 ];
1224 coeff2l
= ea_adpcm_table
[(*src
>> 4 ) + 4];
1225 coeff1r
= ea_adpcm_table
[*src
& 0x0F];
1226 coeff2r
= ea_adpcm_table
[(*src
& 0x0F) + 4];
1229 shift_left
= (*src
>> 4 ) + 8;
1230 shift_right
= (*src
& 0x0F) + 8;
1233 for (count2
= 0; count2
< 28; count2
++) {
1234 next_left_sample
= (int32_t)((*src
& 0xF0) << 24) >> shift_left
;
1235 next_right_sample
= (int32_t)((*src
& 0x0F) << 28) >> shift_right
;
1238 next_left_sample
= (next_left_sample
+
1239 (current_left_sample
* coeff1l
) +
1240 (previous_left_sample
* coeff2l
) + 0x80) >> 8;
1241 next_right_sample
= (next_right_sample
+
1242 (current_right_sample
* coeff1r
) +
1243 (previous_right_sample
* coeff2r
) + 0x80) >> 8;
1245 previous_left_sample
= current_left_sample
;
1246 current_left_sample
= av_clip_int16(next_left_sample
);
1247 previous_right_sample
= current_right_sample
;
1248 current_right_sample
= av_clip_int16(next_right_sample
);
1249 *samples
++ = (unsigned short)current_left_sample
;
1250 *samples
++ = (unsigned short)current_right_sample
;
1254 case CODEC_ID_ADPCM_EA_MAXIS_XA
:
1255 for(channel
= 0; channel
< avctx
->channels
; channel
++) {
1257 coeff
[channel
][i
] = ea_adpcm_table
[(*src
>> 4) + 4*i
];
1258 shift
[channel
] = (*src
& 0x0F) + 8;
1261 for (count1
= 0; count1
< (buf_size
- avctx
->channels
) / avctx
->channels
; count1
++) {
1262 for(i
= 4; i
>= 0; i
-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
1263 for(channel
= 0; channel
< avctx
->channels
; channel
++) {
1264 int32_t sample
= (int32_t)(((*(src
+channel
) >> i
) & 0x0F) << 0x1C) >> shift
[channel
];
1266 c
->status
[channel
].sample1
* coeff
[channel
][0] +
1267 c
->status
[channel
].sample2
* coeff
[channel
][1] + 0x80) >> 8;
1268 c
->status
[channel
].sample2
= c
->status
[channel
].sample1
;
1269 c
->status
[channel
].sample1
= av_clip_int16(sample
);
1270 *samples
++ = c
->status
[channel
].sample1
;
1273 src
+=avctx
->channels
;
1276 case CODEC_ID_ADPCM_EA_R1
:
1277 case CODEC_ID_ADPCM_EA_R2
:
1278 case CODEC_ID_ADPCM_EA_R3
: {
1279 /* channel numbering
1281 4chan: 0=fl, 1=rl, 2=fr, 3=rr
1282 6chan: 0=fl, 1=c, 2=fr, 3=rl, 4=rr, 5=sub */
1283 const int big_endian
= avctx
->codec
->id
== CODEC_ID_ADPCM_EA_R3
;
1284 int32_t previous_sample
, current_sample
, next_sample
;
1285 int32_t coeff1
, coeff2
;
1287 unsigned int channel
;
1289 const uint8_t *srcC
;
1290 const uint8_t *src_end
= buf
+ buf_size
;
1292 samples_in_chunk
= (big_endian
? bytestream_get_be32(&src
)
1293 : bytestream_get_le32(&src
)) / 28;
1294 if (samples_in_chunk
> UINT32_MAX
/(28*avctx
->channels
) ||
1295 28*samples_in_chunk
*avctx
->channels
> samples_end
-samples
) {
1296 src
+= buf_size
- 4;
1300 for (channel
=0; channel
<avctx
->channels
; channel
++) {
1301 int32_t offset
= (big_endian
? bytestream_get_be32(&src
)
1302 : bytestream_get_le32(&src
))
1303 + (avctx
->channels
-channel
-1) * 4;
1305 if ((offset
< 0) || (offset
>= src_end
- src
- 4)) break;
1306 srcC
= src
+ offset
;
1307 samplesC
= samples
+ channel
;
1309 if (avctx
->codec
->id
== CODEC_ID_ADPCM_EA_R1
) {
1310 current_sample
= (int16_t)bytestream_get_le16(&srcC
);
1311 previous_sample
= (int16_t)bytestream_get_le16(&srcC
);
1313 current_sample
= c
->status
[channel
].predictor
;
1314 previous_sample
= c
->status
[channel
].prev_sample
;
1317 for (count1
=0; count1
<samples_in_chunk
; count1
++) {
1318 if (*srcC
== 0xEE) { /* only seen in R2 and R3 */
1320 if (srcC
> src_end
- 30*2) break;
1321 current_sample
= (int16_t)bytestream_get_be16(&srcC
);
1322 previous_sample
= (int16_t)bytestream_get_be16(&srcC
);
1324 for (count2
=0; count2
<28; count2
++) {
1325 *samplesC
= (int16_t)bytestream_get_be16(&srcC
);
1326 samplesC
+= avctx
->channels
;
1329 coeff1
= ea_adpcm_table
[ *srcC
>>4 ];
1330 coeff2
= ea_adpcm_table
[(*srcC
>>4) + 4];
1331 shift
= (*srcC
++ & 0x0F) + 8;
1333 if (srcC
> src_end
- 14) break;
1334 for (count2
=0; count2
<28; count2
++) {
1336 next_sample
= (int32_t)((*srcC
++ & 0x0F) << 28) >> shift
;
1338 next_sample
= (int32_t)((*srcC
& 0xF0) << 24) >> shift
;
1340 next_sample
+= (current_sample
* coeff1
) +
1341 (previous_sample
* coeff2
);
1342 next_sample
= av_clip_int16(next_sample
>> 8);
1344 previous_sample
= current_sample
;
1345 current_sample
= next_sample
;
1346 *samplesC
= current_sample
;
1347 samplesC
+= avctx
->channels
;
1352 if (avctx
->codec
->id
!= CODEC_ID_ADPCM_EA_R1
) {
1353 c
->status
[channel
].predictor
= current_sample
;
1354 c
->status
[channel
].prev_sample
= previous_sample
;
1358 src
= src
+ buf_size
- (4 + 4*avctx
->channels
);
1359 samples
+= 28 * samples_in_chunk
* avctx
->channels
;
1362 case CODEC_ID_ADPCM_EA_XAS
:
1363 if (samples_end
-samples
< 32*4*avctx
->channels
1364 || buf_size
< (4+15)*4*avctx
->channels
) {
1368 for (channel
=0; channel
<avctx
->channels
; channel
++) {
1369 int coeff
[2][4], shift
[4];
1370 short *s2
, *s
= &samples
[channel
];
1371 for (n
=0; n
<4; n
++, s
+=32*avctx
->channels
) {
1373 coeff
[i
][n
] = ea_adpcm_table
[(src
[0]&0x0F)+4*i
];
1374 shift
[n
] = (src
[2]&0x0F) + 8;
1375 for (s2
=s
, i
=0; i
<2; i
++, src
+=2, s2
+=avctx
->channels
)
1376 s2
[0] = (src
[0]&0xF0) + (src
[1]<<8);
1379 for (m
=2; m
<32; m
+=2) {
1380 s
= &samples
[m
*avctx
->channels
+ channel
];
1381 for (n
=0; n
<4; n
++, src
++, s
+=32*avctx
->channels
) {
1382 for (s2
=s
, i
=0; i
<8; i
+=4, s2
+=avctx
->channels
) {
1383 int level
= (int32_t)((*src
& (0xF0>>i
)) << (24+i
)) >> shift
[n
];
1384 int pred
= s2
[-1*avctx
->channels
] * coeff
[0][n
]
1385 + s2
[-2*avctx
->channels
] * coeff
[1][n
];
1386 s2
[0] = av_clip_int16((level
+ pred
+ 0x80) >> 8);
1391 samples
+= 32*4*avctx
->channels
;
1393 case CODEC_ID_ADPCM_IMA_AMV
:
1394 case CODEC_ID_ADPCM_IMA_SMJPEG
:
1395 c
->status
[0].predictor
= (int16_t)bytestream_get_le16(&src
);
1396 c
->status
[0].step_index
= bytestream_get_le16(&src
);
1398 if (avctx
->codec
->id
== CODEC_ID_ADPCM_IMA_AMV
)
1401 while (src
< buf
+ buf_size
) {
1406 if (avctx
->codec
->id
== CODEC_ID_ADPCM_IMA_AMV
)
1407 FFSWAP(char, hi
, lo
);
1409 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0],
1411 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0],
1416 case CODEC_ID_ADPCM_CT
:
1417 while (src
< buf
+ buf_size
) {
1419 *samples
++ = adpcm_ct_expand_nibble(&c
->status
[0],
1421 *samples
++ = adpcm_ct_expand_nibble(&c
->status
[1],
1424 *samples
++ = adpcm_ct_expand_nibble(&c
->status
[0],
1426 *samples
++ = adpcm_ct_expand_nibble(&c
->status
[0],
1432 case CODEC_ID_ADPCM_SBPRO_4
:
1433 case CODEC_ID_ADPCM_SBPRO_3
:
1434 case CODEC_ID_ADPCM_SBPRO_2
:
1435 if (!c
->status
[0].step_index
) {
1436 /* the first byte is a raw sample */
1437 *samples
++ = 128 * (*src
++ - 0x80);
1439 *samples
++ = 128 * (*src
++ - 0x80);
1440 c
->status
[0].step_index
= 1;
1442 if (avctx
->codec
->id
== CODEC_ID_ADPCM_SBPRO_4
) {
1443 while (src
< buf
+ buf_size
) {
1444 *samples
++ = adpcm_sbpro_expand_nibble(&c
->status
[0],
1446 *samples
++ = adpcm_sbpro_expand_nibble(&c
->status
[st
],
1447 src
[0] & 0x0F, 4, 0);
1450 } else if (avctx
->codec
->id
== CODEC_ID_ADPCM_SBPRO_3
) {
1451 while (src
< buf
+ buf_size
&& samples
+ 2 < samples_end
) {
1452 *samples
++ = adpcm_sbpro_expand_nibble(&c
->status
[0],
1453 src
[0] >> 5 , 3, 0);
1454 *samples
++ = adpcm_sbpro_expand_nibble(&c
->status
[0],
1455 (src
[0] >> 2) & 0x07, 3, 0);
1456 *samples
++ = adpcm_sbpro_expand_nibble(&c
->status
[0],
1457 src
[0] & 0x03, 2, 0);
1461 while (src
< buf
+ buf_size
&& samples
+ 3 < samples_end
) {
1462 *samples
++ = adpcm_sbpro_expand_nibble(&c
->status
[0],
1463 src
[0] >> 6 , 2, 2);
1464 *samples
++ = adpcm_sbpro_expand_nibble(&c
->status
[st
],
1465 (src
[0] >> 4) & 0x03, 2, 2);
1466 *samples
++ = adpcm_sbpro_expand_nibble(&c
->status
[0],
1467 (src
[0] >> 2) & 0x03, 2, 2);
1468 *samples
++ = adpcm_sbpro_expand_nibble(&c
->status
[st
],
1469 src
[0] & 0x03, 2, 2);
1474 case CODEC_ID_ADPCM_SWF
:
1478 int k0
, signmask
, nb_bits
, count
;
1479 int size
= buf_size
*8;
1481 init_get_bits(&gb
, buf
, size
);
1483 //read bits & initial values
1484 nb_bits
= get_bits(&gb
, 2)+2;
1485 //av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", nb_bits);
1486 table
= swf_index_tables
[nb_bits
-2];
1487 k0
= 1 << (nb_bits
-2);
1488 signmask
= 1 << (nb_bits
-1);
1490 while (get_bits_count(&gb
) <= size
- 22*avctx
->channels
) {
1491 for (i
= 0; i
< avctx
->channels
; i
++) {
1492 *samples
++ = c
->status
[i
].predictor
= get_sbits(&gb
, 16);
1493 c
->status
[i
].step_index
= get_bits(&gb
, 6);
1496 for (count
= 0; get_bits_count(&gb
) <= size
- nb_bits
*avctx
->channels
&& count
< 4095; count
++) {
1499 for (i
= 0; i
< avctx
->channels
; i
++) {
1500 // similar to IMA adpcm
1501 int delta
= get_bits(&gb
, nb_bits
);
1502 int step
= step_table
[c
->status
[i
].step_index
];
1503 long vpdiff
= 0; // vpdiff = (delta+0.5)*step/4
1514 if (delta
& signmask
)
1515 c
->status
[i
].predictor
-= vpdiff
;
1517 c
->status
[i
].predictor
+= vpdiff
;
1519 c
->status
[i
].step_index
+= table
[delta
& (~signmask
)];
1521 c
->status
[i
].step_index
= av_clip(c
->status
[i
].step_index
, 0, 88);
1522 c
->status
[i
].predictor
= av_clip_int16(c
->status
[i
].predictor
);
1524 *samples
++ = c
->status
[i
].predictor
;
1525 if (samples
>= samples_end
) {
1526 av_log(avctx
, AV_LOG_ERROR
, "allocated output buffer is too small\n");
1535 case CODEC_ID_ADPCM_YAMAHA
:
1536 while (src
< buf
+ buf_size
) {
1538 *samples
++ = adpcm_yamaha_expand_nibble(&c
->status
[0],
1540 *samples
++ = adpcm_yamaha_expand_nibble(&c
->status
[1],
1543 *samples
++ = adpcm_yamaha_expand_nibble(&c
->status
[0],
1545 *samples
++ = adpcm_yamaha_expand_nibble(&c
->status
[0],
1551 case CODEC_ID_ADPCM_THP
:
1554 unsigned int samplecnt
;
1558 if (buf_size
< 80) {
1559 av_log(avctx
, AV_LOG_ERROR
, "frame too small\n");
1564 samplecnt
= bytestream_get_be32(&src
);
1566 for (i
= 0; i
< 32; i
++)
1567 table
[0][i
] = (int16_t)bytestream_get_be16(&src
);
1569 /* Initialize the previous sample. */
1570 for (i
= 0; i
< 4; i
++)
1571 prev
[0][i
] = (int16_t)bytestream_get_be16(&src
);
1573 if (samplecnt
>= (samples_end
- samples
) / (st
+ 1)) {
1574 av_log(avctx
, AV_LOG_ERROR
, "allocated output buffer is too small\n");
1578 for (ch
= 0; ch
<= st
; ch
++) {
1579 samples
= (unsigned short *) data
+ ch
;
1581 /* Read in every sample for this channel. */
1582 for (i
= 0; i
< samplecnt
/ 14; i
++) {
1583 int index
= (*src
>> 4) & 7;
1584 unsigned int exp
= 28 - (*src
++ & 15);
1585 int factor1
= table
[ch
][index
* 2];
1586 int factor2
= table
[ch
][index
* 2 + 1];
1588 /* Decode 14 samples. */
1589 for (n
= 0; n
< 14; n
++) {
1591 if(n
&1) sampledat
= *src
++ <<28;
1592 else sampledat
= (*src
&0xF0)<<24;
1594 sampledat
= ((prev
[ch
][0]*factor1
1595 + prev
[ch
][1]*factor2
) >> 11) + (sampledat
>>exp
);
1596 *samples
= av_clip_int16(sampledat
);
1597 prev
[ch
][1] = prev
[ch
][0];
1598 prev
[ch
][0] = *samples
++;
1600 /* In case of stereo, skip one sample, this sample
1601 is for the other channel. */
1607 /* In the previous loop, in case stereo is used, samples is
1608 increased exactly one time too often. */
1616 *data_size
= (uint8_t *)samples
- (uint8_t *)data
;
1623 #define ADPCM_ENCODER(id,name,long_name_) \
1624 AVCodec name ## _encoder = { \
1628 sizeof(ADPCMContext), \
1629 adpcm_encode_init, \
1630 adpcm_encode_frame, \
1631 adpcm_encode_close, \
1633 .sample_fmts = (enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE}, \
1634 .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1637 #define ADPCM_ENCODER(id,name,long_name_)
