2 * WMA compatible decoder
3 * Copyright (c) 2002 The FFmpeg Project
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23 * @file libavcodec/wmadec.c
24 * WMA compatible decoder.
25 * This decoder handles Microsoft Windows Media Audio data, versions 1 & 2.
26 * WMA v1 is identified by audio format 0x160 in Microsoft media files
27 * (ASF/AVI/WAV). WMA v2 is identified by audio format 0x161.
29 * To use this decoder, a calling application must supply the extra data
30 * bytes provided with the WMA data. These are the extra, codec-specific
31 * bytes at the end of a WAVEFORMATEX data structure. Transmit these bytes
32 * to the decoder using the extradata[_size] fields in AVCodecContext. There
33 * should be 4 extra bytes for v1 data and 6 extra bytes for v2 data.
43 #define EXPMAX ((19+EXPVLCBITS-1)/EXPVLCBITS)
45 #define HGAINVLCBITS 9
46 #define HGAINMAX ((13+HGAINVLCBITS-1)/HGAINVLCBITS)
48 static void wma_lsp_to_curve_init(WMACodecContext
*s
, int frame_len
);
51 static void dump_shorts(WMACodecContext
*s
, const char *name
, const short *tab
, int n
)
55 tprintf(s
->avctx
, "%s[%d]:\n", name
, n
);
58 tprintf(s
->avctx
, "%4d: ", i
);
59 tprintf(s
->avctx
, " %5d.0", tab
[i
]);
61 tprintf(s
->avctx
, "\n");
65 static void dump_floats(WMACodecContext
*s
, const char *name
, int prec
, const float *tab
, int n
)
69 tprintf(s
->avctx
, "%s[%d]:\n", name
, n
);
72 tprintf(s
->avctx
, "%4d: ", i
);
73 tprintf(s
->avctx
, " %8.*f", prec
, tab
[i
]);
75 tprintf(s
->avctx
, "\n");
78 tprintf(s
->avctx
, "\n");
82 static int wma_decode_init(AVCodecContext
* avctx
)
84 WMACodecContext
*s
= avctx
->priv_data
;
85 int i
, flags1
, flags2
;
90 /* extract flag infos */
93 extradata
= avctx
->extradata
;
94 if (avctx
->codec
->id
== CODEC_ID_WMAV1
&& avctx
->extradata_size
>= 4) {
95 flags1
= AV_RL16(extradata
);
96 flags2
= AV_RL16(extradata
+2);
97 } else if (avctx
->codec
->id
== CODEC_ID_WMAV2
&& avctx
->extradata_size
>= 6) {
98 flags1
= AV_RL32(extradata
);
99 flags2
= AV_RL16(extradata
+4);
101 // for(i=0; i<avctx->extradata_size; i++)
102 // av_log(NULL, AV_LOG_ERROR, "%02X ", extradata[i]);
104 s
->use_exp_vlc
= flags2
& 0x0001;
105 s
->use_bit_reservoir
= flags2
& 0x0002;
106 s
->use_variable_block_len
= flags2
& 0x0004;
108 if(ff_wma_init(avctx
, flags2
)<0)
112 for(i
= 0; i
< s
->nb_block_sizes
; i
++)
113 ff_mdct_init(&s
->mdct_ctx
[i
], s
->frame_len_bits
- i
+ 1, 1);
115 if (s
->use_noise_coding
) {
116 init_vlc(&s
->hgain_vlc
, HGAINVLCBITS
, sizeof(ff_wma_hgain_huffbits
),
117 ff_wma_hgain_huffbits
, 1, 1,
118 ff_wma_hgain_huffcodes
, 2, 2, 0);
121 if (s
->use_exp_vlc
) {
122 init_vlc(&s
->exp_vlc
, EXPVLCBITS
, sizeof(ff_wma_scale_huffbits
), //FIXME move out of context
123 ff_wma_scale_huffbits
, 1, 1,
124 ff_wma_scale_huffcodes
, 4, 4, 0);
126 wma_lsp_to_curve_init(s
, s
->frame_len
);
129 avctx
->sample_fmt
= SAMPLE_FMT_S16
;
134 * compute x^-0.25 with an exponent and mantissa table. We use linear
135 * interpolation to reduce the mantissa table size at a small speed
136 * expense (linear interpolation approximately doubles the number of
137 * bits of precision).
139 static inline float pow_m1_4(WMACodecContext
*s
, float x
)
150 m
= (u
.v
>> (23 - LSP_POW_BITS
)) & ((1 << LSP_POW_BITS
) - 1);
151 /* build interpolation scale: 1 <= t < 2. */
152 t
.v
= ((u
.v
<< LSP_POW_BITS
) & ((1 << 23) - 1)) | (127 << 23);
153 a
= s
->lsp_pow_m_table1
[m
];
154 b
= s
->lsp_pow_m_table2
[m
];
155 return s
->lsp_pow_e_table
[e
] * (a
+ b
* t
.f
);
158 static void wma_lsp_to_curve_init(WMACodecContext
*s
, int frame_len
)
163 wdel
= M_PI
/ frame_len
;
164 for(i
=0;i
<frame_len
;i
++)
165 s
->lsp_cos_table
[i
] = 2.0f
* cos(wdel
* i
);
167 /* tables for x^-0.25 computation */
170 s
->lsp_pow_e_table
[i
] = pow(2.0, e
* -0.25);
173 /* NOTE: these two tables are needed to avoid two operations in
176 for(i
=(1 << LSP_POW_BITS
) - 1;i
>=0;i
--) {
177 m
= (1 << LSP_POW_BITS
) + i
;
178 a
= (float)m
* (0.5 / (1 << LSP_POW_BITS
));
180 s
->lsp_pow_m_table1
[i
] = 2 * a
- b
;
181 s
->lsp_pow_m_table2
[i
] = b
- a
;
190 printf("%f^-0.25=%f e=%f\n", v
, r1
, r2
- r1
);
196 * NOTE: We use the same code as Vorbis here
197 * @todo optimize it further with SSE/3Dnow
199 static void wma_lsp_to_curve(WMACodecContext
*s
,
200 float *out
, float *val_max_ptr
,
204 float p
, q
, w
, v
, val_max
;
210 w
= s
->lsp_cos_table
[i
];
211 for(j
=1;j
<NB_LSP_COEFS
;j
+=2){
223 *val_max_ptr
= val_max
;
227 * decode exponents coded with LSP coefficients (same idea as Vorbis)
229 static void decode_exp_lsp(WMACodecContext
*s
, int ch
)
231 float lsp_coefs
[NB_LSP_COEFS
];
234 for(i
= 0; i
< NB_LSP_COEFS
; i
++) {
235 if (i
== 0 || i
>= 8)
236 val
= get_bits(&s
->gb
, 3);
238 val
= get_bits(&s
->gb
, 4);
239 lsp_coefs
[i
] = ff_wma_lsp_codebook
[i
][val
];
242 wma_lsp_to_curve(s
, s
->exponents
[ch
], &s
->max_exponent
[ch
],
243 s
->block_len
, lsp_coefs
);
247 * decode exponents coded with VLC codes
249 static int decode_exp_vlc(WMACodecContext
*s
, int ch
)
251 int last_exp
, n
, code
;
252 const uint16_t *ptr
, *band_ptr
;
253 float v
, *q
, max_scale
, *q_end
;
255 band_ptr
= s
->exponent_bands
[s
->frame_len_bits
- s
->block_len_bits
];
257 q
= s
->exponents
[ch
];
258 q_end
= q
+ s
->block_len
;
260 if (s
->version
== 1) {
261 last_exp
= get_bits(&s
->gb
, 5) + 10;
262 /* XXX: use a table */
263 v
= pow(10, last_exp
* (1.0 / 16.0));
273 code
= get_vlc2(&s
->gb
, s
->exp_vlc
.table
, EXPVLCBITS
, EXPMAX
);
276 /* NOTE: this offset is the same as MPEG4 AAC ! */
277 last_exp
+= code
- 60;
278 /* XXX: use a table */
279 v
= pow(10, last_exp
* (1.0 / 16.0));
287 s
->max_exponent
[ch
] = max_scale
;
293 * Apply MDCT window and add into output.
295 * We ensure that when the windows overlap their squared sum
296 * is always 1 (MDCT reconstruction rule).
298 static void wma_window(WMACodecContext
*s
, float *out
)
300 float *in
= s
->output
;
301 int block_len
, bsize
, n
;
304 if (s
->block_len_bits
<= s
->prev_block_len_bits
) {
305 block_len
= s
->block_len
;
306 bsize
= s
->frame_len_bits
- s
->block_len_bits
;
308 s
->dsp
.vector_fmul_add_add(out
, in
, s
->windows
[bsize
],
309 out
, 0, block_len
, 1);
312 block_len
= 1 << s
->prev_block_len_bits
;
313 n
= (s
->block_len
- block_len
) / 2;
314 bsize
= s
->frame_len_bits
- s
->prev_block_len_bits
;
316 s
->dsp
.vector_fmul_add_add(out
+n
, in
+n
, s
->windows
[bsize
],
317 out
+n
, 0, block_len
, 1);
319 memcpy(out
+n
+block_len
, in
+n
+block_len
, n
*sizeof(float));
326 if (s
->block_len_bits
<= s
->next_block_len_bits
) {
327 block_len
= s
->block_len
;
328 bsize
= s
->frame_len_bits
- s
->block_len_bits
;
330 s
->dsp
.vector_fmul_reverse(out
, in
, s
->windows
[bsize
], block_len
);
333 block_len
= 1 << s
->next_block_len_bits
;
334 n
= (s
->block_len
- block_len
) / 2;
335 bsize
= s
->frame_len_bits
- s
->next_block_len_bits
;
337 memcpy(out
, in
, n
*sizeof(float));
339 s
->dsp
.vector_fmul_reverse(out
+n
, in
+n
, s
->windows
[bsize
], block_len
);
341 memset(out
+n
+block_len
, 0, n
*sizeof(float));
347 * @return 0 if OK. 1 if last block of frame. return -1 if
348 * unrecorrable error.
350 static int wma_decode_block(WMACodecContext
*s
)
352 int n
, v
, a
, ch
, code
, bsize
;
353 int coef_nb_bits
, total_gain
;
354 int nb_coefs
[MAX_CHANNELS
];
358 tprintf(s
->avctx
, "***decode_block: %d:%d\n", s
->frame_count
- 1, s
->block_num
);
361 /* compute current block length */
362 if (s
->use_variable_block_len
) {
363 n
= av_log2(s
->nb_block_sizes
- 1) + 1;
365 if (s
->reset_block_lengths
) {
366 s
->reset_block_lengths
= 0;
367 v
= get_bits(&s
->gb
, n
);
368 if (v
>= s
->nb_block_sizes
)
370 s
->prev_block_len_bits
= s
->frame_len_bits
- v
;
371 v
= get_bits(&s
->gb
, n
);
372 if (v
>= s
->nb_block_sizes
)
374 s
->block_len_bits
= s
->frame_len_bits
- v
;
376 /* update block lengths */
377 s
->prev_block_len_bits
= s
->block_len_bits
;
378 s
->block_len_bits
= s
->next_block_len_bits
;
380 v
= get_bits(&s
->gb
, n
);
381 if (v
>= s
->nb_block_sizes
)
383 s
->next_block_len_bits
= s
->frame_len_bits
- v
;
385 /* fixed block len */
386 s
->next_block_len_bits
= s
->frame_len_bits
;
387 s
->prev_block_len_bits
= s
->frame_len_bits
;
388 s
->block_len_bits
= s
->frame_len_bits
;
391 /* now check if the block length is coherent with the frame length */
392 s
->block_len
= 1 << s
->block_len_bits
;
393 if ((s
->block_pos
+ s
->block_len
) > s
->frame_len
)
396 if (s
->nb_channels
== 2) {
397 s
->ms_stereo
= get_bits1(&s
->gb
);
400 for(ch
= 0; ch
< s
->nb_channels
; ch
++) {
401 a
= get_bits1(&s
->gb
);
402 s
->channel_coded
[ch
] = a
;
406 bsize
= s
->frame_len_bits
- s
->block_len_bits
;
408 /* if no channel coded, no need to go further */
409 /* XXX: fix potential framing problems */
413 /* read total gain and extract corresponding number of bits for
414 coef escape coding */
417 a
= get_bits(&s
->gb
, 7);
423 coef_nb_bits
= ff_wma_total_gain_to_bits(total_gain
);
425 /* compute number of coefficients */
426 n
= s
->coefs_end
[bsize
] - s
->coefs_start
;
427 for(ch
= 0; ch
< s
->nb_channels
; ch
++)
431 if (s
->use_noise_coding
) {
433 for(ch
= 0; ch
< s
->nb_channels
; ch
++) {
434 if (s
->channel_coded
[ch
]) {
436 n
= s
->exponent_high_sizes
[bsize
];
438 a
= get_bits1(&s
->gb
);
439 s
->high_band_coded
[ch
][i
] = a
;
440 /* if noise coding, the coefficients are not transmitted */
442 nb_coefs
[ch
] -= s
->exponent_high_bands
[bsize
][i
];
446 for(ch
= 0; ch
< s
->nb_channels
; ch
++) {
447 if (s
->channel_coded
[ch
]) {
450 n
= s
->exponent_high_sizes
[bsize
];
451 val
= (int)0x80000000;
453 if (s
->high_band_coded
[ch
][i
]) {
454 if (val
== (int)0x80000000) {
455 val
= get_bits(&s
->gb
, 7) - 19;
457 code
= get_vlc2(&s
->gb
, s
->hgain_vlc
.table
, HGAINVLCBITS
, HGAINMAX
);
462 s
->high_band_values
[ch
][i
] = val
;
469 /* exponents can be reused in short blocks. */
470 if ((s
->block_len_bits
== s
->frame_len_bits
) ||
472 for(ch
= 0; ch
< s
->nb_channels
; ch
++) {
473 if (s
->channel_coded
[ch
]) {
474 if (s
->use_exp_vlc
) {
475 if (decode_exp_vlc(s
, ch
) < 0)
478 decode_exp_lsp(s
, ch
);
480 s
->exponents_bsize
[ch
] = bsize
;
485 /* parse spectral coefficients : just RLE encoding */
486 for(ch
= 0; ch
< s
->nb_channels
; ch
++) {
487 if (s
->channel_coded
[ch
]) {
489 int level
, run
, sign
, tindex
;
491 const uint16_t *level_table
, *run_table
;
493 /* special VLC tables are used for ms stereo because
494 there is potentially less energy there */
495 tindex
= (ch
== 1 && s
->ms_stereo
);
496 coef_vlc
= &s
->coef_vlc
[tindex
];
497 run_table
= s
->run_table
[tindex
];
498 level_table
= s
->level_table
[tindex
];
500 ptr
= &s
->coefs1
[ch
][0];
501 eptr
= ptr
+ nb_coefs
[ch
];
502 memset(ptr
, 0, s
->block_len
* sizeof(int16_t));
504 code
= get_vlc2(&s
->gb
, coef_vlc
->table
, VLCBITS
, VLCMAX
);
510 } else if (code
== 0) {
512 level
= get_bits(&s
->gb
, coef_nb_bits
);
513 /* NOTE: this is rather suboptimal. reading
514 block_len_bits would be better */
515 run
= get_bits(&s
->gb
, s
->frame_len_bits
);
518 run
= run_table
[code
];
519 level
= level_table
[code
];
521 sign
= get_bits1(&s
->gb
);
527 av_log(NULL
, AV_LOG_ERROR
, "overflow in spectral RLE, ignoring\n");
531 /* NOTE: EOB can be omitted */
536 if (s
->version
== 1 && s
->nb_channels
>= 2) {
537 align_get_bits(&s
->gb
);
543 int n4
= s
->block_len
/ 2;
544 mdct_norm
= 1.0 / (float)n4
;
545 if (s
->version
== 1) {
546 mdct_norm
*= sqrt(n4
);
550 /* finally compute the MDCT coefficients */
551 for(ch
= 0; ch
< s
->nb_channels
; ch
++) {
552 if (s
->channel_coded
[ch
]) {
554 float *coefs
, *exponents
, mult
, mult1
, noise
;
555 int i
, j
, n
, n1
, last_high_band
, esize
;
556 float exp_power
[HIGH_BAND_MAX_SIZE
];
558 coefs1
= s
->coefs1
[ch
];
559 exponents
= s
->exponents
[ch
];
560 esize
= s
->exponents_bsize
[ch
];
561 mult
= pow(10, total_gain
* 0.05) / s
->max_exponent
[ch
];
563 coefs
= s
->coefs
[ch
];
564 if (s
->use_noise_coding
) {
566 /* very low freqs : noise */
567 for(i
= 0;i
< s
->coefs_start
; i
++) {
568 *coefs
++ = s
->noise_table
[s
->noise_index
] *
569 exponents
[i
<<bsize
>>esize
] * mult1
;
570 s
->noise_index
= (s
->noise_index
+ 1) & (NOISE_TAB_SIZE
- 1);
573 n1
= s
->exponent_high_sizes
[bsize
];
575 /* compute power of high bands */
576 exponents
= s
->exponents
[ch
] +
577 (s
->high_band_start
[bsize
]<<bsize
);
578 last_high_band
= 0; /* avoid warning */
580 n
= s
->exponent_high_bands
[s
->frame_len_bits
-
581 s
->block_len_bits
][j
];
582 if (s
->high_band_coded
[ch
][j
]) {
585 for(i
= 0;i
< n
; i
++) {
586 v
= exponents
[i
<<bsize
>>esize
];
589 exp_power
[j
] = e2
/ n
;
591 tprintf(s
->avctx
, "%d: power=%f (%d)\n", j
, exp_power
[j
], n
);
593 exponents
+= n
<<bsize
;
596 /* main freqs and high freqs */
597 exponents
= s
->exponents
[ch
] + (s
->coefs_start
<<bsize
);
600 n
= s
->high_band_start
[bsize
] -
603 n
= s
->exponent_high_bands
[s
->frame_len_bits
-
604 s
->block_len_bits
][j
];
606 if (j
>= 0 && s
->high_band_coded
[ch
][j
]) {
607 /* use noise with specified power */
608 mult1
= sqrt(exp_power
[j
] / exp_power
[last_high_band
]);
609 /* XXX: use a table */
610 mult1
= mult1
* pow(10, s
->high_band_values
[ch
][j
] * 0.05);
611 mult1
= mult1
/ (s
->max_exponent
[ch
] * s
->noise_mult
);
613 for(i
= 0;i
< n
; i
++) {
614 noise
= s
->noise_table
[s
->noise_index
];
615 s
->noise_index
= (s
->noise_index
+ 1) & (NOISE_TAB_SIZE
- 1);
617 exponents
[i
<<bsize
>>esize
] * mult1
;
619 exponents
+= n
<<bsize
;
621 /* coded values + small noise */
622 for(i
= 0;i
< n
; i
++) {
623 noise
= s
->noise_table
[s
->noise_index
];
624 s
->noise_index
= (s
->noise_index
+ 1) & (NOISE_TAB_SIZE
- 1);
625 *coefs
++ = ((*coefs1
++) + noise
) *
626 exponents
[i
<<bsize
>>esize
] * mult
;
628 exponents
+= n
<<bsize
;
632 /* very high freqs : noise */
633 n
= s
->block_len
- s
->coefs_end
[bsize
];
634 mult1
= mult
* exponents
[((-1<<bsize
))>>esize
];
635 for(i
= 0; i
< n
; i
++) {
636 *coefs
++ = s
->noise_table
[s
->noise_index
] * mult1
;
637 s
->noise_index
= (s
->noise_index
+ 1) & (NOISE_TAB_SIZE
- 1);
640 /* XXX: optimize more */
641 for(i
= 0;i
< s
->coefs_start
; i
++)
644 for(i
= 0;i
< n
; i
++) {
645 *coefs
++ = coefs1
[i
] * exponents
[i
<<bsize
>>esize
] * mult
;
647 n
= s
->block_len
- s
->coefs_end
[bsize
];
648 for(i
= 0;i
< n
; i
++)
655 for(ch
= 0; ch
< s
->nb_channels
; ch
++) {
656 if (s
->channel_coded
[ch
]) {
657 dump_floats(s
, "exponents", 3, s
->exponents
[ch
], s
->block_len
);
658 dump_floats(s
, "coefs", 1, s
->coefs
[ch
], s
->block_len
);
663 if (s
->ms_stereo
&& s
->channel_coded
[1]) {
667 /* nominal case for ms stereo: we do it before mdct */
668 /* no need to optimize this case because it should almost
670 if (!s
->channel_coded
[0]) {
671 tprintf(s
->avctx
, "rare ms-stereo case happened\n");
672 memset(s
->coefs
[0], 0, sizeof(float) * s
->block_len
);
673 s
->channel_coded
[0] = 1;
676 for(i
= 0; i
< s
->block_len
; i
++) {
679 s
->coefs
[0][i
] = a
+ b
;
680 s
->coefs
[1][i
] = a
- b
;
685 for(ch
= 0; ch
< s
->nb_channels
; ch
++) {
688 n4
= s
->block_len
/ 2;
689 if(s
->channel_coded
[ch
]){
690 ff_imdct_calc(&s
->mdct_ctx
[bsize
], s
->output
, s
->coefs
[ch
]);
691 }else if(!(s
->ms_stereo
&& ch
==1))
692 memset(s
->output
, 0, sizeof(s
->output
));
694 /* multiply by the window and add in the frame */
695 index
= (s
->frame_len
/ 2) + s
->block_pos
- n4
;
696 wma_window(s
, &s
->frame_out
[ch
][index
]);
699 /* update block number */
701 s
->block_pos
+= s
->block_len
;
702 if (s
->block_pos
>= s
->frame_len
)
708 /* decode a frame of frame_len samples */
709 static int wma_decode_frame(WMACodecContext
*s
, int16_t *samples
)
711 int ret
, i
, n
, ch
, incr
;
716 tprintf(s
->avctx
, "***decode_frame: %d size=%d\n", s
->frame_count
++, s
->frame_len
);
719 /* read each block */
723 ret
= wma_decode_block(s
);
730 /* convert frame to integer */
732 incr
= s
->nb_channels
;
733 for(ch
= 0; ch
< s
->nb_channels
; ch
++) {
735 iptr
= s
->frame_out
[ch
];
738 *ptr
= av_clip_int16(lrintf(*iptr
++));
741 /* prepare for next block */
742 memmove(&s
->frame_out
[ch
][0], &s
->frame_out
[ch
][s
->frame_len
],
743 s
->frame_len
* sizeof(float));
747 dump_shorts(s
, "samples", samples
, n
* s
->nb_channels
);
752 static int wma_decode_superframe(AVCodecContext
*avctx
,
753 void *data
, int *data_size
,
756 const uint8_t *buf
= avpkt
->data
;
757 int buf_size
= avpkt
->size
;
758 WMACodecContext
*s
= avctx
->priv_data
;
759 int nb_frames
, bit_offset
, i
, pos
, len
;
763 tprintf(avctx
, "***decode_superframe:\n");
766 s
->last_superframe_len
= 0;
769 if (buf_size
< s
->block_align
)
771 buf_size
= s
->block_align
;
775 init_get_bits(&s
->gb
, buf
, buf_size
*8);
777 if (s
->use_bit_reservoir
) {
778 /* read super frame header */
779 skip_bits(&s
->gb
, 4); /* super frame index */
780 nb_frames
= get_bits(&s
->gb
, 4) - 1;
782 if((nb_frames
+1) * s
->nb_channels
* s
->frame_len
* sizeof(int16_t) > *data_size
){
783 av_log(s
->avctx
, AV_LOG_ERROR
, "Insufficient output space\n");
787 bit_offset
= get_bits(&s
->gb
, s
->byte_offset_bits
+ 3);
789 if (s
->last_superframe_len
> 0) {
790 // printf("skip=%d\n", s->last_bitoffset);
791 /* add bit_offset bits to last frame */
792 if ((s
->last_superframe_len
+ ((bit_offset
+ 7) >> 3)) >
793 MAX_CODED_SUPERFRAME_SIZE
)
795 q
= s
->last_superframe
+ s
->last_superframe_len
;
798 *q
++ = (get_bits
)(&s
->gb
, 8);
802 *q
++ = (get_bits
)(&s
->gb
, len
) << (8 - len
);
805 /* XXX: bit_offset bits into last frame */
806 init_get_bits(&s
->gb
, s
->last_superframe
, MAX_CODED_SUPERFRAME_SIZE
*8);
807 /* skip unused bits */
808 if (s
->last_bitoffset
> 0)
809 skip_bits(&s
->gb
, s
->last_bitoffset
);
810 /* this frame is stored in the last superframe and in the
812 if (wma_decode_frame(s
, samples
) < 0)
814 samples
+= s
->nb_channels
* s
->frame_len
;
817 /* read each frame starting from bit_offset */
818 pos
= bit_offset
+ 4 + 4 + s
->byte_offset_bits
+ 3;
819 init_get_bits(&s
->gb
, buf
+ (pos
>> 3), (MAX_CODED_SUPERFRAME_SIZE
- (pos
>> 3))*8);
822 skip_bits(&s
->gb
, len
);
824 s
->reset_block_lengths
= 1;
825 for(i
=0;i
<nb_frames
;i
++) {
826 if (wma_decode_frame(s
, samples
) < 0)
828 samples
+= s
->nb_channels
* s
->frame_len
;
831 /* we copy the end of the frame in the last frame buffer */
832 pos
= get_bits_count(&s
->gb
) + ((bit_offset
+ 4 + 4 + s
->byte_offset_bits
+ 3) & ~7);
833 s
->last_bitoffset
= pos
& 7;
835 len
= buf_size
- pos
;
836 if (len
> MAX_CODED_SUPERFRAME_SIZE
|| len
< 0) {
839 s
->last_superframe_len
= len
;
840 memcpy(s
->last_superframe
, buf
+ pos
, len
);
842 if(s
->nb_channels
* s
->frame_len
* sizeof(int16_t) > *data_size
){
843 av_log(s
->avctx
, AV_LOG_ERROR
, "Insufficient output space\n");
846 /* single frame decode */
847 if (wma_decode_frame(s
, samples
) < 0)
849 samples
+= s
->nb_channels
* s
->frame_len
;
852 //av_log(NULL, AV_LOG_ERROR, "%d %d %d %d outbytes:%d eaten:%d\n", s->frame_len_bits, s->block_len_bits, s->frame_len, s->block_len, (int8_t *)samples - (int8_t *)data, s->block_align);
854 *data_size
= (int8_t *)samples
- (int8_t *)data
;
855 return s
->block_align
;
857 /* when error, we reset the bit reservoir */
858 s
->last_superframe_len
= 0;
862 AVCodec wmav1_decoder
=
867 sizeof(WMACodecContext
),
871 wma_decode_superframe
,
872 .long_name
= NULL_IF_CONFIG_SMALL("Windows Media Audio 1"),
875 AVCodec wmav2_decoder
=
880 sizeof(WMACodecContext
),
884 wma_decode_superframe
,
885 .long_name
= NULL_IF_CONFIG_SMALL("Windows Media Audio 2"),