2 * Monkey's Audio lossless audio decoder
3 * Copyright (c) 2007 Benjamin Zores <ben@geexbox.org>
4 * based upon libdemac from Dave Chapman.
6 * This file is part of FFmpeg.
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23 #define ALT_BITSTREAM_READER_LE
26 #include "bitstream.h"
27 #include "bytestream.h"
31 * Monkey's Audio lossless audio decoder
34 #define BLOCKS_PER_LOOP 4608
35 #define MAX_CHANNELS 2
36 #define MAX_BYTESPERSAMPLE 3
38 #define APE_FRAMECODE_MONO_SILENCE 1
39 #define APE_FRAMECODE_STEREO_SILENCE 3
40 #define APE_FRAMECODE_PSEUDO_STEREO 4
42 #define HISTORY_SIZE 512
43 #define PREDICTOR_ORDER 8
44 /** Total size of all predictor histories */
45 #define PREDICTOR_SIZE 50
47 #define YDELAYA (18 + PREDICTOR_ORDER*4)
48 #define YDELAYB (18 + PREDICTOR_ORDER*3)
49 #define XDELAYA (18 + PREDICTOR_ORDER*2)
50 #define XDELAYB (18 + PREDICTOR_ORDER)
52 #define YADAPTCOEFFSA 18
53 #define XADAPTCOEFFSA 14
54 #define YADAPTCOEFFSB 10
55 #define XADAPTCOEFFSB 5
58 * Possible compression levels
61 enum APECompressionLevel
{
62 COMPRESSION_LEVEL_FAST
= 1000,
63 COMPRESSION_LEVEL_NORMAL
= 2000,
64 COMPRESSION_LEVEL_HIGH
= 3000,
65 COMPRESSION_LEVEL_EXTRA_HIGH
= 4000,
66 COMPRESSION_LEVEL_INSANE
= 5000
70 #define APE_FILTER_LEVELS 3
72 /** Filter orders depending on compression level */
73 static const uint16_t ape_filter_orders
[5][APE_FILTER_LEVELS
] = {
81 /** Filter fraction bits depending on compression level */
82 static const uint8_t ape_filter_fracbits
[5][APE_FILTER_LEVELS
] = {
91 /** Filters applied to the decoded data */
92 typedef struct APEFilter
{
93 int16_t *coeffs
; ///< actual coefficients used in filtering
94 int16_t *adaptcoeffs
; ///< adaptive filter coefficients used for correcting of actual filter coefficients
95 int16_t *historybuffer
; ///< filter memory
96 int16_t *delay
; ///< filtered values
101 typedef struct APERice
{
106 typedef struct APERangecoder
{
107 uint32_t low
; ///< low end of interval
108 uint32_t range
; ///< length of interval
109 uint32_t help
; ///< bytes_to_follow resp. intermediate value
110 unsigned int buffer
; ///< buffer for input/output
113 /** Filter histories */
114 typedef struct APEPredictor
{
122 int32_t coeffsA
[2][4]; ///< adaption coefficients
123 int32_t coeffsB
[2][5]; ///< adaption coefficients
124 int32_t historybuffer
[HISTORY_SIZE
+ PREDICTOR_SIZE
];
127 /** Decoder context */
128 typedef struct APEContext
{
129 AVCodecContext
*avctx
;
132 int samples
; ///< samples left to decode in current frame
134 int fileversion
; ///< codec version, very important in decoding process
135 int compression_level
; ///< compression levels
136 int fset
; ///< which filter set to use (calculated from compression level)
137 int flags
; ///< global decoder flags
139 uint32_t CRC
; ///< frame CRC
140 int frameflags
; ///< frame flags
141 int currentframeblocks
; ///< samples (per channel) in current frame
142 int blocksdecoded
; ///< count of decoded samples in current frame
143 APEPredictor predictor
; ///< predictor used for final reconstruction
145 int32_t decoded0
[BLOCKS_PER_LOOP
]; ///< decoded data for the first channel
146 int32_t decoded1
[BLOCKS_PER_LOOP
]; ///< decoded data for the second channel
148 int16_t* filterbuf
[APE_FILTER_LEVELS
]; ///< filter memory
150 APERangecoder rc
; ///< rangecoder used to decode actual values
151 APERice riceX
; ///< rice code parameters for the second channel
152 APERice riceY
; ///< rice code parameters for the first channel
153 APEFilter filters
[APE_FILTER_LEVELS
][2]; ///< filters used for reconstruction
155 uint8_t *data
; ///< current frame data
156 uint8_t *data_end
; ///< frame data end
157 const uint8_t *ptr
; ///< current position in frame data
158 const uint8_t *last_ptr
; ///< position where last 4608-sample block ended
165 static av_cold
int ape_decode_init(AVCodecContext
* avctx
)
167 APEContext
*s
= avctx
->priv_data
;
170 if (avctx
->extradata_size
!= 6) {
171 av_log(avctx
, AV_LOG_ERROR
, "Incorrect extradata\n");
174 if (avctx
->bits_per_sample
!= 16) {
175 av_log(avctx
, AV_LOG_ERROR
, "Only 16-bit samples are supported\n");
178 if (avctx
->channels
> 2) {
179 av_log(avctx
, AV_LOG_ERROR
, "Only mono and stereo is supported\n");
183 s
->channels
= avctx
->channels
;
184 s
->fileversion
= AV_RL16(avctx
->extradata
);
185 s
->compression_level
= AV_RL16(avctx
->extradata
+ 2);
186 s
->flags
= AV_RL16(avctx
->extradata
+ 4);
188 av_log(avctx
, AV_LOG_DEBUG
, "Compression Level: %d - Flags: %d\n", s
->compression_level
, s
->flags
);
189 if (s
->compression_level
% 1000 || s
->compression_level
> COMPRESSION_LEVEL_INSANE
) {
190 av_log(avctx
, AV_LOG_ERROR
, "Incorrect compression level %d\n", s
->compression_level
);
193 s
->fset
= s
->compression_level
/ 1000 - 1;
194 for (i
= 0; i
< APE_FILTER_LEVELS
; i
++) {
195 if (!ape_filter_orders
[s
->fset
][i
])
197 s
->filterbuf
[i
] = av_malloc((ape_filter_orders
[s
->fset
][i
] * 3 + HISTORY_SIZE
) * 4);
200 dsputil_init(&s
->dsp
, avctx
);
201 avctx
->sample_fmt
= SAMPLE_FMT_S16
;
205 static av_cold
int ape_decode_close(AVCodecContext
* avctx
)
207 APEContext
*s
= avctx
->priv_data
;
210 for (i
= 0; i
< APE_FILTER_LEVELS
; i
++)
211 av_freep(&s
->filterbuf
[i
]);
217 * @defgroup rangecoder APE range decoder
222 #define TOP_VALUE ((unsigned int)1 << (CODE_BITS-1))
223 #define SHIFT_BITS (CODE_BITS - 9)
224 #define EXTRA_BITS ((CODE_BITS-2) % 8 + 1)
225 #define BOTTOM_VALUE (TOP_VALUE >> 8)
227 /** Start the decoder */
228 static inline void range_start_decoding(APEContext
* ctx
)
230 ctx
->rc
.buffer
= bytestream_get_byte(&ctx
->ptr
);
231 ctx
->rc
.low
= ctx
->rc
.buffer
>> (8 - EXTRA_BITS
);
232 ctx
->rc
.range
= (uint32_t) 1 << EXTRA_BITS
;
235 /** Perform normalization */
236 static inline void range_dec_normalize(APEContext
* ctx
)
238 while (ctx
->rc
.range
<= BOTTOM_VALUE
) {
239 ctx
->rc
.buffer
<<= 8;
240 if(ctx
->ptr
< ctx
->data_end
)
241 ctx
->rc
.buffer
+= *ctx
->ptr
;
243 ctx
->rc
.low
= (ctx
->rc
.low
<< 8) | ((ctx
->rc
.buffer
>> 1) & 0xFF);
249 * Calculate culmulative frequency for next symbol. Does NO update!
250 * @param tot_f is the total frequency or (code_value)1<<shift
251 * @return the culmulative frequency
253 static inline int range_decode_culfreq(APEContext
* ctx
, int tot_f
)
255 range_dec_normalize(ctx
);
256 ctx
->rc
.help
= ctx
->rc
.range
/ tot_f
;
257 return ctx
->rc
.low
/ ctx
->rc
.help
;
261 * Decode value with given size in bits
262 * @param shift number of bits to decode
264 static inline int range_decode_culshift(APEContext
* ctx
, int shift
)
266 range_dec_normalize(ctx
);
267 ctx
->rc
.help
= ctx
->rc
.range
>> shift
;
268 return ctx
->rc
.low
/ ctx
->rc
.help
;
273 * Update decoding state
274 * @param sy_f the interval length (frequency of the symbol)
275 * @param lt_f the lower end (frequency sum of < symbols)
277 static inline void range_decode_update(APEContext
* ctx
, int sy_f
, int lt_f
)
279 ctx
->rc
.low
-= ctx
->rc
.help
* lt_f
;
280 ctx
->rc
.range
= ctx
->rc
.help
* sy_f
;
283 /** Decode n bits (n <= 16) without modelling */
284 static inline int range_decode_bits(APEContext
* ctx
, int n
)
286 int sym
= range_decode_culshift(ctx
, n
);
287 range_decode_update(ctx
, 1, sym
);
292 #define MODEL_ELEMENTS 64
295 * Fixed probabilities for symbols in Monkey Audio version 3.97
297 static const uint16_t counts_3970
[22] = {
298 0, 14824, 28224, 39348, 47855, 53994, 58171, 60926,
299 62682, 63786, 64463, 64878, 65126, 65276, 65365, 65419,
300 65450, 65469, 65480, 65487, 65491, 65493,
304 * Probability ranges for symbols in Monkey Audio version 3.97
306 static const uint16_t counts_diff_3970
[21] = {
307 14824, 13400, 11124, 8507, 6139, 4177, 2755, 1756,
308 1104, 677, 415, 248, 150, 89, 54, 31,
313 * Fixed probabilities for symbols in Monkey Audio version 3.98
315 static const uint16_t counts_3980
[22] = {
316 0, 19578, 36160, 48417, 56323, 60899, 63265, 64435,
317 64971, 65232, 65351, 65416, 65447, 65466, 65476, 65482,
318 65485, 65488, 65490, 65491, 65492, 65493,
322 * Probability ranges for symbols in Monkey Audio version 3.98
324 static const uint16_t counts_diff_3980
[21] = {
325 19578, 16582, 12257, 7906, 4576, 2366, 1170, 536,
326 261, 119, 65, 31, 19, 10, 6, 3,
332 * @param counts probability range start position
333 * @param count_diffs probability range widths
335 static inline int range_get_symbol(APEContext
* ctx
,
336 const uint16_t counts
[],
337 const uint16_t counts_diff
[])
341 cf
= range_decode_culshift(ctx
, 16);
344 symbol
= cf
- 65535 + 63;
345 range_decode_update(ctx
, 1, cf
);
350 /* figure out the symbol inefficiently; a binary search would be much better */
351 for (symbol
= 0; counts
[symbol
+ 1] <= cf
; symbol
++);
353 range_decode_update(ctx
, counts_diff
[symbol
], counts
[symbol
]);
357 /** @} */ // group rangecoder
359 static inline void update_rice(APERice
*rice
, int x
)
361 rice
->ksum
+= ((x
+ 1) / 2) - ((rice
->ksum
+ 16) >> 5);
