ac3dec: revert r20089. The change was just wrong. 10l for me.
[ffmpeg-lucabe.git] / libavcodec / ac3dec.c
blobfa487599e428d502000eae5894acbf6d24a2cbe6
1 /*
2 * AC-3 Audio Decoder
3 * This code was developed as part of Google Summer of Code 2006.
4 * E-AC-3 support was added as part of Google Summer of Code 2007.
6 * Copyright (c) 2006 Kartikey Mahendra BHATT (bhattkm at gmail dot com)
7 * Copyright (c) 2007-2008 Bartlomiej Wolowiec <bartek.wolowiec@gmail.com>
8 * Copyright (c) 2007 Justin Ruggles <justin.ruggles@gmail.com>
10 * This file is part of FFmpeg.
12 * FFmpeg is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU Lesser General Public
14 * License as published by the Free Software Foundation; either
15 * version 2.1 of the License, or (at your option) any later version.
17 * FFmpeg is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * Lesser General Public License for more details.
22 * You should have received a copy of the GNU Lesser General Public
23 * License along with FFmpeg; if not, write to the Free Software
24 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
27 #include <stdio.h>
28 #include <stddef.h>
29 #include <math.h>
30 #include <string.h>
32 #include "libavutil/crc.h"
33 #include "internal.h"
34 #include "aac_ac3_parser.h"
35 #include "ac3_parser.h"
36 #include "ac3dec.h"
37 #include "ac3dec_data.h"
39 /** Large enough for maximum possible frame size when the specification limit is ignored */
40 #define AC3_FRAME_BUFFER_SIZE 32768
42 /**
43 * table for ungrouping 3 values in 7 bits.
44 * used for exponents and bap=2 mantissas
46 static uint8_t ungroup_3_in_7_bits_tab[128][3];
49 /** tables for ungrouping mantissas */
50 static int b1_mantissas[32][3];
51 static int b2_mantissas[128][3];
52 static int b3_mantissas[8];
53 static int b4_mantissas[128][2];
54 static int b5_mantissas[16];
56 /**
57 * Quantization table: levels for symmetric. bits for asymmetric.
58 * reference: Table 7.18 Mapping of bap to Quantizer
60 static const uint8_t quantization_tab[16] = {
61 0, 3, 5, 7, 11, 15,
62 5, 6, 7, 8, 9, 10, 11, 12, 14, 16
65 /** dynamic range table. converts codes to scale factors. */
66 static float dynamic_range_tab[256];
68 /** Adjustments in dB gain */
69 #define LEVEL_PLUS_3DB 1.4142135623730950
70 #define LEVEL_PLUS_1POINT5DB 1.1892071150027209
71 #define LEVEL_MINUS_1POINT5DB 0.8408964152537145
72 #define LEVEL_MINUS_3DB 0.7071067811865476
73 #define LEVEL_MINUS_4POINT5DB 0.5946035575013605
74 #define LEVEL_MINUS_6DB 0.5000000000000000
75 #define LEVEL_MINUS_9DB 0.3535533905932738
76 #define LEVEL_ZERO 0.0000000000000000
77 #define LEVEL_ONE 1.0000000000000000
79 static const float gain_levels[9] = {
80 LEVEL_PLUS_3DB,
81 LEVEL_PLUS_1POINT5DB,
82 LEVEL_ONE,
83 LEVEL_MINUS_1POINT5DB,
84 LEVEL_MINUS_3DB,
85 LEVEL_MINUS_4POINT5DB,
86 LEVEL_MINUS_6DB,
87 LEVEL_ZERO,
88 LEVEL_MINUS_9DB
91 /**
92 * Table for center mix levels
93 * reference: Section 5.4.2.4 cmixlev
95 static const uint8_t center_levels[4] = { 4, 5, 6, 5 };
97 /**
98 * Table for surround mix levels
99 * reference: Section 5.4.2.5 surmixlev
101 static const uint8_t surround_levels[4] = { 4, 6, 7, 6 };
104 * Table for default stereo downmixing coefficients
105 * reference: Section 7.8.2 Downmixing Into Two Channels
107 static const uint8_t ac3_default_coeffs[8][5][2] = {
108 { { 2, 7 }, { 7, 2 }, },
109 { { 4, 4 }, },
110 { { 2, 7 }, { 7, 2 }, },
111 { { 2, 7 }, { 5, 5 }, { 7, 2 }, },
112 { { 2, 7 }, { 7, 2 }, { 6, 6 }, },
113 { { 2, 7 }, { 5, 5 }, { 7, 2 }, { 8, 8 }, },
114 { { 2, 7 }, { 7, 2 }, { 6, 7 }, { 7, 6 }, },
115 { { 2, 7 }, { 5, 5 }, { 7, 2 }, { 6, 7 }, { 7, 6 }, },
119 * Symmetrical Dequantization
120 * reference: Section 7.3.3 Expansion of Mantissas for Symmetrical Quantization
121 * Tables 7.19 to 7.23
123 static inline int
124 symmetric_dequant(int code, int levels)
126 return ((code - (levels >> 1)) << 24) / levels;
130 * Initialize tables at runtime.
132 static av_cold void ac3_tables_init(void)
134 int i;
136 /* generate table for ungrouping 3 values in 7 bits
137 reference: Section 7.1.3 Exponent Decoding */
138 for(i=0; i<128; i++) {
139 ungroup_3_in_7_bits_tab[i][0] = i / 25;
140 ungroup_3_in_7_bits_tab[i][1] = (i % 25) / 5;
141 ungroup_3_in_7_bits_tab[i][2] = (i % 25) % 5;
144 /* generate grouped mantissa tables
145 reference: Section 7.3.5 Ungrouping of Mantissas */
146 for(i=0; i<32; i++) {
147 /* bap=1 mantissas */
148 b1_mantissas[i][0] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][0], 3);
149 b1_mantissas[i][1] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][1], 3);
150 b1_mantissas[i][2] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][2], 3);
152 for(i=0; i<128; i++) {
153 /* bap=2 mantissas */
154 b2_mantissas[i][0] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][0], 5);
155 b2_mantissas[i][1] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][1], 5);
156 b2_mantissas[i][2] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][2], 5);
158 /* bap=4 mantissas */
159 b4_mantissas[i][0] = symmetric_dequant(i / 11, 11);
160 b4_mantissas[i][1] = symmetric_dequant(i % 11, 11);
162 /* generate ungrouped mantissa tables
163 reference: Tables 7.21 and 7.23 */
164 for(i=0; i<7; i++) {
165 /* bap=3 mantissas */
166 b3_mantissas[i] = symmetric_dequant(i, 7);
168 for(i=0; i<15; i++) {
169 /* bap=5 mantissas */
170 b5_mantissas[i] = symmetric_dequant(i, 15);
173 /* generate dynamic range table
174 reference: Section 7.7.1 Dynamic Range Control */
175 for(i=0; i<256; i++) {
176 int v = (i >> 5) - ((i >> 7) << 3) - 5;
177 dynamic_range_tab[i] = powf(2.0f, v) * ((i & 0x1F) | 0x20);
183 * AVCodec initialization
185 static av_cold int ac3_decode_init(AVCodecContext *avctx)
187 AC3DecodeContext *s = avctx->priv_data;
188 s->avctx = avctx;
190 ac3_common_init();
191 ac3_tables_init();
192 ff_mdct_init(&s->imdct_256, 8, 1, 1.0);
193 ff_mdct_init(&s->imdct_512, 9, 1, 1.0);
194 ff_kbd_window_init(s->window, 5.0, 256);
195 dsputil_init(&s->dsp, avctx);
196 av_lfg_init(&s->dith_state, 0);
198 /* set bias values for float to int16 conversion */
199 if(s->dsp.float_to_int16_interleave == ff_float_to_int16_interleave_c) {
200 s->add_bias = 385.0f;
201 s->mul_bias = 1.0f;
202 } else {
203 s->add_bias = 0.0f;
204 s->mul_bias = 32767.0f;
207 /* allow downmixing to stereo or mono */
208 if (avctx->channels > 0 && avctx->request_channels > 0 &&
209 avctx->request_channels < avctx->channels &&
210 avctx->request_channels <= 2) {
211 avctx->channels = avctx->request_channels;
213 s->downmixed = 1;
215 /* allocate context input buffer */
216 if (avctx->error_recognition >= FF_ER_CAREFUL) {
217 s->input_buffer = av_mallocz(AC3_FRAME_BUFFER_SIZE + FF_INPUT_BUFFER_PADDING_SIZE);
218 if (!s->input_buffer)
219 return AVERROR_NOMEM;
222 avctx->sample_fmt = SAMPLE_FMT_S16;
223 return 0;
227 * Parse the 'sync info' and 'bit stream info' from the AC-3 bitstream.
228 * GetBitContext within AC3DecodeContext must point to
229 * the start of the synchronized AC-3 bitstream.
231 static int ac3_parse_header(AC3DecodeContext *s)
233 GetBitContext *gbc = &s->gbc;
234 int i;
236 /* read the rest of the bsi. read twice for dual mono mode. */
237 i = !(s->channel_mode);
238 do {
239 skip_bits(gbc, 5); // skip dialog normalization
240 if (get_bits1(gbc))
241 skip_bits(gbc, 8); //skip compression
242 if (get_bits1(gbc))
243 skip_bits(gbc, 8); //skip language code
244 if (get_bits1(gbc))
245 skip_bits(gbc, 7); //skip audio production information
246 } while (i--);
248 skip_bits(gbc, 2); //skip copyright bit and original bitstream bit
250 /* skip the timecodes (or extra bitstream information for Alternate Syntax)
251 TODO: read & use the xbsi1 downmix levels */
252 if (get_bits1(gbc))
253 skip_bits(gbc, 14); //skip timecode1 / xbsi1
254 if (get_bits1(gbc))
255 skip_bits(gbc, 14); //skip timecode2 / xbsi2
257 /* skip additional bitstream info */
258 if (get_bits1(gbc)) {
259 i = get_bits(gbc, 6);
260 do {
261 skip_bits(gbc, 8);
262 } while(i--);
265 return 0;
269 * Common function to parse AC-3 or E-AC-3 frame header
271 static int parse_frame_header(AC3DecodeContext *s)
273 AC3HeaderInfo hdr;
274 int err;
276 err = ff_ac3_parse_header(&s->gbc, &hdr);
277 if(err)
278 return err;
280 /* get decoding parameters from header info */
281 s->bit_alloc_params.sr_code = hdr.sr_code;
282 s->channel_mode = hdr.channel_mode;
283 s->channel_layout = hdr.channel_layout;
284 s->lfe_on = hdr.lfe_on;
285 s->bit_alloc_params.sr_shift = hdr.sr_shift;
286 s->sample_rate = hdr.sample_rate;
287 s->bit_rate = hdr.bit_rate;
288 s->channels = hdr.channels;
289 s->fbw_channels = s->channels - s->lfe_on;
290 s->lfe_ch = s->fbw_channels + 1;
291 s->frame_size = hdr.frame_size;
292 s->center_mix_level = hdr.center_mix_level;
293 s->surround_mix_level = hdr.surround_mix_level;
294 s->num_blocks = hdr.num_blocks;
295 s->frame_type = hdr.frame_type;
296 s->substreamid = hdr.substreamid;
298 if(s->lfe_on) {
299 s->start_freq[s->lfe_ch] = 0;
300 s->end_freq[s->lfe_ch] = 7;
301 s->num_exp_groups[s->lfe_ch] = 2;
302 s->channel_in_cpl[s->lfe_ch] = 0;
305 if (hdr.bitstream_id <= 10) {
306 s->eac3 = 0;
307 s->snr_offset_strategy = 2;
308 s->block_switch_syntax = 1;
309 s->dither_flag_syntax = 1;
310 s->bit_allocation_syntax = 1;
311 s->fast_gain_syntax = 0;
312 s->first_cpl_leak = 0;
313 s->dba_syntax = 1;
314 s->skip_syntax = 1;
315 memset(s->channel_uses_aht, 0, sizeof(s->channel_uses_aht));
316 return ac3_parse_header(s);
317 } else if (CONFIG_EAC3_DECODER) {
318 s->eac3 = 1;
319 return ff_eac3_parse_header(s);
320 } else {
321 av_log(s->avctx, AV_LOG_ERROR, "E-AC-3 support not compiled in\n");
322 return -1;
327 * Set stereo downmixing coefficients based on frame header info.
328 * reference: Section 7.8.2 Downmixing Into Two Channels
330 static void set_downmix_coeffs(AC3DecodeContext *s)
332 int i;
333 float cmix = gain_levels[center_levels[s->center_mix_level]];
334 float smix = gain_levels[surround_levels[s->surround_mix_level]];
335 float norm0, norm1;
337 for(i=0; i<s->fbw_channels; i++) {
338 s->downmix_coeffs[i][0] = gain_levels[ac3_default_coeffs[s->channel_mode][i][0]];
339 s->downmix_coeffs[i][1] = gain_levels[ac3_default_coeffs[s->channel_mode][i][1]];
341 if(s->channel_mode > 1 && s->channel_mode & 1) {
342 s->downmix_coeffs[1][0] = s->downmix_coeffs[1][1] = cmix;
344 if(s->channel_mode == AC3_CHMODE_2F1R || s->channel_mode == AC3_CHMODE_3F1R) {
345 int nf = s->channel_mode - 2;
346 s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf][1] = smix * LEVEL_MINUS_3DB;
348 if(s->channel_mode == AC3_CHMODE_2F2R || s->channel_mode == AC3_CHMODE_3F2R) {
349 int nf = s->channel_mode - 4;
350 s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf+1][1] = smix;
353 /* renormalize */
354 norm0 = norm1 = 0.0;
355 for(i=0; i<s->fbw_channels; i++) {
356 norm0 += s->downmix_coeffs[i][0];
357 norm1 += s->downmix_coeffs[i][1];
359 norm0 = 1.0f / norm0;
360 norm1 = 1.0f / norm1;
361 for(i=0; i<s->fbw_channels; i++) {
362 s->downmix_coeffs[i][0] *= norm0;
363 s->downmix_coeffs[i][1] *= norm1;
366 if(s->output_mode == AC3_CHMODE_MONO) {
367 for(i=0; i<s->fbw_channels; i++)
368 s->downmix_coeffs[i][0] = (s->downmix_coeffs[i][0] + s->downmix_coeffs[i][1]) * LEVEL_MINUS_3DB;
373 * Decode the grouped exponents according to exponent strategy.
374 * reference: Section 7.1.3 Exponent Decoding
376 static int decode_exponents(GetBitContext *gbc, int exp_strategy, int ngrps,
377 uint8_t absexp, int8_t *dexps)
379 int i, j, grp, group_size;
380 int dexp[256];
381 int expacc, prevexp;
383 /* unpack groups */
384 group_size = exp_strategy + (exp_strategy == EXP_D45);
385 for(grp=0,i=0; grp<ngrps; grp++) {
386 expacc = get_bits(gbc, 7);
387 dexp[i++] = ungroup_3_in_7_bits_tab[expacc][0];
388 dexp[i++] = ungroup_3_in_7_bits_tab[expacc][1];
389 dexp[i++] = ungroup_3_in_7_bits_tab[expacc][2];
392 /* convert to absolute exps and expand groups */
393 prevexp = absexp;
394 for(i=0,j=0; i<ngrps*3; i++) {
395 prevexp += dexp[i] - 2;
396 if (prevexp > 24U)
397 return -1;
398 switch (group_size) {
399 case 4: dexps[j++] = prevexp;
400 dexps[j++] = prevexp;
401 case 2: dexps[j++] = prevexp;
402 case 1: dexps[j++] = prevexp;
405 return 0;
409 * Generate transform coefficients for each coupled channel in the coupling
410 * range using the coupling coefficients and coupling coordinates.
411 * reference: Section 7.4.3 Coupling Coordinate Format
413 static void calc_transform_coeffs_cpl(AC3DecodeContext *s)
415 int bin, band, ch;
417 bin = s->start_freq[CPL_CH];
418 for (band = 0; band < s->num_cpl_bands; band++) {
419 int band_start = bin;
420 int band_end = bin + s->cpl_band_sizes[band];
421 for (ch = 1; ch <= s->fbw_channels; ch++) {
422 if (s->channel_in_cpl[ch]) {
423 int64_t cpl_coord = s->cpl_coords[ch][band];
424 for (bin = band_start; bin < band_end; bin++) {
425 s->fixed_coeffs[ch][bin] = ((int64_t)s->fixed_coeffs[CPL_CH][bin] *
426 cpl_coord) >> 23;
428 if (ch == 2 && s->phase_flags[band]) {
429 for (bin = band_start; bin < band_end; bin++)
430 s->fixed_coeffs[2][bin] = -s->fixed_coeffs[2][bin];
434 bin = band_end;
439 * Grouped mantissas for 3-level 5-level and 11-level quantization
441 typedef struct {
442 int b1_mant[2];
443 int b2_mant[2];
444 int b4_mant;
445 int b1;
446 int b2;
447 int b4;
448 } mant_groups;
451 * Decode the transform coefficients for a particular channel
452 * reference: Section 7.3 Quantization and Decoding of Mantissas
454 static void ac3_decode_transform_coeffs_ch(AC3DecodeContext *s, int ch_index, mant_groups *m)
456 int start_freq = s->start_freq[ch_index];
457 int end_freq = s->end_freq[ch_index];
458 uint8_t *baps = s->bap[ch_index];
459 int8_t *exps = s->dexps[ch_index];
460 int *coeffs = s->fixed_coeffs[ch_index];
461 int dither = (ch_index == CPL_CH) || s->dither_flag[ch_index];
462 GetBitContext *gbc = &s->gbc;
463 int freq;
465 for(freq = start_freq; freq < end_freq; freq++){
466 int bap = baps[freq];
467 int mantissa;
468 switch(bap){
469 case 0:
470 if (dither)
471 mantissa = (av_lfg_get(&s->dith_state) & 0x7FFFFF) - 0x400000;
472 else
473 mantissa = 0;
474 break;
475 case 1:
476 if(m->b1){
477 m->b1--;
478 mantissa = m->b1_mant[m->b1];
480 else{
481 int bits = get_bits(gbc, 5);
482 mantissa = b1_mantissas[bits][0];
483 m->b1_mant[1] = b1_mantissas[bits][1];
484 m->b1_mant[0] = b1_mantissas[bits][2];
485 m->b1 = 2;
487 break;
488 case 2:
489 if(m->b2){
490 m->b2--;
491 mantissa = m->b2_mant[m->b2];
493 else{
494 int bits = get_bits(gbc, 7);
495 mantissa = b2_mantissas[bits][0];
496 m->b2_mant[1] = b2_mantissas[bits][1];
497 m->b2_mant[0] = b2_mantissas[bits][2];
498 m->b2 = 2;
500 break;
501 case 3:
502 mantissa = b3_mantissas[get_bits(gbc, 3)];
503 break;
504 case 4:
505 if(m->b4){
506 m->b4 = 0;
507 mantissa = m->b4_mant;
509 else{
510 int bits = get_bits(gbc, 7);
511 mantissa = b4_mantissas[bits][0];
512 m->b4_mant = b4_mantissas[bits][1];
513 m->b4 = 1;
515 break;
516 case 5:
517 mantissa = b5_mantissas[get_bits(gbc, 4)];
518 break;
519 default: /* 6 to 15 */
520 mantissa = get_bits(gbc, quantization_tab[bap]);
521 /* Shift mantissa and sign-extend it. */
522 mantissa = (mantissa << (32-quantization_tab[bap]))>>8;
523 break;
525 coeffs[freq] = mantissa >> exps[freq];
530 * Remove random dithering from coupling range coefficients with zero-bit
531 * mantissas for coupled channels which do not use dithering.
532 * reference: Section 7.3.4 Dither for Zero Bit Mantissas (bap=0)
534 static void remove_dithering(AC3DecodeContext *s) {
535 int ch, i;
537 for(ch=1; ch<=s->fbw_channels; ch++) {
538 if(!s->dither_flag[ch] && s->channel_in_cpl[ch]) {
539 for(i = s->start_freq[CPL_CH]; i<s->end_freq[CPL_CH]; i++) {
540 if(!s->bap[CPL_CH][i])
541 s->fixed_coeffs[ch][i] = 0;
547 static void decode_transform_coeffs_ch(AC3DecodeContext *s, int blk, int ch,
548 mant_groups *m)
550 if (!s->channel_uses_aht[ch]) {
551 ac3_decode_transform_coeffs_ch(s, ch, m);
552 } else {
553 /* if AHT is used, mantissas for all blocks are encoded in the first
554 block of the frame. */
555 int bin;
556 if (!blk && CONFIG_EAC3_DECODER)
557 ff_eac3_decode_transform_coeffs_aht_ch(s, ch);
558 for (bin = s->start_freq[ch]; bin < s->end_freq[ch]; bin++) {
559 s->fixed_coeffs[ch][bin] = s->pre_mantissa[ch][bin][blk] >> s->dexps[ch][bin];
565 * Decode the transform coefficients.
567 static void decode_transform_coeffs(AC3DecodeContext *s, int blk)
569 int ch, end;
570 int got_cplchan = 0;
571 mant_groups m;
573 m.b1 = m.b2 = m.b4 = 0;
575 for (ch = 1; ch <= s->channels; ch++) {
576 /* transform coefficients for full-bandwidth channel */
577 decode_transform_coeffs_ch(s, blk, ch, &m);
578 /* tranform coefficients for coupling channel come right after the
579 coefficients for the first coupled channel*/
580 if (s->channel_in_cpl[ch]) {
581 if (!got_cplchan) {
582 decode_transform_coeffs_ch(s, blk, CPL_CH, &m);
583 calc_transform_coeffs_cpl(s);
584 got_cplchan = 1;
586 end = s->end_freq[CPL_CH];
587 } else {
588 end = s->end_freq[ch];
591 s->fixed_coeffs[ch][end] = 0;
592 while(++end < 256);
595 /* zero the dithered coefficients for appropriate channels */
596 remove_dithering(s);
600 * Stereo rematrixing.
601 * reference: Section 7.5.4 Rematrixing : Decoding Technique
603 static void do_rematrixing(AC3DecodeContext *s)
605 int bnd, i;
606 int end, bndend;
608 end = FFMIN(s->end_freq[1], s->end_freq[2]);
610 for(bnd=0; bnd<s->num_rematrixing_bands; bnd++) {
611 if(s->rematrixing_flags[bnd]) {
612 bndend = FFMIN(end, ff_ac3_rematrix_band_tab[bnd+1]);
613 for(i=ff_ac3_rematrix_band_tab[bnd]; i<bndend; i++) {
614 int tmp0 = s->fixed_coeffs[1][i];
615 s->fixed_coeffs[1][i] += s->fixed_coeffs[2][i];
616 s->fixed_coeffs[2][i] = tmp0 - s->fixed_coeffs[2][i];
623 * Inverse MDCT Transform.
624 * Convert frequency domain coefficients to time-domain audio samples.
625 * reference: Section 7.9.4 Transformation Equations
627 static inline void do_imdct(AC3DecodeContext *s, int channels)
629 int ch;
630 float add_bias = s->add_bias;
631 if(s->out_channels==1 && channels>1)
632 add_bias *= LEVEL_MINUS_3DB; // compensate for the gain in downmix
634 for (ch=1; ch<=channels; ch++) {
635 if (s->block_switch[ch]) {
636 int i;
637 float *x = s->tmp_output+128;
638 for(i=0; i<128; i++)
639 x[i] = s->transform_coeffs[ch][2*i];
640 ff_imdct_half(&s->imdct_256, s->tmp_output, x);
641 s->dsp.vector_fmul_window(s->output[ch-1], s->delay[ch-1], s->tmp_output, s->window, add_bias, 128);
642 for(i=0; i<128; i++)
643 x[i] = s->transform_coeffs[ch][2*i+1];
644 ff_imdct_half(&s->imdct_256, s->delay[ch-1], x);
645 } else {
646 ff_imdct_half(&s->imdct_512, s->tmp_output, s->transform_coeffs[ch]);
647 s->dsp.vector_fmul_window(s->output[ch-1], s->delay[ch-1], s->tmp_output, s->window, add_bias, 128);
648 memcpy(s->delay[ch-1], s->tmp_output+128, 128*sizeof(float));
654 * Downmix the output to mono or stereo.
656 void ff_ac3_downmix_c(float (*samples)[256], float (*matrix)[2], int out_ch, int in_ch, int len)
658 int i, j;
659 float v0, v1;
660 if(out_ch == 2) {
661 for(i=0; i<len; i++) {
662 v0 = v1 = 0.0f;
663 for(j=0; j<in_ch; j++) {
664 v0 += samples[j][i] * matrix[j][0];
665 v1 += samples[j][i] * matrix[j][1];
667 samples[0][i] = v0;
668 samples[1][i] = v1;
670 } else if(out_ch == 1) {
671 for(i=0; i<len; i++) {
672 v0 = 0.0f;
673 for(j=0; j<in_ch; j++)
674 v0 += samples[j][i] * matrix[j][0];
675 samples[0][i] = v0;
681 * Upmix delay samples from stereo to original channel layout.
683 static void ac3_upmix_delay(AC3DecodeContext *s)
685 int channel_data_size = sizeof(s->delay[0]);
686 switch(s->channel_mode) {
687 case AC3_CHMODE_DUALMONO:
688 case AC3_CHMODE_STEREO:
689 /* upmix mono to stereo */
690 memcpy(s->delay[1], s->delay[0], channel_data_size);
691 break;
692 case AC3_CHMODE_2F2R:
693 memset(s->delay[3], 0, channel_data_size);
694 case AC3_CHMODE_2F1R:
695 memset(s->delay[2], 0, channel_data_size);
696 break;
697 case AC3_CHMODE_3F2R:
698 memset(s->delay[4], 0, channel_data_size);
699 case AC3_CHMODE_3F1R:
700 memset(s->delay[3], 0, channel_data_size);
701 case AC3_CHMODE_3F:
702 memcpy(s->delay[2], s->delay[1], channel_data_size);
703 memset(s->delay[1], 0, channel_data_size);
704 break;
709 * Decode band structure for coupling, spectral extension, or enhanced coupling.
710 * The band structure defines how many subbands are in each band. For each
711 * subband in the range, 1 means it is combined with the previous band, and 0
712 * means that it starts a new band.
714 * @param[in] gbc bit reader context
715 * @param[in] blk block number
716 * @param[in] eac3 flag to indicate E-AC-3
717 * @param[in] ecpl flag to indicate enhanced coupling
718 * @param[in] start_subband subband number for start of range
719 * @param[in] end_subband subband number for end of range
720 * @param[in] default_band_struct default band structure table
721 * @param[out] num_bands number of bands (optionally NULL)
722 * @param[out] band_sizes array containing the number of bins in each band (optionally NULL)
724 static void decode_band_structure(GetBitContext *gbc, int blk, int eac3,
725 int ecpl, int start_subband, int end_subband,
726 const uint8_t *default_band_struct,
727 int *num_bands, uint8_t *band_sizes)
729 int subbnd, bnd, n_subbands, n_bands=0;
730 uint8_t bnd_sz[22];
731 uint8_t coded_band_struct[22];
732 const uint8_t *band_struct;
734 n_subbands = end_subband - start_subband;
736 /* decode band structure from bitstream or use default */
737 if (!eac3 || get_bits1(gbc)) {
738 for (subbnd = 0; subbnd < n_subbands - 1; subbnd++) {
739 coded_band_struct[subbnd] = get_bits1(gbc);
741 band_struct = coded_band_struct;
742 } else if (!blk) {
743 band_struct = &default_band_struct[start_subband+1];
744 } else {
745 /* no change in band structure */
746 return;
749 /* calculate number of bands and band sizes based on band structure.
750 note that the first 4 subbands in enhanced coupling span only 6 bins
751 instead of 12. */
752 if (num_bands || band_sizes ) {
753 n_bands = n_subbands;
754 bnd_sz[0] = ecpl ? 6 : 12;
755 for (bnd = 0, subbnd = 1; subbnd < n_subbands; subbnd++) {
756 int subbnd_size = (ecpl && subbnd < 4) ? 6 : 12;
757 if (band_struct[subbnd-1]) {
758 n_bands--;
759 bnd_sz[bnd] += subbnd_size;
760 } else {
761 bnd_sz[++bnd] = subbnd_size;
766 /* set optional output params */
767 if (num_bands)
768 *num_bands = n_bands;
769 if (band_sizes)
770 memcpy(band_sizes, bnd_sz, n_bands);
774 * Decode a single audio block from the AC-3 bitstream.
776 static int decode_audio_block(AC3DecodeContext *s, int blk)
778 int fbw_channels = s->fbw_channels;
779 int channel_mode = s->channel_mode;
780 int i, bnd, seg, ch;
781 int different_transforms;
782 int downmix_output;
783 int cpl_in_use;
784 GetBitContext *gbc = &s->gbc;
785 uint8_t bit_alloc_stages[AC3_MAX_CHANNELS];
787 memset(bit_alloc_stages, 0, AC3_MAX_CHANNELS);
789 /* block switch flags */
790 different_transforms = 0;
791 if (s->block_switch_syntax) {
792 for (ch = 1; ch <= fbw_channels; ch++) {
793 s->block_switch[ch] = get_bits1(gbc);
794 if(ch > 1 && s->block_switch[ch] != s->block_switch[1])
795 different_transforms = 1;
799 /* dithering flags */
800 if (s->dither_flag_syntax) {
801 for (ch = 1; ch <= fbw_channels; ch++) {
802 s->dither_flag[ch] = get_bits1(gbc);
806 /* dynamic range */
807 i = !(s->channel_mode);
808 do {
809 if(get_bits1(gbc)) {
810 s->dynamic_range[i] = ((dynamic_range_tab[get_bits(gbc, 8)]-1.0) *
811 s->avctx->drc_scale)+1.0;
812 } else if(blk == 0) {
813 s->dynamic_range[i] = 1.0f;
815 } while(i--);
817 /* spectral extension strategy */
818 if (s->eac3 && (!blk || get_bits1(gbc))) {
819 if (get_bits1(gbc)) {
820 av_log_missing_feature(s->avctx, "Spectral extension", 1);
821 return -1;
823 /* TODO: parse spectral extension strategy info */
826 /* TODO: spectral extension coordinates */
828 /* coupling strategy */
829 if (s->eac3 ? s->cpl_strategy_exists[blk] : get_bits1(gbc)) {
830 memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
831 if (!s->eac3)
832 s->cpl_in_use[blk] = get_bits1(gbc);
833 if (s->cpl_in_use[blk]) {
834 /* coupling in use */
835 int cpl_start_subband, cpl_end_subband;
837 if (channel_mode < AC3_CHMODE_STEREO) {
838 av_log(s->avctx, AV_LOG_ERROR, "coupling not allowed in mono or dual-mono\n");
839 return -1;
842 /* check for enhanced coupling */
843 if (s->eac3 && get_bits1(gbc)) {
844 /* TODO: parse enhanced coupling strategy info */
845 av_log_missing_feature(s->avctx, "Enhanced coupling", 1);
846 return -1;
849 /* determine which channels are coupled */
850 if (s->eac3 && s->channel_mode == AC3_CHMODE_STEREO) {
851 s->channel_in_cpl[1] = 1;
852 s->channel_in_cpl[2] = 1;
853 } else {
854 for (ch = 1; ch <= fbw_channels; ch++)
855 s->channel_in_cpl[ch] = get_bits1(gbc);
858 /* phase flags in use */
859 if (channel_mode == AC3_CHMODE_STEREO)
860 s->phase_flags_in_use = get_bits1(gbc);
862 /* coupling frequency range */
863 /* TODO: modify coupling end freq if spectral extension is used */
864 cpl_start_subband = get_bits(gbc, 4);
865 cpl_end_subband = get_bits(gbc, 4) + 3;
866 if (cpl_start_subband >= cpl_end_subband) {
867 av_log(s->avctx, AV_LOG_ERROR, "invalid coupling range (%d >= %d)\n",
868 cpl_start_subband, cpl_end_subband);
869 return -1;
871 s->start_freq[CPL_CH] = cpl_start_subband * 12 + 37;
872 s->end_freq[CPL_CH] = cpl_end_subband * 12 + 37;
874 decode_band_structure(gbc, blk, s->eac3, 0, cpl_start_subband,
875 cpl_end_subband,
876 ff_eac3_default_cpl_band_struct,
877 &s->num_cpl_bands, s->cpl_band_sizes);
878 } else {
879 /* coupling not in use */
880 for (ch = 1; ch <= fbw_channels; ch++) {
881 s->channel_in_cpl[ch] = 0;
882 s->first_cpl_coords[ch] = 1;
884 s->first_cpl_leak = s->eac3;
885 s->phase_flags_in_use = 0;
887 } else if (!s->eac3) {
888 if(!blk) {
889 av_log(s->avctx, AV_LOG_ERROR, "new coupling strategy must be present in block 0\n");
890 return -1;
891 } else {
892 s->cpl_in_use[blk] = s->cpl_in_use[blk-1];
