More OKed parts of the QCELP decoder
[ffmpeg-lucabe.git] / libavcodec / aac.c
blob863646e842bed52345eeeadda927cbe6df7392bd
1 /*
2 * AAC decoder
3 * Copyright (c) 2005-2006 Oded Shimon ( ods15 ods15 dyndns org )
4 * Copyright (c) 2006-2007 Maxim Gavrilov ( maxim.gavrilov gmail com )
6 * This file is part of FFmpeg.
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23 /**
24 * @file aac.c
25 * AAC decoder
26 * @author Oded Shimon ( ods15 ods15 dyndns org )
27 * @author Maxim Gavrilov ( maxim.gavrilov gmail com )
31 * supported tools
33 * Support? Name
34 * N (code in SoC repo) gain control
35 * Y block switching
36 * Y window shapes - standard
37 * N window shapes - Low Delay
38 * Y filterbank - standard
39 * N (code in SoC repo) filterbank - Scalable Sample Rate
40 * Y Temporal Noise Shaping
41 * N (code in SoC repo) Long Term Prediction
42 * Y intensity stereo
43 * Y channel coupling
44 * Y frequency domain prediction
45 * Y Perceptual Noise Substitution
46 * Y Mid/Side stereo
47 * N Scalable Inverse AAC Quantization
48 * N Frequency Selective Switch
49 * N upsampling filter
50 * Y quantization & coding - AAC
51 * N quantization & coding - TwinVQ
52 * N quantization & coding - BSAC
53 * N AAC Error Resilience tools
54 * N Error Resilience payload syntax
55 * N Error Protection tool
56 * N CELP
57 * N Silence Compression
58 * N HVXC
59 * N HVXC 4kbits/s VR
60 * N Structured Audio tools
61 * N Structured Audio Sample Bank Format
62 * N MIDI
63 * N Harmonic and Individual Lines plus Noise
64 * N Text-To-Speech Interface
65 * N (in progress) Spectral Band Replication
66 * Y (not in this code) Layer-1
67 * Y (not in this code) Layer-2
68 * Y (not in this code) Layer-3
69 * N SinuSoidal Coding (Transient, Sinusoid, Noise)
70 * N (planned) Parametric Stereo
71 * N Direct Stream Transfer
73 * Note: - HE AAC v1 comprises LC AAC with Spectral Band Replication.
74 * - HE AAC v2 comprises LC AAC with Spectral Band Replication and
75 Parametric Stereo.
79 #include "avcodec.h"
80 #include "bitstream.h"
81 #include "dsputil.h"
82 #include "lpc.h"
84 #include "aac.h"
85 #include "aactab.h"
86 #include "aacdectab.h"
87 #include "mpeg4audio.h"
89 #include <assert.h>
90 #include <errno.h>
91 #include <math.h>
92 #include <string.h>
94 static VLC vlc_scalefactors;
95 static VLC vlc_spectral[11];
98 /**
99 * Configure output channel order based on the current program configuration element.
101 * @param che_pos current channel position configuration
102 * @param new_che_pos New channel position configuration - we only do something if it differs from the current one.
104 * @return Returns error status. 0 - OK, !0 - error
106 static int output_configure(AACContext *ac, enum ChannelPosition che_pos[4][MAX_ELEM_ID],
107 enum ChannelPosition new_che_pos[4][MAX_ELEM_ID]) {
108 AVCodecContext *avctx = ac->avccontext;
109 int i, type, channels = 0;
111 if(!memcmp(che_pos, new_che_pos, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0])))
112 return 0; /* no change */
114 memcpy(che_pos, new_che_pos, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
116 /* Allocate or free elements depending on if they are in the
117 * current program configuration.
119 * Set up default 1:1 output mapping.
121 * For a 5.1 stream the output order will be:
122 * [ Center ] [ Front Left ] [ Front Right ] [ LFE ] [ Surround Left ] [ Surround Right ]
125 for(i = 0; i < MAX_ELEM_ID; i++) {
126 for(type = 0; type < 4; type++) {
127 if(che_pos[type][i]) {
128 if(!ac->che[type][i] && !(ac->che[type][i] = av_mallocz(sizeof(ChannelElement))))
129 return AVERROR(ENOMEM);
130 if(type != TYPE_CCE) {
131 ac->output_data[channels++] = ac->che[type][i]->ch[0].ret;
132 if(type == TYPE_CPE) {
133 ac->output_data[channels++] = ac->che[type][i]->ch[1].ret;
136 } else
137 av_freep(&ac->che[type][i]);
141 avctx->channels = channels;
142 return 0;
146 * Decode an array of 4 bit element IDs, optionally interleaved with a stereo/mono switching bit.
148 * @param cpe_map Stereo (Channel Pair Element) map, NULL if stereo bit is not present.
149 * @param sce_map mono (Single Channel Element) map
150 * @param type speaker type/position for these channels
152 static void decode_channel_map(enum ChannelPosition *cpe_map,
153 enum ChannelPosition *sce_map, enum ChannelPosition type, GetBitContext * gb, int n) {
154 while(n--) {
155 enum ChannelPosition *map = cpe_map && get_bits1(gb) ? cpe_map : sce_map; // stereo or mono map
156 map[get_bits(gb, 4)] = type;
161 * Decode program configuration element; reference: table 4.2.
163 * @param new_che_pos New channel position configuration - we only do something if it differs from the current one.
165 * @return Returns error status. 0 - OK, !0 - error
167 static int decode_pce(AACContext * ac, enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
168 GetBitContext * gb) {
169 int num_front, num_side, num_back, num_lfe, num_assoc_data, num_cc;
171 skip_bits(gb, 2); // object_type
173 ac->m4ac.sampling_index = get_bits(gb, 4);
174 if(ac->m4ac.sampling_index > 11) {
175 av_log(ac->avccontext, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
176 return -1;
178 ac->m4ac.sample_rate = ff_mpeg4audio_sample_rates[ac->m4ac.sampling_index];
179 num_front = get_bits(gb, 4);
180 num_side = get_bits(gb, 4);
181 num_back = get_bits(gb, 4);
182 num_lfe = get_bits(gb, 2);
183 num_assoc_data = get_bits(gb, 3);
184 num_cc = get_bits(gb, 4);
186 if (get_bits1(gb))
187 skip_bits(gb, 4); // mono_mixdown_tag
188 if (get_bits1(gb))
189 skip_bits(gb, 4); // stereo_mixdown_tag
191 if (get_bits1(gb))
192 skip_bits(gb, 3); // mixdown_coeff_index and pseudo_surround
194 decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_FRONT, gb, num_front);
195 decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_SIDE, gb, num_side );
196 decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_BACK, gb, num_back );
197 decode_channel_map(NULL, new_che_pos[TYPE_LFE], AAC_CHANNEL_LFE, gb, num_lfe );
199 skip_bits_long(gb, 4 * num_assoc_data);
201 decode_channel_map(new_che_pos[TYPE_CCE], new_che_pos[TYPE_CCE], AAC_CHANNEL_CC, gb, num_cc );
203 align_get_bits(gb);
205 /* comment field, first byte is length */
206 skip_bits_long(gb, 8 * get_bits(gb, 8));
207 return 0;
211 * Set up channel positions based on a default channel configuration
212 * as specified in table 1.17.
214 * @param new_che_pos New channel position configuration - we only do something if it differs from the current one.