1641 #define ADPCM_DECODER(id,name,long_name_) \
1642 AVCodec name ## _decoder = { \
1646 sizeof(ADPCMContext), \
1647 adpcm_decode_init, \
1650 adpcm_decode_frame, \
1651 .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1654 #define ADPCM_DECODER(id,name,long_name_)
1657 #define ADPCM_CODEC(id,name,long_name_) \
1658 ADPCM_ENCODER(id,name,long_name_) ADPCM_DECODER(id,name,long_name_)
1660 /* Note: Do not forget to add new entries to the Makefile as well. */
1661 ADPCM_DECODER(CODEC_ID_ADPCM_4XM
, adpcm_4xm
, "ADPCM 4X Movie");
1662 ADPCM_DECODER(CODEC_ID_ADPCM_CT
, adpcm_ct
, "ADPCM Creative Technology");
1663 ADPCM_DECODER(CODEC_ID_ADPCM_EA
, adpcm_ea
, "ADPCM Electronic Arts");
1664 ADPCM_DECODER(CODEC_ID_ADPCM_EA_MAXIS_XA
, adpcm_ea_maxis_xa
, "ADPCM Electronic Arts Maxis CDROM XA");
1665 ADPCM_DECODER(CODEC_ID_ADPCM_EA_R1
, adpcm_ea_r1
, "ADPCM Electronic Arts R1");
1666 ADPCM_DECODER(CODEC_ID_ADPCM_EA_R2
, adpcm_ea_r2
, "ADPCM Electronic Arts R2");
1667 ADPCM_DECODER(CODEC_ID_ADPCM_EA_R3
, adpcm_ea_r3
, "ADPCM Electronic Arts R3");
1668 ADPCM_DECODER(CODEC_ID_ADPCM_EA_XAS
, adpcm_ea_xas
, "ADPCM Electronic Arts XAS");
1669 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_AMV
, adpcm_ima_amv
, "ADPCM IMA AMV");
1670 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK3
, adpcm_ima_dk3
, "ADPCM IMA Duck DK3");
1671 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK4
, adpcm_ima_dk4
, "ADPCM IMA Duck DK4");
1672 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_EACS
, adpcm_ima_ea_eacs
, "ADPCM IMA Electronic Arts EACS");
1673 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_SEAD
, adpcm_ima_ea_sead
, "ADPCM IMA Electronic Arts SEAD");
1674 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_ISS
, adpcm_ima_iss
, "ADPCM IMA Funcom ISS");
1675 ADPCM_CODEC (CODEC_ID_ADPCM_IMA_QT
, adpcm_ima_qt
, "ADPCM IMA QuickTime");
1676 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_SMJPEG
, adpcm_ima_smjpeg
, "ADPCM IMA Loki SDL MJPEG");
1677 ADPCM_CODEC (CODEC_ID_ADPCM_IMA_WAV
, adpcm_ima_wav
, "ADPCM IMA WAV");
1678 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WS
, adpcm_ima_ws
, "ADPCM IMA Westwood");
1679 ADPCM_CODEC (CODEC_ID_ADPCM_MS
, adpcm_ms
, "ADPCM Microsoft");
1680 ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_2
, adpcm_sbpro_2
, "ADPCM Sound Blaster Pro 2-bit");
1681 ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_3
, adpcm_sbpro_3
, "ADPCM Sound Blaster Pro 2.6-bit");
1682 ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_4
, adpcm_sbpro_4
, "ADPCM Sound Blaster Pro 4-bit");
1683 ADPCM_CODEC (CODEC_ID_ADPCM_SWF
, adpcm_swf
, "ADPCM Shockwave Flash");
1684 ADPCM_DECODER(CODEC_ID_ADPCM_THP
, adpcm_thp
, "ADPCM Nintendo Gamecube THP");
1685 ADPCM_DECODER(CODEC_ID_ADPCM_XA
, adpcm_xa
, "ADPCM CDROM XA");
1686 ADPCM_CODEC (CODEC_ID_ADPCM_YAMAHA
, adpcm_yamaha
, "ADPCM Yamaha");