895 cpl_in_use = s->cpl_in_use[blk];
897 /* coupling coordinates */
898 if (cpl_in_use) {
899 int cpl_coords_exist = 0;
901 for (ch = 1; ch <= fbw_channels; ch++) {
902 if (s->channel_in_cpl[ch]) {
903 if ((s->eac3 && s->first_cpl_coords[ch]) || get_bits1(gbc)) {
904 int master_cpl_coord, cpl_coord_exp, cpl_coord_mant;
905 s->first_cpl_coords[ch] = 0;
906 cpl_coords_exist = 1;
907 master_cpl_coord = 3 * get_bits(gbc, 2);
908 for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
909 cpl_coord_exp = get_bits(gbc, 4);
910 cpl_coord_mant = get_bits(gbc, 4);
911 if (cpl_coord_exp == 15)
912 s->cpl_coords[ch][bnd] = cpl_coord_mant << 22;
913 else
914 s->cpl_coords[ch][bnd] = (cpl_coord_mant + 16) << 21;
915 s->cpl_coords[ch][bnd] >>= (cpl_coord_exp + master_cpl_coord);
917 } else if (!blk) {
918 av_log(s->avctx, AV_LOG_ERROR, "new coupling coordinates must be present in block 0\n");
919 return -1;
921 } else {
922 /* channel not in coupling */
923 s->first_cpl_coords[ch] = 1;
926 /* phase flags */
927 if (channel_mode == AC3_CHMODE_STEREO && cpl_coords_exist) {
928 for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
929 s->phase_flags[bnd] = s->phase_flags_in_use? get_bits1(gbc) : 0;
934 /* stereo rematrixing strategy and band structure */
935 if (channel_mode == AC3_CHMODE_STEREO) {
936 if ((s->eac3 && !blk) || get_bits1(gbc)) {
937 s->num_rematrixing_bands = 4;
938 if(cpl_in_use && s->start_freq[CPL_CH] <= 61)
939 s->num_rematrixing_bands -= 1 + (s->start_freq[CPL_CH] == 37);
940 for(bnd=0; bnd<s->num_rematrixing_bands; bnd++)
941 s->rematrixing_flags[bnd] = get_bits1(gbc);
942 } else if (!blk) {
943 av_log(s->avctx, AV_LOG_WARNING, "Warning: new rematrixing strategy not present in block 0\n");
944 s->num_rematrixing_bands = 0;
948 /* exponent strategies for each channel */
949 for (ch = !cpl_in_use; ch <= s->channels; ch++) {
950 if (!s->eac3)
951 s->exp_strategy[blk][ch] = get_bits(gbc, 2 - (ch == s->lfe_ch));
952 if(s->exp_strategy[blk][ch] != EXP_REUSE)
953 bit_alloc_stages[ch] = 3;
956 /* channel bandwidth */
957 for (ch = 1; ch <= fbw_channels; ch++) {
958 s->start_freq[ch] = 0;
959 if (s->exp_strategy[blk][ch] != EXP_REUSE) {
960 int group_size;
961 int prev = s->end_freq[ch];
962 if (s->channel_in_cpl[ch])
963 s->end_freq[ch] = s->start_freq[CPL_CH];
964 else {
965 int bandwidth_code = get_bits(gbc, 6);
966 if (bandwidth_code > 60) {
967 av_log(s->avctx, AV_LOG_ERROR, "bandwidth code = %d > 60\n", bandwidth_code);
968 return -1;
970 s->end_freq[ch] = bandwidth_code * 3 + 73;
972 group_size = 3 << (s->exp_strategy[blk][ch] - 1);
973 s->num_exp_groups[ch] = (s->end_freq[ch]+group_size-4) / group_size;
974 if(blk > 0 && s->end_freq[ch] != prev)
975 memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
978 if (cpl_in_use && s->exp_strategy[blk][CPL_CH] != EXP_REUSE) {
979 s->num_exp_groups[CPL_CH] = (s->end_freq[CPL_CH] - s->start_freq[CPL_CH]) /
980 (3 << (s->exp_strategy[blk][CPL_CH] - 1));
983 /* decode exponents for each channel */
984 for (ch = !cpl_in_use; ch <= s->channels; ch++) {
985 if (s->exp_strategy[blk][ch] != EXP_REUSE) {
986 s->dexps[ch][0] = get_bits(gbc, 4) << !ch;
987 if (decode_exponents(gbc, s->exp_strategy[blk][ch],
988 s->num_exp_groups[ch], s->dexps[ch][0],
989 &s->dexps[ch][s->start_freq[ch]+!!ch])) {
990 av_log(s->avctx, AV_LOG_ERROR, "exponent out-of-range\n");
991 return -1;
993 if(ch != CPL_CH && ch != s->lfe_ch)
994 skip_bits(gbc, 2); /* skip gainrng */
998 /* bit allocation information */
999 if (s->bit_allocation_syntax) {
1000 if (get_bits1(gbc)) {
1001 s->bit_alloc_params.slow_decay = ff_ac3_slow_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
1002 s->bit_alloc_params.fast_decay = ff_ac3_fast_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
1003 s->bit_alloc_params.slow_gain = ff_ac3_slow_gain_tab[get_bits(gbc, 2)];
1004 s->bit_alloc_params.db_per_bit = ff_ac3_db_per_bit_tab[get_bits(gbc, 2)];
1005 s->bit_alloc_params.floor = ff_ac3_floor_tab[get_bits(gbc, 3)];
1006 for(ch=!cpl_in_use; ch<=s->channels; ch++)
1007 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
1008 } else if (!blk) {
1009 av_log(s->avctx, AV_LOG_ERROR, "new bit allocation info must be present in block 0\n");
1010 return -1;
1014 /* signal-to-noise ratio offsets and fast gains (signal-to-mask ratios) */
1015 if(!s->eac3 || !blk){
1016 if(s->snr_offset_strategy && get_bits1(gbc)) {
1017 int snr = 0;
1018 int csnr;
1019 csnr = (get_bits(gbc, 6) - 15) << 4;
1020 for (i = ch = !cpl_in_use; ch <= s->channels; ch++) {
1021 /* snr offset */
1022 if (ch == i || s->snr_offset_strategy == 2)
1023 snr = (csnr + get_bits(gbc, 4)) << 2;
1024 /* run at least last bit allocation stage if snr offset changes */
1025 if(blk && s->snr_offset[ch] != snr) {
1026 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 1);
1028 s->snr_offset[ch] = snr;
1030 /* fast gain (normal AC-3 only) */
1031 if (!s->eac3) {
1032 int prev = s->fast_gain[ch];
1033 s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
1034 /* run last 2 bit allocation stages if fast gain changes */
1035 if(blk && prev != s->fast_gain[ch])
1036 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
1039 } else if (!s->eac3 && !blk) {
1040 av_log(s->avctx, AV_LOG_ERROR, "new snr offsets must be present in block 0\n");
1041 return -1;
1045 /* fast gain (E-AC-3 only) */
1046 if (s->fast_gain_syntax && get_bits1(gbc)) {
1047 for (ch = !cpl_in_use; ch <= s->channels; ch++) {
1048 int prev = s->fast_gain[ch];
1049 s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
1050 /* run last 2 bit allocation stages if fast gain changes */
1051 if(blk && prev != s->fast_gain[ch])
1052 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
1054 } else if (s->eac3 && !blk) {
1055 for (ch = !cpl_in_use; ch <= s->channels; ch++)
1056 s->fast_gain[ch] = ff_ac3_fast_gain_tab[4];
1059 /* E-AC-3 to AC-3 converter SNR offset */
1060 if (s->frame_type == EAC3_FRAME_TYPE_INDEPENDENT && get_bits1(gbc)) {
1061 skip_bits(gbc, 10); // skip converter snr offset
1064 /* coupling leak information */
1065 if (cpl_in_use) {
1066 if (s->first_cpl_leak || get_bits1(gbc)) {
1067 int fl = get_bits(gbc, 3);
1068 int sl = get_bits(gbc, 3);
1069 /* run last 2 bit allocation stages for coupling channel if
1070 coupling leak changes */
1071 if(blk && (fl != s->bit_alloc_params.cpl_fast_leak ||
1072 sl != s->bit_alloc_params.cpl_slow_leak)) {
1073 bit_alloc_stages[CPL_CH] = FFMAX(bit_alloc_stages[CPL_CH], 2);
1075 s->bit_alloc_params.cpl_fast_leak = fl;
1076 s->bit_alloc_params.cpl_slow_leak = sl;
1077 } else if (!s->eac3 && !blk) {
1078 av_log(s->avctx, AV_LOG_ERROR, "new coupling leak info must be present in block 0\n");
1079 return -1;
1081 s->first_cpl_leak = 0;
1084 /* delta bit allocation information */
1085 if (s->dba_syntax && get_bits1(gbc)) {
1086 /* delta bit allocation exists (strategy) */
1087 for (ch = !cpl_in_use; ch <= fbw_channels; ch++) {
1088 s->dba_mode[ch] = get_bits(gbc, 2);
1089 if (s->dba_mode[ch] == DBA_RESERVED) {
1090 av_log(s->avctx, AV_LOG_ERROR, "delta bit allocation strategy reserved\n");
1091 return -1;
1093 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
1095 /* channel delta offset, len and bit allocation */
1096 for (ch = !cpl_in_use; ch <= fbw_channels; ch++) {
1097 if (s->dba_mode[ch] == DBA_NEW) {
1098 s->dba_nsegs[ch] = get_bits(gbc, 3);
1099 for (seg = 0; seg <= s->dba_nsegs[ch]; seg++) {
1100 s->dba_offsets[ch][seg] = get_bits(gbc, 5);
1101 s->dba_lengths[ch][seg] = get_bits(gbc, 4);
1102 s->dba_values[ch][seg] = get_bits(gbc, 3);
1104 /* run last 2 bit allocation stages if new dba values */
1105 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
1108 } else if(blk == 0) {
1109 for(ch=0; ch<=s->channels; ch++) {
1110 s->dba_mode[ch] = DBA_NONE;
1114 /* Bit allocation */
1115 for(ch=!cpl_in_use; ch<=s->channels; ch++) {
1116 if(bit_alloc_stages[ch] > 2) {
1117 /* Exponent mapping into PSD and PSD integration */
1118 ff_ac3_bit_alloc_calc_psd(s->dexps[ch],
1119 s->start_freq[ch], s->end_freq[ch],
1120 s->psd[ch], s->band_psd[ch]);
1122 if(bit_alloc_stages[ch] > 1) {
1123 /* Compute excitation function, Compute masking curve, and
1124 Apply delta bit allocation */
1125 if (ff_ac3_bit_alloc_calc_mask(&s->bit_alloc_params, s->band_psd[ch],
1126 s->start_freq[ch], s->end_freq[ch],
1127 s->fast_gain[ch], (ch == s->lfe_ch),
1128 s->dba_mode[ch], s->dba_nsegs[ch],
1129 s->dba_offsets[ch], s->dba_lengths[ch],
1130 s->dba_values[ch], s->mask[ch])) {
1131 av_log(s->avctx, AV_LOG_ERROR, "error in bit allocation\n");
1132 return -1;
1135 if(bit_alloc_stages[ch] > 0) {
1136 /* Compute bit allocation */
1137 const uint8_t *bap_tab = s->channel_uses_aht[ch] ?
1138 ff_eac3_hebap_tab : ff_ac3_bap_tab;
1139 ff_ac3_bit_alloc_calc_bap(s->mask[ch], s->psd[ch],
1140 s->start_freq[ch], s->end_freq[ch],
1141 s->snr_offset[ch],
1142 s->bit_alloc_params.floor,
1143 bap_tab, s->bap[ch]);
1147 /* unused dummy data */
1148 if (s->skip_syntax && get_bits1(gbc)) {
1149 int skipl = get_bits(gbc, 9);
1150 while(skipl--)
1151 skip_bits(gbc, 8);
1154 /* unpack the transform coefficients
1155 this also uncouples channels if coupling is in use. */
1156 decode_transform_coeffs(s, blk);
1158 /* TODO: generate enhanced coupling coordinates and uncouple */
1160 /* TODO: apply spectral extension */
1162 /* recover coefficients if rematrixing is in use */
1163 if(s->channel_mode == AC3_CHMODE_STEREO)
1164 do_rematrixing(s);
1166 /* apply scaling to coefficients (headroom, dynrng) */
1167 for(ch=1; ch<=s->channels; ch++) {
1168 float gain = s->mul_bias / 4194304.0f;
1169 if(s->channel_mode == AC3_CHMODE_DUALMONO) {
1170 gain *= s->dynamic_range[ch-1];
1171 } else {
1172 gain *= s->dynamic_range[0];
1174 s->dsp.int32_to_float_fmul_scalar(s->transform_coeffs[ch], s->fixed_coeffs[ch], gain, 256);
1177 /* downmix and MDCT. order depends on whether block switching is used for
1178 any channel in this block. this is because coefficients for the long
1179 and short transforms cannot be mixed. */
1180 downmix_output = s->channels != s->out_channels &&
1181 !((s->output_mode & AC3_OUTPUT_LFEON) &&
1182 s->fbw_channels == s->out_channels);
1183 if(different_transforms) {
1184 /* the delay samples have already been downmixed, so we upmix the delay
1185 samples in order to reconstruct all channels before downmixing. */
1186 if(s->downmixed) {
1187 s->downmixed = 0;
1188 ac3_upmix_delay(s);
1191 do_imdct(s, s->channels);
1193 if(downmix_output) {
1194 s->dsp.ac3_downmix(s->output, s->downmix_coeffs, s->out_channels, s->fbw_channels, 256);
1196 } else {
1197 if(downmix_output) {
1198 s->dsp.ac3_downmix(s->transform_coeffs+1, s->downmix_coeffs, s->out_channels, s->fbw_channels, 256);
1201 if(downmix_output && !s->downmixed) {
1202 s->downmixed = 1;
1203 s->dsp.ac3_downmix(s->delay, s->downmix_coeffs, s->out_channels, s->fbw_channels, 128);
1206 do_imdct(s, s->out_channels);
1209 return 0;
1213 * Decode a single AC-3 frame.
1215 static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size,
1216 AVPacket *avpkt)
1218 const uint8_t *buf = avpkt->data;
1219 int buf_size = avpkt->size;
1220 AC3DecodeContext *s = avctx->priv_data;
1221 int16_t *out_samples = (int16_t *)data;
1222 int blk, ch, err;
1223 const uint8_t *channel_map;
1224 const float *output[AC3_MAX_CHANNELS];
1226 /* initialize the GetBitContext with the start of valid AC-3 Frame */
1227 if (s->input_buffer) {
1228 /* copy input buffer to decoder context to avoid reading past the end
1229 of the buffer, which can be caused by a damaged input stream. */
1230 memcpy(s->input_buffer, buf, FFMIN(buf_size, AC3_FRAME_BUFFER_SIZE));
1231 init_get_bits(&s->gbc, s->input_buffer, buf_size * 8);
1232 } else {
1233 init_get_bits(&s->gbc, buf, buf_size * 8);
1236 /* parse the syncinfo */
1237 *data_size = 0;
1238 err = parse_frame_header(s);
1240 /* check that reported frame size fits in input buffer */
1241 if(s->frame_size > buf_size) {
1242 av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
1243 err = AAC_AC3_PARSE_ERROR_FRAME_SIZE;
1246 /* check for crc mismatch */
1247 if(err != AAC_AC3_PARSE_ERROR_FRAME_SIZE && avctx->error_recognition >= FF_ER_CAREFUL) {
1248 if(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0, &buf[2], s->frame_size-2)) {
1249 av_log(avctx, AV_LOG_ERROR, "frame CRC mismatch\n");
1250 err = AAC_AC3_PARSE_ERROR_CRC;
1254 if(err && err != AAC_AC3_PARSE_ERROR_CRC) {
1255 switch(err) {
1256 case AAC_AC3_PARSE_ERROR_SYNC:
1257 av_log(avctx, AV_LOG_ERROR, "frame sync error\n");
1258 return -1;
1259 case AAC_AC3_PARSE_ERROR_BSID:
1260 av_log(avctx, AV_LOG_ERROR, "invalid bitstream id\n");
1261 break;
1262 case AAC_AC3_PARSE_ERROR_SAMPLE_RATE:
1263 av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
1264 break;
1265 case AAC_AC3_PARSE_ERROR_FRAME_SIZE:
1266 av_log(avctx, AV_LOG_ERROR, "invalid frame size\n");
1267 break;
1268 case AAC_AC3_PARSE_ERROR_FRAME_TYPE:
1269 /* skip frame if CRC is ok. otherwise use error concealment. */
1270 /* TODO: add support for substreams and dependent frames */
1271 if(s->frame_type == EAC3_FRAME_TYPE_DEPENDENT || s->substreamid) {
1272 av_log(avctx, AV_LOG_ERROR, "unsupported frame type : skipping frame\n");
1273 return s->frame_size;
1274 } else {
1275 av_log(avctx, AV_LOG_ERROR, "invalid frame type\n");
1277 break;
1278 default:
1279 av_log(avctx, AV_LOG_ERROR, "invalid header\n");
1280 break;
1284 /* if frame is ok, set audio parameters */
1285 if (!err) {
1286 avctx->sample_rate = s->sample_rate;
1287 avctx->bit_rate = s->bit_rate;
1289 /* channel config */
1290 s->out_channels = s->channels;
1291 s->output_mode = s->channel_mode;
1292 if(s->lfe_on)
1293 s->output_mode |= AC3_OUTPUT_LFEON;
1294 if (avctx->request_channels > 0 && avctx->request_channels <= 2 &&
1295 avctx->request_channels < s->channels) {
1296 s->out_channels = avctx->request_channels;
1297 s->output_mode = avctx->request_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO;
1298 s->channel_layout = ff_ac3_channel_layout_tab[s->output_mode];
1300 avctx->channels = s->out_channels;
1301 avctx->channel_layout = s->channel_layout;
1303 /* set downmixing coefficients if needed */
1304 if(s->channels != s->out_channels && !((s->output_mode & AC3_OUTPUT_LFEON) &&
1305 s->fbw_channels == s->out_channels)) {
1306 set_downmix_coeffs(s);
1308 } else if (!s->out_channels) {
1309 s->out_channels = avctx->channels;
1310 if(s->out_channels < s->channels)
1311 s->output_mode = s->out_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO;
1314 /* decode the audio blocks */
1315 channel_map = ff_ac3_dec_channel_map[s->output_mode & ~AC3_OUTPUT_LFEON][s->lfe_on];
1316 for (ch = 0; ch < s->out_channels; ch++)
1317 output[ch] = s->output[channel_map[ch]];
1318 for (blk = 0; blk < s->num_blocks; blk++) {
1319 if (!err && decode_audio_block(s, blk)) {
1320 av_log(avctx, AV_LOG_ERROR, "error decoding the audio block\n");
1321 err = 1;
1323 s->dsp.float_to_int16_interleave(out_samples, output, 256, s->out_channels);
1324 out_samples += 256 * s->out_channels;
1326 *data_size = s->num_blocks * 256 * avctx->channels * sizeof (int16_t);
1327 return s->frame_size;
1331 * Uninitialize the AC-3 decoder.
1333 static av_cold int ac3_decode_end(AVCodecContext *avctx)
1335 AC3DecodeContext *s = avctx->priv_data;
1336 ff_mdct_end(&s->imdct_512);
1337 ff_mdct_end(&s->imdct_256);
1339 av_freep(&s->input_buffer);
1341 return 0;
1344 AVCodec ac3_decoder = {
1345 .name = "ac3",
1346 .type = CODEC_TYPE_AUDIO,
1347 .id = CODEC_ID_AC3,
1348 .priv_data_size = sizeof (AC3DecodeContext),
1349 .init = ac3_decode_init,
1350 .close = ac3_decode_end,
1351 .decode = ac3_decode_frame,
1352 .long_name = NULL_IF_CONFIG_SMALL("ATSC A/52A (AC-3)"),
1355 #if CONFIG_EAC3_DECODER
1356 AVCodec eac3_decoder = {
1357 .name = "eac3",
1358 .type = CODEC_TYPE_AUDIO,
1359 .id = CODEC_ID_EAC3,
1360 .priv_data_size = sizeof (AC3DecodeContext),
1361 .init = ac3_decode_init,
1362 .close = ac3_decode_end,
1363 .decode = ac3_decode_frame,
1364 .long_name = NULL_IF_CONFIG_SMALL("ATSC A/52B (AC-3, E-AC-3)"),
1366 #endif