216 * @return Returns error status. 0 - OK, !0 - error
218 static int set_default_channel_config(AACContext *ac, enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
219 int channel_config)
221 if(channel_config < 1 || channel_config > 7) {
222 av_log(ac->avccontext, AV_LOG_ERROR, "invalid default channel configuration (%d)\n",
223 channel_config);
224 return -1;
227 /* default channel configurations:
229 * 1ch : front center (mono)
230 * 2ch : L + R (stereo)
231 * 3ch : front center + L + R
232 * 4ch : front center + L + R + back center
233 * 5ch : front center + L + R + back stereo
234 * 6ch : front center + L + R + back stereo + LFE
235 * 7ch : front center + L + R + outer front left + outer front right + back stereo + LFE
238 if(channel_config != 2)
239 new_che_pos[TYPE_SCE][0] = AAC_CHANNEL_FRONT; // front center (or mono)
240 if(channel_config > 1)
241 new_che_pos[TYPE_CPE][0] = AAC_CHANNEL_FRONT; // L + R (or stereo)
242 if(channel_config == 4)
243 new_che_pos[TYPE_SCE][1] = AAC_CHANNEL_BACK; // back center
244 if(channel_config > 4)
245 new_che_pos[TYPE_CPE][(channel_config == 7) + 1]
246 = AAC_CHANNEL_BACK; // back stereo
247 if(channel_config > 5)
248 new_che_pos[TYPE_LFE][0] = AAC_CHANNEL_LFE; // LFE
249 if(channel_config == 7)
250 new_che_pos[TYPE_CPE][1] = AAC_CHANNEL_FRONT; // outer front left + outer front right
252 return 0;
256 * Decode GA "General Audio" specific configuration; reference: table 4.1.
258 * @return Returns error status. 0 - OK, !0 - error
260 static int decode_ga_specific_config(AACContext * ac, GetBitContext * gb, int channel_config) {
261 enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
262 int extension_flag, ret;
264 if(get_bits1(gb)) { // frameLengthFlag
265 av_log_missing_feature(ac->avccontext, "960/120 MDCT window is", 1);
266 return -1;
269 if (get_bits1(gb)) // dependsOnCoreCoder
270 skip_bits(gb, 14); // coreCoderDelay
271 extension_flag = get_bits1(gb);
273 if(ac->m4ac.object_type == AOT_AAC_SCALABLE ||
274 ac->m4ac.object_type == AOT_ER_AAC_SCALABLE)
275 skip_bits(gb, 3); // layerNr
277 memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
278 if (channel_config == 0) {
279 skip_bits(gb, 4); // element_instance_tag
280 if((ret = decode_pce(ac, new_che_pos, gb)))
281 return ret;
282 } else {
283 if((ret = set_default_channel_config(ac, new_che_pos, channel_config)))
284 return ret;
286 if((ret = output_configure(ac, ac->che_pos, new_che_pos)))
287 return ret;
289 if (extension_flag) {
290 switch (ac->m4ac.object_type) {
291 case AOT_ER_BSAC:
292 skip_bits(gb, 5); // numOfSubFrame
293 skip_bits(gb, 11); // layer_length
294 break;
295 case AOT_ER_AAC_LC:
296 case AOT_ER_AAC_LTP:
297 case AOT_ER_AAC_SCALABLE:
298 case AOT_ER_AAC_LD:
299 skip_bits(gb, 3); /* aacSectionDataResilienceFlag
300 * aacScalefactorDataResilienceFlag
301 * aacSpectralDataResilienceFlag
303 break;
305 skip_bits1(gb); // extensionFlag3 (TBD in version 3)
307 return 0;
311 * Decode audio specific configuration; reference: table 1.13.
313 * @param data pointer to AVCodecContext extradata
314 * @param data_size size of AVCCodecContext extradata
316 * @return Returns error status. 0 - OK, !0 - error
318 static int decode_audio_specific_config(AACContext * ac, void *data, int data_size) {
319 GetBitContext gb;
320 int i;
322 init_get_bits(&gb, data, data_size * 8);
324 if((i = ff_mpeg4audio_get_config(&ac->m4ac, data, data_size)) < 0)
325 return -1;
326 if(ac->m4ac.sampling_index > 11) {
327 av_log(ac->avccontext, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
328 return -1;
331 skip_bits_long(&gb, i);
333 switch (ac->m4ac.object_type) {
334 case AOT_AAC_MAIN:
335 case AOT_AAC_LC:
336 if (decode_ga_specific_config(ac, &gb, ac->m4ac.chan_config))
337 return -1;
338 break;
339 default:
340 av_log(ac->avccontext, AV_LOG_ERROR, "Audio object type %s%d is not supported.\n",
341 ac->m4ac.sbr == 1? "SBR+" : "", ac->m4ac.object_type);
342 return -1;
344 return 0;
348 * linear congruential pseudorandom number generator
350 * @param previous_val pointer to the current state of the generator
352 * @return Returns a 32-bit pseudorandom integer
354 static av_always_inline int lcg_random(int previous_val) {
355 return previous_val * 1664525 + 1013904223;
358 static void reset_predict_state(PredictorState * ps) {
359 ps->r0 = 0.0f;
360 ps->r1 = 0.0f;
361 ps->cor0 = 0.0f;
362 ps->cor1 = 0.0f;
363 ps->var0 = 1.0f;
364 ps->var1 = 1.0f;
367 static void reset_all_predictors(PredictorState * ps) {
368 int i;
369 for (i = 0; i < MAX_PREDICTORS; i++)
370 reset_predict_state(&ps[i]);
373 static void reset_predictor_group(PredictorState * ps, int group_num) {
374 int i;
375 for (i = group_num-1; i < MAX_PREDICTORS; i+=30)
376 reset_predict_state(&ps[i]);
379 static av_cold int aac_decode_init(AVCodecContext * avccontext) {
380 AACContext * ac = avccontext->priv_data;
381 int i;
383 ac->avccontext = avccontext;
385 if (avccontext->extradata_size <= 0 ||
386 decode_audio_specific_config(ac, avccontext->extradata, avccontext->extradata_size))
387 return -1;
389 avccontext->sample_fmt = SAMPLE_FMT_S16;
390 avccontext->sample_rate = ac->m4ac.sample_rate;
391 avccontext->frame_size = 1024;
393 AAC_INIT_VLC_STATIC( 0, 144);
394 AAC_INIT_VLC_STATIC( 1, 114);
395 AAC_INIT_VLC_STATIC( 2, 188);
396 AAC_INIT_VLC_STATIC( 3, 180);
397 AAC_INIT_VLC_STATIC( 4, 172);
398 AAC_INIT_VLC_STATIC( 5, 140);
399 AAC_INIT_VLC_STATIC( 6, 168);
400 AAC_INIT_VLC_STATIC( 7, 114);
401 AAC_INIT_VLC_STATIC( 8, 262);
402 AAC_INIT_VLC_STATIC( 9, 248);
403 AAC_INIT_VLC_STATIC(10, 384);
405 dsputil_init(&ac->dsp, avccontext);
407 ac->random_state = 0x1f2e3d4c;
409 // -1024 - Compensate wrong IMDCT method.
410 // 32768 - Required to scale values to the correct range for the bias method
411 // for float to int16 conversion.
413 if(ac->dsp.float_to_int16 == ff_float_to_int16_c) {
414 ac->add_bias = 385.0f;
415 ac->sf_scale = 1. / (-1024. * 32768.);
416 ac->sf_offset = 0;
417 } else {
418 ac->add_bias = 0.0f;
419 ac->sf_scale = 1. / -1024.;
420 ac->sf_offset = 60;
423 #ifndef CONFIG_HARDCODED_TABLES
424 for (i = 0; i < 428; i++)
425 ff_aac_pow2sf_tab[i] = pow(2, (i - 200)/4.);
426 #endif /* CONFIG_HARDCODED_TABLES */
428 INIT_VLC_STATIC(&vlc_scalefactors,7,FF_ARRAY_ELEMS(ff_aac_scalefactor_code),
429 ff_aac_scalefactor_bits, sizeof(ff_aac_scalefactor_bits[0]), sizeof(ff_aac_scalefactor_bits[0]),
430 ff_aac_scalefactor_code, sizeof(ff_aac_scalefactor_code[0]), sizeof(ff_aac_scalefactor_code[0]),
431 352);
433 ff_mdct_init(&ac->mdct, 11, 1);
434 ff_mdct_init(&ac->mdct_small, 8, 1);
435 // window initialization
436 ff_kbd_window_init(ff_aac_kbd_long_1024, 4.0, 1024);
437 ff_kbd_window_init(ff_aac_kbd_short_128, 6.0, 128);
438 ff_sine_window_init(ff_sine_1024, 1024);
439 ff_sine_window_init(ff_sine_128, 128);
441 return 0;
445 * Skip data_stream_element; reference: table 4.10.
