use enum value instead of numerical value for acmod
[ffmpeg-lucabe.git] / libavcodec / cavs.h
blobadc9c2452feeda023e09c0179e7db6fbc2697da4
1 /*
2 * Chinese AVS video (AVS1-P2, JiZhun profile) decoder.
3 * Copyright (c) 2006 Stefan Gehrer <stefan.gehrer@gmx.de>
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 #ifndef CAVS_H
23 #define CAVS_H
25 #include "dsputil.h"
26 #include "mpegvideo.h"
28 #define SLICE_MIN_START_CODE 0x00000101
29 #define SLICE_MAX_START_CODE 0x000001af
30 #define EXT_START_CODE 0x000001b5
31 #define USER_START_CODE 0x000001b2
32 #define CAVS_START_CODE 0x000001b0
33 #define PIC_I_START_CODE 0x000001b3
34 #define PIC_PB_START_CODE 0x000001b6
36 #define A_AVAIL 1
37 #define B_AVAIL 2
38 #define C_AVAIL 4
39 #define D_AVAIL 8
40 #define NOT_AVAIL -1
41 #define REF_INTRA -2
42 #define REF_DIR -3
44 #define ESCAPE_CODE 59
46 #define FWD0 0x01
47 #define FWD1 0x02
48 #define BWD0 0x04
49 #define BWD1 0x08
50 #define SYM0 0x10
51 #define SYM1 0x20
52 #define SPLITH 0x40
53 #define SPLITV 0x80
55 #define MV_BWD_OFFS 12
56 #define MV_STRIDE 4
58 enum mb_t {
59 I_8X8 = 0,
60 P_SKIP,
61 P_16X16,
62 P_16X8,
63 P_8X16,
64 P_8X8,
65 B_SKIP,
66 B_DIRECT,
67 B_FWD_16X16,
68 B_BWD_16X16,
69 B_SYM_16X16,
70 B_8X8 = 29
73 enum sub_mb_t {
74 B_SUB_DIRECT,
75 B_SUB_FWD,
76 B_SUB_BWD,
77 B_SUB_SYM
80 enum intra_luma_t {
81 INTRA_L_VERT,
82 INTRA_L_HORIZ,
83 INTRA_L_LP,
84 INTRA_L_DOWN_LEFT,
85 INTRA_L_DOWN_RIGHT,
86 INTRA_L_LP_LEFT,
87 INTRA_L_LP_TOP,
88 INTRA_L_DC_128
91 enum intra_chroma_t {
92 INTRA_C_LP,
93 INTRA_C_HORIZ,
94 INTRA_C_VERT,
95 INTRA_C_PLANE,
96 INTRA_C_LP_LEFT,
97 INTRA_C_LP_TOP,
98 INTRA_C_DC_128,
101 enum mv_pred_t {
102 MV_PRED_MEDIAN,
103 MV_PRED_LEFT,
104 MV_PRED_TOP,
105 MV_PRED_TOPRIGHT,
106 MV_PRED_PSKIP,
107 MV_PRED_BSKIP
110 enum block_t {
111 BLK_16X16,
112 BLK_16X8,
113 BLK_8X16,
114 BLK_8X8
117 enum mv_loc_t {
118 MV_FWD_D3 = 0,
119 MV_FWD_B2,
120 MV_FWD_B3,
121 MV_FWD_C2,
122 MV_FWD_A1,
123 MV_FWD_X0,
124 MV_FWD_X1,
125 MV_FWD_A3 = 8,
126 MV_FWD_X2,
127 MV_FWD_X3,
128 MV_BWD_D3 = MV_BWD_OFFS,
129 MV_BWD_B2,
130 MV_BWD_B3,
131 MV_BWD_C2,
132 MV_BWD_A1,
133 MV_BWD_X0,
134 MV_BWD_X1,
135 MV_BWD_A3 = MV_BWD_OFFS+8,
136 MV_BWD_X2,
137 MV_BWD_X3
140 DECLARE_ALIGNED_8(typedef, struct) {
141 int16_t x;
142 int16_t y;
143 int16_t dist;
144 int16_t ref;
145 } vector_t;
147 typedef struct dec_2dvlc_t {
148 int8_t rltab[59][3];
149 int8_t level_add[27];
150 int8_t golomb_order;
151 int inc_limit;
152 int8_t max_run;
153 } dec_2dvlc_t;
155 typedef struct {
156 MpegEncContext s;
157 Picture picture; ///< currently decoded frame
158 Picture DPB[2]; ///< reference frames
159 int dist[2]; ///< temporal distances from current frame to ref frames
160 int profile, level;
161 int aspect_ratio;
162 int mb_width, mb_height;
163 int pic_type;
164 int progressive;
165 int pic_structure;
166 int skip_mode_flag; ///< select between skip_count or one skip_flag per MB
167 int loop_filter_disable;
168 int alpha_offset, beta_offset;
169 int ref_flag;
170 int mbx, mby; ///< macroblock coordinates
171 int flags; ///< availability flags of neighbouring macroblocks
172 int stc; ///< last start code
173 uint8_t *cy, *cu, *cv; ///< current MB sample pointers
174 int left_qp;
175 uint8_t *top_qp;
177 /** mv motion vector cache
178 0: D3 B2 B3 C2
179 4: A1 X0 X1 -
180 8: A3 X2 X3 -
182 X are the vectors in the current macroblock (5,6,9,10)
183 A is the macroblock to the left (4,8)
184 B is the macroblock to the top (1,2)
185 C is the macroblock to the top-right (3)
186 D is the macroblock to the top-left (0)
188 the same is repeated for backward motion vectors */
189 vector_t mv[2*4*3];
190 vector_t *top_mv[2];
191 vector_t *col_mv;
193 /** luma pred mode cache
194 0: -- B2 B3
195 3: A1 X0 X1
196 6: A3 X2 X3 */
197 int pred_mode_Y[3*3];
198 int *top_pred_Y;
199 int l_stride, c_stride;
200 int luma_scan[4];
201 int qp;
202 int qp_fixed;
203 int cbp;
204 ScanTable scantable;
206 /** intra prediction is done with un-deblocked samples
207 they are saved here before deblocking the MB */
208 uint8_t *top_border_y, *top_border_u, *top_border_v;
209 uint8_t left_border_y[26], left_border_u[10], left_border_v[10];
210 uint8_t intern_border_y[26];
211 uint8_t topleft_border_y, topleft_border_u, topleft_border_v;
213 void (*intra_pred_l[8])(uint8_t *d,uint8_t *top,uint8_t *left,int stride);
214 void (*intra_pred_c[7])(uint8_t *d,uint8_t *top,uint8_t *left,int stride);
215 uint8_t *col_type_base;
216 uint8_t *col_type;
218 /* scaling factors for MV prediction */
219 int sym_factor; ///< for scaling in symmetrical B block
220 int direct_den[2]; ///< for scaling in direct B block
221 int scale_den[2]; ///< for scaling neighbouring MVs
223 int got_keyframe;
224 DCTELEM *block;
225 } AVSContext;
227 extern const uint8_t ff_cavs_dequant_shift[64];
228 extern const uint16_t ff_cavs_dequant_mul[64];
229 extern const dec_2dvlc_t ff_cavs_intra_dec[7];
230 extern const dec_2dvlc_t ff_cavs_inter_dec[7];
231 extern const dec_2dvlc_t ff_cavs_chroma_dec[5];
232 extern const uint8_t ff_cavs_chroma_qp[64];
233 extern const uint8_t ff_cavs_scan3x3[4];
234 extern const uint8_t ff_cavs_partition_flags[30];
235 extern const int_fast8_t ff_left_modifier_l[8];
236 extern const int_fast8_t ff_top_modifier_l[8];
237 extern const int_fast8_t ff_left_modifier_c[7];
238 extern const int_fast8_t ff_top_modifier_c[7];
239 extern const vector_t ff_cavs_intra_mv;
240 extern const vector_t ff_cavs_un_mv;
241 extern const vector_t ff_cavs_dir_mv;
243 static inline void load_intra_pred_luma(AVSContext *h, uint8_t *top,
244 uint8_t **left, int block) {
245 int i;
247 switch(block) {
248 case 0:
249 *left = h->left_border_y;
250 h->left_border_y[0] = h->left_border_y[1];
251 memset(&h->left_border_y[17],h->left_border_y[16],9);
252 memcpy(&top[1],&h->top_border_y[h->mbx*16],16);
253 top[17] = top[16];
254 top[0] = top[1];
255 if((h->flags & A_AVAIL) && (h->flags & B_AVAIL))
256 h->left_border_y[0] = top[0] = h->topleft_border_y;
257 break;
258 case 1:
259 *left = h->intern_border_y;
260 for(i=0;i<8;i++)
261 h->intern_border_y[i+1] = *(h->cy + 7 + i*h->l_stride);
262 memset(&h->intern_border_y[9],h->intern_border_y[8],9);
263 h->intern_border_y[0] = h->intern_border_y[1];
264 memcpy(&top[1],&h->top_border_y[h->mbx*16+8],8);
265 if(h->flags & C_AVAIL)
266 memcpy(&top[9],&h->top_border_y[(h->mbx + 1)*16],8);
267 else
268 memset(&top[9],top[8],9);
269 top[17] = top[16];
270 top[0] = top[1];
271 if(h->flags & B_AVAIL)
272 h->intern_border_y[0] = top[0] = h->top_border_y[h->mbx*16+7];
273 break;
274 case 2:
275 *left = &h->left_border_y[8];
276 memcpy(&top[1],h->cy + 7*h->l_stride,16);
277 top[17] = top[16];
278 top[0] = top[1];
279 if(h->flags & A_AVAIL)
280 top[0] = h->left_border_y[8];
281 break;
282 case 3:
283 *left = &h->intern_border_y[8];
284 for(i=0;i<8;i++)
285 h->intern_border_y[i+9] = *(h->cy + 7 + (i+8)*h->l_stride);
286 memset(&h->intern_border_y[17],h->intern_border_y[16],9);
287 memcpy(&top[0],h->cy + 7 + 7*h->l_stride,9);
288 memset(&top[9],top[8],9);
289 break;
293 static inline void load_intra_pred_chroma(AVSContext *h) {
294 /* extend borders by one pixel */
295 h->left_border_u[9] = h->left_border_u[8];
296 h->left_border_v[9] = h->left_border_v[8];
297 h->top_border_u[h->mbx*10+9] = h->top_border_u[h->mbx*10+8];
298 h->top_border_v[h->mbx*10+9] = h->top_border_v[h->mbx*10+8];
299 if(h->mbx && h->mby) {
300 h->top_border_u[h->mbx*10] = h->left_border_u[0] = h->topleft_border_u;
301 h->top_border_v[h->mbx*10] = h->left_border_v[0] = h->topleft_border_v;
302 } else {
303 h->left_border_u[0] = h->left_border_u[1];
304 h->left_border_v[0] = h->left_border_v[1];
305 h->top_border_u[h->mbx*10] = h->top_border_u[h->mbx*10+1];
306 h->top_border_v[h->mbx*10] = h->top_border_v[h->mbx*10+1];
310 static inline void modify_pred(const int_fast8_t *mod_table, int *mode) {
311 *mode = mod_table[*mode];
312 if(*mode < 0) {
313 av_log(NULL, AV_LOG_ERROR, "Illegal intra prediction mode\n");
314 *mode = 0;
318 static inline void modify_mb_i(AVSContext *h, int *pred_mode_uv) {
319 /* save pred modes before they get modified */
320 h->pred_mode_Y[3] = h->pred_mode_Y[5];
321 h->pred_mode_Y[6] = h->pred_mode_Y[8];
322 h->top_pred_Y[h->mbx*2+0] = h->pred_mode_Y[7];
323 h->top_pred_Y[h->mbx*2+1] = h->pred_mode_Y[8];
325 /* modify pred modes according to availability of neighbour samples */
326 if(!(h->flags & A_AVAIL)) {
327 modify_pred(ff_left_modifier_l, &h->pred_mode_Y[4] );
328 modify_pred(ff_left_modifier_l, &h->pred_mode_Y[7] );
329 modify_pred(ff_left_modifier_c, pred_mode_uv );
331 if(!(h->flags & B_AVAIL)) {
332 modify_pred(ff_top_modifier_l, &h->pred_mode_Y[4] );
333 modify_pred(ff_top_modifier_l, &h->pred_mode_Y[5] );
334 modify_pred(ff_top_modifier_c, pred_mode_uv );
338 static inline void set_intra_mode_default(AVSContext *h) {
339 h->pred_mode_Y[3] = h->pred_mode_Y[6] = INTRA_L_LP;
340 h->top_pred_Y[h->mbx*2+0] = h->top_pred_Y[h->mbx*2+1] = INTRA_L_LP;
343 static inline void set_mvs(vector_t *mv, enum block_t size) {
344 switch(size) {
345 case BLK_16X16:
346 mv[MV_STRIDE ] = mv[0];
347 mv[MV_STRIDE+1] = mv[0];
348 case BLK_16X8:
349 mv[1] = mv[0];
350 break;
351 case BLK_8X16:
352 mv[MV_STRIDE] = mv[0];
353 break;
357 static inline void set_mv_intra(AVSContext *h) {
358 h->mv[MV_FWD_X0] = ff_cavs_intra_mv;
359 set_mvs(&h->mv[MV_FWD_X0], BLK_16X16);
360 h->mv[MV_BWD_X0] = ff_cavs_intra_mv;
361 set_mvs(&h->mv[MV_BWD_X0], BLK_16X16);
362 if(h->pic_type != FF_B_TYPE)
363 *h->col_type = I_8X8;
368 * initialise predictors for motion vectors and intra prediction
370 static inline void init_mb(AVSContext *h) {
371 int i;
373 /* copy predictors from top line (MB B and C) into cache */
374 for(i=0;i<3;i++) {
375 h->mv[MV_FWD_B2+i] = h->top_mv[0][h->mbx*2+i];
376 h->mv[MV_BWD_B2+i] = h->top_mv[1][h->mbx*2+i];
378 h->pred_mode_Y[1] = h->top_pred_Y[h->mbx*2+0];
379 h->pred_mode_Y[2] = h->top_pred_Y[h->mbx*2+1];
380 /* clear top predictors if MB B is not available */
381 if(!(h->flags & B_AVAIL)) {
382 h->mv[MV_FWD_B2] = ff_cavs_un_mv;
383 h->mv[MV_FWD_B3] = ff_cavs_un_mv;
384 h->mv[MV_BWD_B2] = ff_cavs_un_mv;
385 h->mv[MV_BWD_B3] = ff_cavs_un_mv;
386 h->pred_mode_Y[1] = h->pred_mode_Y[2] = NOT_AVAIL;
387 h->flags &= ~(C_AVAIL|D_AVAIL);
388 } else if(h->mbx) {
389 h->flags |= D_AVAIL;
391 if(h->mbx == h->mb_width-1) //MB C not available
392 h->flags &= ~C_AVAIL;
393 /* clear top-right predictors if MB C is not available */
394 if(!(h->flags & C_AVAIL)) {
395 h->mv[MV_FWD_C2] = ff_cavs_un_mv;
396 h->mv[MV_BWD_C2] = ff_cavs_un_mv;
398 /* clear top-left predictors if MB D is not available */
399 if(!(h->flags & D_AVAIL)) {
400 h->mv[MV_FWD_D3] = ff_cavs_un_mv;
401 h->mv[MV_BWD_D3] = ff_cavs_un_mv;
403 /* set pointer for co-located macroblock type */
404 h->col_type = &h->col_type_base[h->mby*h->mb_width + h->mbx];
408 * save predictors for later macroblocks and increase
409 * macroblock address
410 * @returns 0 if end of frame is reached, 1 otherwise
412 static inline int next_mb(AVSContext *h) {
413 int i;
415 h->flags |= A_AVAIL;
416 h->cy += 16;
417 h->cu += 8;
418 h->cv += 8;
419 /* copy mvs as predictors to the left */
420 for(i=0;i<=20;i+=4)
421 h->mv[i] = h->mv[i+2];
422 /* copy bottom mvs from cache to top line */
423 h->top_mv[0][h->mbx*2+0] = h->mv[MV_FWD_X2];
424 h->top_mv[0][h->mbx*2+1] = h->mv[MV_FWD_X3];
425 h->top_mv[1][h->mbx*2+0] = h->mv[MV_BWD_X2];
426 h->top_mv[1][h->mbx*2+1] = h->mv[MV_BWD_X3];
427 /* next MB address */
428 h->mbx++;
429 if(h->mbx == h->mb_width) { //new mb line
430 h->flags = B_AVAIL|C_AVAIL;
431 /* clear left pred_modes */
432 h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL;
433 /* clear left mv predictors */
434 for(i=0;i<=20;i+=4)
435 h->mv[i] = ff_cavs_un_mv;
436 h->mbx = 0;
437 h->mby++;
438 /* re-calculate sample pointers */
439 h->cy = h->picture.data[0] + h->mby*16*h->l_stride;
440 h->cu = h->picture.data[1] + h->mby*8*h->c_stride;
441 h->cv = h->picture.data[2] + h->mby*8*h->c_stride;
442 if(h->mby == h->mb_height) { //frame end
443 return 0;
444 } else {
445 //check_for_slice(h);
448 return 1;
451 static inline int dequant(AVSContext *h, DCTELEM *level_buf, uint8_t *run_buf,
452 DCTELEM *dst, int mul, int shift, int coeff_num) {
453 int round = 1 << (shift - 1);
454 int pos = -1;
455 const uint8_t *scantab = h->scantable.permutated;
457 /* inverse scan and dequantization */
458 while(--coeff_num >= 0){
459 pos += run_buf[coeff_num];
460 if(pos > 63) {
461 av_log(h->s.avctx, AV_LOG_ERROR,
462 "position out of block bounds at pic %d MB(%d,%d)\n",
463 h->picture.poc, h->mbx, h->mby);
464 return -1;
466 dst[scantab[pos]] = (level_buf[coeff_num]*mul + round) >> shift;
468 return 0;
471 void ff_cavs_filter(AVSContext *h, enum mb_t mb_type);
472 void ff_cavs_inter(AVSContext *h, enum mb_t mb_type);
473 void ff_cavs_mv(AVSContext *h, enum mv_loc_t nP, enum mv_loc_t nC,
474 enum mv_pred_t mode, enum block_t size, int ref);
475 void ff_cavs_init_pic(AVSContext *h);
476 void ff_cavs_init_top_lines(AVSContext *h);
477 int ff_cavs_init(AVCodecContext *avctx);
478 int ff_cavs_end (AVCodecContext *avctx);
480 #endif /* CAVS_H */