365 else if (rice
->ksum
< (1 << (rice
->k
+ 4)))
367 else if (rice
->ksum
>= (1 << (rice
->k
+ 5)))
371 static inline int ape_decode_value(APEContext
* ctx
, APERice
*rice
)
375 if (ctx
->fileversion
< 3990) {
378 overflow
= range_get_symbol(ctx
, counts_3970
, counts_diff_3970
);
380 if (overflow
== (MODEL_ELEMENTS
- 1)) {
381 tmpk
= range_decode_bits(ctx
, 5);
384 tmpk
= (rice
->k
< 1) ? 0 : rice
->k
- 1;
387 x
= range_decode_bits(ctx
, tmpk
);
389 x
= range_decode_bits(ctx
, 16);
390 x
|= (range_decode_bits(ctx
, tmpk
- 16) << 16);
392 x
+= overflow
<< tmpk
;
396 pivot
= rice
->ksum
>> 5;
400 overflow
= range_get_symbol(ctx
, counts_3980
, counts_diff_3980
);
402 if (overflow
== (MODEL_ELEMENTS
- 1)) {
403 overflow
= range_decode_bits(ctx
, 16) << 16;
404 overflow
|= range_decode_bits(ctx
, 16);
407 base
= range_decode_culfreq(ctx
, pivot
);
408 range_decode_update(ctx
, 1, base
);
410 x
= base
+ overflow
* pivot
;
413 update_rice(rice
, x
);
415 /* Convert to signed */
422 static void entropy_decode(APEContext
* ctx
, int blockstodecode
, int stereo
)
424 int32_t *decoded0
= ctx
->decoded0
;
425 int32_t *decoded1
= ctx
->decoded1
;
427 ctx
->blocksdecoded
= blockstodecode
;
429 if (ctx
->frameflags
& APE_FRAMECODE_STEREO_SILENCE
) {
430 /* We are pure silence, just memset the output buffer. */
431 memset(decoded0
, 0, blockstodecode
* sizeof(int32_t));
432 memset(decoded1
, 0, blockstodecode
* sizeof(int32_t));
434 while (blockstodecode
--) {
435 *decoded0
++ = ape_decode_value(ctx
, &ctx
->riceY
);
437 *decoded1
++ = ape_decode_value(ctx
, &ctx
->riceX
);
441 if (ctx
->blocksdecoded
== ctx
->currentframeblocks
)
442 range_dec_normalize(ctx
); /* normalize to use up all bytes */
445 static void init_entropy_decoder(APEContext
* ctx
)
448 ctx
->CRC
= bytestream_get_be32(&ctx
->ptr
);
450 /* Read the frame flags if they exist */
452 if ((ctx
->fileversion
> 3820) && (ctx
->CRC
& 0x80000000)) {
453 ctx
->CRC
&= ~0x80000000;
455 ctx
->frameflags
= bytestream_get_be32(&ctx
->ptr
);
458 /* Keep a count of the blocks decoded in this frame */
459 ctx
->blocksdecoded
= 0;
461 /* Initialize the rice structs */
463 ctx
->riceX
.ksum
= (1 << ctx
->riceX
.k
) * 16;
465 ctx
->riceY
.ksum
= (1 << ctx
->riceY
.k
) * 16;
467 /* The first 8 bits of input are ignored. */
470 range_start_decoding(ctx
);
473 static const int32_t initial_coeffs
[4] = {
477 static void init_predictor_decoder(APEContext
* ctx
)
479 APEPredictor
*p
= &ctx
->predictor
;
481 /* Zero the history buffers */
482 memset(p
->historybuffer
, 0, PREDICTOR_SIZE
* sizeof(int32_t));
483 p
->buf
= p
->historybuffer
;
485 /* Initialize and zero the coefficients */
486 memcpy(p
->coeffsA
[0], initial_coeffs
, sizeof(initial_coeffs
));
487 memcpy(p
->coeffsA
[1], initial_coeffs
, sizeof(initial_coeffs
));
488 memset(p
->coeffsB
, 0, sizeof(p
->coeffsB
));
490 p
->filterA
[0] = p
->filterA
[1] = 0;
491 p
->filterB
[0] = p
->filterB
[1] = 0;
492 p
->lastA
[0] = p
->lastA
[1] = 0;
495 /** Get inverse sign of integer (-1 for positive, 1 for negative and 0 for zero) */
496 static inline int APESIGN(int32_t x
) {
497 return (x
< 0) - (x
> 0);
500 static int predictor_update_filter(APEPredictor
*p
, const int decoded
, const int filter
, const int delayA
, const int delayB
, const int adaptA
, const int adaptB
)
502 int32_t predictionA
, predictionB
;
504 p
->buf
[delayA
] = p
->lastA
[filter
];
505 p
->buf
[adaptA
] = APESIGN(p
->buf
[delayA
]);
506 p
->buf
[delayA
- 1] = p
->buf
[delayA
] - p
->buf
[delayA
- 1];
507 p
->buf
[adaptA
- 1] = APESIGN(p
->buf
[delayA
- 1]);
509 predictionA
= p
->buf
[delayA
] * p
->coeffsA
[filter
][0] +
510 p
->buf
[delayA
- 1] * p
->coeffsA
[filter
][1] +
511 p
->buf
[delayA
- 2] * p
->coeffsA
[filter
][2] +
512 p
->buf
[delayA
- 3] * p
->coeffsA
[filter
][3];
514 /* Apply a scaled first-order filter compression */
515 p
->buf
[delayB
] = p
->filterA
[filter
^ 1] - ((p
->filterB
[filter
] * 31) >> 5);
516 p
->buf
[adaptB
] = APESIGN(p
->buf
[delayB
]);
517 p
->buf
[delayB
- 1] = p
->buf
[delayB
] - p
->buf
[delayB
- 1];
518 p
->buf
[adaptB
- 1] = APESIGN(p
->buf
[delayB
- 1]);
519 p
->filterB
[filter
] = p
->filterA
[filter
^ 1];
521 predictionB
= p
->buf
[delayB
] * p
->coeffsB
[filter
][0] +
522 p
->buf
[delayB
- 1] * p
->coeffsB
[filter
][1] +
523 p
->buf
[delayB
- 2] * p
->coeffsB
[filter
][2] +
524 p
->buf
[delayB
- 3] * p
->coeffsB
[filter
][3] +
525 p
->buf
[delayB
- 4] * p
->coeffsB
[filter
][4];
527 p
->lastA
[filter
] = decoded
+ ((predictionA
+ (predictionB
>> 1)) >> 10);
528 p
->filterA
[filter
] = p
->lastA
[filter
] + ((p
->filterA
[filter
] * 31) >> 5);
530 if (!decoded
) // no need updating filter coefficients
531 return p
->filterA
[filter
];
534 p
->coeffsA
[filter
][0] -= p
->buf
[adaptA
];
535 p
->coeffsA
[filter
][1] -= p
->buf
[adaptA
- 1];
536 p
->coeffsA
[filter
][2] -= p
->buf
[adaptA
- 2];
537 p
->coeffsA
[filter
][3] -= p
->buf
[adaptA
- 3];
539 p
->coeffsB
[filter
][0] -= p
->buf
[adaptB
];
540 p
->coeffsB
[filter
][1] -= p
->buf
[adaptB
- 1];
541 p
->coeffsB
[filter
][2] -= p
->buf
[adaptB
- 2];
542 p
->coeffsB
[filter
][3] -= p
->buf
[adaptB
- 3];
543 p
->coeffsB
[filter
][4] -= p
->buf
[adaptB
- 4];
545 p
->coeffsA
[filter
][0] += p
->buf
[adaptA
];
546 p
->coeffsA
[filter
][1] += p
->buf
[adaptA
- 1];
547 p
->coeffsA
[filter
][2] += p
->buf
[adaptA
- 2];
548 p
->coeffsA
[filter
][3] += p
->buf
[adaptA
- 3];
550 p
->coeffsB
[filter
][0] += p
->buf
[adaptB
];
551 p
->coeffsB
[filter
][1] += p
->buf
[adaptB
- 1];
552 p
->coeffsB
[filter
][2] += p
->buf
[adaptB
- 2];
553 p
->coeffsB
[filter
][3] += p
->buf
[adaptB
- 3];
554 p
->coeffsB
[filter
][4] += p
->buf
[adaptB
- 4];
556 return p
->filterA
[filter
];
559 static void predictor_decode_stereo(APEContext
* ctx
, int count
)
561 int32_t predictionA
, predictionB
;
562 APEPredictor
*p
= &ctx
->predictor
;
563 int32_t *decoded0
= ctx
->decoded0
;
564 int32_t *decoded1
= ctx
->decoded1
;
568 predictionA
= predictor_update_filter(p
, *decoded0
, 0, YDELAYA
, YDELAYB
, YADAPTCOEFFSA
, YADAPTCOEFFSB
);
569 predictionB
= predictor_update_filter(p
, *decoded1
, 1, XDELAYA
, XDELAYB
, XADAPTCOEFFSA
, XADAPTCOEFFSB
);
570 *(decoded0
++) = predictionA
;
571 *(decoded1
++) = predictionB
;
576 /* Have we filled the history buffer? */
577 if (p
->buf
== p
->historybuffer
+ HISTORY_SIZE
) {
578 memmove(p
->historybuffer
, p
->buf
, PREDICTOR_SIZE
* sizeof(int32_t));
579 p
->buf
= p
->historybuffer
;
584 static void predictor_decode_mono(APEContext
* ctx
, int count
)
586 APEPredictor
*p
= &ctx
->predictor
;
587 int32_t *decoded0
= ctx
->decoded0
;
588 int32_t predictionA
, currentA
, A
;
590 currentA
= p
->lastA
[0];
595 p
->buf
[YDELAYA
] = currentA
;
596 p
->buf
[YDELAYA
- 1] = p
->buf
[YDELAYA
] - p
->buf
[YDELAYA
- 1];
598 predictionA
= p
->buf
[YDELAYA
] * p
->coeffsA
[0][0] +
599 p
->buf
[YDELAYA
- 1] * p
->coeffsA
[0][1] +
600 p
->buf
[YDELAYA
- 2] * p
->coeffsA
[0][2] +
601 p
->buf
[YDELAYA
- 3] * p
->coeffsA
[0][3];
603 currentA
= A
+ (predictionA
>> 10);
605 p
->buf
[YADAPTCOEFFSA
] = APESIGN(p
->buf
[YDELAYA
]);
606 p
->buf
[YADAPTCOEFFSA
- 1] = APESIGN(p
->buf
[YDELAYA
- 1]);
609 p
->coeffsA
[0][0] -= p
->buf
[YADAPTCOEFFSA
];
610 p
->coeffsA
[0][1] -= p
->buf
[YADAPTCOEFFSA
- 1];
611 p
->coeffsA
[0][2] -= p
->buf
[YADAPTCOEFFSA
- 2];
612 p
->coeffsA
[0][3] -= p
->buf
[YADAPTCOEFFSA
- 3];
614 p
->coeffsA
[0][0] += p
->buf
[YADAPTCOEFFSA
];
615 p
->coeffsA
[0][1] += p
->buf
[YADAPTCOEFFSA
- 1];
616 p
->coeffsA
[0][2] += p
->buf
[YADAPTCOEFFSA
- 2];
617 p
->coeffsA
[0][3] += p
->buf
[YADAPTCOEFFSA
- 3];
622 /* Have we filled the history buffer? */
623 if (p
->buf
== p
->historybuffer
+ HISTORY_SIZE
) {
624 memmove(p
->historybuffer
, p
->buf
, PREDICTOR_SIZE
* sizeof(int32_t));
625 p
->buf
= p
->historybuffer
;
628 p
->filterA
[0] = currentA
+ ((p
->filterA
[0] * 31) >> 5);
629 *(decoded0
++) = p
->filterA
[0];
632 p
->lastA
[0] = currentA
;
635 static void do_init_filter(APEFilter
*f
, int16_t * buf
, int order
)
638 f
->historybuffer
= buf
+ order
;
639 f
->delay
= f
->historybuffer
+ order
* 2;
640 f
->adaptcoeffs
= f
->historybuffer
+ order
;
642 memset(f
->historybuffer
, 0, (order
* 2) * sizeof(int16_t));
643 memset(f
->coeffs
, 0, order
* sizeof(int16_t));
647 static void init_filter(APEContext
* ctx
, APEFilter
*f
, int16_t * buf
, int order
)
649 do_init_filter(&f
[0], buf
, order
);
650 do_init_filter(&f
[1], buf
+ order
* 3 + HISTORY_SIZE
, order
);
653 static inline void do_apply_filter(APEContext
* ctx
, int version
, APEFilter
*f
, int32_t *data
, int count
, int order
, int fracbits
)
659 /* round fixedpoint scalar product */
660 res
= (ctx
->dsp
.scalarproduct_int16(f
->delay
- order
, f
->coeffs
, order
, 0) + (1 << (fracbits
- 1))) >> fracbits
;
663 ctx
->dsp
.add_int16(f
->coeffs
, f
->adaptcoeffs
- order
, order
);
665 ctx
->dsp
.sub_int16(f
->coeffs
, f
->adaptcoeffs
- order
, order
);
671 /* Update the output history */
672 *f
->delay
++ = av_clip_int16(res
);
674 if (version
< 3980) {
675 /* Version ??? to < 3.98 files (untested) */
676 f
->adaptcoeffs
[0] = (res
== 0) ? 0 : ((res
>> 28) & 8) - 4;
677 f
->adaptcoeffs
[-4] >>= 1;
678 f
->adaptcoeffs
[-8] >>= 1;
680 /* Version 3.98 and later files */
682 /* Update the adaption coefficients */
683 absres
= (res
< 0 ? -res
: res
);
685 if (absres
> (f
->avg
* 3))
686 *f
->adaptcoeffs
= ((res
>> 25) & 64) - 32;
687 else if (absres
> (f
->avg
* 4) / 3)
688 *f
->adaptcoeffs
= ((res
>> 26) & 32) - 16;
690 *f
->adaptcoeffs
= ((res
>> 27) & 16) - 8;
694 f
->avg
+= (absres
- f
->avg
) / 16;
696 f
->adaptcoeffs
[-1] >>= 1;
697 f
->adaptcoeffs
[-2] >>= 1;
698 f
->adaptcoeffs
[-8] >>= 1;
703 /* Have we filled the history buffer? */
704 if (f
->delay
== f
->historybuffer
+ HISTORY_SIZE
+ (order
* 2)) {
705 memmove(f
->historybuffer
, f
->delay
- (order
* 2),
706 (order
* 2) * sizeof(int16_t));
707 f
->delay
= f
->historybuffer
+ order
* 2;
708 f
->adaptcoeffs
= f
->historybuffer
+ order
;
713 static void apply_filter(APEContext
* ctx
, APEFilter
*f
,
714 int32_t * data0
, int32_t * data1
,
715 int count
, int order
, int fracbits
)
717 do_apply_filter(ctx
, ctx
->fileversion
, &f
[0], data0
, count
, order
, fracbits
);
719 do_apply_filter(ctx
, ctx
->fileversion
, &f
[1], data1
, count
, order
, fracbits
);
722 static void ape_apply_filters(APEContext
* ctx
, int32_t * decoded0
,
723 int32_t * decoded1
, int count
)
727 for (i
= 0; i
< APE_FILTER_LEVELS
; i
++) {
728 if (!ape_filter_orders
[ctx
->fset
][i
])
730 apply_filter(ctx
, ctx
->filters
[i
], decoded0
, decoded1
, count
, ape_filter_orders
[ctx
->fset
][i
], ape_filter_fracbits
[ctx
->fset
][i
]);
734 static void init_frame_decoder(APEContext
* ctx
)
737 init_entropy_decoder(ctx
);
738 init_predictor_decoder(ctx
);
740 for (i
= 0; i
< APE_FILTER_LEVELS
; i
++) {
741 if (!ape_filter_orders
[ctx
->fset
][i
])
743 init_filter(ctx
, ctx
->filters
[i
], ctx
->filterbuf
[i
], ape_filter_orders
[ctx
->fset
][i
]);
747 static void ape_unpack_mono(APEContext
* ctx
, int count
)
750 int32_t *decoded0
= ctx
->decoded0
;
751 int32_t *decoded1
= ctx
->decoded1
;
753 if (ctx
->frameflags
& APE_FRAMECODE_STEREO_SILENCE
) {
754 entropy_decode(ctx
, count
, 0);
755 /* We are pure silence, so we're done. */
756 av_log(ctx
->avctx
, AV_LOG_DEBUG
, "pure silence mono\n");
760 entropy_decode(ctx
, count
, 0);
761 ape_apply_filters(ctx
, decoded0
, NULL
, count
);
763 /* Now apply the predictor decoding */
764 predictor_decode_mono(ctx
, count
);
766 /* Pseudo-stereo - just copy left channel to right channel */
767 if (ctx
->channels
== 2) {
770 *(decoded1
++) = *(decoded0
++) = left
;
775 static void ape_unpack_stereo(APEContext
* ctx
, int count
)
778 int32_t *decoded0
= ctx
->decoded0
;
779 int32_t *decoded1
= ctx
->decoded1
;
781 if (ctx
->frameflags
& APE_FRAMECODE_STEREO_SILENCE
) {
782 /* We are pure silence, so we're done. */
783 av_log(ctx
->avctx
, AV_LOG_DEBUG
, "pure silence stereo\n");
787 entropy_decode(ctx
, count
, 1);
788 ape_apply_filters(ctx
, decoded0
, decoded1
, count
);
790 /* Now apply the predictor decoding */
791 predictor_decode_stereo(ctx
, count
);
793 /* Decorrelate and scale to output depth */
795 left
= *decoded1
- (*decoded0
/ 2);
796 right
= left
+ *decoded0
;
798 *(decoded0
++) = left
;
799 *(decoded1
++) = right
;
803 static int ape_decode_frame(AVCodecContext
* avctx
,
804 void *data
, int *data_size
,
805 const uint8_t * buf
, int buf_size
)
807 APEContext
*s
= avctx
->priv_data
;
808 int16_t *samples
= data
;
814 if (buf_size
== 0 && !s
->samples
) {
819 /* should not happen but who knows */
820 if (BLOCKS_PER_LOOP
* 2 * avctx
->channels
> *data_size
) {
821 av_log (avctx
, AV_LOG_ERROR
, "Packet size is too big to be handled in lavc! (max is %d where you have %d)\n", *data_size
, s
->samples
* 2 * avctx
->channels
);
826 s
->data
= av_realloc(s
->data
, (buf_size
+ 3) & ~3);
827 s
->dsp
.bswap_buf((uint32_t*)s
->data
, (const uint32_t*)buf
, buf_size
>> 2);
828 s
->ptr
= s
->last_ptr
= s
->data
;
829 s
->data_end
= s
->data
+ buf_size
;
831 nblocks
= s
->samples
= bytestream_get_be32(&s
->ptr
);
832 n
= bytestream_get_be32(&s
->ptr
);
834 av_log(avctx
, AV_LOG_ERROR
, "Incorrect offset passed\n");
840 s
->currentframeblocks
= nblocks
;
842 if (s
->samples
<= 0) {
847 memset(s
->decoded0
, 0, sizeof(s
->decoded0
));
848 memset(s
->decoded1
, 0, sizeof(s
->decoded1
));
850 /* Initialize the frame decoder */
851 init_frame_decoder(s
);
859 nblocks
= s
->samples
;
860 blockstodecode
= FFMIN(BLOCKS_PER_LOOP
, nblocks
);
864 if ((s
->channels
== 1) || (s
->frameflags
& APE_FRAMECODE_PSEUDO_STEREO
))
865 ape_unpack_mono(s
, blockstodecode
);
867 ape_unpack_stereo(s
, blockstodecode
);
869 if(s
->error
|| s
->ptr
> s
->data_end
){
871 av_log(avctx
, AV_LOG_ERROR
, "Error decoding frame\n");
875 for (i
= 0; i
< blockstodecode
; i
++) {
876 *samples
++ = s
->decoded0
[i
];
878 *samples
++ = s
->decoded1
[i
];
881 s
->samples
-= blockstodecode
;
883 *data_size
= blockstodecode
* 2 * s
->channels
;
884 bytes_used
= s
->samples
? s
->ptr
- s
->last_ptr
: buf_size
;
885 s
->last_ptr
= s
->ptr
;
889 AVCodec ape_decoder
= {
898 .long_name
= NULL_IF_CONFIG_SMALL("Monkey's Audio"),