447 static void skip_data_stream_element(GetBitContext * gb) {
448 int byte_align = get_bits1(gb);
449 int count = get_bits(gb, 8);
450 if (count == 255)
451 count += get_bits(gb, 8);
452 if (byte_align)
453 align_get_bits(gb);
454 skip_bits_long(gb, 8 * count);
457 static int decode_prediction(AACContext * ac, IndividualChannelStream * ics, GetBitContext * gb) {
458 int sfb;
459 if (get_bits1(gb)) {
460 ics->predictor_reset_group = get_bits(gb, 5);
461 if (ics->predictor_reset_group == 0 || ics->predictor_reset_group > 30) {
462 av_log(ac->avccontext, AV_LOG_ERROR, "Invalid Predictor Reset Group.\n");
463 return -1;
466 for (sfb = 0; sfb < FFMIN(ics->max_sfb, ff_aac_pred_sfb_max[ac->m4ac.sampling_index]); sfb++) {
467 ics->prediction_used[sfb] = get_bits1(gb);
469 return 0;
473 * Decode Individual Channel Stream info; reference: table 4.6.
475 * @param common_window Channels have independent [0], or shared [1], Individual Channel Stream information.
477 static int decode_ics_info(AACContext * ac, IndividualChannelStream * ics, GetBitContext * gb, int common_window) {
478 if (get_bits1(gb)) {
479 av_log(ac->avccontext, AV_LOG_ERROR, "Reserved bit set.\n");
480 memset(ics, 0, sizeof(IndividualChannelStream));
481 return -1;
483 ics->window_sequence[1] = ics->window_sequence[0];
484 ics->window_sequence[0] = get_bits(gb, 2);
485 ics->use_kb_window[1] = ics->use_kb_window[0];
486 ics->use_kb_window[0] = get_bits1(gb);
487 ics->num_window_groups = 1;
488 ics->group_len[0] = 1;
489 if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
490 int i;
491 ics->max_sfb = get_bits(gb, 4);
492 for (i = 0; i < 7; i++) {
493 if (get_bits1(gb)) {
494 ics->group_len[ics->num_window_groups-1]++;
495 } else {
496 ics->num_window_groups++;
497 ics->group_len[ics->num_window_groups-1] = 1;
500 ics->num_windows = 8;
501 ics->swb_offset = swb_offset_128[ac->m4ac.sampling_index];
502 ics->num_swb = ff_aac_num_swb_128[ac->m4ac.sampling_index];
503 ics->tns_max_bands = tns_max_bands_128[ac->m4ac.sampling_index];
504 ics->predictor_present = 0;
505 } else {
506 ics->max_sfb = get_bits(gb, 6);
507 ics->num_windows = 1;
508 ics->swb_offset = swb_offset_1024[ac->m4ac.sampling_index];
509 ics->num_swb = ff_aac_num_swb_1024[ac->m4ac.sampling_index];
510 ics->tns_max_bands = tns_max_bands_1024[ac->m4ac.sampling_index];
511 ics->predictor_present = get_bits1(gb);
512 ics->predictor_reset_group = 0;
513 if (ics->predictor_present) {
514 if (ac->m4ac.object_type == AOT_AAC_MAIN) {
515 if (decode_prediction(ac, ics, gb)) {
516 memset(ics, 0, sizeof(IndividualChannelStream));
517 return -1;
519 } else if (ac->m4ac.object_type == AOT_AAC_LC) {
520 av_log(ac->avccontext, AV_LOG_ERROR, "Prediction is not allowed in AAC-LC.\n");
521 memset(ics, 0, sizeof(IndividualChannelStream));
522 return -1;
523 } else {
524 av_log_missing_feature(ac->avccontext, "Predictor bit set but LTP is", 1);
525 memset(ics, 0, sizeof(IndividualChannelStream));
526 return -1;
531 if(ics->max_sfb > ics->num_swb) {
532 av_log(ac->avccontext, AV_LOG_ERROR,
533 "Number of scalefactor bands in group (%d) exceeds limit (%d).\n",
534 ics->max_sfb, ics->num_swb);
535 memset(ics, 0, sizeof(IndividualChannelStream));
536 return -1;
539 return 0;
543 * Decode band types (section_data payload); reference: table 4.46.
545 * @param band_type array of the used band type
546 * @param band_type_run_end array of the last scalefactor band of a band type run
548 * @return Returns error status. 0 - OK, !0 - error
550 static int decode_band_types(AACContext * ac, enum BandType band_type[120],
551 int band_type_run_end[120], GetBitContext * gb, IndividualChannelStream * ics) {
552 int g, idx = 0;
553 const int bits = (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) ? 3 : 5;
554 for (g = 0; g < ics->num_window_groups; g++) {
555 int k = 0;
556 while (k < ics->max_sfb) {
557 uint8_t sect_len = k;
558 int sect_len_incr;
559 int sect_band_type = get_bits(gb, 4);
560 if (sect_band_type == 12) {
561 av_log(ac->avccontext, AV_LOG_ERROR, "invalid band type\n");
562 return -1;
564 while ((sect_len_incr = get_bits(gb, bits)) == (1 << bits)-1)
565 sect_len += sect_len_incr;
566 sect_len += sect_len_incr;
567 if (sect_len > ics->max_sfb) {
568 av_log(ac->avccontext, AV_LOG_ERROR,
569 "Number of bands (%d) exceeds limit (%d).\n",
570 sect_len, ics->max_sfb);
571 return -1;
573 for (; k < sect_len; k++) {
574 band_type [idx] = sect_band_type;
575 band_type_run_end[idx++] = sect_len;
579 return 0;
583 * Decode scalefactors; reference: table 4.47.
585 * @param global_gain first scalefactor value as scalefactors are differentially coded
586 * @param band_type array of the used band type
587 * @param band_type_run_end array of the last scalefactor band of a band type run
588 * @param sf array of scalefactors or intensity stereo positions
590 * @return Returns error status. 0 - OK, !0 - error
592 static int decode_scalefactors(AACContext * ac, float sf[120], GetBitContext * gb,
593 unsigned int global_gain, IndividualChannelStream * ics,
594 enum BandType band_type[120], int band_type_run_end[120]) {
595 const int sf_offset = ac->sf_offset + (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE ? 12 : 0);
596 int g, i, idx = 0;
597 int offset[3] = { global_gain, global_gain - 90, 100 };
598 int noise_flag = 1;
599 static const char *sf_str[3] = { "Global gain", "Noise gain", "Intensity stereo position" };
600 for (g = 0; g < ics->num_window_groups; g++) {
601 for (i = 0; i < ics->max_sfb;) {
602 int run_end = band_type_run_end[idx];
603 if (band_type[idx] == ZERO_BT) {
604 for(; i < run_end; i++, idx++)
605 sf[idx] = 0.;
606 }else if((band_type[idx] == INTENSITY_BT) || (band_type[idx] == INTENSITY_BT2)) {
607 for(; i < run_end; i++, idx++) {
608 offset[2] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
609 if(offset[2] > 255U) {
610 av_log(ac->avccontext, AV_LOG_ERROR,
611 "%s (%d) out of range.\n", sf_str[2], offset[2]);
612 return -1;
614 sf[idx] = ff_aac_pow2sf_tab[-offset[2] + 300];
616 }else if(band_type[idx] == NOISE_BT) {
617 for(; i < run_end; i++, idx++) {
618 if(noise_flag-- > 0)
619 offset[1] += get_bits(gb, 9) - 256;
620 else
621 offset[1] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
622 if(offset[1] > 255U) {
623 av_log(ac->avccontext, AV_LOG_ERROR,
624 "%s (%d) out of range.\n", sf_str[1], offset[1]);
625 return -1;
627 sf[idx] = -ff_aac_pow2sf_tab[ offset[1] + sf_offset + 100];
629 }else {
630 for(; i < run_end; i++, idx++) {
631 offset[0] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
632 if(offset[0] > 255U) {
633 av_log(ac->avccontext, AV_LOG_ERROR,
634 "%s (%d) out of range.\n", sf_str[0], offset[0]);
635 return -1;
637 sf[idx] = -ff_aac_pow2sf_tab[ offset[0] + sf_offset];
642 return 0;
646 * Decode pulse data; reference: table 4.7.
648 static int decode_pulses(Pulse * pulse, GetBitContext * gb, const uint16_t * swb_offset, int num_swb) {
649 int i, pulse_swb;
650 pulse->num_pulse = get_bits(gb, 2) + 1;
651 pulse_swb = get_bits(gb, 6);
652 if (pulse_swb >= num_swb)
653 return -1;
654 pulse->pos[0] = swb_offset[pulse_swb];
655 pulse->pos[0] += get_bits(gb, 5);
656 if (pulse->pos[0] > 1023)
657 return -1;
658 pulse->amp[0] = get_bits(gb, 4);
659 for (i = 1; i < pulse->num_pulse; i++) {
660 pulse->pos[i] = get_bits(gb, 5) + pulse->pos[i-1];
661 if (pulse->pos[i] > 1023)
662 return -1;
663 pulse->amp[i] = get_bits(gb, 4);
665 return 0;
669 * Decode Temporal Noise Shaping data; reference: table 4.48.
671 * @return Returns error status. 0 - OK, !0 - error
673 static int decode_tns(AACContext * ac, TemporalNoiseShaping * tns,
674 GetBitContext * gb, const IndividualChannelStream * ics) {
675 int w, filt, i, coef_len, coef_res, coef_compress;
676 const int is8 = ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE;
677 const int tns_max_order = is8 ? 7 : ac->m4ac.object_type == AOT_AAC_MAIN ? 20 : 12;
678 for (w = 0; w < ics->num_windows; w++) {
679 if ((tns->n_filt[w] = get_bits(gb, 2 - is8))) {
680 coef_res = get_bits1(gb);
682 for (filt = 0; filt < tns->n_filt[w]; filt++) {
683 int tmp2_idx;
684 tns->length[w][filt] = get_bits(gb, 6 - 2*is8);
686 if ((tns->order[w][filt] = get_bits(gb, 5 - 2*is8)) > tns_max_order) {
687 av_log(ac->avccontext, AV_LOG_ERROR, "TNS filter order %d is greater than maximum %d.",
688 tns->order[w][filt], tns_max_order);
689 tns->order[w][filt] = 0;
690 return -1;
692 if (tns->order[w][filt]) {
693 tns->direction[w][filt] = get_bits1(gb);
694 coef_compress = get_bits1(gb);
695 coef_len = coef_res + 3 - coef_compress;
696 tmp2_idx = 2*coef_compress + coef_res;
698 for (i = 0; i < tns->order[w][filt]; i++)
699 tns->coef[w][filt][i] = tns_tmp2_map[tmp2_idx][get_bits(gb, coef_len)];
704 return 0;
708 * Decode Mid/Side data; reference: table 4.54.
710 * @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s;
711 * [1] mask is decoded from bitstream; [2] mask is all 1s;
712 * [3] reserved for scalable AAC
714 static void decode_mid_side_stereo(ChannelElement * cpe, GetBitContext * gb,
715 int ms_present) {
716 int idx;
717 if (ms_present == 1) {
718 for (idx = 0; idx < cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb; idx++)
719 cpe->ms_mask[idx] = get_bits1(gb);
720 } else if (ms_present == 2) {
721 memset(cpe->ms_mask, 1, cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb * sizeof(cpe->ms_mask[0]));
726 * Decode spectral data; reference: table 4.50.
727 * Dequantize and scale spectral data; reference: 4.6.3.3.
729 * @param coef array of dequantized, scaled spectral data
730 * @param sf array of scalefactors or intensity stereo positions
731 * @param pulse_present set if pulses are present
732 * @param pulse pointer to pulse data struct
733 * @param band_type array of the used band type
735 * @return Returns error status. 0 - OK, !0 - error
737 static int decode_spectrum_and_dequant(AACContext * ac, float coef[1024], GetBitContext * gb, float sf[120],
738 int pulse_present, const Pulse * pulse, const IndividualChannelStream * ics, enum BandType band_type[120]) {
739 int i, k, g, idx = 0;
740 const int c = 1024/ics->num_windows;
741 const uint16_t * offsets = ics->swb_offset;
742 float *coef_base = coef;
744 for (g = 0; g < ics->num_windows; g++)
745 memset(coef + g * 128 + offsets[ics->max_sfb], 0, sizeof(float)*(c - offsets[ics->max_sfb]));
747 for (g = 0; g < ics->num_window_groups; g++) {
748 for (i = 0; i < ics->max_sfb; i++, idx++) {
749 const int cur_band_type = band_type[idx];
750 const int dim = cur_band_type >= FIRST_PAIR_BT ? 2 : 4;
751 const int is_cb_unsigned = IS_CODEBOOK_UNSIGNED(cur_band_type);
752 int group;
753 if (cur_band_type == ZERO_BT) {
754 for (group = 0; group < ics->group_len[g]; group++) {
755 memset(coef + group * 128 + offsets[i], 0, (offsets[i+1] - offsets[i])*sizeof(float));
757 }else if (cur_band_type == NOISE_BT) {
758 for (group = 0; group < ics->group_len[g]; group++) {
759 float scale;
760 float band_energy = 0;
761 for (k = offsets[i]; k < offsets[i+1]; k++) {
762 ac->random_state = lcg_random(ac->random_state);
763 coef[group*128+k] = ac->random_state;
764 band_energy += coef[group*128+k]*coef[group*128+k];
766 scale = sf[idx] / sqrtf(band_energy);
767 for (k = offsets[i]; k < offsets[i+1]; k++) {
768 coef[group*128+k] *= scale;
771 }else if (cur_band_type != INTENSITY_BT2 && cur_band_type != INTENSITY_BT) {
772 for (group = 0; group < ics->group_len[g]; group++) {
773 for (k = offsets[i]; k < offsets[i+1]; k += dim) {
774 const int index = get_vlc2(gb, vlc_spectral[cur_band_type - 1].table, 6, 3);
775 const int coef_tmp_idx = (group << 7) + k;
776 const float *vq_ptr;
777 int j;
778 if(index >= ff_aac_spectral_sizes[cur_band_type - 1]) {
779 av_log(ac->avccontext, AV_LOG_ERROR,
780 "Read beyond end of ff_aac_codebook_vectors[%d][]. index %d >= %d\n",
781 cur_band_type - 1, index, ff_aac_spectral_sizes[cur_band_type - 1]);
782 return -1;
784 vq_ptr = &ff_aac_codebook_vectors[cur_band_type - 1][index * dim];
785 if (is_cb_unsigned) {
786 for (j = 0; j < dim; j++)
787 if (vq_ptr[j])
788 coef[coef_tmp_idx + j] = 1 - 2*(int)get_bits1(gb);
789 }else {
790 for (j = 0; j < dim; j++)
791 coef[coef_tmp_idx + j] = 1.0f;
793 if (cur_band_type == ESC_BT) {
794 for (j = 0; j < 2; j++) {
795 if (vq_ptr[j] == 64.0f) {
796 int n = 4;
797 /* The total length of escape_sequence must be < 22 bits according
798 to the specification (i.e. max is 11111111110xxxxxxxxxx). */
799 while (get_bits1(gb) && n < 15) n++;
800 if(n == 15) {
801 av_log(ac->avccontext, AV_LOG_ERROR, "error in spectral data, ESC overflow\n");
802 return -1;
804 n = (1<<n) + get_bits(gb, n);
805 coef[coef_tmp_idx + j] *= cbrtf(fabsf(n)) * n;
806 }else
807 coef[coef_tmp_idx + j] *= vq_ptr[j];
809 }else
810 for (j = 0; j < dim; j++)
811 coef[coef_tmp_idx + j] *= vq_ptr[j];
812 for (j = 0; j < dim; j++)
813 coef[coef_tmp_idx + j] *= sf[idx];
818 coef += ics->group_len[g]<<7;
821 if (pulse_present) {
822 idx = 0;
823 for(i = 0; i < pulse->num_pulse; i++){
824 float co = coef_base[ pulse->pos[i] ];
825 while(offsets[idx + 1] <= pulse->pos[i])
826 idx++;
827 if (band_type[idx] != NOISE_BT && sf[idx]) {
828 float ico = -pulse->amp[i];
829 if (co) {
830 co /= sf[idx];
831 ico = co / sqrtf(sqrtf(fabsf(co))) + (co > 0 ? -ico : ico);
833 coef_base[ pulse->pos[i] ] = cbrtf(fabsf(ico)) * ico * sf[idx];
837 return 0;
840 static av_always_inline float flt16_round(float pf) {
841 int exp;
842 pf = frexpf(pf, &exp);
843 pf = ldexpf(roundf(ldexpf(pf, 8)), exp-8);
844 return pf;
847 static av_always_inline float flt16_even(float pf) {
848 int exp;
849 pf = frexpf(pf, &exp);
850 pf = ldexpf(rintf(ldexpf(pf, 8)), exp-8);
851 return pf;
854 static av_always_inline float flt16_trunc(float pf) {
855 int exp;
856 pf = frexpf(pf, &exp);
857 pf = ldexpf(truncf(ldexpf(pf, 8)), exp-8);
858 return pf;
861 static void predict(AACContext * ac, PredictorState * ps, float* coef, int output_enable) {
862 const float a = 0.953125; // 61.0/64
863 const float alpha = 0.90625; // 29.0/32
864 float e0, e1;
865 float pv;
866 float k1, k2;
868 k1 = ps->var0 > 1 ? ps->cor0 * flt16_even(a / ps->var0) : 0;
869 k2 = ps->var1 > 1 ? ps->cor1 * flt16_even(a / ps->var1) : 0;
871 pv = flt16_round(k1 * ps->r0 + k2 * ps->r1);
872 if (output_enable)
873 *coef += pv * ac->sf_scale;
875 e0 = *coef / ac->sf_scale;
876 e1 = e0 - k1 * ps->r0;
878 ps->cor1 = flt16_trunc(alpha * ps->cor1 + ps->r1 * e1);
879 ps->var1 = flt16_trunc(alpha * ps->var1 + 0.5 * (ps->r1 * ps->r1 + e1 * e1));
880 ps->cor0 = flt16_trunc(alpha * ps->cor0 + ps->r0 * e0);
881 ps->var0 = flt16_trunc(alpha * ps->var0 + 0.5 * (ps->r0 * ps->r0 + e0 * e0));
883 ps->r1 = flt16_trunc(a * (ps->r0 - k1 * e0));
884 ps->r0 = flt16_trunc(a * e0);
888 * Apply AAC-Main style frequency domain prediction.
890 static void apply_prediction(AACContext * ac, SingleChannelElement * sce) {
891 int sfb, k;
893 if (!sce->ics.predictor_initialized) {
894 reset_all_predictors(sce->ics.predictor_state);
895 sce->ics.predictor_initialized = 1;
898 if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
899 for (sfb = 0; sfb < ff_aac_pred_sfb_max[ac->m4ac.sampling_index]; sfb++) {
900 for (k = sce->ics.swb_offset[sfb]; k < sce->ics.swb_offset[sfb + 1]; k++) {
901 predict(ac, &sce->ics.predictor_state[k], &sce->coeffs[k],
902 sce->ics.predictor_present && sce->ics.prediction_used[sfb]);
905 if (sce->ics.predictor_reset_group)
906 reset_predictor_group(sce->ics.predictor_state, sce->ics.predictor_reset_group);
907 } else
908 reset_all_predictors(sce->ics.predictor_state);
912 * Decode an individual_channel_stream payload; reference: table 4.44.
914 * @param common_window Channels have independent [0], or shared [1], Individual Channel Stream information.
915 * @param scale_flag scalable [1] or non-scalable [0] AAC (Unused until scalable AAC is implemented.)
917 * @return Returns error status. 0 - OK, !0 - error
919 static int decode_ics(AACContext * ac, SingleChannelElement * sce, GetBitContext * gb, int common_window, int scale_flag) {
920 Pulse pulse;
921 TemporalNoiseShaping * tns = &sce->tns;
922 IndividualChannelStream * ics = &sce->ics;
923 float * out = sce->coeffs;
924 int global_gain, pulse_present = 0;
926 /* This assignment is to silence a GCC warning about the variable being used
927 * uninitialized when in fact it always is.
929 pulse.num_pulse = 0;
931 global_gain = get_bits(gb, 8);
933 if (!common_window && !scale_flag) {
934 if (decode_ics_info(ac, ics, gb, 0) < 0)
935 return -1;
938 if (decode_band_types(ac, sce->band_type, sce->band_type_run_end, gb, ics) < 0)
939 return -1;
940 if (decode_scalefactors(ac, sce->sf, gb, global_gain, ics, sce->band_type, sce->band_type_run_end) < 0)
941 return -1;
943 pulse_present = 0;
944 if (!scale_flag) {
945 if ((pulse_present = get_bits1(gb))) {
946 if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
947 av_log(ac->avccontext, AV_LOG_ERROR, "Pulse tool not allowed in eight short sequence.\n");
948 return -1;
950 if (decode_pulses(&pulse, gb, ics->swb_offset, ics->num_swb)) {
951 av_log(ac->avccontext, AV_LOG_ERROR, "Pulse data corrupt or invalid.\n");
952 return -1;
955 if ((tns->present = get_bits1(gb)) && decode_tns(ac, tns, gb, ics))
956 return -1;
957 if (get_bits1(gb)) {
958 av_log_missing_feature(ac->avccontext, "SSR", 1);
959 return -1;
963 if (decode_spectrum_and_dequant(ac, out, gb, sce->sf, pulse_present, &pulse, ics, sce->band_type) < 0)
964 return -1;
966 if(ac->m4ac.object_type == AOT_AAC_MAIN)
967 apply_prediction(ac, sce);
969 return 0;
973 * Mid/Side stereo decoding; reference: 4.6.8.1.3.
975 static void apply_mid_side_stereo(ChannelElement * cpe) {
976 const IndividualChannelStream * ics = &cpe->ch[0].ics;
977 float *ch0 = cpe->ch[0].coeffs;
978 float *ch1 = cpe->ch[1].coeffs;
979 int g, i, k, group, idx = 0;
980 const uint16_t * offsets = ics->swb_offset;
981 for (g = 0; g < ics->num_window_groups; g++) {
982 for (i = 0; i < ics->max_sfb; i++, idx++) {
983 if (cpe->ms_mask[idx] &&
984 cpe->ch[0].band_type[idx] < NOISE_BT && cpe->ch[1].band_type[idx] < NOISE_BT) {
985 for (group = 0; group < ics->group_len[g]; group++) {
986 for (k = offsets[i]; k < offsets[i+1]; k++) {
987 float tmp = ch0[group*128 + k] - ch1[group*128 + k];
988 ch0[group*128 + k] += ch1[group*128 + k];
989 ch1[group*128 + k] = tmp;
994 ch0 += ics->group_len[g]*128;
995 ch1 += ics->group_len[g]*128;
1000 * intensity stereo decoding; reference: 4.6.8.2.3
1002 * @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s;
1003 * [1] mask is decoded from bitstream; [2] mask is all 1s;
1004 * [3] reserved for scalable AAC
1006 static void apply_intensity_stereo(ChannelElement * cpe, int ms_present) {
1007 const IndividualChannelStream * ics = &cpe->ch[1].ics;
1008 SingleChannelElement * sce1 = &cpe->ch[1];
1009 float *coef0 = cpe->ch[0].coeffs, *coef1 = cpe->ch[1].coeffs;
1010 const uint16_t * offsets = ics->swb_offset;
1011 int g, group, i, k, idx = 0;
1012 int c;
1013 float scale;
1014 for (g = 0; g < ics->num_window_groups; g++) {
1015 for (i = 0; i < ics->max_sfb;) {
1016 if (sce1->band_type[idx] == INTENSITY_BT || sce1->band_type[idx] == INTENSITY_BT2) {
1017 const int bt_run_end = sce1->band_type_run_end[idx];
1018 for (; i < bt_run_end; i++, idx++) {
1019 c = -1 + 2 * (sce1->band_type[idx] - 14);
1020 if (ms_present)
1021 c *= 1 - 2 * cpe->ms_mask[idx];
1022 scale = c * sce1->sf[idx];
1023 for (group = 0; group < ics->group_len[g]; group++)
1024 for (k = offsets[i]; k < offsets[i+1]; k++)
1025 coef1[group*128 + k] = scale * coef0[group*128 + k];
1027 } else {
1028 int bt_run_end = sce1->band_type_run_end[idx];
1029 idx += bt_run_end - i;
1030 i = bt_run_end;
1033 coef0 += ics->group_len[g]*128;
1034 coef1 += ics->group_len[g]*128;
1039 * Decode a channel_pair_element; reference: table 4.4.
1041 * @param elem_id Identifies the instance of a syntax element.
1043 * @return Returns error status. 0 - OK, !0 - error
1045 static int decode_cpe(AACContext * ac, GetBitContext * gb, int elem_id) {
1046 int i, ret, common_window, ms_present = 0;
1047 ChannelElement * cpe;
1049 cpe = ac->che[TYPE_CPE][elem_id];
1050 common_window = get_bits1(gb);
1051 if (common_window) {
1052 if (decode_ics_info(ac, &cpe->ch[0].ics, gb, 1))
1053 return -1;
1054 i = cpe->ch[1].ics.use_kb_window[0];
1055 cpe->ch[1].ics = cpe->ch[0].ics;
1056 cpe->ch[1].ics.use_kb_window[1] = i;
1057 ms_present = get_bits(gb, 2);
1058 if(ms_present == 3) {
1059 av_log(ac->avccontext, AV_LOG_ERROR, "ms_present = 3 is reserved.\n");
1060 return -1;
1061 } else if(ms_present)
1062 decode_mid_side_stereo(cpe, gb, ms_present);
1064 if ((ret = decode_ics(ac, &cpe->ch[0], gb, common_window, 0)))
1065 return ret;
1066 if ((ret = decode_ics(ac, &cpe->ch[1], gb, common_window, 0)))
1067 return ret;
1069 if (common_window && ms_present)
1070 apply_mid_side_stereo(cpe);
1072 apply_intensity_stereo(cpe, ms_present);
1073 return 0;
1077 * Decode coupling_channel_element; reference: table 4.8.
1079 * @param elem_id Identifies the instance of a syntax element.
1081 * @return Returns error status. 0 - OK, !0 - error
1083 static int decode_cce(AACContext * ac, GetBitContext * gb, ChannelElement * che) {
1084 int num_gain = 0;
1085 int c, g, sfb, ret;
1086 int sign;
1087 float scale;
1088 SingleChannelElement * sce = &che->ch[0];
1089 ChannelCoupling * coup = &che->coup;
1091 coup->coupling_point = 2*get_bits1(gb);
1092 coup->num_coupled = get_bits(gb, 3);
1093 for (c = 0; c <= coup->num_coupled; c++) {
1094 num_gain++;
1095 coup->type[c] = get_bits1(gb) ? TYPE_CPE : TYPE_SCE;
1096 coup->id_select[c] = get_bits(gb, 4);
1097 if (coup->type[c] == TYPE_CPE) {
1098 coup->ch_select[c] = get_bits(gb, 2);
1099 if (coup->ch_select[c] == 3)
1100 num_gain++;
1101 } else
1102 coup->ch_select[c] = 2;
1104 coup->coupling_point += get_bits1(gb);
1106 if (coup->coupling_point == 2) {
1107 av_log(ac->avccontext, AV_LOG_ERROR,
1108 "Independently switched CCE with 'invalid' domain signalled.\n");
1109 memset(coup, 0, sizeof(ChannelCoupling));
1110 return -1;
1113 sign = get_bits(gb, 1);
1114 scale = pow(2., pow(2., (int)get_bits(gb, 2) - 3));
1116 if ((ret = decode_ics(ac, sce, gb, 0, 0)))
1117 return ret;
1119 for (c = 0; c < num_gain; c++) {
1120 int idx = 0;
1121 int cge = 1;
1122 int gain = 0;
1123 float gain_cache = 1.;
1124 if (c) {
1125 cge = coup->coupling_point == AFTER_IMDCT ? 1 : get_bits1(gb);
1126 gain = cge ? get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60: 0;
1127 gain_cache = pow(scale, -gain);
1129 for (g = 0; g < sce->ics.num_window_groups; g++) {
1130 for (sfb = 0; sfb < sce->ics.max_sfb; sfb++, idx++) {
1131 if (sce->band_type[idx] != ZERO_BT) {
1132 if (!cge) {
1133 int t = get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
1134 if (t) {
1135 int s = 1;
1136 t = gain += t;
1137 if (sign) {
1138 s -= 2 * (t & 0x1);
1139 t >>= 1;
1141 gain_cache = pow(scale, -t) * s;
1144 coup->gain[c][idx] = gain_cache;
1149 return 0;
1153 * Decode Spectral Band Replication extension data; reference: table 4.55.
1155 * @param crc flag indicating the presence of CRC checksum
1156 * @param cnt length of TYPE_FIL syntactic element in bytes
1158 * @return Returns number of bytes consumed from the TYPE_FIL element.
1160 static int decode_sbr_extension(AACContext * ac, GetBitContext * gb, int crc, int cnt) {
1161 // TODO : sbr_extension implementation
1162 av_log_missing_feature(ac->avccontext, "SBR", 0);
1163 skip_bits_long(gb, 8*cnt - 4); // -4 due to reading extension type
1164 return cnt;
1168 * Parse whether channels are to be excluded from Dynamic Range Compression; reference: table 4.53.
1170 * @return Returns number of bytes consumed.
1172 static int decode_drc_channel_exclusions(DynamicRangeControl *che_drc, GetBitContext * gb) {
1173 int i;
1174 int num_excl_chan = 0;
1176 do {
1177 for (i = 0; i < 7; i++)
1178 che_drc->exclude_mask[num_excl_chan++] = get_bits1(gb);
1179 } while (num_excl_chan < MAX_CHANNELS - 7 && get_bits1(gb));
1181 return num_excl_chan / 7;
1185 * Decode dynamic range information; reference: table 4.52.
1187 * @param cnt length of TYPE_FIL syntactic element in bytes
1189 * @return Returns number of bytes consumed.
1191 static int decode_dynamic_range(DynamicRangeControl *che_drc, GetBitContext * gb, int cnt) {
1192 int n = 1;
1193 int drc_num_bands = 1;
1194 int i;
1196 /* pce_tag_present? */
1197 if(get_bits1(gb)) {
1198 che_drc->pce_instance_tag = get_bits(gb, 4);
1199 skip_bits(gb, 4); // tag_reserved_bits
1200 n++;
1203 /* excluded_chns_present? */
1204 if(get_bits1(gb)) {
1205 n += decode_drc_channel_exclusions(che_drc, gb);
1208 /* drc_bands_present? */
1209 if (get_bits1(gb)) {
1210 che_drc->band_incr = get_bits(gb, 4);
1211 che_drc->interpolation_scheme = get_bits(gb, 4);
1212 n++;
1213 drc_num_bands += che_drc->band_incr;
1214 for (i = 0; i < drc_num_bands; i++) {
1215 che_drc->band_top[i] = get_bits(gb, 8);
1216 n++;
1220 /* prog_ref_level_present? */
1221 if (get_bits1(gb)) {
1222 che_drc->prog_ref_level = get_bits(gb, 7);
1223 skip_bits1(gb); // prog_ref_level_reserved_bits
1224 n++;
1227 for (i = 0; i < drc_num_bands; i++) {
1228 che_drc->dyn_rng_sgn[i] = get_bits1(gb);
1229 che_drc->dyn_rng_ctl[i] = get_bits(gb, 7);
1230 n++;
1233 return n;
1237 * Decode extension data (incomplete); reference: table 4.51.
1239 * @param cnt length of TYPE_FIL syntactic element in bytes
1241 * @return Returns number of bytes consumed
1243 static int decode_extension_payload(AACContext * ac, GetBitContext * gb, int cnt) {
1244 int crc_flag = 0;
1245 int res = cnt;
1246 switch (get_bits(gb, 4)) { // extension type
1247 case EXT_SBR_DATA_CRC:
1248 crc_flag++;
1249 case EXT_SBR_DATA:
1250 res = decode_sbr_extension(ac, gb, crc_flag, cnt);
1251 break;
1252 case EXT_DYNAMIC_RANGE:
1253 res = decode_dynamic_range(&ac->che_drc, gb, cnt);
1254 break;
1255 case EXT_FILL:
1256 case EXT_FILL_DATA:
1257 case EXT_DATA_ELEMENT:
1258 default:
1259 skip_bits_long(gb, 8*cnt - 4);
1260 break;
1262 return res;
1266 * Decode Temporal Noise Shaping filter coefficients and apply all-pole filters; reference: 4.6.9.3.
1268 * @param decode 1 if tool is used normally, 0 if tool is used in LTP.
1269 * @param coef spectral coefficients
1271 static void apply_tns(float coef[1024], TemporalNoiseShaping * tns, IndividualChannelStream * ics, int decode) {
1272 const int mmm = FFMIN(ics->tns_max_bands, ics->max_sfb);
1273 int w, filt, m, i;
1274 int bottom, top, order, start, end, size, inc;
1275 float lpc[TNS_MAX_ORDER];
1277 for (w = 0; w < ics->num_windows; w++) {
1278 bottom = ics->num_swb;
1279 for (filt = 0; filt < tns->n_filt[w]; filt++) {
1280 top = bottom;
1281 bottom = FFMAX(0, top - tns->length[w][filt]);
1282 order = tns->order[w][filt];
1283 if (order == 0)
1284 continue;
1286 // tns_decode_coef
1287 compute_lpc_coefs(tns->coef[w][filt], order, lpc, 0, 0, 0);
1289 start = ics->swb_offset[FFMIN(bottom, mmm)];
1290 end = ics->swb_offset[FFMIN( top, mmm)];
1291 if ((size = end - start) <= 0)
1292 continue;
1293 if (tns->direction[w][filt]) {
1294 inc = -1; start = end - 1;
1295 } else {
1296 inc = 1;
1298 start += w * 128;
1300 // ar filter
1301 for (m = 0; m < size; m++, start += inc)
1302 for (i = 1; i <= FFMIN(m, order); i++)
1303 coef[start] -= coef[start - i*inc] * lpc[i-1];
1309 * Conduct IMDCT and windowing.
1311 static void imdct_and_windowing(AACContext * ac, SingleChannelElement * sce) {
1312 IndividualChannelStream * ics = &sce->ics;
1313 float * in = sce->coeffs;
1314 float * out = sce->ret;
1315 float * saved = sce->saved;
1316 const float * swindow = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
1317 const float * lwindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
1318 const float * swindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
1319 float * buf = ac->buf_mdct;
1320 DECLARE_ALIGNED(16, float, temp[128]);
1321 int i;
1323 // imdct
1324 if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
1325 if (ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE)
1326 av_log(ac->avccontext, AV_LOG_WARNING,
1327 "Transition from an ONLY_LONG or LONG_STOP to an EIGHT_SHORT sequence detected. "
1328 "If you heard an audible artifact, please submit the sample to the FFmpeg developers.\n");
1329 for (i = 0; i < 1024; i += 128)
1330 ff_imdct_half(&ac->mdct_small, buf + i, in + i);
1331 } else
1332 ff_imdct_half(&ac->mdct, buf, in);
1334 /* window overlapping
1335 * NOTE: To simplify the overlapping code, all 'meaningless' short to long
1336 * and long to short transitions are considered to be short to short
1337 * transitions. This leaves just two cases (long to long and short to short)
1338 * with a little special sauce for EIGHT_SHORT_SEQUENCE.
1340 if ((ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE) &&
1341 (ics->window_sequence[0] == ONLY_LONG_SEQUENCE || ics->window_sequence[0] == LONG_START_SEQUENCE)) {
1342 ac->dsp.vector_fmul_window( out, saved, buf, lwindow_prev, ac->add_bias, 512);
1343 } else {
1344 for (i = 0; i < 448; i++)
1345 out[i] = saved[i] + ac->add_bias;
1347 if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
1348 ac->dsp.vector_fmul_window(out + 448 + 0*128, saved + 448, buf + 0*128, swindow_prev, ac->add_bias, 64);
1349 ac->dsp.vector_fmul_window(out + 448 + 1*128, buf + 0*128 + 64, buf + 1*128, swindow, ac->add_bias, 64);
1350 ac->dsp.vector_fmul_window(out + 448 + 2*128, buf + 1*128 + 64, buf + 2*128, swindow, ac->add_bias, 64);
1351 ac->dsp.vector_fmul_window(out + 448 + 3*128, buf + 2*128 + 64, buf + 3*128, swindow, ac->add_bias, 64);
1352 ac->dsp.vector_fmul_window(temp, buf + 3*128 + 64, buf + 4*128, swindow, ac->add_bias, 64);
1353 memcpy( out + 448 + 4*128, temp, 64 * sizeof(float));
1354 } else {
1355 ac->dsp.vector_fmul_window(out + 448, saved + 448, buf, swindow_prev, ac->add_bias, 64);
1356 for (i = 576; i < 1024; i++)
1357 out[i] = buf[i-512] + ac->add_bias;
1361 // buffer update
1362 if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
1363 for (i = 0; i < 64; i++)
1364 saved[i] = temp[64 + i] - ac->add_bias;
1365 ac->dsp.vector_fmul_window(saved + 64, buf + 4*128 + 64, buf + 5*128, swindow, 0, 64);
1366 ac->dsp.vector_fmul_window(saved + 192, buf + 5*128 + 64, buf + 6*128, swindow, 0, 64);
1367 ac->dsp.vector_fmul_window(saved + 320, buf + 6*128 + 64, buf + 7*128, swindow, 0, 64);
1368 memcpy( saved + 448, buf + 7*128 + 64, 64 * sizeof(float));
1369 } else if (ics->window_sequence[0] == LONG_START_SEQUENCE) {
1370 memcpy( saved, buf + 512, 448 * sizeof(float));
1371 memcpy( saved + 448, buf + 7*128 + 64, 64 * sizeof(float));
1372 } else { // LONG_STOP or ONLY_LONG
1373 memcpy( saved, buf + 512, 512 * sizeof(float));
1378 * Apply dependent channel coupling (applied before IMDCT).
1380 * @param index index into coupling gain array
1382 static void apply_dependent_coupling(AACContext * ac, SingleChannelElement * target, ChannelElement * cce, int index) {
1383 IndividualChannelStream * ics = &cce->ch[0].ics;
1384 const uint16_t * offsets = ics->swb_offset;
1385 float * dest = target->coeffs;
1386 const float * src = cce->ch[0].coeffs;
1387 int g, i, group, k, idx = 0;
1388 if(ac->m4ac.object_type == AOT_AAC_LTP) {
1389 av_log(ac->avccontext, AV_LOG_ERROR,
1390 "Dependent coupling is not supported together with LTP\n");
1391 return;
1393 for (g = 0; g < ics->num_window_groups; g++) {
1394 for (i = 0; i < ics->max_sfb; i++, idx++) {
1395 if (cce->ch[0].band_type[idx] != ZERO_BT) {
1396 for (group = 0; group < ics->group_len[g]; group++) {
1397 for (k = offsets[i]; k < offsets[i+1]; k++) {
1398 // XXX dsputil-ize
1399 dest[group*128+k] += cce->coup.gain[index][idx] * src[group*128+k];
1404 dest += ics->group_len[g]*128;
1405 src += ics->group_len[g]*128;
1410 * Apply independent channel coupling (applied after IMDCT).
1412 * @param index index into coupling gain array
1414 static void apply_independent_coupling(AACContext * ac, SingleChannelElement * target, ChannelElement * cce, int index) {
1415 int i;
1416 for (i = 0; i < 1024; i++)
1417 target->ret[i] += cce->coup.gain[index][0] * (cce->ch[0].ret[i] - ac->add_bias);
1421 * channel coupling transformation interface
1423 * @param index index into coupling gain array
1424 * @param apply_coupling_method pointer to (in)dependent coupling function
1426 static void apply_channel_coupling(AACContext * ac, ChannelElement * cc,
1427 enum RawDataBlockType type, int elem_id, enum CouplingPoint coupling_point,
1428 void (*apply_coupling_method)(AACContext * ac, SingleChannelElement * target, ChannelElement * cce, int index))
1430 int i, c;
1432 for (i = 0; i < MAX_ELEM_ID; i++) {
1433 ChannelElement *cce = ac->che[TYPE_CCE][i];
1434 int index = 0;
1436 if (cce && cce->coup.coupling_point == coupling_point) {
1437 ChannelCoupling * coup = &cce->coup;
1439 for (c = 0; c <= coup->num_coupled; c++) {
1440 if (coup->type[c] == type && coup->id_select[c] == elem_id) {
1441 if (coup->ch_select[c] != 1) {
1442 apply_coupling_method(ac, &cc->ch[0], cce, index);
1443 if (coup->ch_select[c] != 0)
1444 index++;
1446 if (coup->ch_select[c] != 2)
1447 apply_coupling_method(ac, &cc->ch[1], cce, index++);
1448 } else
1449 index += 1 + (coup->ch_select[c] == 3);
1456 * Convert spectral data to float samples, applying all supported tools as appropriate.
1458 static void spectral_to_sample(AACContext * ac) {
1459 int i, type;
1460 for(type = 3; type >= 0; type--) {
1461 for (i = 0; i < MAX_ELEM_ID; i++) {
1462 ChannelElement *che = ac->che[type][i];
1463 if(che) {
1464 if(type <= TYPE_CPE)
1465 apply_channel_coupling(ac, che, type, i, BEFORE_TNS, apply_dependent_coupling);
1466 if(che->ch[0].tns.present)
1467 apply_tns(che->ch[0].coeffs, &che->ch[0].tns, &che->ch[0].ics, 1);
1468 if(che->ch[1].tns.present)
1469 apply_tns(che->ch[1].coeffs, &che->ch[1].tns, &che->ch[1].ics, 1);
1470 if(type <= TYPE_CPE)
1471 apply_channel_coupling(ac, che, type, i, BETWEEN_TNS_AND_IMDCT, apply_dependent_coupling);
1472 if(type != TYPE_CCE || che->coup.coupling_point == AFTER_IMDCT)
1473 imdct_and_windowing(ac, &che->ch[0]);
1474 if(type == TYPE_CPE)
1475 imdct_and_windowing(ac, &che->ch[1]);
1476 if(type <= TYPE_CCE)
1477 apply_channel_coupling(ac, che, type, i, AFTER_IMDCT, apply_independent_coupling);
1483 static int aac_decode_frame(AVCodecContext * avccontext, void * data, int * data_size, const uint8_t * buf, int buf_size) {
1484 AACContext * ac = avccontext->priv_data;
1485 GetBitContext gb;
1486 enum RawDataBlockType elem_type;
1487 int err, elem_id, data_size_tmp;
1489 init_get_bits(&gb, buf, buf_size*8);
1491 // parse
1492 while ((elem_type = get_bits(&gb, 3)) != TYPE_END) {
1493 elem_id = get_bits(&gb, 4);
1494 err = -1;
1496 if(elem_type == TYPE_SCE && elem_id == 1 &&
1497 !ac->che[TYPE_SCE][elem_id] && ac->che[TYPE_LFE][0]) {
1498 /* Some streams incorrectly code 5.1 audio as SCE[0] CPE[0] CPE[1] SCE[1]
1499 instead of SCE[0] CPE[0] CPE[0] LFE[0]. If we seem to have
1500 encountered such a stream, transfer the LFE[0] element to SCE[1] */
1501 ac->che[TYPE_SCE][elem_id] = ac->che[TYPE_LFE][0];
1502 ac->che[TYPE_LFE][0] = NULL;
1504 if(elem_type < TYPE_DSE) {
1505 if(!ac->che[elem_type][elem_id])
1506 return -1;
1507 if(elem_type != TYPE_CCE)
1508 ac->che[elem_type][elem_id]->coup.coupling_point = 4;
1511 switch (elem_type) {
1513 case TYPE_SCE:
1514 err = decode_ics(ac, &ac->che[TYPE_SCE][elem_id]->ch[0], &gb, 0, 0);
1515 break;
1517 case TYPE_CPE:
1518 err = decode_cpe(ac, &gb, elem_id);
1519 break;
1521 case TYPE_CCE:
1522 err = decode_cce(ac, &gb, ac->che[TYPE_CCE][elem_id]);
1523 break;
1525 case TYPE_LFE:
1526 err = decode_ics(ac, &ac->che[TYPE_LFE][elem_id]->ch[0], &gb, 0, 0);
1527 break;
1529 case TYPE_DSE:
1530 skip_data_stream_element(&gb);
1531 err = 0;
1532 break;
1534 case TYPE_PCE:
1536 enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
1537 memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
1538 if((err = decode_pce(ac, new_che_pos, &gb)))
1539 break;
1540 err = output_configure(ac, ac->che_pos, new_che_pos);
1541 break;
1544 case TYPE_FIL:
1545 if (elem_id == 15)
1546 elem_id += get_bits(&gb, 8) - 1;
1547 while (elem_id > 0)
1548 elem_id -= decode_extension_payload(ac, &gb, elem_id);
1549 err = 0; /* FIXME */
1550 break;
1552 default:
1553 err = -1; /* should not happen, but keeps compiler happy */
1554 break;
1557 if(err)
1558 return err;
1561 spectral_to_sample(ac);
1563 if (!ac->is_saved) {
1564 ac->is_saved = 1;
1565 *data_size = 0;
1566 return buf_size;
1569 data_size_tmp = 1024 * avccontext->channels * sizeof(int16_t);
1570 if(*data_size < data_size_tmp) {
1571 av_log(avccontext, AV_LOG_ERROR,
1572 "Output buffer too small (%d) or trying to output too many samples (%d) for this frame.\n",
1573 *data_size, data_size_tmp);
1574 return -1;
1576 *data_size = data_size_tmp;
1578 ac->dsp.float_to_int16_interleave(data, (const float **)ac->output_data, 1024, avccontext->channels);
1580 return buf_size;
1583 static av_cold int aac_decode_close(AVCodecContext * avccontext) {
1584 AACContext * ac = avccontext->priv_data;
1585 int i, type;
1587 for (i = 0; i < MAX_ELEM_ID; i++) {
1588 for(type = 0; type < 4; type++)
1589 av_freep(&ac->che[type][i]);
1592 ff_mdct_end(&ac->mdct);
1593 ff_mdct_end(&ac->mdct_small);
1594 return 0 ;
1597 AVCodec aac_decoder = {
1598 "aac",
1599 CODEC_TYPE_AUDIO,
1600 CODEC_ID_AAC,
1601 sizeof(AACContext),
1602 aac_decode_init,
1603 NULL,
1604 aac_decode_close,
1605 aac_decode_frame,
1606 .long_name = NULL_IF_CONFIG_SMALL("Advanced Audio Coding"),
1607 .sample_fmts = (enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE},