Rename function: s/colmult/apply_window/
[ffmpeg-lucabe.git] / libavcodec / aac.c
blobcc069ed7c666d7259c6f9a4f4c7ee6601befe5a5
1 /*
2 * AAC decoder
3 * Copyright (c) 2005-2006 Oded Shimon ( ods15 ods15 dyndns org )
4 * Copyright (c) 2006-2007 Maxim Gavrilov ( maxim.gavrilov gmail com )
6 * This file is part of FFmpeg.
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23 /**
24 * @file aac.c
25 * AAC decoder
26 * @author Oded Shimon ( ods15 ods15 dyndns org )
27 * @author Maxim Gavrilov ( maxim.gavrilov gmail com )
31 * supported tools
33 * Support? Name
34 * N (code in SoC repo) gain control
35 * Y block switching
36 * Y window shapes - standard
37 * N window shapes - Low Delay
38 * Y filterbank - standard
39 * N (code in SoC repo) filterbank - Scalable Sample Rate
40 * Y Temporal Noise Shaping
41 * N (code in SoC repo) Long Term Prediction
42 * Y intensity stereo
43 * Y channel coupling
44 * N frequency domain prediction
45 * Y Perceptual Noise Substitution
46 * Y Mid/Side stereo
47 * N Scalable Inverse AAC Quantization
48 * N Frequency Selective Switch
49 * N upsampling filter
50 * Y quantization & coding - AAC
51 * N quantization & coding - TwinVQ
52 * N quantization & coding - BSAC
53 * N AAC Error Resilience tools
54 * N Error Resilience payload syntax
55 * N Error Protection tool
56 * N CELP
57 * N Silence Compression
58 * N HVXC
59 * N HVXC 4kbits/s VR
60 * N Structured Audio tools
61 * N Structured Audio Sample Bank Format
62 * N MIDI
63 * N Harmonic and Individual Lines plus Noise
64 * N Text-To-Speech Interface
65 * N (in progress) Spectral Band Replication
66 * Y (not in this code) Layer-1
67 * Y (not in this code) Layer-2
68 * Y (not in this code) Layer-3
69 * N SinuSoidal Coding (Transient, Sinusoid, Noise)
70 * N (planned) Parametric Stereo
71 * N Direct Stream Transfer
73 * Note: - HE AAC v1 comprises LC AAC with Spectral Band Replication.
74 * - HE AAC v2 comprises LC AAC with Spectral Band Replication and
75 Parametric Stereo.
79 #include "avcodec.h"
80 #include "bitstream.h"
81 #include "dsputil.h"
82 #include "lpc.h"
84 #include "aac.h"
85 #include "aactab.h"
86 #include "aacdectab.h"
87 #include "mpeg4audio.h"
89 #include <assert.h>
90 #include <errno.h>
91 #include <math.h>
92 #include <string.h>
94 static VLC vlc_scalefactors;
95 static VLC vlc_spectral[11];
98 /**
99 * Configure output channel order based on the current program configuration element.
101 * @param che_pos current channel position configuration
102 * @param new_che_pos New channel position configuration - we only do something if it differs from the current one.
104 * @return Returns error status. 0 - OK, !0 - error
106 static int output_configure(AACContext *ac, enum ChannelPosition che_pos[4][MAX_ELEM_ID],
107 enum ChannelPosition new_che_pos[4][MAX_ELEM_ID]) {
108 AVCodecContext *avctx = ac->avccontext;
109 int i, type, channels = 0;
111 if(!memcmp(che_pos, new_che_pos, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0])))
112 return 0; /* no change */
114 memcpy(che_pos, new_che_pos, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
116 /* Allocate or free elements depending on if they are in the
117 * current program configuration.
119 * Set up default 1:1 output mapping.
121 * For a 5.1 stream the output order will be:
122 * [ Center ] [ Front Left ] [ Front Right ] [ LFE ] [ Surround Left ] [ Surround Right ]
125 for(i = 0; i < MAX_ELEM_ID; i++) {
126 for(type = 0; type < 4; type++) {
127 if(che_pos[type][i]) {
128 if(!ac->che[type][i] && !(ac->che[type][i] = av_mallocz(sizeof(ChannelElement))))
129 return AVERROR(ENOMEM);
130 if(type != TYPE_CCE) {
131 ac->output_data[channels++] = ac->che[type][i]->ch[0].ret;
132 if(type == TYPE_CPE) {
133 ac->output_data[channels++] = ac->che[type][i]->ch[1].ret;
136 } else
137 av_freep(&ac->che[type][i]);
141 avctx->channels = channels;
142 return 0;
146 * Decode an array of 4 bit element IDs, optionally interleaved with a stereo/mono switching bit.
148 * @param cpe_map Stereo (Channel Pair Element) map, NULL if stereo bit is not present.
149 * @param sce_map mono (Single Channel Element) map
150 * @param type speaker type/position for these channels
152 static void decode_channel_map(enum ChannelPosition *cpe_map,
153 enum ChannelPosition *sce_map, enum ChannelPosition type, GetBitContext * gb, int n) {
154 while(n--) {
155 enum ChannelPosition *map = cpe_map && get_bits1(gb) ? cpe_map : sce_map; // stereo or mono map
156 map[get_bits(gb, 4)] = type;
161 * Decode program configuration element; reference: table 4.2.
163 * @param new_che_pos New channel position configuration - we only do something if it differs from the current one.
165 * @return Returns error status. 0 - OK, !0 - error
167 static int decode_pce(AACContext * ac, enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
168 GetBitContext * gb) {
169 int num_front, num_side, num_back, num_lfe, num_assoc_data, num_cc;
171 skip_bits(gb, 2); // object_type
173 ac->m4ac.sampling_index = get_bits(gb, 4);
174 if(ac->m4ac.sampling_index > 11) {
175 av_log(ac->avccontext, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
176 return -1;
178 ac->m4ac.sample_rate = ff_mpeg4audio_sample_rates[ac->m4ac.sampling_index];
179 num_front = get_bits(gb, 4);
180 num_side = get_bits(gb, 4);
181 num_back = get_bits(gb, 4);
182 num_lfe = get_bits(gb, 2);
183 num_assoc_data = get_bits(gb, 3);
184 num_cc = get_bits(gb, 4);
186 if (get_bits1(gb))
187 skip_bits(gb, 4); // mono_mixdown_tag
188 if (get_bits1(gb))
189 skip_bits(gb, 4); // stereo_mixdown_tag
191 if (get_bits1(gb))
192 skip_bits(gb, 3); // mixdown_coeff_index and pseudo_surround
194 decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_FRONT, gb, num_front);
195 decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_SIDE, gb, num_side );
196 decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_BACK, gb, num_back );
197 decode_channel_map(NULL, new_che_pos[TYPE_LFE], AAC_CHANNEL_LFE, gb, num_lfe );
199 skip_bits_long(gb, 4 * num_assoc_data);
201 decode_channel_map(new_che_pos[TYPE_CCE], new_che_pos[TYPE_CCE], AAC_CHANNEL_CC, gb, num_cc );
203 align_get_bits(gb);
205 /* comment field, first byte is length */
206 skip_bits_long(gb, 8 * get_bits(gb, 8));
207 return 0;
211 * Set up channel positions based on a default channel configuration
212 * as specified in table 1.17.
214 * @param new_che_pos New channel position configuration - we only do something if it differs from the current one.
216 * @return Returns error status. 0 - OK, !0 - error
218 static int set_default_channel_config(AACContext *ac, enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
219 int channel_config)
221 if(channel_config < 1 || channel_config > 7) {
222 av_log(ac->avccontext, AV_LOG_ERROR, "invalid default channel configuration (%d)\n",
223 channel_config);
224 return -1;
227 /* default channel configurations:
229 * 1ch : front center (mono)
230 * 2ch : L + R (stereo)
231 * 3ch : front center + L + R
232 * 4ch : front center + L + R + back center
233 * 5ch : front center + L + R + back stereo
234 * 6ch : front center + L + R + back stereo + LFE
235 * 7ch : front center + L + R + outer front left + outer front right + back stereo + LFE
238 if(channel_config != 2)
239 new_che_pos[TYPE_SCE][0] = AAC_CHANNEL_FRONT; // front center (or mono)
240 if(channel_config > 1)
241 new_che_pos[TYPE_CPE][0] = AAC_CHANNEL_FRONT; // L + R (or stereo)
242 if(channel_config == 4)
243 new_che_pos[TYPE_SCE][1] = AAC_CHANNEL_BACK; // back center
244 if(channel_config > 4)
245 new_che_pos[TYPE_CPE][(channel_config == 7) + 1]
246 = AAC_CHANNEL_BACK; // back stereo
247 if(channel_config > 5)
248 new_che_pos[TYPE_LFE][0] = AAC_CHANNEL_LFE; // LFE
249 if(channel_config == 7)
250 new_che_pos[TYPE_CPE][1] = AAC_CHANNEL_FRONT; // outer front left + outer front right
252 return 0;
256 * Decode GA "General Audio" specific configuration; reference: table 4.1.
258 * @return Returns error status. 0 - OK, !0 - error
260 static int decode_ga_specific_config(AACContext * ac, GetBitContext * gb, int channel_config) {
261 enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
262 int extension_flag, ret;
264 if(get_bits1(gb)) { // frameLengthFlag
265 av_log_missing_feature(ac->avccontext, "960/120 MDCT window is", 1);
266 return -1;
269 if (get_bits1(gb)) // dependsOnCoreCoder
270 skip_bits(gb, 14); // coreCoderDelay
271 extension_flag = get_bits1(gb);
273 if(ac->m4ac.object_type == AOT_AAC_SCALABLE ||
274 ac->m4ac.object_type == AOT_ER_AAC_SCALABLE)
275 skip_bits(gb, 3); // layerNr
277 memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
278 if (channel_config == 0) {
279 skip_bits(gb, 4); // element_instance_tag
280 if((ret = decode_pce(ac, new_che_pos, gb)))
281 return ret;
282 } else {
283 if((ret = set_default_channel_config(ac, new_che_pos, channel_config)))
284 return ret;
286 if((ret = output_configure(ac, ac->che_pos, new_che_pos)))
287 return ret;
289 if (extension_flag) {
290 switch (ac->m4ac.object_type) {
291 case AOT_ER_BSAC:
292 skip_bits(gb, 5); // numOfSubFrame
293 skip_bits(gb, 11); // layer_length
294 break;
295 case AOT_ER_AAC_LC:
296 case AOT_ER_AAC_LTP:
297 case AOT_ER_AAC_SCALABLE:
298 case AOT_ER_AAC_LD:
299 skip_bits(gb, 3); /* aacSectionDataResilienceFlag
300 * aacScalefactorDataResilienceFlag
301 * aacSpectralDataResilienceFlag
303 break;
305 skip_bits1(gb); // extensionFlag3 (TBD in version 3)
307 return 0;
311 * Decode audio specific configuration; reference: table 1.13.
313 * @param data pointer to AVCodecContext extradata
314 * @param data_size size of AVCCodecContext extradata
316 * @return Returns error status. 0 - OK, !0 - error
318 static int decode_audio_specific_config(AACContext * ac, void *data, int data_size) {
319 GetBitContext gb;
320 int i;
322 init_get_bits(&gb, data, data_size * 8);
324 if((i = ff_mpeg4audio_get_config(&ac->m4ac, data, data_size)) < 0)
325 return -1;
326 if(ac->m4ac.sampling_index > 11) {
327 av_log(ac->avccontext, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
328 return -1;
331 skip_bits_long(&gb, i);
333 switch (ac->m4ac.object_type) {
334 case AOT_AAC_LC:
335 if (decode_ga_specific_config(ac, &gb, ac->m4ac.chan_config))
336 return -1;
337 break;
338 default:
339 av_log(ac->avccontext, AV_LOG_ERROR, "Audio object type %s%d is not supported.\n",
340 ac->m4ac.sbr == 1? "SBR+" : "", ac->m4ac.object_type);
341 return -1;
343 return 0;
347 * linear congruential pseudorandom number generator
349 * @param previous_val pointer to the current state of the generator
351 * @return Returns a 32-bit pseudorandom integer
353 static av_always_inline int lcg_random(int previous_val) {
354 return previous_val * 1664525 + 1013904223;
357 static av_cold int aac_decode_init(AVCodecContext * avccontext) {
358 AACContext * ac = avccontext->priv_data;
359 int i;
361 ac->avccontext = avccontext;
363 if (avccontext->extradata_size <= 0 ||
364 decode_audio_specific_config(ac, avccontext->extradata, avccontext->extradata_size))
365 return -1;
367 avccontext->sample_fmt = SAMPLE_FMT_S16;
368 avccontext->sample_rate = ac->m4ac.sample_rate;
369 avccontext->frame_size = 1024;
371 AAC_INIT_VLC_STATIC( 0, 144);
372 AAC_INIT_VLC_STATIC( 1, 114);
373 AAC_INIT_VLC_STATIC( 2, 188);
374 AAC_INIT_VLC_STATIC( 3, 180);
375 AAC_INIT_VLC_STATIC( 4, 172);
376 AAC_INIT_VLC_STATIC( 5, 140);
377 AAC_INIT_VLC_STATIC( 6, 168);
378 AAC_INIT_VLC_STATIC( 7, 114);
379 AAC_INIT_VLC_STATIC( 8, 262);
380 AAC_INIT_VLC_STATIC( 9, 248);
381 AAC_INIT_VLC_STATIC(10, 384);
383 dsputil_init(&ac->dsp, avccontext);
385 ac->random_state = 0x1f2e3d4c;
387 // -1024 - Compensate wrong IMDCT method.
388 // 32768 - Required to scale values to the correct range for the bias method
389 // for float to int16 conversion.
391 if(ac->dsp.float_to_int16 == ff_float_to_int16_c) {
392 ac->add_bias = 385.0f;
393 ac->sf_scale = 1. / (-1024. * 32768.);
394 ac->sf_offset = 0;
395 } else {
396 ac->add_bias = 0.0f;
397 ac->sf_scale = 1. / -1024.;
398 ac->sf_offset = 60;
401 #ifndef CONFIG_HARDCODED_TABLES
402 for (i = 0; i < 316; i++)
403 ff_aac_pow2sf_tab[i] = pow(2, (i - 200)/4.);
404 #endif /* CONFIG_HARDCODED_TABLES */
406 INIT_VLC_STATIC(&vlc_scalefactors, 7, sizeof(ff_aac_scalefactor_code)/sizeof(ff_aac_scalefactor_code[0]),
407 ff_aac_scalefactor_bits, sizeof(ff_aac_scalefactor_bits[0]), sizeof(ff_aac_scalefactor_bits[0]),
408 ff_aac_scalefactor_code, sizeof(ff_aac_scalefactor_code[0]), sizeof(ff_aac_scalefactor_code[0]),
409 352);
411 ff_mdct_init(&ac->mdct, 11, 1);
412 ff_mdct_init(&ac->mdct_small, 8, 1);
413 // window initialization
414 ff_kbd_window_init(ff_aac_kbd_long_1024, 4.0, 1024);
415 ff_kbd_window_init(ff_aac_kbd_short_128, 6.0, 128);
416 ff_sine_window_init(ff_sine_1024, 1024);
417 ff_sine_window_init(ff_sine_128, 128);
419 return 0;
423 * Skip data_stream_element; reference: table 4.10.
425 static void skip_data_stream_element(GetBitContext * gb) {
426 int byte_align = get_bits1(gb);
427 int count = get_bits(gb, 8);
428 if (count == 255)
429 count += get_bits(gb, 8);
430 if (byte_align)
431 align_get_bits(gb);
432 skip_bits_long(gb, 8 * count);
436 * Decode Individual Channel Stream info; reference: table 4.6.
438 * @param common_window Channels have independent [0], or shared [1], Individual Channel Stream information.
440 static int decode_ics_info(AACContext * ac, IndividualChannelStream * ics, GetBitContext * gb, int common_window) {
441 if (get_bits1(gb)) {
442 av_log(ac->avccontext, AV_LOG_ERROR, "Reserved bit set.\n");
443 memset(ics, 0, sizeof(IndividualChannelStream));
444 return -1;
446 ics->window_sequence[1] = ics->window_sequence[0];
447 ics->window_sequence[0] = get_bits(gb, 2);
448 ics->use_kb_window[1] = ics->use_kb_window[0];
449 ics->use_kb_window[0] = get_bits1(gb);
450 ics->num_window_groups = 1;
451 ics->group_len[0] = 1;
452 if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
453 int i;
454 ics->max_sfb = get_bits(gb, 4);
455 for (i = 0; i < 7; i++) {
456 if (get_bits1(gb)) {
457 ics->group_len[ics->num_window_groups-1]++;
458 } else {
459 ics->num_window_groups++;
460 ics->group_len[ics->num_window_groups-1] = 1;
463 ics->num_windows = 8;
464 ics->swb_offset = swb_offset_128[ac->m4ac.sampling_index];
465 ics->num_swb = ff_aac_num_swb_128[ac->m4ac.sampling_index];
466 ics->tns_max_bands = tns_max_bands_128[ac->m4ac.sampling_index];
467 } else {
468 ics->max_sfb = get_bits(gb, 6);
469 ics->num_windows = 1;
470 ics->swb_offset = swb_offset_1024[ac->m4ac.sampling_index];
471 ics->num_swb = ff_aac_num_swb_1024[ac->m4ac.sampling_index];
472 ics->tns_max_bands = tns_max_bands_1024[ac->m4ac.sampling_index];
473 if (get_bits1(gb)) {
474 av_log_missing_feature(ac->avccontext, "Predictor bit set but LTP is", 1);
475 memset(ics, 0, sizeof(IndividualChannelStream));
476 return -1;
480 if(ics->max_sfb > ics->num_swb) {
481 av_log(ac->avccontext, AV_LOG_ERROR,
482 "Number of scalefactor bands in group (%d) exceeds limit (%d).\n",
483 ics->max_sfb, ics->num_swb);
484 memset(ics, 0, sizeof(IndividualChannelStream));
485 return -1;
488 return 0;
492 * Decode band types (section_data payload); reference: table 4.46.
494 * @param band_type array of the used band type
495 * @param band_type_run_end array of the last scalefactor band of a band type run
497 * @return Returns error status. 0 - OK, !0 - error
499 static int decode_band_types(AACContext * ac, enum BandType band_type[120],
500 int band_type_run_end[120], GetBitContext * gb, IndividualChannelStream * ics) {
501 int g, idx = 0;
502 const int bits = (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) ? 3 : 5;
503 for (g = 0; g < ics->num_window_groups; g++) {
504 int k = 0;
505 while (k < ics->max_sfb) {
506 uint8_t sect_len = k;
507 int sect_len_incr;
508 int sect_band_type = get_bits(gb, 4);
509 if (sect_band_type == 12) {
510 av_log(ac->avccontext, AV_LOG_ERROR, "invalid band type\n");
511 return -1;
513 while ((sect_len_incr = get_bits(gb, bits)) == (1 << bits)-1)
514 sect_len += sect_len_incr;
515 sect_len += sect_len_incr;
516 if (sect_len > ics->max_sfb) {
517 av_log(ac->avccontext, AV_LOG_ERROR,
518 "Number of bands (%d) exceeds limit (%d).\n",
519 sect_len, ics->max_sfb);
520 return -1;
522 for (; k < sect_len; k++) {
523 band_type [idx] = sect_band_type;
524 band_type_run_end[idx++] = sect_len;
528 return 0;
532 * Decode scalefactors; reference: table 4.47.
534 * @param global_gain first scalefactor value as scalefactors are differentially coded
535 * @param band_type array of the used band type
536 * @param band_type_run_end array of the last scalefactor band of a band type run
537 * @param sf array of scalefactors or intensity stereo positions
539 * @return Returns error status. 0 - OK, !0 - error
541 static int decode_scalefactors(AACContext * ac, float sf[120], GetBitContext * gb,
542 unsigned int global_gain, IndividualChannelStream * ics,
543 enum BandType band_type[120], int band_type_run_end[120]) {
544 const int sf_offset = ac->sf_offset + (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE ? 12 : 0);
545 int g, i, idx = 0;
546 int offset[3] = { global_gain, global_gain - 90, 100 };
547 int noise_flag = 1;
548 static const char *sf_str[3] = { "Global gain", "Noise gain", "Intensity stereo position" };
549 for (g = 0; g < ics->num_window_groups; g++) {
550 for (i = 0; i < ics->max_sfb;) {
551 int run_end = band_type_run_end[idx];
552 if (band_type[idx] == ZERO_BT) {
553 for(; i < run_end; i++, idx++)
554 sf[idx] = 0.;
555 }else if((band_type[idx] == INTENSITY_BT) || (band_type[idx] == INTENSITY_BT2)) {
556 for(; i < run_end; i++, idx++) {
557 offset[2] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
558 if(offset[2] > 255U) {
559 av_log(ac->avccontext, AV_LOG_ERROR,
560 "%s (%d) out of range.\n", sf_str[2], offset[2]);
561 return -1;
563 sf[idx] = ff_aac_pow2sf_tab[-offset[2] + 300];
565 }else if(band_type[idx] == NOISE_BT) {
566 for(; i < run_end; i++, idx++) {
567 if(noise_flag-- > 0)
568 offset[1] += get_bits(gb, 9) - 256;
569 else
570 offset[1] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
571 if(offset[1] > 255U) {
572 av_log(ac->avccontext, AV_LOG_ERROR,
573 "%s (%d) out of range.\n", sf_str[1], offset[1]);
574 return -1;
576 sf[idx] = -ff_aac_pow2sf_tab[ offset[1] + sf_offset];
578 }else {
579 for(; i < run_end; i++, idx++) {
580 offset[0] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
581 if(offset[0] > 255U) {
582 av_log(ac->avccontext, AV_LOG_ERROR,
583 "%s (%d) out of range.\n", sf_str[0], offset[0]);
584 return -1;
586 sf[idx] = -ff_aac_pow2sf_tab[ offset[0] + sf_offset];
591 return 0;
595 * Decode pulse data; reference: table 4.7.
597 static void decode_pulses(Pulse * pulse, GetBitContext * gb, const uint16_t * swb_offset) {
598 int i;
599 pulse->num_pulse = get_bits(gb, 2) + 1;
600 pulse->pos[0] = get_bits(gb, 5) + swb_offset[get_bits(gb, 6)];
601 pulse->amp[0] = get_bits(gb, 4);
602 for (i = 1; i < pulse->num_pulse; i++) {
603 pulse->pos[i] = get_bits(gb, 5) + pulse->pos[i-1];
604 pulse->amp[i] = get_bits(gb, 4);
609 * Decode Temporal Noise Shaping data; reference: table 4.48.
611 * @return Returns error status. 0 - OK, !0 - error
613 static int decode_tns(AACContext * ac, TemporalNoiseShaping * tns,
614 GetBitContext * gb, const IndividualChannelStream * ics) {
615 int w, filt, i, coef_len, coef_res, coef_compress;
616 const int is8 = ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE;
617 const int tns_max_order = is8 ? 7 : ac->m4ac.object_type == AOT_AAC_MAIN ? 20 : 12;
618 for (w = 0; w < ics->num_windows; w++) {
619 if ((tns->n_filt[w] = get_bits(gb, 2 - is8))) {
620 coef_res = get_bits1(gb);
622 for (filt = 0; filt < tns->n_filt[w]; filt++) {
623 int tmp2_idx;
624 tns->length[w][filt] = get_bits(gb, 6 - 2*is8);
626 if ((tns->order[w][filt] = get_bits(gb, 5 - 2*is8)) > tns_max_order) {
627 av_log(ac->avccontext, AV_LOG_ERROR, "TNS filter order %d is greater than maximum %d.",
628 tns->order[w][filt], tns_max_order);
629 tns->order[w][filt] = 0;
630 return -1;
632 tns->direction[w][filt] = get_bits1(gb);
633 coef_compress = get_bits1(gb);
634 coef_len = coef_res + 3 - coef_compress;
635 tmp2_idx = 2*coef_compress + coef_res;
637 for (i = 0; i < tns->order[w][filt]; i++)
638 tns->coef[w][filt][i] = tns_tmp2_map[tmp2_idx][get_bits(gb, coef_len)];
642 return 0;
646 * Decode Mid/Side data; reference: table 4.54.
648 * @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s;
649 * [1] mask is decoded from bitstream; [2] mask is all 1s;
650 * [3] reserved for scalable AAC
652 static void decode_mid_side_stereo(ChannelElement * cpe, GetBitContext * gb,
653 int ms_present) {
654 int idx;
655 if (ms_present == 1) {
656 for (idx = 0; idx < cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb; idx++)
657 cpe->ms_mask[idx] = get_bits1(gb);
658 } else if (ms_present == 2) {
659 memset(cpe->ms_mask, 1, cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb * sizeof(cpe->ms_mask[0]));
664 * Decode spectral data; reference: table 4.50.
665 * Dequantize and scale spectral data; reference: 4.6.3.3.
667 * @param coef array of dequantized, scaled spectral data
668 * @param sf array of scalefactors or intensity stereo positions
669 * @param pulse_present set if pulses are present
670 * @param pulse pointer to pulse data struct
671 * @param band_type array of the used band type
673 * @return Returns error status. 0 - OK, !0 - error
675 static int decode_spectrum_and_dequant(AACContext * ac, float coef[1024], GetBitContext * gb, float sf[120],
676 int pulse_present, const Pulse * pulse, const IndividualChannelStream * ics, enum BandType band_type[120]) {
677 int i, k, g, idx = 0;
678 const int c = 1024/ics->num_windows;
679 const uint16_t * offsets = ics->swb_offset;
680 float *coef_base = coef;
682 for (g = 0; g < ics->num_windows; g++)
683 memset(coef + g * 128 + offsets[ics->max_sfb], 0, sizeof(float)*(c - offsets[ics->max_sfb]));
685 for (g = 0; g < ics->num_window_groups; g++) {
686 for (i = 0; i < ics->max_sfb; i++, idx++) {
687 const int cur_band_type = band_type[idx];
688 const int dim = cur_band_type >= FIRST_PAIR_BT ? 2 : 4;
689 const int is_cb_unsigned = IS_CODEBOOK_UNSIGNED(cur_band_type);
690 int group;
691 if (cur_band_type == ZERO_BT) {
692 for (group = 0; group < ics->group_len[g]; group++) {
693 memset(coef + group * 128 + offsets[i], 0, (offsets[i+1] - offsets[i])*sizeof(float));
695 }else if (cur_band_type == NOISE_BT) {
696 const float scale = sf[idx] / ((offsets[i+1] - offsets[i]) * PNS_MEAN_ENERGY);
697 for (group = 0; group < ics->group_len[g]; group++) {
698 for (k = offsets[i]; k < offsets[i+1]; k++) {
699 ac->random_state = lcg_random(ac->random_state);
700 coef[group*128+k] = ac->random_state * scale;
703 }else if (cur_band_type != INTENSITY_BT2 && cur_band_type != INTENSITY_BT) {
704 for (group = 0; group < ics->group_len[g]; group++) {
705 for (k = offsets[i]; k < offsets[i+1]; k += dim) {
706 const int index = get_vlc2(gb, vlc_spectral[cur_band_type - 1].table, 6, 3);
707 const int coef_tmp_idx = (group << 7) + k;
708 const float *vq_ptr;
709 int j;
710 if(index >= ff_aac_spectral_sizes[cur_band_type - 1]) {
711 av_log(ac->avccontext, AV_LOG_ERROR,
712 "Read beyond end of ff_aac_codebook_vectors[%d][]. index %d >= %d\n",
713 cur_band_type - 1, index, ff_aac_spectral_sizes[cur_band_type - 1]);
714 return -1;
716 vq_ptr = &ff_aac_codebook_vectors[cur_band_type - 1][index * dim];
717 if (is_cb_unsigned) {
718 for (j = 0; j < dim; j++)
719 if (vq_ptr[j])
720 coef[coef_tmp_idx + j] = 1 - 2*(int)get_bits1(gb);
721 }else {
722 for (j = 0; j < dim; j++)
723 coef[coef_tmp_idx + j] = 1.0f;
725 if (cur_band_type == ESC_BT) {
726 for (j = 0; j < 2; j++) {
727 if (vq_ptr[j] == 64.0f) {
728 int n = 4;
729 /* The total length of escape_sequence must be < 22 bits according
730 to the specification (i.e. max is 11111111110xxxxxxxxxx). */
731 while (get_bits1(gb) && n < 15) n++;
732 if(n == 15) {
733 av_log(ac->avccontext, AV_LOG_ERROR, "error in spectral data, ESC overflow\n");
734 return -1;
736 n = (1<<n) + get_bits(gb, n);
737 coef[coef_tmp_idx + j] *= cbrtf(fabsf(n)) * n;
738 }else
739 coef[coef_tmp_idx + j] *= vq_ptr[j];
741 }else
742 for (j = 0; j < dim; j++)
743 coef[coef_tmp_idx + j] *= vq_ptr[j];
744 for (j = 0; j < dim; j++)
745 coef[coef_tmp_idx + j] *= sf[idx];
750 coef += ics->group_len[g]<<7;
753 if (pulse_present) {
754 for(i = 0; i < pulse->num_pulse; i++){
755 float co = coef_base[ pulse->pos[i] ];
756 float ico = -pulse->amp[i];
757 if (co)
758 ico = co / sqrtf(sqrtf(fabsf(co))) + (co > 0 ? -ico : ico);
759 coef_base[ pulse->pos[i] ] = cbrtf(fabsf(ico)) * ico;
762 return 0;
766 * Decode an individual_channel_stream payload; reference: table 4.44.
768 * @param common_window Channels have independent [0], or shared [1], Individual Channel Stream information.
769 * @param scale_flag scalable [1] or non-scalable [0] AAC (Unused until scalable AAC is implemented.)
771 * @return Returns error status. 0 - OK, !0 - error
773 static int decode_ics(AACContext * ac, SingleChannelElement * sce, GetBitContext * gb, int common_window, int scale_flag) {
774 Pulse pulse;
775 TemporalNoiseShaping * tns = &sce->tns;
776 IndividualChannelStream * ics = &sce->ics;
777 float * out = sce->coeffs;
778 int global_gain, pulse_present = 0;
780 /* This assignment is to silence a GCC warning about the variable being used
781 * uninitialized when in fact it always is.
783 pulse.num_pulse = 0;
785 global_gain = get_bits(gb, 8);
787 if (!common_window && !scale_flag) {
788 if (decode_ics_info(ac, ics, gb, 0) < 0)
789 return -1;
792 if (decode_band_types(ac, sce->band_type, sce->band_type_run_end, gb, ics) < 0)
793 return -1;
794 if (decode_scalefactors(ac, sce->sf, gb, global_gain, ics, sce->band_type, sce->band_type_run_end) < 0)
795 return -1;
797 pulse_present = 0;
798 if (!scale_flag) {
799 if ((pulse_present = get_bits1(gb))) {
800 if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
801 av_log(ac->avccontext, AV_LOG_ERROR, "Pulse tool not allowed in eight short sequence.\n");
802 return -1;
804 decode_pulses(&pulse, gb, ics->swb_offset);
806 if ((tns->present = get_bits1(gb)) && decode_tns(ac, tns, gb, ics))
807 return -1;
808 if (get_bits1(gb)) {
809 av_log_missing_feature(ac->avccontext, "SSR", 1);
810 return -1;
814 if (decode_spectrum_and_dequant(ac, out, gb, sce->sf, pulse_present, &pulse, ics, sce->band_type) < 0)
815 return -1;
816 return 0;
820 * Mid/Side stereo decoding; reference: 4.6.8.1.3.
822 static void apply_mid_side_stereo(ChannelElement * cpe) {
823 const IndividualChannelStream * ics = &cpe->ch[0].ics;
824 float *ch0 = cpe->ch[0].coeffs;
825 float *ch1 = cpe->ch[1].coeffs;
826 int g, i, k, group, idx = 0;
827 const uint16_t * offsets = ics->swb_offset;
828 for (g = 0; g < ics->num_window_groups; g++) {
829 for (i = 0; i < ics->max_sfb; i++, idx++) {
830 if (cpe->ms_mask[idx] &&
831 cpe->ch[0].band_type[idx] < NOISE_BT && cpe->ch[1].band_type[idx] < NOISE_BT) {
832 for (group = 0; group < ics->group_len[g]; group++) {
833 for (k = offsets[i]; k < offsets[i+1]; k++) {
834 float tmp = ch0[group*128 + k] - ch1[group*128 + k];
835 ch0[group*128 + k] += ch1[group*128 + k];
836 ch1[group*128 + k] = tmp;
841 ch0 += ics->group_len[g]*128;
842 ch1 += ics->group_len[g]*128;
847 * intensity stereo decoding; reference: 4.6.8.2.3
849 * @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s;
850 * [1] mask is decoded from bitstream; [2] mask is all 1s;
851 * [3] reserved for scalable AAC
853 static void apply_intensity_stereo(ChannelElement * cpe, int ms_present) {
854 const IndividualChannelStream * ics = &cpe->ch[1].ics;
855 SingleChannelElement * sce1 = &cpe->ch[1];
856 float *coef0 = cpe->ch[0].coeffs, *coef1 = cpe->ch[1].coeffs;
857 const uint16_t * offsets = ics->swb_offset;
858 int g, group, i, k, idx = 0;
859 int c;
860 float scale;
861 for (g = 0; g < ics->num_window_groups; g++) {
862 for (i = 0; i < ics->max_sfb;) {
863 if (sce1->band_type[idx] == INTENSITY_BT || sce1->band_type[idx] == INTENSITY_BT2) {
864 const int bt_run_end = sce1->band_type_run_end[idx];
865 for (; i < bt_run_end; i++, idx++) {
866 c = -1 + 2 * (sce1->band_type[idx] - 14);
867 if (ms_present)
868 c *= 1 - 2 * cpe->ms_mask[idx];
869 scale = c * sce1->sf[idx];
870 for (group = 0; group < ics->group_len[g]; group++)
871 for (k = offsets[i]; k < offsets[i+1]; k++)
872 coef1[group*128 + k] = scale * coef0[group*128 + k];
874 } else {
875 int bt_run_end = sce1->band_type_run_end[idx];
876 idx += bt_run_end - i;
877 i = bt_run_end;
880 coef0 += ics->group_len[g]*128;
881 coef1 += ics->group_len[g]*128;
886 * Decode a channel_pair_element; reference: table 4.4.
888 * @param elem_id Identifies the instance of a syntax element.
890 * @return Returns error status. 0 - OK, !0 - error
892 static int decode_cpe(AACContext * ac, GetBitContext * gb, int elem_id) {
893 int i, ret, common_window, ms_present = 0;
894 ChannelElement * cpe;
896 cpe = ac->che[TYPE_CPE][elem_id];
897 common_window = get_bits1(gb);
898 if (common_window) {
899 if (decode_ics_info(ac, &cpe->ch[0].ics, gb, 1))
900 return -1;
901 i = cpe->ch[1].ics.use_kb_window[0];
902 cpe->ch[1].ics = cpe->ch[0].ics;
903 cpe->ch[1].ics.use_kb_window[1] = i;
904 ms_present = get_bits(gb, 2);
905 if(ms_present == 3) {
906 av_log(ac->avccontext, AV_LOG_ERROR, "ms_present = 3 is reserved.\n");
907 return -1;
908 } else if(ms_present)
909 decode_mid_side_stereo(cpe, gb, ms_present);
911 if ((ret = decode_ics(ac, &cpe->ch[0], gb, common_window, 0)))
912 return ret;
913 if ((ret = decode_ics(ac, &cpe->ch[1], gb, common_window, 0)))
914 return ret;
916 if (common_window && ms_present)
917 apply_mid_side_stereo(cpe);
919 apply_intensity_stereo(cpe, ms_present);
920 return 0;
924 * Decode coupling_channel_element; reference: table 4.8.
926 * @param elem_id Identifies the instance of a syntax element.
928 * @return Returns error status. 0 - OK, !0 - error
930 static int decode_cce(AACContext * ac, GetBitContext * gb, ChannelElement * che) {
931 int num_gain = 0;
932 int c, g, sfb, ret, idx = 0;
933 int sign;
934 float scale;
935 SingleChannelElement * sce = &che->ch[0];
936 ChannelCoupling * coup = &che->coup;
938 coup->coupling_point = 2*get_bits1(gb);
939 coup->num_coupled = get_bits(gb, 3);
940 for (c = 0; c <= coup->num_coupled; c++) {
941 num_gain++;
942 coup->type[c] = get_bits1(gb) ? TYPE_CPE : TYPE_SCE;
943 coup->id_select[c] = get_bits(gb, 4);
944 if (coup->type[c] == TYPE_CPE) {
945 coup->ch_select[c] = get_bits(gb, 2);
946 if (coup->ch_select[c] == 3)
947 num_gain++;
948 } else
949 coup->ch_select[c] = 1;
951 coup->coupling_point += get_bits1(gb);
953 if (coup->coupling_point == 2) {
954 av_log(ac->avccontext, AV_LOG_ERROR,
955 "Independently switched CCE with 'invalid' domain signalled.\n");
956 memset(coup, 0, sizeof(ChannelCoupling));
957 return -1;
960 sign = get_bits(gb, 1);
961 scale = pow(2., pow(2., get_bits(gb, 2) - 3));
963 if ((ret = decode_ics(ac, sce, gb, 0, 0)))
964 return ret;
966 for (c = 0; c < num_gain; c++) {
967 int cge = 1;
968 int gain = 0;
969 float gain_cache = 1.;
970 if (c) {
971 cge = coup->coupling_point == AFTER_IMDCT ? 1 : get_bits1(gb);
972 gain = cge ? get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60: 0;
973 gain_cache = pow(scale, gain);
975 for (g = 0; g < sce->ics.num_window_groups; g++)
976 for (sfb = 0; sfb < sce->ics.max_sfb; sfb++, idx++)
977 if (sce->band_type[idx] != ZERO_BT) {
978 if (!cge) {
979 int t = get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
980 if (t) {
981 int s = 1;
982 if (sign) {
983 s -= 2 * (t & 0x1);
984 t >>= 1;
986 gain += t;
987 gain_cache = pow(scale, gain) * s;
990 coup->gain[c][idx] = gain_cache;
993 return 0;
997 * Decode Spectral Band Replication extension data; reference: table 4.55.
999 * @param crc flag indicating the presence of CRC checksum
1000 * @param cnt length of TYPE_FIL syntactic element in bytes
1002 * @return Returns number of bytes consumed from the TYPE_FIL element.
1004 static int decode_sbr_extension(AACContext * ac, GetBitContext * gb, int crc, int cnt) {
1005 // TODO : sbr_extension implementation
1006 av_log_missing_feature(ac->avccontext, "SBR", 0);
1007 skip_bits_long(gb, 8*cnt - 4); // -4 due to reading extension type
1008 return cnt;
1012 * Parse whether channels are to be excluded from Dynamic Range Compression; reference: table 4.53.
1014 * @return Returns number of bytes consumed.
1016 static int decode_drc_channel_exclusions(DynamicRangeControl *che_drc, GetBitContext * gb) {
1017 int i;
1018 int num_excl_chan = 0;
1020 do {
1021 for (i = 0; i < 7; i++)
1022 che_drc->exclude_mask[num_excl_chan++] = get_bits1(gb);
1023 } while (num_excl_chan < MAX_CHANNELS - 7 && get_bits1(gb));
1025 return num_excl_chan / 7;
1029 * Decode dynamic range information; reference: table 4.52.
1031 * @param cnt length of TYPE_FIL syntactic element in bytes
1033 * @return Returns number of bytes consumed.
1035 static int decode_dynamic_range(DynamicRangeControl *che_drc, GetBitContext * gb, int cnt) {
1036 int n = 1;
1037 int drc_num_bands = 1;
1038 int i;
1040 /* pce_tag_present? */
1041 if(get_bits1(gb)) {
1042 che_drc->pce_instance_tag = get_bits(gb, 4);
1043 skip_bits(gb, 4); // tag_reserved_bits
1044 n++;
1047 /* excluded_chns_present? */
1048 if(get_bits1(gb)) {
1049 n += decode_drc_channel_exclusions(che_drc, gb);
1052 /* drc_bands_present? */
1053 if (get_bits1(gb)) {
1054 che_drc->band_incr = get_bits(gb, 4);
1055 che_drc->interpolation_scheme = get_bits(gb, 4);
1056 n++;
1057 drc_num_bands += che_drc->band_incr;
1058 for (i = 0; i < drc_num_bands; i++) {
1059 che_drc->band_top[i] = get_bits(gb, 8);
1060 n++;
1064 /* prog_ref_level_present? */
1065 if (get_bits1(gb)) {
1066 che_drc->prog_ref_level = get_bits(gb, 7);
1067 skip_bits1(gb); // prog_ref_level_reserved_bits
1068 n++;
1071 for (i = 0; i < drc_num_bands; i++) {
1072 che_drc->dyn_rng_sgn[i] = get_bits1(gb);
1073 che_drc->dyn_rng_ctl[i] = get_bits(gb, 7);
1074 n++;
1077 return n;
1081 * Decode extension data (incomplete); reference: table 4.51.
1083 * @param cnt length of TYPE_FIL syntactic element in bytes
1085 * @return Returns number of bytes consumed
1087 static int decode_extension_payload(AACContext * ac, GetBitContext * gb, int cnt) {
1088 int crc_flag = 0;
1089 int res = cnt;
1090 switch (get_bits(gb, 4)) { // extension type
1091 case EXT_SBR_DATA_CRC:
1092 crc_flag++;
1093 case EXT_SBR_DATA:
1094 res = decode_sbr_extension(ac, gb, crc_flag, cnt);
1095 break;
1096 case EXT_DYNAMIC_RANGE:
1097 res = decode_dynamic_range(&ac->che_drc, gb, cnt);
1098 break;
1099 case EXT_FILL:
1100 case EXT_FILL_DATA:
1101 case EXT_DATA_ELEMENT:
1102 default:
1103 skip_bits_long(gb, 8*cnt - 4);
1104 break;
1106 return res;
1110 * Decode Temporal Noise Shaping filter coefficients and apply all-pole filters; reference: 4.6.9.3.
1112 * @param decode 1 if tool is used normally, 0 if tool is used in LTP.
1113 * @param coef spectral coefficients
1115 static void apply_tns(float coef[1024], TemporalNoiseShaping * tns, IndividualChannelStream * ics, int decode) {
1116 const int mmm = FFMIN(ics->tns_max_bands, ics->max_sfb);
1117 int w, filt, m, i;
1118 int bottom, top, order, start, end, size, inc;
1119 float lpc[TNS_MAX_ORDER];
1121 for (w = 0; w < ics->num_windows; w++) {
1122 bottom = ics->num_swb;
1123 for (filt = 0; filt < tns->n_filt[w]; filt++) {
1124 top = bottom;
1125 bottom = FFMAX(0, top - tns->length[w][filt]);
1126 order = tns->order[w][filt];
1127 if (order == 0)
1128 continue;
1130 // tns_decode_coef
1131 compute_lpc_coefs(tns->coef[w][filt], order, lpc, 0, 0, 0);
1133 start = ics->swb_offset[FFMIN(bottom, mmm)];
1134 end = ics->swb_offset[FFMIN( top, mmm)];
1135 if ((size = end - start) <= 0)
1136 continue;
1137 if (tns->direction[w][filt]) {
1138 inc = -1; start = end - 1;
1139 } else {
1140 inc = 1;
1142 start += w * 128;
1144 // ar filter
1145 for (m = 0; m < size; m++, start += inc)
1146 for (i = 1; i <= FFMIN(m, order); i++)
1147 coef[start] -= coef[start - i*inc] * lpc[i-1];
1153 * Conduct IMDCT and windowing.
1155 static void imdct_and_windowing(AACContext * ac, SingleChannelElement * sce) {
1156 IndividualChannelStream * ics = &sce->ics;
1157 float * in = sce->coeffs;
1158 float * out = sce->ret;
1159 float * saved = sce->saved;
1160 const float * swindow = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
1161 const float * lwindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
1162 const float * swindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
1163 float * buf = ac->buf_mdct;
1164 DECLARE_ALIGNED(16, float, temp[128]);
1165 int i;
1167 // imdct
1168 if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
1169 if (ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE)
1170 av_log(ac->avccontext, AV_LOG_WARNING,
1171 "Transition from an ONLY_LONG or LONG_STOP to an EIGHT_SHORT sequence detected. "
1172 "If you heard an audible artifact, please submit the sample to the FFmpeg developers.\n");
1173 for (i = 0; i < 1024; i += 128)
1174 ff_imdct_half(&ac->mdct_small, buf + i, in + i);
1175 } else
1176 ff_imdct_half(&ac->mdct, buf, in);
1178 /* window overlapping
1179 * NOTE: To simplify the overlapping code, all 'meaningless' short to long
1180 * and long to short transitions are considered to be short to short
1181 * transitions. This leaves just two cases (long to long and short to short)
1182 * with a little special sauce for EIGHT_SHORT_SEQUENCE.
1184 if ((ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE) &&
1185 (ics->window_sequence[0] == ONLY_LONG_SEQUENCE || ics->window_sequence[0] == LONG_START_SEQUENCE)) {
1186 ac->dsp.vector_fmul_window( out, saved, buf, lwindow_prev, ac->add_bias, 512);
1187 } else {
1188 for (i = 0; i < 448; i++)
1189 out[i] = saved[i] + ac->add_bias;
1191 if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
1192 ac->dsp.vector_fmul_window(out + 448 + 0*128, saved + 448, buf + 0*128, swindow_prev, ac->add_bias, 64);
1193 ac->dsp.vector_fmul_window(out + 448 + 1*128, buf + 0*128 + 64, buf + 1*128, swindow, ac->add_bias, 64);
1194 ac->dsp.vector_fmul_window(out + 448 + 2*128, buf + 1*128 + 64, buf + 2*128, swindow, ac->add_bias, 64);
1195 ac->dsp.vector_fmul_window(out + 448 + 3*128, buf + 2*128 + 64, buf + 3*128, swindow, ac->add_bias, 64);
1196 ac->dsp.vector_fmul_window(temp, buf + 3*128 + 64, buf + 4*128, swindow, ac->add_bias, 64);
1197 memcpy( out + 448 + 4*128, temp, 64 * sizeof(float));
1198 } else {
1199 ac->dsp.vector_fmul_window(out + 448, saved + 448, buf, swindow_prev, ac->add_bias, 64);
1200 for (i = 576; i < 1024; i++)
1201 out[i] = buf[i-512] + ac->add_bias;
1205 // buffer update
1206 if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
1207 for (i = 0; i < 64; i++)
1208 saved[i] = temp[64 + i] - ac->add_bias;
1209 ac->dsp.vector_fmul_window(saved + 64, buf + 4*128 + 64, buf + 5*128, swindow, 0, 64);
1210 ac->dsp.vector_fmul_window(saved + 192, buf + 5*128 + 64, buf + 6*128, swindow, 0, 64);
1211 ac->dsp.vector_fmul_window(saved + 320, buf + 6*128 + 64, buf + 7*128, swindow, 0, 64);
1212 memcpy( saved + 448, buf + 7*128 + 64, 64 * sizeof(float));
1213 } else if (ics->window_sequence[0] == LONG_START_SEQUENCE) {
1214 memcpy( saved, buf + 512, 448 * sizeof(float));
1215 memcpy( saved + 448, buf + 7*128 + 64, 64 * sizeof(float));
1216 } else { // LONG_STOP or ONLY_LONG
1217 memcpy( saved, buf + 512, 512 * sizeof(float));
1222 * Apply dependent channel coupling (applied before IMDCT).
1224 * @param index index into coupling gain array
1226 static void apply_dependent_coupling(AACContext * ac, SingleChannelElement * sce, ChannelElement * cc, int index) {
1227 IndividualChannelStream * ics = &cc->ch[0].ics;
1228 const uint16_t * offsets = ics->swb_offset;
1229 float * dest = sce->coeffs;
1230 const float * src = cc->ch[0].coeffs;
1231 int g, i, group, k, idx = 0;
1232 if(ac->m4ac.object_type == AOT_AAC_LTP) {
1233 av_log(ac->avccontext, AV_LOG_ERROR,
1234 "Dependent coupling is not supported together with LTP\n");
1235 return;
1237 for (g = 0; g < ics->num_window_groups; g++) {
1238 for (i = 0; i < ics->max_sfb; i++, idx++) {
1239 if (cc->ch[0].band_type[idx] != ZERO_BT) {
1240 for (group = 0; group < ics->group_len[g]; group++) {
1241 for (k = offsets[i]; k < offsets[i+1]; k++) {
1242 // XXX dsputil-ize
1243 dest[group*128+k] += cc->coup.gain[index][idx] * src[group*128+k];
1248 dest += ics->group_len[g]*128;
1249 src += ics->group_len[g]*128;
1254 * Apply independent channel coupling (applied after IMDCT).
1256 * @param index index into coupling gain array
1258 static void apply_independent_coupling(AACContext * ac, SingleChannelElement * sce, ChannelElement * cc, int index) {
1259 int i;
1260 for (i = 0; i < 1024; i++)
1261 sce->ret[i] += cc->coup.gain[index][0] * (cc->ch[0].ret[i] - ac->add_bias);
1265 * channel coupling transformation interface
1267 * @param index index into coupling gain array
1268 * @param apply_coupling_method pointer to (in)dependent coupling function
1270 static void apply_channel_coupling(AACContext * ac, ChannelElement * cc,
1271 void (*apply_coupling_method)(AACContext * ac, SingleChannelElement * sce, ChannelElement * cc, int index))
1273 int c;
1274 int index = 0;
1275 ChannelCoupling * coup = &cc->coup;
1276 for (c = 0; c <= coup->num_coupled; c++) {
1277 if (ac->che[coup->type[c]][coup->id_select[c]]) {
1278 if (coup->ch_select[c] != 2) {
1279 apply_coupling_method(ac, &ac->che[coup->type[c]][coup->id_select[c]]->ch[0], cc, index);
1280 if (coup->ch_select[c] != 0)
1281 index++;
1283 if (coup->ch_select[c] != 1)
1284 apply_coupling_method(ac, &ac->che[coup->type[c]][coup->id_select[c]]->ch[1], cc, index++);
1285 } else {
1286 av_log(ac->avccontext, AV_LOG_ERROR,
1287 "coupling target %sE[%d] not available\n",
1288 coup->type[c] == TYPE_CPE ? "CP" : "SC", coup->id_select[c]);
1289 break;
1295 * Convert spectral data to float samples, applying all supported tools as appropriate.
1297 static void spectral_to_sample(AACContext * ac) {
1298 int i, type;
1299 for (i = 0; i < MAX_ELEM_ID; i++) {
1300 for(type = 0; type < 4; type++) {
1301 ChannelElement *che = ac->che[type][i];
1302 if(che) {
1303 if(che->coup.coupling_point == BEFORE_TNS)
1304 apply_channel_coupling(ac, che, apply_dependent_coupling);
1305 if(che->ch[0].tns.present)
1306 apply_tns(che->ch[0].coeffs, &che->ch[0].tns, &che->ch[0].ics, 1);
1307 if(che->ch[1].tns.present)
1308 apply_tns(che->ch[1].coeffs, &che->ch[1].tns, &che->ch[1].ics, 1);
1309 if(che->coup.coupling_point == BETWEEN_TNS_AND_IMDCT)
1310 apply_channel_coupling(ac, che, apply_dependent_coupling);
1311 imdct_and_windowing(ac, &che->ch[0]);
1312 if(type == TYPE_CPE)
1313 imdct_and_windowing(ac, &che->ch[1]);
1314 if(che->coup.coupling_point == AFTER_IMDCT)
1315 apply_channel_coupling(ac, che, apply_independent_coupling);
1321 static int aac_decode_frame(AVCodecContext * avccontext, void * data, int * data_size, const uint8_t * buf, int buf_size) {
1322 AACContext * ac = avccontext->priv_data;
1323 GetBitContext gb;
1324 enum RawDataBlockType elem_type;
1325 int err, elem_id, data_size_tmp;
1327 init_get_bits(&gb, buf, buf_size*8);
1329 // parse
1330 while ((elem_type = get_bits(&gb, 3)) != TYPE_END) {
1331 elem_id = get_bits(&gb, 4);
1332 err = -1;
1334 if(elem_type == TYPE_SCE && elem_id == 1 &&
1335 !ac->che[TYPE_SCE][elem_id] && ac->che[TYPE_LFE][0]) {
1336 /* Some streams incorrectly code 5.1 audio as SCE[0] CPE[0] CPE[1] SCE[1]
1337 instead of SCE[0] CPE[0] CPE[0] LFE[0]. If we seem to have
1338 encountered such a stream, transfer the LFE[0] element to SCE[1] */
1339 ac->che[TYPE_SCE][elem_id] = ac->che[TYPE_LFE][0];
1340 ac->che[TYPE_LFE][0] = NULL;
1342 if(elem_type < TYPE_DSE) {
1343 if(!ac->che[elem_type][elem_id])
1344 return -1;
1345 if(elem_type != TYPE_CCE)
1346 ac->che[elem_type][elem_id]->coup.coupling_point = 4;
1349 switch (elem_type) {
1351 case TYPE_SCE:
1352 err = decode_ics(ac, &ac->che[TYPE_SCE][elem_id]->ch[0], &gb, 0, 0);
1353 break;
1355 case TYPE_CPE:
1356 err = decode_cpe(ac, &gb, elem_id);
1357 break;
1359 case TYPE_CCE:
1360 err = decode_cce(ac, &gb, ac->che[TYPE_CCE][elem_id]);
1361 break;
1363 case TYPE_LFE:
1364 err = decode_ics(ac, &ac->che[TYPE_LFE][elem_id]->ch[0], &gb, 0, 0);
1365 break;
1367 case TYPE_DSE:
1368 skip_data_stream_element(&gb);
1369 err = 0;
1370 break;
1372 case TYPE_PCE:
1374 enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
1375 memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
1376 if((err = decode_pce(ac, new_che_pos, &gb)))
1377 break;
1378 err = output_configure(ac, ac->che_pos, new_che_pos);
1379 break;
1382 case TYPE_FIL:
1383 if (elem_id == 15)
1384 elem_id += get_bits(&gb, 8) - 1;
1385 while (elem_id > 0)
1386 elem_id -= decode_extension_payload(ac, &gb, elem_id);
1387 err = 0; /* FIXME */
1388 break;
1390 default:
1391 err = -1; /* should not happen, but keeps compiler happy */
1392 break;
1395 if(err)
1396 return err;
1399 spectral_to_sample(ac);
1401 if (!ac->is_saved) {
1402 ac->is_saved = 1;
1403 *data_size = 0;
1404 return buf_size;
1407 data_size_tmp = 1024 * avccontext->channels * sizeof(int16_t);
1408 if(*data_size < data_size_tmp) {
1409 av_log(avccontext, AV_LOG_ERROR,
1410 "Output buffer too small (%d) or trying to output too many samples (%d) for this frame.\n",
1411 *data_size, data_size_tmp);
1412 return -1;
1414 *data_size = data_size_tmp;
1416 ac->dsp.float_to_int16_interleave(data, (const float **)ac->output_data, 1024, avccontext->channels);
1418 return buf_size;
1421 static av_cold int aac_decode_close(AVCodecContext * avccontext) {
1422 AACContext * ac = avccontext->priv_data;
1423 int i, type;
1425 for (i = 0; i < MAX_ELEM_ID; i++) {
1426 for(type = 0; type < 4; type++)
1427 av_freep(&ac->che[type][i]);
1430 ff_mdct_end(&ac->mdct);
1431 ff_mdct_end(&ac->mdct_small);
1432 return 0 ;
1435 AVCodec aac_decoder = {
1436 "aac",
1437 CODEC_TYPE_AUDIO,
1438 CODEC_ID_AAC,
1439 sizeof(AACContext),
1440 aac_decode_init,
1441 NULL,
1442 aac_decode_close,
1443 aac_decode_frame,
1444 .long_name = NULL_IF_CONFIG_SMALL("Advanced Audio Coding"),
1445 .sample_fmts = (enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE},